
1

Bruce McCarl's GAMS Newsletter Number 39

This newsletter covers

1 Updates to GAMS User Guide by McCarl et al. ... 1

2 Updates to GAMSCHK ... 1

3 SCIP solver commercial license .. 2

4 Graphical Interface Generator ... 2

5 Distributed Processing ... 2

6 Transforming GDX data into a GMS file .. 5

7 Courses offered .. 5

8 Unsubscribe or subscribe to future issues of this newsletter ... 6

1 Updates to GAMS User Guide by McCarl et al.

I updated the Expanded User’s Guide to reflect version 24.7, some miscellaneous items and the

items. This included covering =b= types of constraints, the distributed processing from below,

the GDX to GMS capability through GDXDUMP, and GMSZIP/GMSUNZIP capabilities.

The updated version will be available after the next maintenance or full release on line at

http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fuserguides%2Fmccarl%2Findex

.html or in the next GAMS release.

2 Updates to GAMSCHK

After years with nothing being done to GAMSCHK a few issues were fixed by Steve Dirkse

and me. These involved fixing

1) The way scaling and descaling are handled was changed. At some point in the past GAMS

changes rendered the output on models that were being scaled to not be handled as stated in

the GAMSCHK user guide. The code was fixed to do this properly (giving the user the

choice of seeing scaled or original data plus showing POSTOPT in descaled fashion by

default).

2) Some output characteristics of the GAMSCHK ANALYSIS procedure were modified.

When ANALYSIS executes and it finds model formulation errors it then uses DISPLAYCR

to print them out. In order to avoid large LST files the code was programmed to limit the

cases shown for a column or row block to the first three cases of particular error but under

certain circumstances hundreds could appear. We repaired this so at most three cases are

output.

3) Updating of the Jacobian to reflect any solutions done. GAMSCHK can be used to do post

optimality displays of nonlinear models. To do this it uses the matrix of first derivatives

(the Jacobian). When a model is set up the Jacobian sent to a solver is the one that has been

evaluated at the starting point and GAMSCHK was not programmed to update this to a

http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fuserguides%2Fmccarl%2Findex.html
http://www.gams.com/help/index.jsp?topic=%2Fgams.doc%2Fuserguides%2Fmccarl%2Findex.html

2

current solution. GAMSCHK POSTOPT did not update to reflect the solution point and the

derivatives only reflected the starting point. Now the Jacobian is updated to the results of

any solves that are done.

3 SCIP solver commercial license

A commercial license is now available for the SCIP solver, which solves Constraint Integer

Programming. According to the SCIP web page, it is a standalone solver for linear

programming (LP), mixed integer programming (MIP), and mixed integer nonlinear

programming (MINLP). More can be found on the SCIP at http://scip.zib.de/#about .

4 Graphical Interface Generator

Wolfgang Britz has developed a GAMS Graphical Interface Generator (GGIG) for use with

GAMS programs. GGIG generates a basic graphical user interface (GUI) which allows one to

operate GAMS models models through a Java based user interface. The documentation

indicates GGIG supports 5 main functions:

1. Generation of user operable graphical controls from XML based definitions where the

user can then interact with the GUI to change the state of the controls and can map the

controls to GAMS code.

2. Generation of GAMS compatible data from the state of the control which can be stored

in GDX format.

3. Execution of a GAMS program while passing the state of the control to GAMS as an

include file.

4. Exploitation of results from GAMS runs by providing an interface to define the

necessary interfacing definitions to load results from a GAMS into the CAPRI

exploitation tools.

5. Access to GAMS related utilities for model analysis. These include a viewer for GDX

files, a utility to build a HTML based documentation of the GAMS code and a batch

execution utility.

GGIG is currently used in a number of economic and agricultural modeling projects. GGIG also

supports applications using R and Java. Details, code and documentation on GGIG is present at

http://www.ilr.uni-bonn.de/agpo/staff/britz/ggig_e.htm.

5 Distributed Processing

GAMS model instances can take a long time to solve and one may need to solve the model for a

number of scenarios with the result taking weeks or months. GAMS has the GRID computing

facility but on PCs use over a network of machines can require substantial IT involvement often

rendering such an implementation to be impractical. Recently I had a many scenarios to run for

a time consuming models and I wrote a semi-automated procedure to share the work across

different machines then merge the results. I then wrote a simple example of the procedure and

improved it with some help from GAMS personnel. Basically, the code

(merge_control_example.gms) writes GAMS script files to run a distributed set of jobs on

http://scip.zib.de/#about
http://www.r-project.org/
http://www.ilr.uni-bonn.de/agpo/staff/britz/ggig_e.htm

3

multiple processors/machines involving creating GDX files to pass scenario data and return

scenario results plus writing a GAMS file that runs the scenarios. The procedure also

compresses the files for the remote machines into a zip file for transfer. A run of

merge_control_example.gms also writes a file merge_mergethem.gms that merges all into a

unified file and a script file that runs it.

The example extends the AGRESTE.GMS model library file and is available at

http://www.gams.com/mccarl/newsletter/examples39.zip .

The core code - merge_control_example.gms creates all files used in the whole process. It is

AGRESTE context specific with AGRESTE related data handling, reporting and scenario

development but also many generic features. Within that code the user tells: a) how to allocate

scenarios to processors, and b) what data to save and load. Then it writes script files for each

processor plus a processor specific GDX file containing the scenario definition data. It also

writes a file that runs the scenarios. In turn it zips the all the relevant files for transfer to the

remote machine.

On the distributed processors/machines, the user needs to move in the zip files and extract then

then initiate the scrip file whereupon the scenarios are run and as they finish the results are

automatically unloaded into GDX files. Then the user needs to transfer these GDX files back to

a location on which the data will be merged by running merge_mergethem.gms.

Operationally in the main merge_control_example.gms file we

1. Define the scenarios and in this agreste example link them to some alternative

manipulations of the agreste price, land and risk aversion data (see section 1 in the

code).

2. Define the processors to be used and assign scenarios to be run by each processor

(see section 2)

3. Give a name to the procedure that will run the scenarios on the assigned processors

(in this case agreste_loop - see section 3)

4. Identify which report parameter that reflect the solution for each scenario are to be

merged (see section 4).

5. Set up parameters for the data items and sets that define the scenarios (see section 5)

6. Create processor specific GDX files that contain scenario data to be run and

processor specific script files plus create a zip file to pass to the processor (Section

6).

 There are a number of subparts to this step. In particular, for each processor we

 a. Set up scenario data and put it in an appropriately named GDX file (section 6a)

 b. Create a script file for that processor (section 6b)

 7. Create GAMS code in the file merge_mergethem.gms that will merge the results

(section 7).

 Here there are several steps involved

a. We define a control variable that contains the names of the report items to merge

- section 7a.

b. We declare the parameters and sets that are involved with holding the scenario

dependent reports to be merged (not needed if restarting) - section 7b.

http://www.gams.com/mccarl/newsletter/examples39.zip

4

c. We include a statement to load the GDX file data from each processor using

$loadm so the data will be merged - section 7c.

d. We form a set that tells what scenarios have been found - section 7e.

e. We display merged results and write a GDX file of them - section 7f

8. Get agreste.gms from the library and run it to create a restart file - section 8.

9. Create a GMS file that runs the scenarios called agreste_loop - section 9. In doing

this we

a. Set up scenario particulars - section 9a

b. Define the names of the cross scenario reports that are computed and

subsequently passed on for use in the merge operations - section 9b.

c. Load in data that tells what scenarios to use and accompanying data - section 9c.

d. Loop through the scenarios assigned to a processor setting it up, solving it and

computing reports on the results - section 9d.

e. Unload data into the GDX file for subsequent use in the merge operation -

section 9e

B. In doing this merge control_example.gms writes several types of files

1. Files for use on each of the remote processors

a. A script file for that processor with a name like script_for_secondprocessor.gms

that when run executes all the GAMS tasks needed to be done on that processor.

 One will be generated for each processor identified in the runstodo table.

b. A GDX file for each processor with the scenario data named

send_to_processorname.GDX or in the example send_to_secondprocessor.GDX

c. A gms file that is used on all remote processors to runs the scenarios called

agreste_loop.gms.

d. A restart file that is created after agreste is run (a1.g00).

e. A zip file that contains the 4 files just above for each processor called

zip_to_send_to_processorname.zip or in the example

zip_to_send_to_Secondprocessor.zip.

 2. A file for the merge operation named merge_mergethem.gms that merges the data

from the distributed runs assuming the GDX files of results have been moved to the

project directory.

C. On the remote processor one needs to

1. Copy in and unzip the file zip_to_send_to_processorname.zip. In this example one

file is named zip_to_send_to_processorname.zip. This unpacks the script file

(script_for_second_processor.gms), a1.g00, the agreste_loop.gms file and the

send_to_processorname.GDX (e,g, send_to_secondprocessor.GDX)

2. Run the script file which causes a load of the GDX file of data, a run of

agreste_loop.gms executing all assigned scenarios, creation of scenario dependent

reports and an unloading of the results in a GDX file for use in the merge exercise.

(results_processorname.GDX or in the example results_secondprocessor.GDX)

3. Move the results GDX file to the location where the merge is to be run

5

D. Then back on the main machine

1. One makes sure the results_procssorname.GDX files have been moved.

2. Run the merge_mergethem.gms to obtain the merged results. These will appear in

merge_mergethem.lst or in results_agreste.GDX.

3. Note this procedure can be run at any time even if all the GDX files are not present.

A few notes

 The GAMS command execute_unload is used to place the results into GDX

files since they only exist at execution time.

 The code for loading from the GDX files uses the GAMS command $loadm to

merge the results as that command augments the earlier information merging in

the data.

 merge_mergethem when executed does the merger and it can be followed by

something else to create user reports. For this you may want to restart it from an

agreste , agreste_loop or merge_control_example restart file.

 Much more could be done with this. For example, one could insert commands

that copy the zip file to the remote processors on a network, then unzip and run

it. Additionally one could write code to copy back the GDX files of results.

One can also write a procedure that waits for the GDX files to be present before

running the merge_mergethem.gms file.

6 Transforming GDX data into a GMS file

One can take the data in a GDX file and put it into a GMS source file using GDXDUMP

including domains and the parameter values. Consider the following example

*load in the transport model

$ call gamslib trnsport

*execute the model and create a GDX file

$ call gams trnsport lo=%gams.lo% GDX=trnsport

* Create GAMS source that declares symbols and data

$call GDXdump trnsport.GDX NoData > newtransport_data_only.gms

Here the line $call GDXdump trnsport.GDX NoData > newtransport_data_only.gms

takes the contents of the GDX file and writes them into the file newtransport_data_only.gms.

The resultant file is just sets and parameters. No model declaration statements or calculations

will be present.

7 Courses offered

I will be teaching

 Basic to Advanced GAMS class Aug 8, 2016- Aug 12, 2016 (5 days) in the

Colorado Mountains at Frisco (near Breckenridge). The course spans from Basic

6

topics to an Advanced GAMS class. Details are found at

http://www.gams.com/courses/mccarl_combined.pdf .

 Basic GAMS class Aug 8, 2015- Aug 10, 2015 (3 days) in the Colorado

mountains at Frisco (near Breckenridge). The course starts assuming no GAMS

background. Details are given at

http://www.gams.com/courses/mccarl_basic.pdf.

 Advanced GAMS class Aug 10, 2015- Aug 12, 2015 (3 days) in the Colorado

mountains at Frisco (near Breckenridge). The course is for users who have a

GAMS background. Details are found at

http://www.gams.com/courses/mccarl_advanced.pdf .

Further information and other courses are listed on http://www.gams.com/courses.htm . Note I

also give custom courses for individual groups a couple of times a year.

8 Unsubscribe or subscribe to future issues of this newsletter

Please unsubscribe through the web form available at:

http://app.streamsend.com/public/XLmY/5eq/subscribe

Those who wish to subscribe to future issues can do this trough the newsletter section of

http://www.gams.com/maillist/index.htm.

This newsletter is not a product of GAMS Corporation although it is distributed with their

cooperation.

June 10, 2016

http://www.gams.com/courses/mccarl_combined.pdf
http://www.gams.com/courses/mccarl_basic.pdf
http://www.gams.com/courses/advanced_2016.pdf
http://www.gams.com/courses.htm
http://app.streamsend.com/public/XLmY/5eq/subscribe
http://www.gams.com/maillist/index.htm

