
1

Bruce McCarl's GAMS Newsletter Number 34

This newsletter covers

Updates to Expanded GAMS User Guide by McCarl et al. .. 1

New GAMS features in release 24.2 ... 1

Including probability distributions .. 1

Other language additions ... 1

Solvers ... 2

Using the GUSS "solver" .. 2

Courses offered .. 8

Unsubscribe to future issues of this newsletter ... 9

Updates to Expanded GAMS User Guide by McCarl et al.

I updated the Expanded User’s Guide to reflect release 24.2 with changes added here and there.

The latest can be found at

http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf and will be in

upcoming GAMS releases.

New GAMS features in release 24.2

Including probability distributions
GAMS has introduced the ability to include probability functions and inverse probabilities in

models and calculations. In particular one can use the extrinsic libraries cppcclib, stodclib and

lsadclib which provide random deviates, probability density functions, cumulative density

functions and inverse cumulative density functions for a number of distributions. The included

distributions across all of these are are Beta, Cauchy, ChiSquare, F, Exponential, Gamma,

Gumbel, Inverse Gaussian, Laplace, Logistic , Log Normal, Univariate and Bivariate Normal,

Pareto, Rayleigh, Student's t, Triangular, Uniform and Weibull plus the discrete distributions

Binomial, Geometric, Hypergeometric, Logarithmic, Negative Binomial, Poisson and Uniform

Integer. More details on the preprogrammed functions appear in the GAMS User's Guide (see

appendix J).

Other language additions

 A feature was introduced that does domain checking when things are loaded from a GDX

file at execution time. This is called EXECUTE_LOADDC and generates execution

errors when items from the loaded GDX file contain items not in the domain of the items

being loaded.

http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf

2

 A feature was introduced that unloads not only requested items but also all of the sets used

in this domain. This is called EXECUTE_UNLOADDI.

• One can use load to define a set based on the elements with non zero entries in the data.

thus if one has a set that is to be defined and we know the parameter a is defined over

that set then one can use something like the following syntax

 set i

 parameter a(i)

 $gdxin trannoset

 $load i<a

 One can dump all options and their current settings using the option DmpOpt.

 Model status 7 which used to be Intermediate Nonoptimal to was renamed to Feasible

Solution.

 The Alias statement mow works on multidimensional sets as well

Solvers

 New libraries are included for ALPHAECP, Baron, Bonmin, CBC, Couenne,

Cplex/CplexD, CONOPT, DICOPT, EMPSP, GloMIQO, Gurobi, Ipopt, IpoptH, JAMS,

KNITRO, Lindo, LindoGlobal, MOSEK, MSNLP, OQNLP, Osi, SCIP, SULUM and

XPRESS

Using the GUSS "solver"

GUSS is a GAMS facility that permits solution of a set of scenarios for a GAMS model

modifying data to run each scenario. GUSS allows the collection of models to be solved in a

single pass without needing repeated solves or a LOOP over multiple solves. GUSS is not

really a solver but rather organizes and passes data to the other gams solvers for most model

types. This is all done in a faster fashion than say when using multiple solves through the

GAMS Loop command and is much faster for small models.

In particular GUSS runs the model repeatedly over user specified data for model parameters that

collectively define alternative scenarios to be run. In doing this it repeatedly updates the base

model with the altered scenario data, then solves the updated model for that scenario and saves

user chosen results for each scenario.

GUSS was developed by Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann. It is

documented in http://www.gams.com/modlib/adddocs/gusspaper.pdf and in the GUSS section

of the solver manual.

GUSS is available in all versions of GAMS starting with release 23.7.

Use of GUSS for an existing model requires six steps

http://www.gams.com/modlib/adddocs/gusspaper.pdf

3

1. Definition of scenarios to run

2. Definition of parameters holding scenario specific data for the items in the model that to

be changed

3. Definition of parameters that will hold scenario specific model results for the items that

the user wished to save

4. Definition of a set that tells GUSS the scenarios to run, data to change and results to

save

5. Modification of the solve statement to identify that scenarios will be run

6. Development of code to report the scenario results

Each will be covered below.in the context of the model in risk.gms which originally solved a

model repeatedly for different risk aversion parameters using the code below

loop (raps,rap=riskaver(raps);

 solve evportfol using nlp maximizing obj ;

 var = sum(stock, sum(stocks,

 invest.l(stock)*covar(stock,stocks)*invest.l(stocks))) ;

 output("rap",raps)=rap;

 output(stocks,raps)=invest.l(stocks);

 output("obj",raps)=obj.l;);

We will now discuss the 6 steps of set up for an example based on the risk model which we callt

GUSSRISK.gms.

1. Definition of scenarios to run

The first step in the procedure is to establish a set that covers the scenarios that will be run. For

the risk.gms example (from the Expanded user guide) the alternative runs are ones for different

risk aversion parameters controlled by the set RAPS. So in GUSSRISK.gms (accessible in the

Expanded user guide) we will define a set of risk aversion parameters and give it the name

RAPSCENARIOS in a set statement as follows

SET RAPSCENARIOS RISK AVERSION PARAMETERS /R0*R25/

2. Definition of parameters holding scenario specific data

The second step in the procedure is to establish scenario dependent values for the model data

items that will be changed across the scenarios run that will be run. For the GUSSRISK.gms

example we wish to use scenario dependent risk aversion parameters defined over the set

RAPSCENARIOS. We do this in a parameter statement as follows

PARAMETER RISKAVER(RAPSCENARIOS) RISK AVERSION COEFICIENT

BY RISK AVERSION PARAMETER

 /R0 0.0000000001, R1 0.00025, R2 0.00050, R3 0.00075,

 R4 0.00100, R5 0.00150, R6 0.00200, R7 0.00300,

 R8 0.00500, R9 0.01000, R10 0.01100, R11 0.01250,

 R12 0.01500, R13 0.02500, R14 0.05000, R15 0.10000,

 R16 0.30000, R17 0.50000, R18 1.00000, R19 2.50000,

4

 R20 5.00000, R21 10.0000, R22 15. , R23 20.

 R24 40. , R25 80./ ;

In general, the parameter storing the data has to have the scenario set in its first index position.

Thus if one is altering a scalar like RAP in the GUSSRISK.gms example, we define a one

dimensional parameter over the scenario set in this case RISKAVER(RAPSCENARIOS).

When the scenario analysis involves modifying a parameter in a model named

modelparam(i,j,k) one would define a new parameter whith a structe like

newmodelparam(scenarioset,i,j,k) where scenarioset is the set of scenarios that will be

handled by GUSS and the i,j,k are the original set definitions in the parameter to be changed..

Note we could have changed more than one parameter but here this is all we will modify. For a

more complex example see gussexample1.gms..

3. Definition of parameters to hold scenario specific model results

The third step in the procedure is to establish scenario dependent repositories where the scenario

dependent model solution related items will be stored. For the GUSSRISK.gms example we

will store the levels of investment, the objective function value and the available funds shadow

price. Each of these items has to have the named scenario set in the first index position plus

the full dimension of the associated solution information. In the GUSSRISK.gms example this

is RAPSCENARIOS and we use a parameter statement as follows

PARAMETER

STOCKOUTPUT(RAPSCENARIOS,STOCKS) RESULTS FOR INVEST with

VARYING RAP

OBJLEVEL(RAPSCENARIOS) OBJECTIVE FUNCTION WITH VARYING RAP

INVESTAVshadow(RAPSCENARIOS) FUNDS SHADOW PRICE WITH

VARYING RAP

;

One can also specify a parameter to hold solution status information relative to each model. In

that case we specify the nature of the information we want and the array name to hold the

information again with the scenario set name in the first index position. In the GUSSRISK.gms

example this involves the statements

Set modelattrib model solution information to collect / modelstat, solvestat,

objval /;

PARAMETER solutionstatus(RAPSCENARIOS, modelattrib) Place to store

Solution status reporting

* assign initial values

 / #RAPSCENARIOS.(ModelStat na, SolveStat na, ObjVal na) /;

Where

5

 the first line defines a set that contains the names of the model attributes to store using

in this case the attributes for

 model solution status (modelstat with an explanation of the possible numerical

values given here)

 solver solution status (solvestat with an explanation of the possible numerical

values given here)

 the optimal value of the objective function (objval)

 Note more items can be stored and are domusd, iterusd, objest, nodusd,

numnopt, numinfes, robj, and suminfes as mostly defined in the list of model

attributes here

 the second line defines the parameter in which the values are to be stored

 The fourth line initializes all values to na and if the solves fail then those values will

remain.

4. Definition of a set that tells GUSS what to do

The fourth step in the procedure is to establish a set statement in the form of a three

dimensional tuple that tells GUSS what you wish to do plus possibly defining a parameter

holding GUSS option settings.

The tuple contains

 the name of the set defining the scenarios

 the names of model parameters to be changed and the name of the parameters where

the scenario dependent data are stored

 the names of model solution parameters to be saved along with identification of the

type of the solution information to save and the name of a the place where to save it.

 the names of a parameter with options to pass to GUSS along with the name of the

place to store solution attributes

For the GUSSRISK.gms example the statement is as follows.

set GUSSdict / RAPSCENARIOS.scenario . ''

 rap .param .RISKAVER

 INVEST .level .STOCKOUTPUT

 OBJ .level .OBJLEVEL

 INVESTAV .marginal .INVESTAVshadow

 /;

Here the named set is GUSSDICT and

 the first line identifies the name of the set defining the scenarios

(RAPSCENARIOS)and associates it with the word SCENARIO and a third entry of

' '

 the second line identifies the name of the data element in the model (rap) to be

changed in running the scenarios and associates it with the word param and an entry

telling where the alternative values are held (RISKAVER)

6

 the third line identifies the name of a solution output to store (INVEST), its nature (a

level or INVEST.L in this case) and the place to store it (STOCKOUTPUT)

 the fourth line identifies the name of a solution output to store (OBJ), its nature (a

level or OBJ.L in this case) and the place to store it (OBJLEVEL)

 the fifth line identifies the name of a solution output to store (INVESTAV), its nature

(a marginal or INVESTAV.M in this case) and the place to store it

(INVESTAVshadow)

Note the key words that can be used in the second tuple position are

param Indicating this is an item that provides scenario data for a model

parameter that will be altered

lower Indicating this is an item that provides alternative lower bounds for

model variables or equation RHS's that will be changed

upper Indicating this is an item that provides alternative upper bounds for

model variables or equation RHS's that will be changed

fixed Indicating this is an item that provides alternative fixed bounds for model

variables or RHS's that will be changed

level Indicating this is an item that will be used to store solution levels for

model variables or equations

Marginal Indicating this is an item that will be used to store solution marginals for

model variables or equations

opt Indicating the parameter holding GUSS options to use and where to store

model solution attributes

One may also modify multiple input parameters as in the tuple specified in gussexample1.gms

where parameters a and b take on multiple values.

set dict / scenariostorun.scenario .''

 gussoptions .opt .solutionstatus

 a .param .newsupply

 b .param .newdemand

 x .level .resultantx

 /

If one uses the opt command one also needs to specify a parameter that holds options for GUSS

using syntax like

parameter gussoptions options to use in running GUSS

 / UpdateType 1, Optfile 1 /

The available options are discussed in the solver manual in the GUSS section with the most

important ones involving option files to use controlling the option files to use for the first and

subsequent solves, the amount of output in the LOG file, the way the data update is performed

and the type of solution point to restart from.

7

5. Modification of the solve statement to identify that scenarios will be run

The fifth step involves altering the solve statement so it both knows that GUSS is to be used

plus an identification of the name of the tuple that passes instructions on what GUSS needs to

do.

The format of this in the GUSSRISK.gms example is

SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ SCENARIO GUSSDICT ;

where the solve statement is of the conventional form with the addition of the key word

SCENARIO and name of the tuple from step 4 that tells GUSS what to do. In this case the

name of that tuple is GUSSDICT.

In the gussexample1.gms case the solve statement is

Solve transport using lp minimizing z scenario dict;

where again we have the addition of the key word SCENARIO and DICT is the name of the

tuple that tells GUSS what to do.

6. Development of code to report the scenario results

The sixth step involves implementing post solution instructions to report the scenario dependent

family of solutions to the user. This is done either directly through a display or through

calculation of tables and inclusion in output through display, put files or passing to other

programs as discussed elsewhere in this guide.

In the example in gussexample1.gms we simply display the array

option resultantx:0:1:2;

display resultantx,solutionstatus;

In GUSSRISK.gms we run through a report writing loop placing the scenario dependent

solution information into the model variable levels and shadow prices and then build a report

table

 PARAMETER OUTPUT(*,rapscenarios);

 LOOP (RAPSCENARIOS,RAP=RISKAVER(RAPSCENARIOS);

* LOAD IN SOLUTION INFORMATION

 INVEST.L(STOCKS)=STOCKOUTPUT(RAPSCENARIOS,STOCKS);

 OBJ.L=OBJLEVEL(RAPSCENARIOS);

 INVESTAV.m=INVESTAVshadow(RAPSCENARIOS);

* COMPUTE SOME ITEMS

 INVESTAV.L=SUM(STOCKS,INVEST.L(STOCKS));

 VAR = SUM(STOCK, SUM(STOCKS,

8

 INVEST.L(STOCK)*COVAR(STOCK,STOCKS)*INVEST.L(STOCKS)))

;

 OUTPUT("RAP",rapscenarios)=RAP;

 OUTPUT(STOCKS,rapscenarios)=INVEST.L(STOCKS);

 OUTPUT("OBJ",rapscenarios)=OBJ.L;

 OUTPUT("MEAN",rapscenarios)

 =SUM(STOCKS, MEAN(STOCKS) * INVEST.L(STOCKS));

 OUTPUT("VAR",rapscenarios) = VAR;

 OUTPUT("STD",rapscenarios)=SQRT(VAR);

 OUTPUT("SHADPRICE",rapscenarios)=INVESTAV.M;

 OUTPUT("IDLE",rapscenarios)=FUNDS-INVESTAV.L

);

 DISPLAY OUTPUT,solutionstatus;

Here we loop over the scenarios run (RAPSCENARIOS)and during that loop we load the

GUSS saved investment levels into the original model investment variables using the statement

 INVEST.L(STOCKS)=STOCKOUTPUT(RAPSCENARIOS,STOCKS);

along with the saved scenario dependent values of the objective function and the funds shadow

prices.

 OBJ.L=OBJLEVEL(RAPSCENARIOS);

 INVESTAV.m = INVESTAVshadow(RAPSCENARIOS);

Finally in the loop a number of calculations are done placing results into a parameter named

OUTPUT and after the loop the result is displayed as is the array holding the solution and

model termination status.

Much more complex setups could be run.

Notes

 GUSS is not a solver and is not activated using normal solver choice methods such as option

LP=GUSS or any such variants. Rather one uses a modification to the solve statement as

discussed above.

 GUSS will cause the problems to be solved with the solver that is currently active in the

GAMS instance. This may be specified using multiple ways as discussed here employing for

example OPTION NLP=CONOPT or LP=CPLEX or the like as well as through choice in the

IDE or on the computer.

 GUSS has a number of additional options as discussed in

http://www.gams.com/modlib/adddocs/gusspaper.pdf and in the GUSS section of the solver

manual.

Courses offered

I will be teaching

http://www.gams.com/modlib/adddocs/gusspaper.pdf

9

 Basic to Advanced GAMS class Aug 4, 2014- Aug 8, 2014 (5 days) in the Colorado

mountains at Frisco (near Breckenridge). The course spans from Basic topics to an

Advanced GAMS class. Details are found at

http://www.gams.com/courses/basic_and_advanced.pdf .

 Basic GAMS class Aug 4, 2014- Aug 6, 2014 (3 days) in the Colorado mountains at

Frisco (near Breckenridge). The course starts assuming no GAMS background. Details are

given at http://www.gams.com/courses/basic.pdf .

 Advanced GAMS class Aug 6, 2014- Aug 8, 2014 (3 days) in the Colorado mountains at

Frisco (near Breckenridge). The course is for users, who have a GAMS background.

Details are found at http://www.gams.com/courses/advanced.pdf .

Further information and other courses are listed on http://www.gams.com/courses.htm . Note I

also give custom courses for individual groups a couple of times a year.

Unsubscribe to future issues of this newsletter

Please unsubscribe through the web form available at:

http://app.streamsend.com/public/XLmY/5eq/subscribe

This newsletter is not a product of GAMS Corporation although it is distributed with their

cooperation.

April 7, 2014

http://www.gams.com/courses/basic_and_advanced.pdf
http://www.gams.com/courses/basic.pdf
http://www.gams.com/courses/advanced.pdf
http://www.gams.com/courses.htm
http://app.streamsend.com/public/XLmY/5eq/subscribe

