
1

Bruce McCarl's GAMS Newsletter Number 37

This newsletter covers
1 Updates to Expanded GAMS User Guide by McCarl et al. .. 1

2 YouTube videos .. 1

3 Explanatory text for tuple set elements ... 1

4 Reading sets using GDXXRW .. 2

4.1 Examples of data input: .. 3

4.2 Examples of data output: .. 8

4.3 Backward compatibility .. 8

5 Skipping over rows and columns in a spreadsheet .. 9

6 Courses offered .. 10

7 Unsubscribe or subscribe to future issues of this newsletter ... 10

1 Updates to Expanded GAMS User Guide by McCarl et al.
I updated the Expanded User’s Guide to reflect the items discussed here with a few other

changes. The latest can be found at
http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf and will be in
upcoming GAMS releases.

2 YouTube videos
GAMS has been making a series of tutorial videos covering various topics ranging from basic
installation to more advanced data transfers. There videos are at the web page
https://www.youtube.com/user/GAMSLessons .

Ones there as of this writing are
 A Brief Introduction to Modeling in GAMS
 Install the Windows Version of GAMS on a Mac by Using Wine
 How to Install the Native GAMS Version on a Mac
 How to Install the Native GAMS Version on Linux
 GAMS License File Installation and Component Review
 GAMS and Excel - Using GDX to Transfer Data
 Using a Solver Option File
 An Introduction to Sets in GAMS
 Where to Find Help in Using GAMS
 GAMS and Matlab GDXMRW tools RGDX and WGDX
 GAMS and Matlab GDXMRW tools IRGDX and IWGDX
 GAMS and Matlab Setup and Introduction to GDXMRW

3 Explanatory text for tuple set elements
I did not know until recently that one can add explanatory text to multidimensional set (tuple)
elements. An example is

http://www.gams.com/dd/docs/bigdocs/gams2002/mccarlgamsuserguide.pdf
https://www.youtube.com/user/GAMSLessons

2

set d1 /d1,d2/
 e1 /e1,e2/
 f1 /f1,f2/
 tuplewithexp(d1,e1,f1)/
 d1.e1.f1 has text
 d2.e2.f2/

where the red entry is the explanatory text. This text can also come from a spreadsheet as
discussed next.

4 Reading sets using GDXXRW
When employing GDXXRW one can read Sets and associated explanatory text from a
spreadsheet. This is partially controlled by the Values= option and recently that option has been
altered with some changes in the behavior of the commands.

Sets may be input in two ways depending on whether to permit accommodation of duplicate
entries. In output DSET and SET are the same. The syntax is

Set =nameofset Rng=DataRange Dimensions Values=valueoptions SymbolOptions
Dset=nameofset Rng=DataRange Dimensions SymbolOptions

where

Set= identifies one is to input or output set elements and optionally an associated set of
element explanatory text or indicators. on input duplicates will cause read errors.
When writing the element name is always written and the explanatory text will be
written if the range specification permits. The keyword Set also is associated with
option values which indicates how non zero entries in the range are to be
interpreted.

Namely when data are input and valueoptions equals

Auto Based on the range, row and column dimensions for the set, the program
decides on the value type to be used selecting from dense or YN . This is
the default for Values.

when Auto or a values entry is not entered and thus the default is active
then the import of data behaves differently depending on the values of
rdim and cdim. Namely If

Only one of Rdim and Cdim are non zero (ie if Rdim = 0 or Cdim
= 0 and the data are in vector form) then the import behaves as if

 Values=Dense
Both Rdim and Cdim are non zero and the data are in tabular
form then the import behaves as if Values=YN

NoData The data entries in the range for the set will be ignored and all entries
will be included without reading explanatory text.

YN Only those items will be included that have a non empty data cell in
the range where the cell contents that do not equal '0', 'N' or 'No'.

3

Sparse Only those items will be included that have a non empty data cell in
the range. The string in the data cell will be used as the explanatory
text for the set entry.

Dense All items will be included that are in the range regardless of whether
they have entries . Any strings in the data cells in the range will be
used as the explanatory text for the set elements.

For backward compatibility, the values String and All are also recognized and are
synonyms to Dense.

However when data are output and the valueoptions equals

Auto Based on the range, row and column dimensions for the set, the
program decides on the value type to be used selecting from String or
YN . This is the default for Values.

 When Auto or a values entry is not entered and thus the default is
active then the import of data behaves differently depending on the
vaules of rdim and cdim. Namely If

Only one of Rdim and Cdim are non zero (ie if Rdim = 0 or Cdim
= 0 and the data are in vector form) then the import behaves as if

 Values=String
Both Rdim and Cdim are non zero and the data are in tabular
form then the import behaves as if Values=YN

NoData The cells in the range for the set will be blank.
YN Only those items will be included that have a non empty data and the

cell value in the range is Y if the element exists.
String Only those items will be included that have a non empty data and the

cell value in the range is the explanatory text if the element exists..

For backward compatibility, the values Sparse, Dense, and All are also recognized
and are synonyms to String.

Dset= Reads a set of strings from a field in the spreadsheet and enters the unique ones into
the set. Duplicate labels in the range specified do not generate an error message.
Dset cannot be used to write to the spreadsheet. The values parameter is not used
for Dset.

4.1 Examples of data input:

In the input sheet of the spreadsheet we have the data for the sets to be imported

4

and we have an index portion of the sheet (as discussed in the McCarl guide) telling us how

to import with some comments added at the far right

then we import the sets in GAMS using the commands

$call gdxxrw trytuple.xlsx o=gdxtuple.gdx index=input!i2
$gdxin gdxtuple.gdx
$load aa1,aa1v2,aa1v3,aa1v4,aa1v5,aa1v6,ab1,tuple1

5

$load tuple1v2
$load tuple1v3
$load tuple1v4
$load tuple1v5
$load tuple1v6
$load b1
$load b2
$load b3
$load tuple2
$load tuple2v2
$load tuple2v3
$load c1
$load c2
$load c3
$load tuple3
$load tuple3v2
$load tuple3v3
$gdxin

Now let us examine some of the consequences of the value commands.

First let us look at the alternative results for importing the set in the red box below and also
look at the effect of the entries in the blue box

When read with the values entry being blank (or the default - auto condition) the put file at the
bottom of the gms file for the set aa1 shows it to contain

 Defined Elements Explanatory Text
 a hello
 b b
 c n
 d y

which shows the reading process went beyond the specified range to the adjacent column and
took entries there as explanatory text leaving it bank when none was entered but in a put sense
when it is empty the .tl item is entered in place of .tl. Also using auto and dense yields the
same results.

When read with the values entry being yn we get

 Defined Elements Explanatory Text
 a a

6

 d d
Note here only a and d entries are defined as they have text entries in the blue column that and
not N. Also this shows that the yn entry is a misnomer but rather the program accepts any
entry which is not blank or N or NO or 0.

When read with the values entry being sparse we get

 Defined Elements Explanatory Text
 a a
 d d

Note here only a and d entries are defined as they have text entries in the blue column that and
not N. Also this shows that the yn entry is a misnomer but rather the program accepts any
entry which is not blank or N or NO or 0.

When read with the values entry being nodata we get

 Defined Elements Explanatory Text
 a a
 b b
 c c
 d d

Here all elements are defined as under dense but the explanatory text is not read and only
element names are used when .te is referenced.

Now suppose we turn to two dimensional sets or more generally tuples.

When reading tuple1 from the spreadsheet area in the green box below

If we read it with the values entry being blank (or the default - auto condition) the put file at
the bottom of the gms file for the set tuple1 shows it to contain

 Defined Elements Explanatory Text
 a.1 a.1
 a.4 a.4
 b.2 b.2
 b.3 b.3
 c.3 c.3
 d.1 d.1
 d.4 d.4

which shows the reading process operated as yn only defining entries with non blank text and
not using that text for explanatory text. Also using auto and yn yields the same results.

7

When read with the values entry being dense we get

 Defined Elements Explanatory Text
 a.1 hello
 a.2 a.2
 a.3 no
 a.4 yes
 b.1 b.1
 b.2 w2
 b.3 y
 b.4 b.4
 c.1 n
 c.2 c.2
 c.3 z2
 c.4 c.4
 d.1 y
 d.2 d.2
 d.3 d.3
 d.4 z

Note here only all possible entries are defined with the non empty elements being used as
explanatory text and when blank the .tl element is printed when .te is referenced.

When read with the values entry being sparse we get

 Defined Elements Explanatory Text
 a.1 hello
 a.3 no
 a.4 yes
 b.2 w2
 b.3 y
 c.1 n
 c.3 z2
 d.1 y
 d.4 z

which defines tuple entries when there is associated text entries including those with N or no.

When read with the values entry being nodata we get

 Defined Elements Explanatory Text
 a.1 a.1
 a.2 a.2
 a.3 a.3
 a.4 a.4
 b.1 b.1
 b.2 b.2
 b.3 b.3
 b.4 b.4

8

 c.1 c.1
 c.2 c.2
 c.3 c.3
 c.4 c.4
 d.1 d.1
 d.2 d.2
 d.3 d.3
 d.4 d.4

Here all elements are defined as under dense but the explanatory text is not read and only
element names are used when .te is referenced.

4.2 Examples of data output:

This was also run to output items into an output sheet from the gdx file generated when
running the input examples file telling where to place the data and what to do with
explanatory text.

When putting out the set tuple1v4 with the value being blank or set to yn or set to auto we get

When putting out the set tuple1v4 with the value set to string we get

When putting out the set tuple1v4 with the value set to nodata we get where the range entries
are blank.

4.3 Backward compatibility

When inputting sets the meanings of the commands have changed over time with the current
entries not being. In particular

 Before version 24.3 the command string was the same as dense above
 Starting with 24.3 the command string became the same as sparse above

9

 Starting with 24.4.1 the command all was introduced and it functioned like dense
above

 Starting with 24.4.6 the command structure for values became what is documented
above with the option string redefined

With these changes GAMS broke backward compatibility. Because of this, users who employed
the values option for the versions before 24.4.6. needs to review the ways their input is working
and if needed either change the parameters for the GDXXRW call to the appropriate one of
those described above or change the workbook data .

5 Skipping over rows and columns in a spreadsheet

Spreadsheet files may contain columns and rows you do not want to read.

For blank rows or columns the skipempty command can be used as discussed in the McCarl
Guide.

For rows or columns that you do not want to read which have content the IgnoreColumns
and IgnoreRows commands identify rows and columns to skip over. This is done using the
syntax

IgnoreColumns=comma delimited list of spreadsheet column names
IgnoreRows=comma delimited list of spreadsheet row numbers

where
 The comma delimited list of spreadsheet column names gives the names of columns in the

range to skip over and is of the form A,C,Z,ZZ which would cause the reading to skip the
columns labeled A,C,Z, and ZZ in the Excel worksheet

 The comma delimited list of spreadsheet row names gives the names of rows in the range
to skip over and is of the form 2,12,210 which would cause the reading to skip the rows
labeled 2, 12 and 210 in the Excel worksheet

An example of using IgnoreRows and IgnoreColumns is as follows. Suppose we have a
spreadsheet table that has rows and columns we do not want to read. For this we employ the
skipempty sheet of the workbook gdxxrwss.xls that is part of the McCarl Expanded users
Guide as in the screen shot below and skip the rows in the red boxes and the column in the blue
box

and we read it using

$call "gdxxrw gdxxrwss.xls o=gdxignore.gdx se=0 par=moded5 rng=skipempty!a2:g69 rdim=2 cdim=1 IgnoreRows=3,5 IgnoreColumns=D"

then after loading into GAMS the data become

10

 ship rail
brussels .chicago 6000.000
san francisco.chicago 2000.000

which omits entries from those rows and columns.

Note The IgnoreRows and IgnoreColumns parameters appear after any parameter, set, dset etc
GDXXRW command instruction and only affect reading of that item. This option will be
included in the upcoming major release 24.5.

6 Courses offered

I will be teaching
 Basic to Advanced GAMS class Aug 10, 2015- Aug 14, 2015 (5 days) in the Colorado

mountains at Frisco (near Breckenridge). The course spans from Basic topics to an
Advanced GAMS class. Details are found at
http://www.gams.com/courses/basic_and_advanced.pdf .

 Basic GAMS class Aug 10, 2015- Aug 12, 2015 (3 days) in the Colorado mountains at
Frisco (near Breckenridge). The course starts assuming no GAMS background. Details are
given at http://www.gams.com/courses/basic.pdf .

 Advanced GAMS class Aug 12, 2015- Aug 14, 2015 (3 days) in the Colorado mountains at
Frisco (near Breckenridge). The course is for users who have a GAMS background.
Details are found at http://www.gams.com/courses/advanced.pdf .

Further information and other courses are listed on http://www.gams.com/courses.htm . Note I
also give custom courses for individual groups a couple of times a year.

7 Unsubscribe or subscribe to future issues of this newsletter

Please unsubscribe through the web form available at:
http://app.streamsend.com/public/XLmY/5eq/subscribe

Those who wish to subscribe to future issues can do this trough the newsletter section of
http://www.gams.com/maillist/index.htm.

This newsletter is not a product of GAMS Corporation although it is distributed with their
cooperation.

July 7, 2015

http://www.gams.com/courses/basic_and_advanced.pdf
http://www.gams.com/courses/basic.pdf
http://www.gams.com/courses/advanced.pdf
http://www.gams.com/courses.htm
http://app.streamsend.com/public/XLmY/5eq/subscribe
http://www.gams.com/maillist/index.htm

