
1 
 

Bruce McCarl's GAMS Newsletter Number 35 

This newsletter covers  

Updates to Expanded GAMS User Guide by McCarl et al. .......................................................... 1 

Using Probability Distributions on models ................................................................................... 1 

Including Random Numbers from extrinsic function libraries ..................................................... 4 

Using the Stochastic Library stocldib ................................................................................... 4 

Using the Lindo Sampling Library lsadclib .......................................................................... 5 

Making your own Library ............................................................................................................. 9 

Courses offered ............................................................................................................................ 10 

Unsubscribe to future issues of this newsletter ........................................................................... 10 

 

Updates to Expanded GAMS User Guide by McCarl et al. 

I updated the Expanded User’s Guide to reflect the items discussed here with a few other 

changes. The latest can be found at 
http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf and will be in 
upcoming GAMS releases. 

Using Probability Distributions on models 

GAMS has introduced the ability to include probability density functions and cumulative 
density functions plus inverse probabilities in models (only the continuous ones) and 
calculations via use of some provided extrinsic libraries. The continuous distributions across all 
of these are Beta, Cauchy, ChiSquare, Exponential, F, Gamma, Gumbel, Inverse Gaussian, 
Laplace, Logistic , Log Normal, Normal, Pareto, Rayleigh, Student's T, Triangular, Uniform 
and Weibull plus the discrete distributions Binomial, Geometric, Hypergeometric, Logarithmic, 
Negative Binomial, Poisson and Uniform Integer.  

This involves use of the extrinsic library stodclib.  When using these one prefixes the 
distribution name with  

 PDF if the  probability density function is needed 
 CDF if the cumulative distribution function is needed 
 ICDF if the inverse cumulative distribution function is needed 

In addition when prefixing with PDF or CDF one uses a first argument which is the value of the 
point to be associated with the probability.  When using ICDF one uses the probability as the 
first argument. 

A list of the continuous distributions included and their parameters including a link to a 
Wolfram Mathworld description of the distribution follows 

file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905700
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905701
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905702
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905703
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905704
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905705
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905706
file:///C:/mccarl/papers/newsletter35.docx%23_Toc391905707
http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf


2 
 

Beta(ALPHA,BETA) Beta distribution with parameters ALPHA and BETA 

Cauchy(MEDIAN,HALFWIDTH) Cauchy distribution with parameters MEDIAN and 
HALFWIDTH 

ChiSquare(DF) Chi-squared distribution with the parameter degrees of freedom 
DF  

Exponential(LAMBDA) Exponential distribution with rate of change parameter 
LAMBDA 

F(DF1,DF2) F-distribution with parameters for degrees of freedom DF1 
and DF2 

Gamma(ALPHA, THETA)  Gamma distribution with parameters ALPHA and THETA 

Gumbel(ALPHA,BETA) Gumbel distribution with parameters ALPHA and BETA 

InvGaussian(MU,LAMBDA)  Inverse Gaussian distribution with parameters MU and 
LAMBDA 

Laplace(MU,BETA) Laplace distribution with parameters MU and BETA 

Logistic(MU,BETA) Logistic distribution with parameters MU and BETA 

LogNormal(MU,SIGMA)  Log Normal distribution with parameters MU and SIGMA 

Normal(MEAN,STD DEV)  Normal distribution with parameters MEAN and STD DEV 

Pareto(K,ALPHA) Pareto distribution with parameters K which gives the min 
value of the input item  and ALPHA the shape parameter 

Rayleigh(SIGMA) Rayleigh distribution with parameter SIGMA 

StudentT(DF)  Student's t-distribution with parameter degrees of freedom 
DF 

Triangular(LOW,MODE,HIGH) Triangular distribution with parameters telling it falls 
between LOW and HIGH with MODE being the most 
probable number 

Uniform(LOW,HIGH) Uniform distribution with parameters telling it falls 
between LOW and HIGH 

Weibull(ALPHA,BETA)  Weibull distribution with parameters ALPHA and BETA 

  

These are used first by activating the functions and giving them a local name.  For a use 
involving a mixture of pdfs, cdfs and icdf for the normal, beta, Cauchy and lognormal 
distributions this is as follows (extrinsicstoc.gms). 

 
$funclibin stolib stodclib 
function cdfnorm     /stolib.cdfnormal    / 
         icdfnorm    /stolib.icdfnormal   / 
         pdfnorm     /stolib.pdfnormal    / 

http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.htm
http://mathworld.wolfram.com/LogNormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html


3 
 

         cdfbeta     /stolib.cdfbeta      / 
         icdfbeta    /stolib.icdfbeta     / 
         cdfcauchy   /stolib.cdfcauchy    / 
         icdfcauchy  /stolib.icdfcauchy   / 
         cdflognorm  /stolib.cdflognormal /; 
 

Where for example the function CDFNORMAL that gives the probability up to a specific point 
in a normal distribution with a given mean and standard deviation is given the local name 
cdfnorm.  In turn statements like 

normalx(i,"cdf")=cdfnorm(normalx(i,"xval"),5,2); 
where the function is evaluated giving the cumulative probability of the normal distribution 
from minus infinity to the specified point normalx(i,"xval") in a normal distribution with a 
mean of 5 and a standard deviation of 2.    

Examples involving alternative distributions are given below where the first case shows use in a 
model equation and the rest in calculations. 

totcost.. totalcost=e=costtostock*inventory 
        +shortfallcost 
        *sum(k,(inventory+del(k)-inventory) 
        
*(pdfnorm((inventory+del(k)),meandemand,stddevdemand))); 
 
lognormalx(i,"cdf") 
   =cdflognorm(lognormalx(i,"xval"),lognorm_m,lognorm_s); 
normalx(i,"cdf")=cdfnorm(normalx(i,"xval"),10,2); 
xvals(i,"val")=icdfnorm(xvals(i,"prob"),meandemand,stddevdema
nd); 
shouldbepoint5=cdfbeta(xmedian,alpha,beta); 
xmedian=icdfcauchy(0.5,median,halfwidth); 
x=cdfcauchy(xmedian,median,halfwidth); 

 

Note in this case a statement like icdfcauchy(0.5,median,halfwidth) finds the x value from a 
Cauchy distribution with parameters median and halfwidth that has a cumulative probability 
of 50% of the observations below it.  Also pdfnorm(inventory,meandemand,stddevdemand) 
returns the probability of the point inventory from the normal distribution with a mean of 
meandemand and a standard deviation of stddevdemand. 

When these used in model equations the model needs to be of the type DNLP.  Also note the 
GLOBAL solvers cannot deal with models that contain such functions. 

One can also use discrete distributions but only in calculations.  A list of the discrete 
distributions included and their parameters including a link to a Wolfram Mathworld description 
of the distribution follows 

The discrete distributions included are (Note these cannot be used in model .. equations) 



4 
 

Binomial(N,P)  Binomial distribution with parameters for number of trials N 
and success probability P in each trial 

Geometric(P)  Geometric distribution with parameter giving success 
probability P in each trial 

HyperGeo(TOTAL,GOOD,TRIALS)  Hypergeometric distribution with parameters giving total 
number of elements TOTAL, number of good elements 
GOOD and number of trials TRIALS 

Logarithmic(THETA)  Logarithmic distribution with parameter THETA, also called 
log-series distribution 

NegBinomial(FAILURES,P)  Negative Binomial distribution with parameters for the 
number of failures until the experiment is stopped 
FAILURES and the success probability P in each trial. The 
number generated by PDF and CDF or input to ICDF 
describes the number of successes before the defined 

number of failures 

Poisson(LAMBDA)  Poisson distribution with mean LAMBDA 

UniformInt(LOW,HIGH)  Integer Uniform distribution with parameters telling that the 
distribution falls between LOW and HIGH values. 

 

Again these are referenced with the PDF, CDF and ICDF prefixes and the first argument being 
the point value of the probability.  Use of these is not allowed in model equations and when 
attempted causes an execution error. 

Including Random Numbers from extrinsic function libraries 

Capabilities have been introduced to generate random numbers from a variety of distributions 
again via extrinsic functions.  To do this one can use variants of the functions just discussed 
(those from the Stochastic Library stocldib) or ones from the Lindo Sampling Library 
(lsadclib) although use of the Lindo ones requires a license for GAMS/Lindo. (Without a 
license only a demo version is available which is restricted to the Normal and the Uniform 
distribution and no more than 10 sample points.) 

Using the Stochastic Library stocldib 
In terms of the Stochastic Library the usable continuous and discrete distributions are those 
listed in the tables above.  When using that library one again needs to activate the library and 
give the function a local name. Here to generate random numbers the distribution name is 
prefixed with a d.  Thus, for example, to generate numbers from the Cauchy, Binomial, Normal 
and LogNormal one would use code like the following (randnumb.gms) 

$funclibin stolib stodclib 
function randnorm     /stolib.dnormal    / 
         randbin      /stolib.dbinomial  / 

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/GeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Log-SeriesDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
file:///C:/mccarl/papers/newsletter35.docx%23continuous
file:///C:/mccarl/papers/newsletter35.docx%23discrete


5 
 

         randcauchy   /stolib.dcauchy    / 
         randlognorm  /stolib.dlognormal /; 
set i /i1*i20/ 
set j /norm,binomial,cauchy,lognorm/ 
parameter randx(i,j)    numbers from distributions; 
randx(i,"norm")=randnorm(5,2); 
randx(i,"binomial")=randbin(10,0.5); 
randx(i,"cauchy")=randcauchy(5,1); 
randx(i,"lognorm")=randlognorm(1.2,0.3); 
display randx; 

 

That code first activates the stoclib library then gives the desired functions local names.  
Subsequently the functions are used in this case generating 20 random numbers for each of the 4 
distributions with the desired parameters. 

One can also reset the random number seed using a function SetSeed(SEED) as follows 

function setseedh     /stolib.SetSeed    /; 
scalar x; 
x=setseedh(99883); 
 

where a local function name is again defined and then the seed is set by setting a scalar equal to 
the function with a user defined value that when this is set to the same value between runs will 
cause the random numbers to always follow a particular sequence.   

Using the Lindo Sampling Library lsadclib 
In terms of the Lindo Sampling Library, one can generate random numbers for many of the 
same distributions with a few additional ones as listed below.  In addition one has the capability 
to introduce correlations and exercise control over the random number process.  Note these 
cannot be used in model equations.   

The continuous distributions included and their parameters including a link to a Wolfram 
Mathworld description of the distribution are listed in the table below.  Here note that the 
parameters here also include  

 the sample size (SAMSIZE) telling how many numbers to generate  
 an optional parameter (VARRED )that allows one to alter the sampling procedure variance 

reduction method (0=none, 1=Latin  Hyper Square, 2=Antithetic) with Latin Hyper Square 
Sampling being the default. 

  

Beta(ALPHA,BETA,SAMSIZE[,VARRED]) Beta distribution with parameters 
ALPHA and BETA 

Cauchy(MEDIAN,HALFWIDTH,SAMSIZE[,VARRED]) Cauchy distribution with parameters 
MEDIAN and HALFWIDTH 

http://en.wikipedia.org/wiki/Variance_reduction
http://en.wikipedia.org/wiki/Variance_reduction
http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html


6 
 

ChiSquare(DF,SAMSIZE[,VARRED]) Chi-squared distribution with the 
parameter degrees of freedom DF  

Exponential(LAMBDA,SAMSIZE[,VARRED]) Exponential distribution with rate of 
change parameter LAMBDA 

F(DF1,DF2,SAMSIZE[,VARRED]) F-distribution with parameters for 
degrees of freedom DF1 and DF2 

Gamma(ALPHA, THETA,SAMSIZE[,VARRED])  Gamma distribution with parameters 
ALPHA and THETA 

Gumbel(ALPHA,BETA,SAMSIZE[,VARRED]) Gumbel distribution with parameters 
ALPHA and BETA 

InvGaussian(MU,LAMBDA,SAMSIZE[,VARRED])  Inverse Gaussian distribution with 
parameters MU and LAMBDA 

Laplace(MU,BETA,SAMSIZE[,VARRED]) Laplace distribution with parameters 
MU and BETA 

Logistic(MU,BETA,SAMSIZE[,VARRED]) Logistic distribution with parameters 
MU and BETA 

LogNormal(MU,SIGMA,SAMSIZE[,VARRED])  Log Normal distribution with 
parameters MU and SIGMA 

Normal(MEAN,STD DEV,SAMSIZE[,VARRED])  Normal distribution with parameters 
MEAN and STD DEV 

Pareto(K,ALPHA,SAMSIZE[,VARRED]) Pareto distribution with parameters K 
which gives the min value of the 
input item  and ALPHA the shape 
parameter 

Rayleigh(SIGMA,SAMSIZE[,VARRED]) Rayleigh distribution with parameter 
SIGMA 

StudentT(DF,SAMSIZE[,VARRED])  Student's t-distribution with 
parameter degrees of freedom DF 

Triangular(LOW,MODE,HIGH,SAMSIZE[,VARRED]) Triangular distribution with 
parameters telling it falls between 
LOW and HIGH with MODE being 
the most probable number 

Uniform(LOW,HIGH,SAMSIZE[,VARRED]) Uniform distribution with parameters 
telling it falls between LOW and 
HIGH 

Weibull(ALPHA,BETA,SAMSIZE[,VARRED])  Weibull distribution with parameters 
ALPHA and BETA 

 

http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.htm
http://mathworld.wolfram.com/LogNormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html


7 
 

 

The discrete distributions included and their parameters including a link to a Wolfram 
Mathworld description of the distribution are listed in the table below.  Here note that the 
parameters also include  

 the sample size (SAMSIZE) telling how many numbers to generate  
 an optional parameter (VARRED )that allows one to alter the sampling procedure variance 

reduction method (0=none, 1=Latin  Hyper Square, 2=Antithetic) with Latin Hyper Square 
Sampling being the default. 

   

Binomial(N,P,SAMSIZE[,VARRED]) Binomial distribution with 
parameters for number of trials N 
and success probability P in each 
trial 

HyperGeo(TOTAL,GOOD,TRIALS,SAMSIZE[,VARRED])  Hypergeometric distribution with 
parameters giving total number of 
elements TOTAL, number of good 
elements GOOD and number of 
trials TRIALS 

Logarithmic(THETA,SAMSIZE[,VARRED])  Logarithmic distribution with 
parameter THETA, also called log-
series distribution 

NegBinomial(SUCCESS,P,SAMSIZE[,VARRED])  Negative Binomial distribution with 
parameters for the number of 
successes (SUCCESS) to be 
achieved and the probability of 
success in each trial (P).  The 
generated random number 
describes the number of failures 
until we reached the specified 
number of successes.  Note that the 
Lindo sampling library version is 
equivalent to the use of the one 
from the stochastic library when 
the probability there is 1-P here. 

Poisson(LAMBDA)  Poisson distribution with mean 
LAMBDA 

Table J.6: LINDO sampling functions 

When using the Lindo Sampling Library one again needs to activate the library and give the 
functions to be used a local name where here the distribution name is prefixed with SampleLS.  
For example, to generate 25 numbers from the Cauchy, Binomial, Normal and LogNormal 

http://en.wikipedia.org/wiki/Variance_reduction
http://en.wikipedia.org/wiki/Variance_reduction
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Log-SeriesDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html


8 
 

using the default variance reduction method, one would use code like the following 
(randnumb.gms).  In that code we first activate the library and give the items local names then 
in the Lindo Sampling  case must set a scalar pointer to the function with the distribution 
arguments and sample size.  This returns a pointer to a location identifying where the random 
numbers are stored.  In turn then we use a loop statement to load in the random numbers using a 
local version of another function getSampleValues referencing the scalar pointer that 
sequentially returns each of the values in the sample when called.  In turn these need to be 
stored into a GAMS parameter . 

$funclibin lsalib lsadclib 
function normalSample    /lsalib.SampleLSnormal / 
         lognormalSample /lsalib.SampleLSlognormal / 
         cauchySample    /lsalib.SampleLScauchy / 
         binomialSample  /lsalib.SampleLSbinomial / 
         getSampleVal    /lsalib.getSampleValues /; 
 
scalar d,h,k,k1,k2; 
set is /value01*value12/; 
parameter sv(is,j); 
k = normalSample(5,2,12); 
loop(is, sv(is,"normal") = getSampleVal(k); ); 
h = lognormalSample(1.2,0.3,12); 
loop(is, sv(is,"lognormal") = getSampleVal(h);); 
k1 = binomialSample(10,0.5,12); 
loop(is, sv(is,"binomial") = getSampleVal(k1);); 
k2 = cauchySample(5,1,12); 
loop(is, sv(is,"binomial") = getSampleVal(k2);); 

 

One can also cause items to be correlated using the functions setCorrelation and 
induceCorrelation.  The parameters for this are 

setCorrelation(POINTER1,POINTER2,COR) 

 

Causes subsequent calls involving the samples 
identifies by POINTER1 and POINTER2 to 
have the correlation COR when next loaded 
using the getSampleVal function.  

induceCorrelation(TYPE)  This controls the type of correlation that is 
being specified where TYPE is 0 for Pearson, 
1 for Kendall or 2 for Spearman.  It must be 
used after setcorrelation. 

 

Coding to make this happen follows.   Again we activate the procedures and give them local 
names then generate the random numbers for two same sized samples.  Afterwards we reference 
set the correlation with arguments of the pointers to the two series then the correlation 
coefficient and its form.  Finally the loop statement is used again to draw out the values. 



9 
 

function setCor          /lsalib.setCorrelation / 
         indCor          /lsalib.induceCorrelation /; 
k = normalSample(5,2,12); 
h = lognormalSample(1.2,0.3,12); 
d=setCor(h,k,-1); 
d=indCor(1); 
loop(is,sv2(is,"aftercorr","normal") = getSampleVal(k);); 
loop(is,sv2(is,"aftercorr","lognormal") = getSampleVal(h);); 

 
There are also function alternatives to set the random number seed and the type of random 
number generation process 
 

setSeed(SEED) the SEED arguments resets the random number generator according to  a 
user defined value  

setRNG(RNG) 

  

The parameter RNG identifies the random number generator to use with 
possible values of  -1 (free), 0 (system), 1 (lindo1), 2 (lindo2), 3 (lin1), 4 
(mult1), 5 (mult2) and 6 (mersenne). 

Making your own Library 

Some users may wish to define their own custom extrinsic library.  In doing this several steps 
are recommended. 

 Read appendix J of the GAMS user guide to get some idea of basic functionality. 
 Identify a function that you wish to be able to use from within GAMS and GAMS solves 

(excepting the global ones that cannot use extrinsic functions).   In doing this insure that 
you cannot implement the function as a macro or batinclude file as those implementations 
would be much simpler. 

 If you want to use the function in a model sent to a solver (ie within an equation) with 
endogenous variables as arguments, make sure you know how to compute first and second 
derivatives with respect to all the variables. 

 Choose a programming language.  Obvious candidates for a programming language are C, 
C++, Delphi, or Java, as GAMS makes examples available in these languages.  These are 
available in association with the trigonometric library (trifclib) and the GAMS test library 
contains examples and source codes.  If you download using the IDE library manager note 
that the manager will place the source zip code including a make file in your project file 
area.  

 Using the demonstration models from the test library, make sure you can exercise the 
entire process of building and testing the extrinsic function shared library as now done for 
trifclib in the language of your choice.  For example, if you're using C++, look at the 
testlib model trilib01 or cpplib01.  If you're using Fortran, start with trilib03. 

 Assemble and test some code that evaluates your function and its derivatives.  Note when 
called the fist parameter tells whether to return the function evaluation, its first derivative 
or its second derivative.   

 Integrate your code into the example code from GAMS using the source files provided for 
the demo library as a template.  This will involve modifying the .spec file to describe the 

http://www.gams.com/dd/docs/bigdocs/GAMSUsersGuide.pdf


10 
 

function you are creating and creating the API files based on the .spec file, and 
corresponding edits to the source code actually implementing the function. 

 Optionally, if this seems like a big step, start small.  Implement a simple function (e.g. 
sqr(sum of x)) for which you know the gradients and Hessians, and get the interface to do 
this right.  Then substitute the real function of interest. 

 Do some rigorous, extensive testing of your function.  Many examples exist in testlib for 
doing this, e.g. cpplib01 * cpplib05.  The tests might involve pre-computing input args and 
known function values in another language and storing these values in a GDX file for 
comparison.  Consider testing very small or very large values, and testing how errors in the 
function will be handled. 
 

Courses offered 

I will be teaching 

 Basic to Advanced GAMS class Aug 4, 2014- Aug 8, 2014 (5 days) in the Colorado 
mountains at Frisco (near Breckenridge). The course spans from Basic topics to an 
Advanced GAMS class. Details are found at 
http://www.gams.com/courses/basic_and_advanced.pdf .  

 Basic GAMS class Aug 4, 2014- Aug 6, 2014 (3 days) in the Colorado mountains at Frisco 
(near Breckenridge). The course starts assuming no GAMS background. Details are given 
at http://www.gams.com/courses/basic.pdf .  

 Advanced GAMS class Aug 6, 2014- Aug 8, 2014 (3 days) in the Colorado mountains at 
Frisco (near Breckenridge). The course is for users, who have a GAMS background. 
Details are found at http://www.gams.com/courses/advanced.pdf . 

Further information and other courses are listed on http://www.gams.com/courses.htm . Note I 
also give custom courses for individual groups a couple of times a year.  

Unsubscribe to future issues of this newsletter 

Please unsubscribe through the web form available at: 
http://app.streamsend.com/public/XLmY/5eq/subscribe  

This newsletter is not a product of GAMS Corporation although it is distributed with their 
cooperation.  

July 1, 2014  

 

 

http://www.gams.com/courses/basic_and_advanced.pdf
http://www.gams.com/courses/basic.pdf
http://www.gams.com/courses/advanced.pdf
http://www.gams.com/courses.htm
http://app.streamsend.com/public/XLmY/5eq/subscribe

