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Chapter 1

Complementarity

A fundamental problem of mathematics is to find a solution to a square sys-
tem of nonlinear equations. Two generalizations of nonlinear equations have
been developed, a constrained nonlinear system which incorporates bounds
on the variables, and the complementarity problem. This document is pri-
marily concerned with the complementarity problem.

The complementarity problem adds a combinatorial twist to the classic
square system of nonlinear equations, thus enabling a broader range of situ-
ations to be modeled. In its simplest form, the combinatorial problem is to
choose from 2n inequalities a subset of n that will be satisfied as equations.
These problems arise in a variety of disciplines including engineering and
economics [20] where we might want to compute Wardropian and Walrasian
equilibria, and optimization where we can model the first order optimality
conditions for nonlinear programs [29, 30]. Other examples, such as bimatrix
games [31] and options pricing [27], abound.

Our development of complementarity is done by example. We begin by
looking at the optimality conditions for a transportation problem and some
extensions leading to the nonlinear complementarity problem. We then dis-
cuss a Walrasian equilibrium model and use it to motivate the more general
mixed complementarity problem. We conclude this chapter with information
on solving the models using the PATH solver and interpreting the results.
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1.1 Transportation Problem

The transportation model is a linear program where demand for a single
commodity must be satisfied by suppliers at minimal transportation cost.
The underlying transportation network is given as a set A of arcs, where
(i, j) ∈ A means that there is a route from supplier i to demand center j.
The problem variables are the quantities xi,j shipped over each arc (i, j) ∈ A.
The linear program can be written mathematically as

minx≥0
∑

(i,j)∈A ci,jxi,j

subject to
∑

j:(i,j)∈A xi,j ≤ si, ∀i∑
i:(i,j)∈A xi,j ≥ dj, ∀j.

(1.1)

where ci,j is the unit shipment cost on the arc (i, j), si is the available supply
at i, and dj is the demand at j.

The derivation of the optimality conditions for this linear program begins
by associating with each constraint a multiplier, alternatively termed a dual
variable or shadow price. These multipliers represent the marginal price on
changes to the corresponding constraint. We label the prices on the supply
constraint ps and those on the demand constraint pd. Intuitively, for each
supply node i

0 ≤ ps
i , si ≥

∑
j:(i,j)∈A

xi,j.

Consider the case when si >
∑

j:(i,j)∈A xi,j , that is there is excess supply at
i. Then, in a competitive marketplace, no rational person is willing to pay
for more supply at node i; it is already over-supplied. Therefore, ps

i = 0.
Alternatively, when si =

∑
j:(i,j)∈A xi,j , that is node i clears, we might be

willing to pay for additional supply of the good. Therefore, ps
i ≥ 0. We write

these two conditions succinctly as:

0 ≤ ps
i ⊥ si ≥ ∑

j:(i,j)∈A xi,j, ∀i

where the ⊥ notation is understood to mean that at least one of the adjacent
inequalities must be satisfied as an equality. For example, either 0 = ps

i , the
first case, or si =

∑
j:(i,j)∈A xi,j, the second case.

Similarly, at each node j, the demand must be satisfied in any feasible
solution, that is ∑

i:(i,j)∈A
xi,j ≥ dj.
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Furthermore, the model assumes all prices are nonnegative, 0 ≤ pd
j . If there

is too much of the commodity supplied,
∑

i:(i,j)∈A xi,j > dj, then, in a com-
petitive marketplace, the price pd

j will be driven down to 0. Summing these
relationships gives the following complementarity condition:

0 ≤ pd
j ⊥ ∑

i:(i,j)∈A xi,j ≥ dj, ∀j.
The supply price at i plus the transportation cost ci,j from i to j must

exceed the market price at j. That is, ps
i + ci,j ≥ pd

j . Otherwise, in a
competitive marketplace, another producer will replicate supplier i increasing
the supply of the good in question which drives down the market price. This
chain would repeat until the inequality is satisfied. Furthermore, if the cost of
delivery strictly exceeds the market price, that is ps

i + ci,j > p
d
j , then nothing

is shipped from i to j because doing so would incur a loss and xi,j = 0.
Therefore,

0 ≤ xi,j ⊥ ps
i + ci,j ≥ pd

j , ∀(i, j) ∈ A.
We combine the three conditions into a single problem,

0 ≤ ps
i ⊥ si ≥ ∑

j:(i,j)∈A xi,j , ∀i
0 ≤ pd

j ⊥ ∑
i:(i,j)∈A xi,j ≥ dj, ∀j

0 ≤ xi,j ⊥ ps
i + ci,j ≥ pd

j , ∀(i, j) ∈ A.
(1.2)

This model defines a linear complementarity problem that is easily recog-
nized as the complementary slackness conditions [6] of the linear program
(1.1). For linear programs the complementary slackness conditions are both
necessary and sufficient for x to be an optimal solution of the problem (1.1).
Furthermore, the conditions (1.2) are also the necessary and sufficient opti-
mality conditions for a related problem in the variables (ps, pd)

maxps,pd≥0

∑
j djp

d
j −

∑
i sip

s
i

subject to ci,j ≥ pd
j − ps

i , ∀(i, j) ∈ A
termed the dual linear program (hence the nomenclature “dual variables”).

Looking at (1.2) a bit more closely we can gain further insight into com-
plementarity problems. A solution of (1.2) tells us the arcs used to transport
goods. A priori we do not need to specify which arcs to use, the solution itself
indicates them. This property represents the key contribution of a comple-
mentarity problem over a system of equations. If we know what arcs to send
flow down, we can just solve a simple system of linear equations. However,
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sets i canning plants,
j markets ;

parameter
s(i) capacity of plant i in cases,
d(j) demand at market j in cases,
c(i,j) transport cost in thousands of dollars per case ;

$include transmcp.dat

positive variables
x(i,j) shipment quantities in cases
p_demand(j) price at market j
p_supply(i) price at plant i;

equations
supply(i) observe supply limit at plant i
demand(j) satisfy demand at market j
rational(i,j);

supply(i) .. s(i) =g= sum(j, x(i,j)) ;

demand(j) .. sum(i, x(i,j)) =g= d(j) ;

rational(i,j) .. p_supply(i) + c(i,j) =g= p_demand(j) ;

model transport / rational.x, demand.p_demand, supply.p_supply /;

solve transport using mcp;

Figure 1.1: A simple MCP model in GAMS, transmcp.gms

the key to the modeling power of complementarity is that it chooses which
of the inequalities in (1.2) to satisfy as equations. In economics we can use
this property to generate a model with different regimes and let the solution
determine which ones are active. A regime shift could, for example, be a
back stop technology like windmills that become profitable if a CO2 tax is
increased.
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1.1.1 GAMS Code

The GAMS code for the complementarity version of the transportation prob-
lem is given in Figure 1.1; the actual data for the model is assumed to be
given in the file transmcp.dat. Note that the model written corresponds
very closely to (1.2). In GAMS, the ⊥ sign is replaced in the model state-
ment with a “.”. It is precisely at this point that the pairing of variables
and equations shown in (1.2) occurs in the GAMS code. For example, the
function defined by rational is complementary to the variable x. To inform
a solver of the bounds, the standard GAMS statements on the variables can
be used, namely (for a declared variable z(i)):

z.lo(i) = 0;

or alternatively

positive variable z;

Further information on the GAMS syntax can be found in [35]. Note that
GAMS requires the modeler to write F(z) =g= 0 whenever the complemen-
tary variable is lower bounded, and does not allow the alternative form 0 =l=

F(z).

1.1.2 Extension: Model Generalization

While many interior point methods for linear programming exploit this com-
plementarity framework (so-called primal-dual methods [37]), the real power
of this modeling format is the new problem instances it enables a modeler
to create. We now show some examples of how to extend the simple model
(1.2) to investigate other issues and facets of the problem at hand.

Demand in the model of Figure 1.1 is independent of the prices p. Since
the prices p are variables in the complementarity problem (1.2), we can easily
replace the constant demand d with a function d(p) in the complementarity
setting. Clearly, any algebraic function of p that can be expressed in GAMS
can now be added to the model given in Figure 1.1. For example, a linear
demand function could be expressed using∑

i:(i,j)∈A
xi,j ≥ dj(1− pd

j ), ∀j.

Note that the demand is rather strange if pd
j exceeds 1. Other more reasonable

examples for d(p) are easily derived from Cobb-Douglas or CES utilities. For
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those examples, the resulting complementarity problem becomes nonlinear in
the variables p. Details of complementarity for more general transportation
models can be found in [13, 16].

Another feature that can be added to this model are tariffs or taxes.
In the case where a tax is applied at the supply point, the third general
inequality in (1.2) is replaced by

ps
i (1 + ti) + ci,j ≥ pd

j , ∀(i, j) ∈ A.
The taxes can be made endogenous to the model, details are found in [35].

The key point is that with either of the above modifications, the comple-
mentarity problem is not just the optimality conditions of a linear program.
In many cases, there is no optimization problem corresponding to the com-
plementarity conditions.

1.1.3 Nonlinear Complementarity Problem

We now abstract from the particular example to describe more carefully the
complementarity problem in its mathematical form. All the above exam-
ples can be cast as nonlinear complementarity problems (NCPs) defined as
follows:

(NCP) Given a function F : Rn → Rn, find z ∈ Rn such that

0 ≤ z ⊥ F (z) ≥ 0.

Recall that the ⊥ sign signifies that one of the inequalities is satisfied as
an equality, so that componentwise, ziFi(z) = 0. We frequently refer to
this property as zi is “complementary” to Fi. A special case of the NCP
that has received much attention is when F is a linear function, the linear
complementarity problem [8].

1.2 Walrasian Equilibrium

A Walrasian equilibrium can also be formulated as a complementarity prob-
lem (see [33]). In this case, we want to find a price p ∈ Rm and an activity
level y ∈ Rn such that

0 ≤ y ⊥ L(p) := −AT p ≥ 0
0 ≤ p ⊥ S(p, y) := b+ Ay − d(p) ≥ 0

(1.3)
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$include walras.dat

positive variables p(i), y(j);
equations S(i), L(j);

S(i).. b(i) + sum(j, A(i,j)*y(j)) - c(i)*sum(k, g(k)*p(k)) / p(i)
=g= 0;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0;

model walras / S.p, L.y /;
solve walras using mcp;

Figure 1.2: Walrasian equilibrium as an NCP, walras1.gms

where S(p, y) represents the excess supply function and L(p) represents the
loss function. Complementarity allows us to choose the activities yj to run
(i.e. only those that do not make a loss). The second set of inequalities state
that the price of a commodity can only be positive if there is no excess supply.
These conditions indeed correspond to the standard exposition of Walras’
law which states that supply equals demand if we assume all prices p will be
positive at a solution. Formulations of equilibria as systems of equations do
not allow the model to choose the activities present, but typically make an
a priori assumption on this matter.

1.2.1 GAMS Code

A GAMS implementation of (1.3) is given in Figure 1.2. Many large scale
models of this nature have been developed. An interested modeler could, for
example, see how a large scale complementarity problem was used to quantify
the effects of the Uruguay round of talks [26].

1.2.2 Extension: Intermediate Variables

In many modeling situations, a key tool for clarification is the use of in-
termediate variables. As an example, the modeler may wish to define a
variable corresponding to the demand function d(p) in the Walrasian equi-
librium (1.3). The syntax for carrying this out is shown in Figure 1.3 where
we use the variables d to store the demand function referred to in the excess
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$include walras.dat

positive variables p(i), y(j);
variables d(i);
equations S(i), L(j), demand(i);

demand(i)..
d(i) =e= c(i)*sum(k, g(k)*p(k)) / p(i) ;

S(i).. b(i) + sum(j, A(i,j)*y(j)) - d(i) =g= 0 ;

L(j).. -sum(i, p(i)*A(i,j)) =g= 0 ;

model walras / demand.d, S.p, L.y /;
solve walras using mcp;

Figure 1.3: Walrasian equilibrium as an MCP, walras2.gms

supply equation. The model walras now contains a mixture of equations
and complementarity constraints. Since constructs of this type are prevalent
in many practical models, the GAMS syntax allows such formulations.

Note that positive variables are paired with inequalities, while free vari-
ables are paired with equations. A crucial point misunderstood by many
experienced modelers is that the bounds on the variable determine the rela-
tionships satisfied by the function F . Thus in Figure 1.3, d is a free variable
and therefore its paired equation demand is an equality. Similarly, since p is
nonnegative, its paired relationship S is a (greater-than) inequality.

A simplification is allowed to the model statement in Figure 1.3. In many
cases, it is not significant to match free variables explicitly to equations; we
only require that there are the same number of free variables as equations.
Thus, in the example of Figure 1.3, the model statement could be replaced
by

model walras / demand, S.p, L.y /;

This extension allows existing GAMS models consisting of a square system
of nonlinear equations to be easily recast as a complementarity problem -
the model statement is unchanged. GAMS generates a list of all variables
appearing in the equations found in the model statement, performs explicitly
defined pairings and then checks that the number of remaining equations
equals the number of remaining free variables. However, if an explicit match
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is given, the PATH solver can frequently exploit the information for better
solution. Note that all variables that are not free and all inequalities must
be explicitly matched.

1.2.3 Mixed Complementarity Problem

Amixed complementarity problem (MCP) is specified by three pieces of data,
namely the lower bounds �, the upper bounds u and the function F .

(MCP) Given lower bounds � ∈ {R ∪ {−∞}}n, upper bounds u ∈ {R ∪
{∞}}n and a function F : Rn → Rn, find z ∈ Rn such that precisely
one of the following holds for each i ∈ {1, . . . , n}:

Fi(z) = 0 and �i ≤ zi ≤ ui

Fi(z) > 0 and zi = �i
Fi(z) < 0 and zi = ui.

These relationships define a general MCP (sometimes termed a rectangular
variational inequality [25]). We will write these conditions compactly as

� ≤ x ≤ u ⊥ F (x).

Note that the nonlinear complementarity problem of Section 1.1.3 is a special
case of the MCP. For example, to formulate an NCP in the GAMS/MCP
format we set

z.lo(I) = 0;

or declare

positive variable z;

Another special case is a square system of nonlinear equations

(NE) Given a function F : Rn → Rn find z ∈ Rn such that

F (z) = 0.

In order to formulate this in the GAMS/MCP format we just declare

free variable z;
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In both the above cases, we must not modify the lower and upper bounds on
the variables later (unless we wish to drastically change the problem under
consideration).

An advantage of the extended formulation described above is the pairing
between “fixed” variables (ones with equal upper and lower bounds) and a
component of F . If a variable zi is fixed, then Fi(z) is unrestricted since
precisely one of the three conditions in the MCP definition automatically
holds when zi = �i = ui. Thus if a variable is fixed in a GAMS model,
the paired equation is completely dropped from the model. This convenient
modeling trick can be used to remove particular constraints from a model at
generation time. As an example, in economics, fixing a level of production
will remove the zero-profit condition for that activity.

Simple bounds on the variables are a convenient modeling tool that trans-
lates into efficient mathematical programming tools. For example, specialized
codes exist for the bound constrained optimization problem

min f(x) subject to � ≤ x ≤ u.

The first order optimality conditions for this problem class are precisely
MCP(∇f(x), [�, u]). We can easily see this condition in a one dimensional
setting. If we are at an unconstrained stationary point, then ∇f(x) = 0.
Otherwise, if x is at its lower bound, then the function must be increasing as
x increases, so ∇f(x) ≥ 0. Conversely, if x is at its upper bound, then the
function must be increasing as x decreases, so that ∇f(x) ≤ 0. The MCP
allows such problems to be easily and efficiently processed.

Upper bounds can be used to extend the utility of existing models. For
example, in Figure 1.3 it may be necessary to have an upper bound on the
activity level y. In this case, we simply add an upper bound to y in the
model statement, and replace the loss equation with the following definition:

y.up(j) = 10;
L(j).. -sum(i, p(i)*A(i,j)) =e= 0 ;

Here, for bounded variables, we do not know beforehand if the constraint will
be satisfied as an equation, less than inequality or greater than inequality,
since this determination depends on the values of the solution variables. We
adopt the convention that all bounded variables are paired to equations.
Further details on this point are given in Section 1.3.1. However, let us
interpret the relationships that the above change generates. If yj = 0, the
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loss function can be positive since we are not producing in the jth sector.
If yj is strictly between its bounds, then the loss function must be zero by
complementarity; this is the competitive assumption. However, if yj is at
its upper bound, then the loss function can be negative. Of course, if the
market does not allow free entry, some firms may operate at a profit (negative
loss). For more examples of problems, the interested reader is referred to
[10, 19, 20].

1.3 Solution

We will assume that a file named transmcp.gms has been created using
the GAMS syntax which defines an MCP model transport as developed in
Section 1.1. The modeler has a choice of the complementarity solver to use.
We are going to further assume that the modeler wants to use PATH.

There are two ways to ensure that PATH is used as opposed to any other
GAMS/MCP solver. These are as follows:

1. Add the following line to the transmcp.gms file prior to the solve

statement

option mcp = path;

PATH will then be used instead of the default solver provided.

2. Rerun the gamsinst program from the GAMS system directory and
choose PATH as the default solver for MCP.

To solve the problem, the modeler executes the command:

gams transmcp

where transmcp can be replaced by any filename containing a GAMS model.
Many other command line options for GAMS exist; the reader is referred to
[4] for further details.

At this stage, control is handed over to the solver which creates a log
providing information on what the solver is doing as time elapses. See Chap-
ter 2 for details about the log file. After the solver terminates, a listing file
is generated containing the solution to the problem. We now describe the
output in the listing file specifically related to complementarity problems.
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Code String Meaning

1 Normal completion Solver returned to GAMS without an error
2 Iteration interrupt Solver used too many iterations
3 Resource interrupt Solver took too much time
4 Terminated by solver Solver encountered difficulty and was un-

able to continue
8 User interrupt The user interrupted the solution process

Table 1.1: Solver Status Codes

Code String Meaning

1 Optimal Solver found a solution of the problem
6 Intermediate infeasible Solver failed to solve the problem

Table 1.2: Model Status Codes

1.3.1 Listing File

The listing file is the standard GAMS mechanism for reporting model results.
This file contains information regarding the compilation process, the form of
the generated equations in the model, and a report from the solver regarding
the solution process.

We now detail the last part of this output, an example of which is given
in Figure 1.4. We use “...” to indicate where we have omitted continuing
similar output.

After a summary line indicating the model name and type and the solver
name, the listing file shows a solver status and a model status. Table 1.1
and Table 1.2 display the relevant codes that are returned under different
circumstances. A modeler can access these codes within the transmcp.gms
file using transport.solstat and transport.modelstat respectively.

After this, a listing of the time and iterations used is given, along with
a count on the number of evaluation errors encountered. If the number of
evaluation errors is greater than zero, further information can typically be
found later in the listing file, prefaced by “****”. Information provided by
the solver is then displayed.

Next comes the solution listing, starting with each of the equations in the
model. For each equation passed to the solver, four columns are reported,
namely the lower bound, level, upper bound and marginal. GAMS moves all
parts of a constraint involving variables to the left hand side, and accumulates
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S O L V E S U M M A R Y

MODEL TRANSPORT
TYPE MCP
SOLVER PATH FROM LINE 45

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL

RESOURCE USAGE, LIMIT 0.057 1000.000
ITERATION COUNT, LIMIT 31 10000
EVALUATION ERRORS 0 0

Work space allocated -- 0.06 Mb

---- EQU RATIONAL

LOWER LEVEL UPPER MARGINAL

seattle .new-york -0.225 -0.225 +INF 50.000
seattle .chicago -0.153 -0.153 +INF 300.000
seattle .topeka -0.162 -0.126 +INF .

...

---- VAR X shipment quantities in cases

LOWER LEVEL UPPER MARGINAL

seattle .new-york . 50.000 +INF .
seattle .chicago . 300.000 +INF .

...

**** REPORT SUMMARY : 0 NONOPT
0 INFEASIBLE
0 UNBOUNDED
0 REDEFINED
0 ERRORS

Figure 1.4: Listing File for solving transmcp.gms
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the constants on the right hand side. The lower and upper bounds correspond
to the constants that GAMS generates. For equations, these should be equal,
whereas for inequalities one of them should be infinite. The level value of the
equation (an evaluation of the left hand side of the constraint at the current
point) should be between these bounds, otherwise the solution is infeasible
and the equation is marked as follows:

seattle .chicago -0.153 -2.000 +INF 300.000 INFES

The marginal column in the equation contains the value of the the variable
that was matched with this equation.

For the variable listing, the lower, level and upper columns indicate the
lower and upper bounds on the variables and the solution value. The level
value returned by PATH will always be between these bounds. The marginal
column contains the value of the slack on the equation that was paired with
this variable. If a variable appears in one of the constraints in the model
statement but is not explicitly paired to a constraint, the slack reported here
contains the internally matched constraint slack. The definition of this slack
is the minimum of equ.l - equ.lower and equ.l - equ.upper, where equ is the
paired equation.

Finally, a summary report is given that indicates how many errors were
found. Figure 1.4 is a good case; when the model has infeasibilities, these
can be found by searching for the string “INFES” as described above.

1.3.2 Redefined Equations

Unfortunately, this is not the end of the story. Some equations may have the
following form:

LOWER LEVEL UPPER MARGINAL

new-york 325.000 350.000 325.000 0.225 REDEF

This should be construed as a warning from GAMS, as opposed to an er-
ror. In principle, the REDEF should only occur if the paired variable to the
constraint had a finite lower and upper bound and the variable is at one of
those bounds. In this case, at the solution of the complementarity problem
the “equation (=e=)” may not be satisfied. The problem occurs because of a
limitation in the GAMS syntax for complementarity problems. The GAMS
equations are used to define the function F . The bounds on the function F
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variables x;
equations d_f;

x.lo = 0;
x.up = 2;

d_f.. 2*(x - 1) =e= 0;

model first / d_f.x /;
solve first using mcp;

Figure 1.5: First order conditions as an MCP, first.gms

are derived from the bounds on the associated variable. Before solving the
problem, for finite bounded variables, we do not know if the associated func-
tion will be positive, negative or zero at the solution. Thus, we do not know
whether to define the equation as “=e=”, “=l=” or “=g=”. GAMS therefore
allows any of these, and informs the modeler via the “REDEF” label that
internally GAMS has redefined the bounds so that the solver processes the
correct problem, but that the solution given by the solver does not satisfy
the original bounds. However, in practice, a REDEF can also occur when the
equation is defined using “=e=” and the variable has a single finite bound.
This is allowed by GAMS, and as above, at a solution of the complementarity
problem, the variable is at its bound and the function F does not satisfy the
“=e=” relationship.

Note that this is not an error, just a warning. The solver has solved the
complementarity problem specified by this equation. GAMS gives this report
to ensure that the modeler understands that the complementarity problem
derives the relationships on the equations from the bounds, not from the
equation definition.

1.4 Pitfalls

As indicated above, the ordering of an equation is important in the specifica-
tion of an MCP. Since the data of the MCP is the function F and the bounds
� and u, it is important for the modeler to pass the solver the function F and
not −F .
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For example, if we have the optimization problem,

min
x∈[0,2]

(x− 1)2

then the first order optimality conditions are

0 ≤ x ≤ 2 ⊥ 2(x− 1)

which has a unique solution, x = 1. Figure 1.5 provides correct GAMS code
for this problem. However, if we accidentally write the valid equation

d_f.. 0 =e= 2*(x - 1);

the problem given to the solver is

0 ≤ x ≤ 2 ⊥ −2(x− 1)

which has three solutions, x = 0, x = 1, and x = 2. This problem is in fact
the stationary conditions for the nonconvex quadratic problem,

max
x∈[0,2]

(x− 1)2,

not the problem we intended to solve.
Continuing with the example, when x is a free variable, we might con-

clude that the ordering of the equation is irrelevant because we always have
the equation, 2(x − 1) = 0, which does not change under multiplication by
−1. In most cases, the ordering of equations (which are complementary to
free variables) does not make a difference since the equation is internally
“substituted out” of the model. In particular, for defining equations, such as
that presented in Figure 1.3, the choice appears to be arbitrary.

However, in difficult (singular or near singular) cases, the substitution
cannot be performed, and instead a perturbation is applied to F , in the hope
of “(strongly) convexifying” the problem. If the perturbation happens to be
in the wrong direction because F was specified incorrectly, the perturbation
actually makes the problem less convex, and hence less likely to solve. Note
that determining which of the above orderings of the equations makes most
sense is typically tricky. One rule of thumb is to check whether if you replace
the “=e=” by “=g=”, and then increase “x”, is the inequality intuitively
more likely to be satisfied. If so, you probably have it the right way round,
if not, reorder.
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Furthermore, underlying model convexity is important. For example, if
we have the linear program

minx cTx
subject to Ax = b, x ≥ 0

we can write the first order optimality conditions as either

0 ≤ x ⊥ −ATµ+ c
µ free ⊥ Ax− b

or, equivalently,
0 ≤ x ⊥ −ATµ+ c
µ free ⊥ b−Ax

because we have an equation. The former is a linear complementarity prob-
lem with a positive semidefinite matrix, while the latter is almost certainly
indefinite. Also, if we need to perturb the problem because of numerical
problems, the former system will become positive definite, while the later
becomes highly nonconvex and unlikely to solve.

Finally, users are strongly encouraged to match equations and free vari-
ables when the matching makes sense for their application. Structure and
convexity can be destroyed if it is left to the solver to perform the matching.
For example, in the above example, we could loose the positive semidefinite
matrix with an arbitrary matching of the free variables.
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Chapter 2

PATH

Newton’s method, perhaps the most famous solution technique, has been ex-
tensively used in practice to solve to square systems of nonlinear equations.
The basic idea is to construct a local approximation of the nonlinear equa-
tions around a given point, xk, solve the approximation to find the Newton
point, xN , update the iterate, xk+1 = xN , and repeat until we find a solu-
tion to the nonlinear system. This method works extremely well close to
a solution, but can fail to make progress when started far from a solution.
To guarantee progress is made, a line search between xk and xN is used to
enforce sufficient decrease on an appropriately defined merit function. Typi-
cally, 1

2
‖F (x)‖2 is used.

PATH uses a generalization of this method on a nonsmooth reformulation
of the complementarity problem. To construct the Newton direction, we use
the normal map [34] representation

F (π(x)) + x− π(x)

associated with the MCP, where π(x) represents the projection of x onto [�, u]
in the Euclidean norm. We note that if x is a zero of the normal map, then
π(x) solves the MCP. At each iteration, a linearization of the normal map,
a linear complementarity problem, is solved using a pivotal code related to
Lemke’s method.

Versions of PATH prior to 4.x are based entirely on this formulation using
the residual of the normal map

‖F (π(x)) + x− π(x)‖
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as a merit function. However, the residual of the normal map is not dif-
ferentiable, meaning that if a subproblem is not solvable then a “steepest
descent” step on this function cannot be taken. PATH 4.x considers an al-
ternative nonsmooth system [21], Φ(x) = 0, where Φi(x) = φ(xi, Fi(x)) and
φ(a, b) :=

√
a2 + b2−a−b. The merit function, ‖Φ(x)‖2, in this case is differ-

entiable, and is used for globalization purposes. When the subproblem solver
fails, a projected gradient direction for this merit function is searched. It is
shown in [14] that this provides descent and a new feasible point to continue
PATH, and convergence to stationary points and/or solutions of the MCP is
provided under appropriate conditions.

The remainder of this chapter details the interpretation of output from
PATH and ways to modify the behavior of the code. To this end, we will as-
sume that the modeler has created a file named transmcp.gms which defines
an MCP model transport as described in Section 1.1 and is using PATH
4.x to solve it. See Section 1.3 for information on changing the solver.

2.1 Log File

We will now describe the behavior of the PATH algorithm in terms of the
output typically produced. An example of the log for a particular run is
given in Figure 2.1 and Figure 2.2.

The first few lines on this log file are printed by GAMS during its com-
pilation and generation phases. The model is then passed off to PATH at
the stage where the “Executing PATH” line is written out. After some ba-
sic memory allocation and problem checking, the PATH solver checks if the
modeler required an option file to be read. In the example this is not the
case. If PATH is directed to read an option file (see Section 2.4 below), then
the following output is generated after the PATH banner.

Reading options file PATH.OPT
> output_linear_model yes;
Options: Read: Line 2 invalid: hi_there;
Read of options file complete.

If the option reader encounters an invalid option (as above), it reports this
but carries on executing the algorithm. Following this, the algorithm starts
working on the problem.
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--- Starting compilation
--- trnsmcp.gms(46) 1 Mb
--- Starting execution
--- trnsmcp.gms(27) 1 Mb
--- Generating model transport
--- trnsmcp.gms(45) 1 Mb
--- 11 rows, 11 columns, and 24 non-zeroes.
--- Executing PATH
Work space allocated -- 0.06 Mb
Reading the matrix.
Reading the dictionary.
Path v4.3: GAMS Link ver037, SPARC/SOLARIS
11 row/cols, 35 non-zeros, 28.93% dense.

Path 4.3 (Sat Feb 26 09:38:08 2000)
Written by Todd Munson, Steven Dirkse, and Michael Ferris

INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . -0.0000e+00 var: (x.seattle.new-york)
Maximum of F. . . . . . . . . . 6.0000e+02 eqn: (supply.san-diego)
Maximum of Grad F . . . . . . . 1.0000e+00 eqn: (demand.new-york)

var: (x.seattle.new-york)

INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 3.0000e+00 eqn: (supply.seattle)
Minimum Row Norm. . . . . . . . 2.0000e+00 eqn: (rational.seattle.new-york)
Maximum Column Norm . . . . . . 3.0000e+00 var: (p_supply.seattle)
Minimum Column Norm . . . . . . 2.0000e+00 var: (x.seattle.new-york)

Crash Log
major func diff size residual step prox (label)

0 0 1.0416e+03 0.0e+00 (demand.new-york)
1 1 3 3 1.0029e+03 1.0e+00 1.0e+01 (demand.new-york)

pn_search terminated: no basis change.

Figure 2.1: Log File from PATH for solving transmcp.gms
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Major Iteration Log
major minor func grad residual step type prox inorm (label)

0 0 2 2 1.0029e+03 I 9.0e+00 6.2e+02 (demand.new-york)
1 1 3 3 8.3096e+02 1.0e+00 SO 3.6e+00 4.5e+02 (demand.new-york)

...

15 2 17 17 1.3972e-09 1.0e+00 SO 4.8e-06 1.3e-09 (demand.chicago)

FINAL STATISTICS
Inf-Norm of Complementarity . . 1.4607e-08 eqn: (rational.seattle.chicago)
Inf-Norm of Normal Map. . . . . 1.3247e-09 eqn: (demand.chicago)
Inf-Norm of Minimum Map . . . . 1.3247e-09 eqn: (demand.chicago)
Inf-Norm of Fischer Function. . 1.3247e-09 eqn: (demand.chicago)
Inf-Norm of Grad Fischer Fcn. . 1.3247e-09 eqn: (rational.seattle.chicago)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 3.0000e+02 var: (x.seattle.chicago)
Maximum of F. . . . . . . . . . 5.0000e+01 eqn: (supply.san-diego)
Maximum of Grad F . . . . . . . 1.0000e+00 eqn: (demand.new-york)

var: (x.seattle.new-york)

** EXIT - solution found.

Major Iterations. . . . 15
Minor Iterations. . . . 31
Restarts. . . . . . . . 0
Crash Iterations. . . . 1
Gradient Steps. . . . . 0
Function Evaluations. . 17
Gradient Evaluations. . 17
Total Time. . . . . . . 0.020000
Residual. . . . . . . . 1.397183e-09
--- Restarting execution

Figure 2.2: Log File from PATH for solving transmcp.gms (continued)
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2.1.1 Diagnostic Information

Some diagnostic information is initially generated by the solver at the starting
point. Included is information about the initial point and function evaluation.
The log file here tells the value of the largest element of the starting point
and the variable where it occurs. Similarly, the maximum function value is
displays along with the equation producing it. The maximum element in the
gradient is also presented with the equation and variable where it is located.

The second block provides more information about the Jacobian at the
starting point. These can be used to help scale the model. See Chapter 3 for
complete details.

2.1.2 Crash Log

The first phase of the code is a crash procedure attempting to quickly de-
termine which of the inequalities should be active. This procedure is docu-
mented fully in [12], and an exaple of the Crash Log can be seen in Figure 2.1.
The first column of the crash log is just a label indicating the current itera-
tion number, the second gives an indication of how many function evaluations
have been performed so far. Note that precisely one Jacobian (gradient) eval-
uation is performed per crash iteration. The number of changes to the active
set between iterations of the crash procedure is shown under the “diff” col-
umn. The crash procedure terminates if this becomes small. Each iteration
of this procedure involves a factorization of a matrix whose size is shown
in the next column. The residual is a measure of how far the current iter-
ate is from satisfying the complementarity conditions (MCP); it is zero at a
solution. See Section 3.2.1 for further information. The column “step” cor-
responds to the steplength taken in this iteration - ideally this should be 1.
If the factorization fails, then the matrix is perturbed by an identity matrix
scaled by the value indicated in the “prox” column. The “label” column indi-
cates which row in the model is furthest away from satisfying the conditions
(MCP). Typically, relatively few crash iterations are performed. Section 2.4
gives mechanisms to affect the behavior of these steps.

2.1.3 Major Iteration Log

After the crash is completed, the main algorithm starts as indicated by the
“Major Iteration Log” flag (see Figure 2.2). The columns that have the same
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Code Meaning

C A cycle was detected.
E An error occurred in the linear solve.
I The minor iteration limit was reached.
N The basis became singular.
R An unbounded ray was encountered.
S The linear subproblem was solved.
T Failed to remain within tolerance after factorization was per-

formed.

Table 2.1: Linear Solver Codes

labels as in the crash log have precisely the same meaning described above.
However, there are some new columns that we now explain. Each major
iteration attempts to solve a linear mixed complementarity problem using a
pivotal method that is a generalization of Lemke’s method [31]. The number
of pivots performed per major iteration is given in the “minor” column.

The “grad” column gives the cumulative number of Jacobian evaluations
used; typically one evaluation is performed per iteration. The “inorm” col-
umn gives the value of the error in satisfying the equation indicated in the
“label” column.

At each iteration of the algorithm, several different step types can be
taken, due to the use of nonmonotone searches [11, 15], which are used to
improve robustness. In order to help the PATH user, we have added two code
letters indicating the return code from the linear solver and the step type
to the log file. Table 2.1 explains the return codes for the linear solver and
Table 2.2 explains the meaning of each step type. The ideal output in this
column is either “SO”, with “SD” and “SB” also being reasonable. Codes
different from these are not catastrophic, but typically indicate the solver is
having difficulties due to numerical issues or nonconvexities in the model.

2.1.4 Minor Iteration Log

If more than 500 pivots are performed, a minor log is output that gives more
details of the status of these pivots. A listing from transmcp model follows,
where we have set the output minor iteration frequency option to 1.

Minor Iteration Log
minor t z w v art ckpts enter leave
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Code Meaning

B A Backtracking search was performed from the current iterate to
the Newton point in order to obtain sufficient decrease in the merit
function.

D The step was accepted because the Distance between the current
iterate and the Newton point was small.

G A gradient step was performed.
I Initial information concerning the problem is displayed.
M The step was accepted because the Merit function value is smaller

than the nonmonotone reference value.
O A step that satisfies both the distance and merit function tests.
R A Restart was carried out.
W A Watchdog step was performed in which we returned to the last

point encountered with a better merit function value than the non-
monotone reference value (M, O, or B step), regenerated the New-
ton point, and performed a backtracking search.

Table 2.2: Step Type Codes

1 4.2538e-01 8 2 0 0 0 t[ 0] z[ 11]
2 9.0823e-01 8 2 0 0 0 w[ 11] w[ 10]
3 1.0000e+00 9 2 0 0 0 z[ 10] t[ 0]

t is a parameter that goes from zero to 1 for normal starts in the pivotal
code. When the parameter reaches 1, we are at a solution to the subproblem.
The t column gives the current value for this parameter. The next columns
report the current number of problem variables z and slacks corresponding
to variables at lower bound w and at upper bound v. Artificial variables
are also noted in the minor log, see [17] for further details. Checkpoints are
times where the basis matrix is refactorized. The number of checkpoints is
indicated in the ckpts column. Finally, the minor iteration log displays the
entering and leaving variables during the pivot sequence.

2.1.5 Restart Log

The PATH code attempts to fully utilize the resources provided by the mod-
eler to solve the problem. Versions of PATH after 3.0 have been much more
aggressive in determining that a stationary point of the residual function has
been encountered. When it is determined that no progress is being made, the
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problem is restarted from the initial point supplied in the GAMS file with
a different set of options. These restarts give the flexibility to change the
algorithm in the hopes that the modified algorithm leads to a solution. The
ordering and nature of the restarts were determined by empirical evidence
based upon tests performed on real-world problems.

The exact options set during the restart are given in the restart log, part
of which is reproduced below.

Restart Log
proximal_perturbation 0
crash_method none
crash_perturb yes
nms_initial_reference_factor 2
proximal_perturbation 1.0000e-01

If a particular problem solves under a restart, a modeler can circumvent the
wasted computation by setting the appropriate options as shown in the log.
Note that sometimes an option is repeated in this log. In this case, it is the
last option that is used.

2.1.6 Solution Log

A solution report is now given by the algorithm for the point returned. The
first component is an evaluation of several different merit functions. Next, a
display of some statistics concerning the final point is given. This report can
be used detect problems with the model and solution as detailed in Chapter 3.

At the end of the log file, summary information regarding the algorithm’s
performance is given. The string “** EXIT - solution found.” is an indi-
cation that PATH solved the problem. Any other EXIT string indicates a
termination at a point that may not be a solution. These strings give an
indication of what modelstat and solstat will be returned to GAMS. After
this, the “Restarting execution” flag indicates that GAMS has been restarted
and is processing the results passed back by PATH.

2.2 Status File

If for some reason the PATH solver exits without writing a solution, or the
sysout flag is turned on, the status file generated by the PATH solver will
be reported in the listing file. The status file is similar to the log file, but
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provides more detailed information. The modeler is typically not interested
in this output.

2.3 User Interrupts

A user interrupt can be effected by typing Ctrl-C. We only check for in-
terrupts every major iteration. If a more immediate response is wanted,
repeatedly typing Ctrl-C will eventually kill the job. The number needed is
controlled by the interrupt limit option. In this latter case, when a kill is
performed, no solution is written and an execution error will be generated in
GAMS.

2.4 Options

The default options of PATH should be sufficient for most models; the tech-
nique for changing these options are now described. To change the default
options on the model transport, the modeler is required to write a file
path.opt in the working directory and either add a line

transport.optfile = 1;

before the solve statement in the file transmcp.gms, or use the command-
line option

gams transmcp optfile=1

Unless the modeler has changed the WORKDIR parameter explicitly, the
working directory will be the directory containing the model file.

We give a list of the available options along with their defaults and mean-
ing in Table 2.3, Table 2.4, and Table 2.5. Note that only the first three
characters of every word are significant.

GAMS controls the total number of pivots allowed via the iterlim op-
tion. If more pivots are needed for a particular model then either of the
following lines should be added to the transmcp.gms file before the solve
statement

option iterlim = 2000;
transport.iterlim = 2000;
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Option Default Explanation

convergence tolerance 1e-6 Stopping criterion
crash iteration limit 50 Maximum iterations allowed in

crash
crash merit function fischer Merit function used in crash method
crash method pnewton pnewton or none
crash minimum dimension 1 Minimum problem dimension to per-

form crash
crash nbchange limit 1 Number of changes to the basis al-

lowed
crash perturb yes Perturb the problem using pnewton

crash
crash searchtype line Searchtype to use in the crash

method
cumulative iteration limit 10000 Maximum minor iterations allowed
gradient searchtype arc Searchtype to use when a gradient

step is taken
gradient step limit 5 Maximum number of gradient step

allowed before restarting
interrupt limit 5 Ctrl-C’s required before killing job
lemke start automatic Frequency of lemke starts (auto-

matic, first, always)
major iteration limit 500 Maximum major iterations allowed
merit function fischer Merit function to use (normal or fis-

cher)
minor iteration limit 1000 Maximum minor iterations allowed

in each major iteration
nms yes Allow line searching, watchdoging,

and nonmonotone descent
nms initial reference factor 20 Controls size of initial reference

value
nms maximum watchdogs 5 Maximum number of watchdog steps

allowed
nms memory size 10 Number of reference values kept
nms mstep frequency 10 Frequency at which m steps are per-

formed

Table 2.3: PATH Options
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Option Default Explanation

nms searchtype line Search type to use (line, or arc)
output yes Turn output on or off. If output

is turned off, selected parts can be
turned back on.

output crash iterations yes Output information on crash iter-
ations

output crash iterations frequency 1 Frequency at which crash itera-
tion log is printed

output errors yes Output error messages
output factorization singularities yes Output linearly dependent

columns determined by factoriza-
tion

output final degeneracy statistics no Print information regarding de-
generacy at the solution

output final point no Output final point returned from
PATH

output final point statistics yes Output information about the
point, function, and Jacobian at
the final point

output final scaling statistics no Display matrix norms on the Ja-
cobian at the final point

output final statistics yes Output evaluation of available
merit functions at the final point

output final summary yes Output summary information
output initial point no Output initial point given to

PATH
output initial point statistics yes Output information about the

point, function, and Jacobian at
the initial point

output initial scaling statistics yes Display matrix norms on the Ja-
cobian at the initial point

output initial statistics no Output evaluation of available
merit functions at the initial
point

Table 2.4: PATH Options (cont)
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Option Default Explanation

output linear model no Output linear model each major
iteration

output major iterations yes Output information on major it-
erations

output major iterations frequency 1 Frequency at which major itera-
tion log is printed

output minor iterations yes Output information on minor it-
erations

output minor iterations frequency 500 Frequency at which minor itera-
tion log is printed

output model statistics yes Turns on or off printing of all
the statistics generated about the
model

output options no Output all options and their val-
ues

output preprocess yes Output preprocessing informa-
tion

output restart log yes Output options during restarts
output warnings no Output warning messages
preprocess yes Attempt to preprocess the model
proximal perturbation 0 Initial perturbation
restart limit 3 Maximum number of restarts (0 -

3)
return best point yes Return the best point encoun-

tered or the absolute last iterate
time limit 3600 Maximum number of seconds al-

gorithm is allowed to run

Table 2.5: PATH Options (cont)
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Similarly if the solver runs out of memory, then the workspace allocated can
be changed using

transport.workspace = 20;

The above example would allocate 20MB of workspace for solving the model.
Problems with a singular basis matrix can be overcome by using the

proximal perturbation option [3], and linearly dependent columns can be
output with the output factorization singularities option. For more
information on singularities, we refer the reader to Chapter 3.

As a special case, PATH can emulate Lemke’s method [7, 31] for LCP
with the following options:

crash_method none;
crash_perturb no;
major_iteration_limit 1;
lemke_start first;
nms no;

If instead, PATH is to imitate the Successive Linear Complementarity method
(SLCP, often called the Josephy Newton method) [28, 33, 32] for MCP with
an Armijo style linesearch on the normal map residual, then the options to
use are:

crash_method none;
crash_perturb no;
lemke_start always;
nms_initial_reference_factor 1;
nms_memory size 1;
nms_mstep_frequency 1;
nms_searchtype line;
merit_function normal;

Note that nms memory size 1 and nms initial reference factor 1 turn
off the nonmonotone linesearch, while nms mstep frequency 1 turns off watch-
doging [5]. nms searchtype line forces PATH to search the line segment be-
tween the initial point and the solution to the linear model, while merit function

normal tell PATH to use the normal map for calculating the residual.

2.5 PATHC

PATHC uses a different link to the GAMS system with the remaining code
identical. PATHC does not support MPSGE models, but enables the use
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of preprocessing and can be used to solve constrained systems of nonlinear
equations. The output for PATHC is identical to the main distribution de-
scribed in Section 2.1 with additional output for preprocessing. The options
are the same between the two versions.

2.5.1 Preprocessing

The preprocessor is work in progress. The exact output in the final
version may differ from that given below.

The purpose of a preprocessor is to reduce the size and complexity of
a model to achieve improved performance by the main algorithm. Another
benefit of the analysis performed is the detection of some provably unsolvable
problems. A comprehensive preprocessor has been incorporated into PATHC
as developed in [18].

The preprocessor reports its finding with some additional output to the
log file. This output occurs before the initial point statistics. An example of
the preprocessing on the forcebsm model is presented below.

Zero: 0 Single: 112 Double: 0 Forced: 0
Preprocessed size: 72

The preprocessor looks for special polyhedral structure and eliminates vari-
ables using this structure. These are indicated with the above line of text.
Other special structure is also detected and reported.

On exit from the algorithm, we must generate a solution for the original
problem. This is done during the postsolve. Following the postsolve, the
residual using the original model is reported.

Postsolved residual: 1.0518e-10

This number should be approximately the same as the final residual reported
on the presolved model.

2.5.2 Constrained Nonlinear Systems

Modelers typically add bounds to their variables when attempting to solve
nonlinear problems in order to restrict the domain of interest. For example,
many square nonlinear systems are formulated as

F (z) = 0, � ≤ z ≤ u,

33



where typically, the bounds on z are inactive at the solution. This is not an
MCP, but is an example of a “constrained nonlinear system” (CNS). It is
important to note the distinction between MCP and CNS. The MCP uses
the bounds to infer relationships on the function F . If a finite bound is active
at a solution, the corresponding component of F is only constrained to be
nonnegative or nonpositive in the MCP, whereas in CNS it must be zero.
Thus there may be many solutions of MCP that do not satisfy F (z) = 0.
Only if z∗ is a solution of MCP with � < z∗ < u is it guaranteed that
F (z∗) = 0.

Internally, PATHC reformulates a constrained nonlinear system of equa-
tions to an equivalent complementarity problem. The reformulation adds
variables, y, with the resulting problem written as:

� ≤ x ≤ u ⊥ −y
y free ⊥ F (x).

This is the MCP model passed on to the PATH solver.
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Chapter 3

Advanced Topics

This chapter discusses some of the difficulties encountered when dealing with
complementarity problems. We start off with a very formal definition of a
complementarity problem which is used in later sections on merit functions
and ill-defined, poorly-scaled, and singular models.

3.1 Formal Definition of MCP

The mixed complementarity problem is defined by a function, F : D → Rn

where D ⊆ Rn is the domain of F , and possibly infinite lower and upper
bounds, � and u. Let C := {x ∈ Rn | � ≤ x ≤ u}, a Cartesian product of
closed (possibly infinite) intervals. The problem is given as

MCP : find x ∈ C ∩D s.t. 〈F (x), y − x〉 ≥ 0, ∀y ∈ C.

This formulation is a special case of the variational inequality problem defined
by F and a (nonempty, closed, convex) set C. Special choices of � and u lead
to the familiar cases of a system of nonlinear equations

F (x) = 0

(generated by � ≡ −∞, u ≡ +∞) and the nonlinear complementarity prob-
lem

0 ≤ x ⊥ F (x) ≥ 0

(generated using � ≡ 0, u ≡ +∞).
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3.2 Algorithmic Features

We now describe some of the features of the PATH algorithm and the options
affecting each.

3.2.1 Merit Functions

A solver for complementarity problems typically employs a merit function to
indicate the closeness of the current iterate to the solution set. The merit
function is zero at a solution to the original problem and strictly positive
otherwise. Numerically, an algorithm terminates when the merit function is
approximately equal to zero, thus possibly introducing spurious “solutions”.

The modeler needs to be able to determine with some reasonable de-
gree of accuracy whether the algorithm terminated at solution or if it simply
obtained a point satisfying the desired tolerances that is not close to the
solution set. For complementarity problems, we can provide several indica-
tors with different characteristics to help make such a determination. If one
of the indicators is not close to zero, then there is some evidence that the
algorithm has not found a solution. We note that if all of the indicators are
close to zero, we are reasonably sure we have found a solution. However, the
modeler has the final responsibility to evaluate the “solution” and check that
it makes sense for their application.

For the NCP, a standard merit function is

‖(−x)+, (−F (x))+, [(xi)+(Fi(x))+]i‖

with the first two terms measuring the infeasibility of the current point and
the last term indicating the complementarity error. In this expression, we use
(·)+ to represent the Euclidean projection of x onto the nonnegative orthant,
that is (x)+ = max(x, 0). For the more general MCP, we can define a similar
function:∥∥∥∥∥∥x− π(x),

[(
xi − �i
‖�i‖+ 1

)
+

(Fi(x))+

]
i

,

[(
ui − xi

‖ui‖+ 1
)

+

(−Fi(x))+

]
i

∥∥∥∥∥∥
where π(x) represents the Euclidean projection of x onto C. We can see that
if we have an NCP, the function is exactly the one previously given and for
nonlinear systems of equations, this becomes ‖F (x)‖.

36



There are several reformulations of the MCP as systems of nonlinear (non-
smooth) equations for which the corresponding residual is a natural merit
function. Some of these are as follows:

• Generalized Minimum Map: x− π(x− F (x))
• Normal Map: F (π(y)) + y − π(y)
• Fischer Function: Φ(x), where Φi(x) := φ(xi, Fi(x)) with

φ(a, b) :=
√
a + b− a− b.

Note that φ(a, b) = 0 if and only if 0 ≤ a ⊥ b ≥ 0. A straightforward
extension of Φ to the MCP format is given for example in [14].

In the context of nonlinear complementarity problems the generalized mini-
mum map corresponds to the classic minimum map min(x, F (x)). Further-
more, for NCPs the minimum map and the Fischer function are both local
error bounds and were shown to be equivalent in [36]. Figure 3.3 in the sub-
sequent section plots all of these merit functions for the ill-defined example
discussed therein and highlights the differences between them.

The squared norm of Φ, namely Ψ(x) := 1
2

∑
φ(xi, Fi)

2, is continuously
differentiable on Rn provided F itself is. Therefore, the first order optimality
conditions for the unconstrained minimization of Ψ(x), namely ∇Ψ(x) = 0
give another indication as to whether the point under consideration is a
solution of MCP.

The merit functions and the information PATH provides at the solution
can be useful for diagnostic purposes. By default, PATH 4.x returns the best
point with respect to the merit function because this iterate likely provides
better information to the modeler. As detailed in Section 2.4, the default
merit function in PATH 4.x is the Fischer function. To change this behavior
the merit function option can be used.

3.2.2 Crashing Method

The crashing technique [12] is used to quickly identify an active set from the
user-supplied starting point. At this time, a proximal perturbation scheme
[1, 2] is used to overcome problems with a singular basis matrix. The proximal
perturbation is introduced in the crash method, when the matrix factored
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is determined to be singular. The value of the perturbation is based on the
current merit function value.

Even if the crash method is turned off, for example via the option crash method

none, perturbation can be added. This is determined by factoring the ma-
trix that crash would have initially formed. This behavior is extremely useful
for introducing a perturbation for singular models. It can be turned off by
issuing the option crash perturb no.

3.2.3 Nonmontone Searches

The first line of defense against convergence to stationary points is the use
of a nonmonotone linesearch [23, 24, 15]. In this case we define a reference
value, Rk and we use this value in test for sufficient decrease: test:

Ψ(xk + tkd
k) ≤ Rk + tk∇Ψ(xk)Tdk.

Depending upon the choice of the reference value, this allows the merit func-
tion to increase from one iteration to the next. This strategy can not only
improve convergence, but can also avoid local minimizers by allowing such
increases.

We now need to detail our choice of the reference value. We begin by
letting {M1, . . . ,Mm} be a finite set of values initialized to κΨ(x0), where
κ is used to determine the initial set of acceptable merit function values.
The value of κ defaults to 1 in the code and can be modified with the
nms initial reference factor option; κ = 1 indicates that we are not
going to allow the merit function to increase beyond its initial value.

Having defined the values of {M1, . . . ,Mm} (where the code by default
uses m = 10), we can now calculate a reference value. We must be careful
when we allow gradient steps in the code. Assuming that dk is the Newton
direction, we define i0 = argmax Mi and R

k =Mi0 . After the nonmonotone
linesearch rule above finds tk, we update the memory so that Mi0 = Ψ(xk +
tkd

k), i.e. we remove an element from the memory having the largest merit
function value.

When we decide to use a gradient step, it is beneficial to let xk = xbest

where xbest is the point with the absolute best merit function value encoun-
tered so far. We then recalculate dk = −∇Ψ(xk) using the best point and
let Rk = Ψ(xk). That is to say that we force decrease from the best iterate
found whenever a gradient step is performed. After a successful step we set

38



Mi = Ψ(xk + tkd
k) for all i ∈ [1, . . . , m]. This prevents future iterates from

returning to the same problem area.
A watchdog strategy [5] is also available for use in the code. The method

employed allows steps to be accepted when they are “close” to the current
iterate. Nonmonotonic decrease is enforced every m iterations, where m is
set by the nms mstep frequency option.

3.2.4 Linear Complementarity Problems

PATH solves a linear complementarity problem each major iteration. Let
M ∈ �n×n, q ∈ �n, and B = [l, u] be given. (z̄, w̄, v̄) solves the linear mixed
complementarity problem defined by M , q, and B if and only if it satisfies
the following constrained system of equations:

Mz − w + v + q = 0 (3.1)

wT (z − l) = 0 (3.2)

vT (u− z) = 0 (3.3)

z ∈ B,w ∈ �n
+, v ∈ �n

+, (3.4)

where x +∞ = ∞ for all x ∈ � and 0 · ∞ = 0 by convention. A triple,
(ẑ, ŵ, v̂), satisfying equations (3.1) - (3.3) is called a complementary triple.

The objective of the linear model solver is to construct a path from a
given complementary triple (ẑ, ŵ, v̂) to a solution (z̄, w̄, v̄). The algorithm
used to solve the linear problem is identical to that given in [9]; however,
artificial variables are incorporated into the model. The augmented system
is then:

Mz − w + v +Da+ (1− t)
s

(sr) + q = 0 (3.5)

wT (z − l) = 0 (3.6)

vT (u− z) = 0 (3.7)

z ∈ B,w ∈ �n
+, v ∈ �n

+, a ≡ 0, t ∈ [0, 1] (3.8)

where r is the residual, t is the path parameter, and a is a vector of artificial
variables. The residual is scaled by s to improve numerical stability.

The addition of artificial variables enables us to construct an initial invert-
ible basis consistent with the given starting point even under rank deficiency.
The procedure consists of two parts: constructing an initial guess as to the
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basis and then recovering from rank deficiency to obtain an invertible ba-
sis. The crash technique gives a good approximation to the active set. The
first phase of the algorithm uses this information to construct a basis by
partitioning the variables into three sets:

1. W = {i ∈ {1, . . . , n} | ẑi = li and ŵi > 0}
2. V = {i ∈ {1, . . . , n} | ẑi = ui and v̂i > 0}
3. Z = {1, . . . , n} \W ∪ V

Since (ẑ, ŵ, v̂) is a complementary triple, Z ∩ W ∩ V = ∅ and Z ∪ W ∪
V = {1, . . . , n}. Using the above guess, we can recover an invertible basis
consistent with the starting point by defining D appropriately. The technique
relies upon the factorization to tell the linearly dependent rows and columns
of the basis matrix. Some of the variables may be nonbasic, but not at their
bounds. For such variables, the corresponding artificial will be basic.

We use a modified version of EXPAND [22] to perform the ratio test.
Variables are prioritized as follows:

1. t leaving at its upper bound.

2. Any artificial variable.

3. Any z, w, or v variable.

If a choice as to the leaving variable can be made while maintaining numerical
stability and sparsity, we choose the variable with the highest priority (lowest
number above).

When an artificial variable leaves the basis and a z-type variable enters,
we have the choice of either increasing or decreasing that entering variable
because it is nonbasic but not at a bound. The determination is made such
that t increases and stability is preserved.

If the code is forced to use a ray start at each iteration (lemke start

always), then the code carries out Lemke’s method, which is known [7] not
to cycle. However, by default, we use a regular start to guarantee that
the generated path emanates from the current iterate. Under appropriate
conditions, this guarantees a decrease in the nonlinear residual. However, it
is then possible for the pivot sequence in the linear model to cycle. To prevent
this undesirable outcome, we attempt to detect the formation of a cycle with
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the heuristic that if a variable enters the basis more that a given number of
times, we are cycling. The number of times the variable has entered is reset
whenever t increases beyond its previous maximum or an artificial variable
leaves the basis. If cycling is detected, we terminate the linear solver at the
largest value of t and return this point.

Another heuristic is added when the linear code terminates on a ray.
The returned point in this case is not the base of the ray. We move a
slight distance up the ray and return this new point. If we fail to solve the
linear subproblem five times in a row, a Lemke ray start will be performed
in an attempt to solve the linear subproblem. Computational experience
has shown this to be an effective heuristic and generally results in solving
the linear model. Using a Lemke ray start is not the default mode, since
typically many more pivots are required.

For time when a Lemke start is actually used in the code, an advanced
ray can be used. We basically choose the “closest” extreme point of the
polytope and choose a ray in the interior of the normal cone at this point.
This helps to reduce the number of pivots required. However, this can fail
when the basis corresponding to the cell is not invertible. We then revert to
the Lemke start.

Since the EXPAND pivot rules are used, some of the variable may be
nonbasic, but slightly infeasible, as the solution. Whenever the linear code
finisher, the nonbasic variables are put at their bounds and the basic variable
are recomputed using the current factorization. This procedure helps to find
the best possible solution to the linear system.

The resulting linear solver as modified above is robust and has the desired
property that we start from (ẑ, ŵ, v̂) and construct a path to a solution.

3.2.5 Other Features

Some other heuristics are incorporated into the code. During the first itera-
tion, if the linear solver fails to find a Newton point, a Lemke start is used.
Furthermore, under repeated failures during the linear solve, a Lemke starts
will be attempted. A gradient step can also be used when we fail repeatedly.

The proximal perturbation is shrunk each major iteration. However, when
numerical difficulties are encountered, it will be increase to a fraction of the
current merit function value. These are determined as when the linear solver
returns the Reset or Singular status.

Spacer steps are taken every major iteration, in which the iterate is chosen
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to be the best point for the normal map. The corresponding basis passed
into the Lemke code is also updated.

Scaling is done based on the diagonal of the matrix passed into the linear
solver.

We finally note, that we the merit function fails to show sufficient decrease
over the last 100 iterates, a restart will be performed, as this indicates we
are close to a stationary point.

3.3 Difficult Models

3.3.1 Ill-Defined Models

A problem can be ill-defined for several different reasons. We concentrate on
the following particular cases. We will call F well-defined at x̄ ∈ C if x̄ ∈ D
and ill-defined at x̄ otherwise. Furthermore, we define F to be well-defined
near x̄ ∈ C if there exists an open neighborhood of x̄, N (x̄), such that
C ∩N (x̄) ⊆ D. By saying the function is well-defined near x̄, we are simply
stating that F is defined for all x ∈ C sufficiently close to x̄. A function not
well-defined near x̄ is termed ill-defined near x̄.

We will say that F has a well-defined Jacobian at x̄ ∈ C if there exists an
open neighborhood of x̄, N (x̄), such that N (x̄) ⊆ D and F is continuously
differentiable on N (x̄). Otherwise the function has an ill-defined Jacobian
at x̄. We note that a well-defined Jacobian at x̄ implies that the MCP has a
well-defined function near x̄, but the converse is not true.

PATH uses both function and Jacobian information in its attempt to solve
the MCP. Therefore, both of these definitions are relevant. We discuss cases
where the function and Jacobian are ill-defined in the next two subsections.
We illustrate uses for the merit function information and final point statistics
within the context of these problems.

Function Undefined

We begin with a one-dimensional problem for which F is ill-defined at x = 0
as follows:

0 ≤ x ⊥ 1
x
≥ 0.

Here x must be strictly positive because 1
x
is undefined at x = 0. This

condition implies that F (x) must be equal to zero. Since F (x) is strictly
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positive variable x;
equations F;

F.. 1 / x =g= 0;

model simple / F.x /;

x.l = 1e-6;

solve simple using mcp;

Figure 3.1: GAMS Code for Ill-Defined Function

positive for all x strictly positive, this problem has no solution.
We are able to perform this analysis because the dimension of the problem

is small. Preprocessing linear problems can be done by the solver in an
attempt to detect obviously inconsistent problems, reduce problem size, and
identify active components at the solution. Similar processing can be done
for nonlinear models, but the analysis becomes more difficult to perform.
Currently, PATH only checks the consistency of the bounds and removes
fixed variables and the corresponding complementary equations from the
model.

A modeler might not know a priori that a problem has no solution and
might attempt to formulate and solve it. GAMS code for this model is
provided in Figure 3.1. We must specify an initial value for x in the code.
If we were to not provide one, GAMS would use x = 0 as the default value,
notice that F is undefined at the initial point, and terminate before giving
the problem to PATH. The error message problem indicates that the function
1
x
is ill-defined at x = 0, but does not determine whether the corresponding

MCP problem has a solution.
After setting the starting point, GAMS generates the model, and PATH

proceeds to “solve” it. A portion of the output relating statistics about the
solution is given in Figure 3.2. PATH uses the Fischer Function indicator as
its termination criteria by default, but evaluates all of the merit functions
given in Section 3.2.1 at the final point. The Normal Map merit function,
and to a lesser extent, the complementarity error, indicate that the “solution”
found does not necessarily solve the MCP.

To indicate the difference between the merit functions, Figure 3.3 plots
them all for the simple example. We note that as x approaches positive infin-
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FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e+00 eqn: (F)
Inf-Norm of Normal Map. . . . . 1.1181e+16 eqn: (F)
Inf-Norm of Minimum Map . . . . 8.9441e-17 eqn: (F)
Inf-Norm of Fischer Function. . 8.9441e-17 eqn: (F)
Inf-Norm of Grad Fischer Fcn. . 8.9441e-17 eqn: (F)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 8.9441e-17 var: (X)
Maximum of F. . . . . . . . . . 1.1181e+16 eqn: (F)
Maximum of Grad F . . . . . . . 1.2501e+32 eqn: (F)

var: (X)

Figure 3.2: PATH Output for Ill-Defined Function

ity, numerically, we are at a solution to the problem with respect to all of the
merit functions except for the complementarity error, which remains equal
to one. As x approaches zero, the merit functions diverge, also indicating
that x = 0 is not a solution.

The natural residual and Fischer function tend toward 0 as x ↓ 0. From
these measures, we might think x = 0 is the solution. However, as previously
remarked F is ill-defined at x = 0. F and ∇F become very large, indicating
that the function (and Jacobian) might not be well-defined. We might be
tempted to conclude that if one of the merit function indicators is not close
to zero, then we have not found a solution. This conclusion is not always the
case. When one of the indicators is non-zero, we have reservations about the
solution, but we cannot eliminate the possibility that we are actually close
to a solution. If we slightly perturb the original problem to

0 ≤ x ⊥ 1
x+ε

≥ 0

for a fixed ε > 0, the function is well-defined over C = Rn
+ and has a unique

solution at x = 0. In this case, by starting at x > 0 and sufficiently small,
all of the merit functions, with the exception of the Normal Map, indicate
that we have solved the problem as is shown by the output in Figure 3.4 for
ε = 1∗10−6 and x = 1∗10−20. In this case, the Normal Map is quite large and
we might think that the function and Jacobian are undefined. When only the
normal map is non-zero, we may have just mis-identified the optimal basis.
By setting the merit function normal option, we can resolve the problem,
identify the correct basis, and solve the problem with all indicators being
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Figure 3.3: Merit Function Plot

FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e-14 eqn: (G)
Inf-Norm of Normal Map. . . . . 1.0000e+06 eqn: (G)
Inf-Norm of Minimum Map . . . . 1.0000e-20 eqn: (G)
Inf-Norm of Fischer Function. . 1.0000e-20 eqn: (G)
Inf-Norm of Grad Fischer Fcn. . 1.0000e-20 eqn: (G)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 1.0000e-20 var: (X)
Maximum of F. . . . . . . . . . 1.0000e+06 eqn: (G)
Maximum of Grad F . . . . . . . 1.0000e+12 eqn: (G)

var: (X)

Figure 3.4: PATH Output for Well-Defined Function
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FINAL STATISTICS
Inf-Norm of Complementarity . . 1.0000e-07 eqn: (F)
Inf-Norm of Normal Map. . . . . 1.0000e-07 eqn: (F)
Inf-Norm of Minimum Map . . . . 1.0000e-07 eqn: (F)
Inf-Norm of Fischer Function. . 2.0000e-07 eqn: (F)
Inf-Norm of Grad FB Function. . 2.0000e+00 eqn: (F)

FINAL POINT STATISTICS
Maximum of X. . . . . . . . . . 1.0000e-14 var: (X)
Maximum of F. . . . . . . . . . 1.0000e-07 eqn: (F)
Maximum of Grad F . . . . . . . 5.0000e+06 eqn: (F)

var: (X)

Figure 3.5: PATH Output for Ill-Defined Jacobian

close to zero. This example illustrates the point that all of these tests are
not infallible. The modeler still needs to do some detective work to determine
if they have found a solution or if the algorithm is converging to a point where
the function is ill-defined.

Jacobian Undefined

Since PATH uses a Newton-like method to solve the problem, it also needs
the Jacobian of F to be well-defined. One model for which the function is
well-defined over C, but for which the Jacobian is undefined at the solution
is: 0 ≤ x ⊥ −√

x ≥ 0. This model has a unique solution at x = 0.
Using PATH and starting from the point x = 1 ∗ 10−14, PATH generates

the output given in Figure 3.5. We can see the that gradient of the Fischer
Function is nonzero and the Jacobian is beginning to become large. These
conditions indicate that the Jacobian is undefined at the solution. It is
therefore important for a modeler to inspect the given output to guard against
such problems.

If we start from x = 0, PATH correctly informs us that we are at the
solution. Even though the entries in the Jacobian are undefined at this
point, the GAMS interpreter incorrectly returns a value of 0 to PATH. This
problem with the Jacobian is therefore undetectable by PATH. (This problem
has been fixed in versions of GAMS beyond 19.1).
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INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . 4.1279e+06 var: (w.29)
Maximum of F. . . . . . . . . . 2.2516e+00 eqn: (a1.33)
Maximum of Grad F . . . . . . . 6.7753e+06 eqn: (a1.29)

var: (x1.29)

INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 9.4504e+06 eqn: (a2.29)
Minimum Row Norm. . . . . . . . 2.7680e-03 eqn: (g.10)
Maximum Column Norm . . . . . . 9.4504e+06 var: (x2.29)
Minimum Column Norm . . . . . . 1.3840e-03 var: (w.10)

Figure 3.6: PATH Output - Poorly Scaled Model

3.3.2 Poorly Scaled Models

Problems which are well-defined can have various numerical problems that
can impede the algorithm’s convergence. One particular problem is a badly
scaled Jacobian. In such cases, we can obtain a poor “Newton” direction
because of numerical problems introduced in the linear algebra performed.
This problem can also lead the code to a point from which it cannot recover.

The final model given to the solver should be scaled such that we avoid
numerical difficulties in the linear algebra. The output provided by PATH
can be used to iteratively refine the model so that we eventually end up with
a well-scaled problem. We note that we only calculate our scaling statistics at
the starting point provided. For nonlinear problems these statistics may not
be indicative of the overall scaling of the model. Model specific knowledge is
very important when we have a nonlinear problem because it can be used to
appropriately scale the model to achieve a desired result.

We look at the titan.gms model in MCPLIB, that has some scaling
problems. The relevant output from PATH for the original code is given in
Figure 3.6. The maximum row norm is defined as

max
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij |

and the minimum row norm is

min
1≤i≤n

∑
1≤j≤n

| (∇F (x))ij | .

47



INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . 1.0750e+03 var: (x1.49)
Maximum of F. . . . . . . . . . 3.9829e-01 eqn: (g.10)
Maximum of Grad F . . . . . . . 6.7753e+03 eqn: (a1.29)

var: (x1.29)

INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 9.4524e+03 eqn: (a2.29)
Minimum Row Norm. . . . . . . . 2.7680e+00 eqn: (g.10)
Maximum Column Norm . . . . . . 9.4904e+03 var: (x2.29)
Minimum Column Norm . . . . . . 1.3840e-01 var: (w.10)

Figure 3.7: PATH Output - Well-Scaled Model

Similar definitions are used for the column norm. The norm numbers for this
particular example are not extremely large, but we can nevertheless improve
the scaling. We first decided to reduce the magnitude of the a2 block of
equations as indicated by PATH. Using the GAMS modeling language, we
can scale particular equations and variables using the .scale attribute. To
turn the scaling on for the model we use the .scaleopt model attribute. After
scaling the a2 block, we re-ran PATH and found an additional blocks of
equations that also needed scaling, a2. We also scaled some of the variables,
g and w. The code added to the model follows:

titan.scaleopt = 1;
a1.scale(i) = 1000;
a2.scale(i) = 1000;
g.scale(i) = 1/1000;
w.scale(i) = 100000;

After scaling these blocks of equations in the model, we have improved the
scaling statistics which are given in Figure 3.7 for the new model. For this
particular problem PATH cannot solve the unscaled model, while it can find
a solution to the scaled model. Using the scaling language features and the
information provided by PATH we are able to remove some of the problem’s
difficulty and obtain better performance from PATH.

It is possible to get even more information on initial point scaling by
inspecting the GAMS listing file. The equation row listing gives the values
of all the entries of the Jacobian at the starting point. The row norms
generated by PATH give good pointers into this source of information.
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INITIAL POINT STATISTICS
Zero column of order. . . . . . 0.0000e+00 var: (X)
Zero row of order . . . . . . . 0.0000e+00 eqn: (F)
Total zero columns. . . . . . . 1
Total zero rows . . . . . . . . 1
Maximum of F. . . . . . . . . . 1.0000e+00 eqn: (F)
Maximum of Grad F . . . . . . . 0.0000e+00 eqn: (F)

var: (X)

Figure 3.8: PATH Output - Zero Rows and Columns

Not all of the numerical problems are directly attributable to poorly
scaled models. Problems for which the Jacobian of the active constraints
is singular or nearly singular can also cause numerical difficulty as illustrated
next.

3.3.3 Singular Models

Assuming that the problem is well-defined and properly scaled, we can still
have a Jacobian for which the active constraints are singular or nearly singu-
lar (i.e. it is ill-conditioned). When problems are singular or nearly singular,
we are also likely to have numerical problems. As a result the “Newton” di-
rection obtained from the linear problem solver can be very bad. In PATH,
we can use proximal perturbation or add artificial variables to attempt to
remove the singularity problems from the model. However, it is most often
beneficial for solver robustness to remove singularities if possible.

The easiest problems to detect are those for which the Jacobian has zero
rows and columns. A simple problem for which we have zero rows and
columns is:

−2 ≤ x ≤ 2 ⊥ −x2 + 1.

Note that the Jacobian, −2x, is non-singular at all three solutions, but sin-
gular at the point x = 0. Output from PATH on this model starting at x = 0
is given in Figure 3.8. We display in the code the variables and equations for
which the row/column in the Jacobian is close to zero. These situations are
problematic and for nonlinear problems likely stem from the modeler provid-
ing an inappropriate starting point or fixing some variables resulting in some
equations becoming constant. We note that the solver may perform well in
the presence of zero rows and/or columns, but the modeler should make sure
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that these are what was intended.
Singularities in the model can also be detected by the linear solver. This

in itself is a hard problem and prone to error. For matrices which are poorly
scaled, we can incorrectly identify “linearly dependent” rows because of nu-
merical problems. Setting output factorization singularities yes in
an options file will inform the user which equations the linear solver thinks
are linearly dependent. Typically, singularity does not cause a lot of prob-
lems and the algorithm can handle the situation appropriately. However, an
excessive number of singularities are cause for concern. A further indication
of possible singularities at the solution is the lack of quadratic convergence
to the solution.
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Appendix A

Case Study: Von Thunen Land
Model

We now turn our attention towards using the diagnostic information provided
by PATH to improve an actual model. The Von Thunen land model, is a
problem renowned in the mathematical programming literature for its com-
putational difficulty. We attempt to understand more carefully the facets
of the problem that make it difficult to solve. This will enable to outline
and identify these problems and furthermore to extend the model to a more
realistic and computationally more tractable form.

A.1 Classical Model

The problem is cast in the Arrow-Debreu framework as an equilibrium prob-
lem. The basic model is a closed economy consisting of three economic agents,
a landowner, a worker and a porter. There is a central market, around which
concentric regions of land are located. Since the produced goods have to be
delivered to the market, this is an example of a spatial price equilibrium. The
key variables of the model are the prices of commodities, land, labour and
transport. Given these prices, it is assumed that the agents demand certain
amounts of the commodities, which are supplied so as to maximize profit in
each sector. Walras’ law is then a consequence of the assumed competitive
paradigm, namely that supply will equal demand in the equilibrium state.

We now describe the problems that the consumers and the producers face.
We first look at consumption, and derive a demand function for each of the
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consumer agents in the economy. Each of these agents has a utility function,
that they wish to maximize subject to their budgetary constraints. As is
typical in such problems, the utility function is assumed to be Cobb-Douglas

ua(d) =
∏
c

dαc,a
c , αc,a ≥ 0,

∑
c

αc,a = 1,

where the αc,a are given parameters dependent only on the agent. For each
agent a, the variables dc represent quantities of the desired commodities c.
In the Von Thunen model, the goods are wheat, rice, corn and barley. The
agents endowments determine their budgetary constraint as follows. Given
current market prices, an agents wealth is the value of the initial endowment
of goods at those prices. The agents problem is therefore

max
d
ua(d) subject to 〈p, d〉 ≤ 〈p, ea〉 , d ≥ 0,

where ea is the endowment bundle for agent a. A closed form solution,
corresponding to demand from agent a for commodity c is thus

dc,a(p) :=
αc,a 〈p, ea〉

pc
.

Note that this assumes the prices of the commodities pc are positive.
The supply side of the economy is similar. The worker earns a wage wL

for his labour input. The land is distributed around the market in rings with
a rental rate wr associated with each ring r of land. The area of land ar

in each ring is an increasing function of r. The model assumes that labour
and land are substitutable via a constant elasticities of substitution (CES)
function.

Consider the production xc,r of commodity c in region r. In order to
maximize profit (or minimize costs), the labour yL and land use yr solve

minwLyL + wryr subject to φcy
βc

L y
1−βc
r ≥ xc,r, yL, yr ≥ 0, (A.1)

where φc is a given cost function scale parameter, and βc ∈ [0, 1] is the share
parameter. The technology constraint is precisely the CES function allowing
a suitable mix of labour and land use. Again, a closed form solution can be
calculated. For example, the demand for labour in order to produce xc,r of
commodity c in region r is given by

xc,r

βc

(
wL

βc

)βc
(

wr

1−βc

)1−βc

φcwL

.
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Considering all such demands, this clearly assumes the prices of inputs wL, wr

are positive. A key point to note is that input commodity (factor) demands
to produce xc,r can be determined by first solving (A.1) for unit demand
xc,r ≡ 1 and then multiplying these factor demands by the actual amount
desired. Let ȳL and ȳr denote the optimal solutions of (A.1) with xc,r ≡ 1.
Using this fact, the unit production cost γc,r for commodity c in region r can
be calculated as follows:

γc,r = wLȳL + wrȳr

= wL

βc

(
wL

βc

)βc
(

wr

1−βc

)1−βc

φcwL

+ wr

(1− βc)
(

wL

βc

)βc
(

wr

1−βc

)1−βc

φcwr

=
1

φc

(
wL

βc

)βc
(
wr

1− βc

)1−βc

.

Transportation is provided by a porter, earning a wage wp. If we denote
the unit cost for transportation of commodity c by tc, then unit transporta-
tion cost to market is

Tc,r(wp) := tcdrwp,

where dr is the distance of region r to the market. Spatial price equilibrium
arises from the consideration:

0 ≤ xc,r ⊥ γc,r(wL, wr) + Tc,r(wp) ≥ pc.

This is intuitively clear; it states that commodity c will be produced in
region r only if the combined cost of production and transportation equals
the market price.

The above derivations assumed that the producers and consumers acted
as price takers. Walras’ law is now invoked to determine the prices so that
markets clear. The resulting complementarity problem is:

γc,r =
1

φc

(
wL

βc

)βc
(
wr

1− βc

)1−βc

(A.2)

0 ≤ xc,r ⊥ γc,r + Tc,r(wp) ≥ pc (A.3)

0 ≤ wL ⊥ eL ≥∑
r,c

xc,r
βcγc,r

wL

(A.4)

0 ≤ wr ⊥ ar ≥
∑

c

xc,r(1− βc)γc,r

wr

(A.5)
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0 ≤ wp ⊥ eP ≥∑
r,c

tcdrxc,r (A.6)

0 ≤ pc ⊥ ∑
r

xc,r ≥ αc,PePwp + αc,LeLwL + αc,O
∑

r wrar

pc
(A.7)

Note that in (A.4), (A.5) and (A.6), the amounts of labour, land and trans-
port are bounded from above, and hence the prices on these inputs are de-
termined as multipliers (or shadow prices) on the corresponding constraints.
The final relationship (A.7) in the above complementarity problem corre-
sponds to market clearance; prices are nonnegative and can only be posi-
tive if supply equals demand. (Some modelers multiply the last inequality
throughout by pc. This removes problems where pc becomes zero, but can
also introduce spurious solutions.)

The Arrow-Debreu theory guarantees that the problem is homogeneous
in prices; (x, λw, λp) is also a solution whenever (x, w, p) solves the above.
Typically this singularity in the model is removed by fixing a numeraire,
that is fixing a price (for example wL = 1) and dropping the corresponding
complementary relationship.

Unfortunately, in this formulation even after fixing a numeraire, some of
the variables p and w may go to zero, resulting in an ill-defined problem. In
the case of the Von Thunen land model, the rental price of land wr decreases
as the distance to market increases, and for remote rings of land, it becomes
zero. A standard modeling fix is to put artificial lower bounds on these
variables. Even with this fix, the problem typically remains very hard to
solve. More importantly, the homogeneity property of the prices used above
to fix a numeraire no longer holds, and the corresponding complementary
relationship (which was dropped from the problem) may fail to be satisfied.
It therefore matters which numeriare is fixed, and many modelers run into
difficulty since in many cases the solution found by a solver is invalid for the
originally posed model.

In order to test our diagnostic information, we implemented a version of
the above model in GAMS. The model corresponds closely to the MCPLIB
model pgvon105.gms except we added more regions to make the problem
even more difficult. The model file has been documented more fully, and the
data rounded to improve clarity.

The first trial we attempted was to solve the model without fixing a
numeraire. In this case, PATH 4.x failed to find a solution. At the starting
point, the indicators described in Section 3.3.1 are reasonable, and there
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are no zero rows/columns in the Jacobian. At the best point found, all
indicators are still reasonable. However, the listing file indicates a large
number of division by zero problems occurring in (A.5). We also note that
a nonzero proximal perturbation is used in the first iteration of the crash
method. This is an indication of singularities. We therefore added an option
to output factorization singularities, and singularities appeared in the first
iteration. At this point, we decided to fix a numeraire to see if this alleviated
the problem.

We chose to fix the labour wage rate to 1. After increasing the iterations
allowed to 100,000, PATH 4.x solved the problem. The statistics at the solu-
tion are cause for concern. In particular, the gradient of the Fischer function
is 7 orders of magnitude larger than all the other residuals. Furthermore, the
Jacobian is very large at the solution point. Looking further in the listing
file, a large number of division by zero problems occur in (A.5).

To track down the problem further, we added an artificial lower bound
on the variables wr of 10

−5, that would not be active at the aforementioned
solution. Resolving gave the same “solution”, but resulted in the domain
errors disappearing.

Although the problem is solved, there is concern on two fronts. Firstly, the
gradient of the Fischer function should go to zero at the solution. Secondly,
if a modeler happens to make the artificial lower bounds on the variables a
bit larger, then they become active at the solution, and hence the constraint
that has been dropped by fixing the price of labour at 1 is violated at this
point. Of course, the algorithm is unable to detect this problem, since it
is not part of the model that is passed to it, and the corresponding output
looks satisfactory.

We are therefore led to the conclusion that the model as postulated is
ill-defined. The remainder of this section outlines two possible modeling
techniques to overcome the difficulties with ill-defined problems of this type.

A.2 Intervention Pricing

The principal difficulty is the fact that the rental prices on land go to zero as
proximity to the market decreases, and become zero for sufficiently remote
rings. Such a property is unlikely to hold in a practical setting. Typically, a
landowner has a minimum rental price (for example, land in fallow increases
in value). As outlined above, a fixed lower bound on the rental price vi-
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olates the well-established homogeneity property. A suggestion postulated
by Professor Thomas Rutherford is to allow the landowner to intervene and
“purchase-back” his land whenever the rental cost gets smaller than a certain
fraction of the labour wage.

The new model adds a (homogeneous in price) constraint

0 ≤ ir ⊥ wr ≥ 0.0001 ∗ wL

and modifies (A.5) and (A.7) as follows:

0 ≤ wr ⊥ ar − ir ≥
∑

c

xc,r(1− βc)γc,r

wr

0 ≤ pc ⊥ ∑
r

xc,r ≥ αc,PePwp + αc,LeLwL + αc,O
∑

r wr(ar − ir)
pc

.(A.8)

Given the intervention purchase, we can now add a lower bound on wr to
avoid division by zero errors. In our model we chose 10−5 since this will never
be active at the solution and therefore will not affect the positive homogene-
ity. After this reformulation, PATH 4.x solves the problem. Furthermore,
the gradient of the Fischer function, although slightly larger than the other
residuals, is quite small, and can be made even smaller by reducing the
convergence tolerance of PATH. Inspecting the listing file, the only difficul-
ties mentioned are division by zero errors in the market clearance condition
(A.8), that can be avoided a posteori by imposing an artificial (inactive)
lower bound on these prices. We chose not to do this however.

A.3 Nested Production and Maintenance

Another observation that can be used to overcome the land price going to
zero is the fact that land typically requires some maintenance labour input to
keep it usable for crop growth. Traditionally, in economics, this is carried out
by providing a nested CES function as technology input to the model. The
idea is that commodity c in region r is made from labour and an intermediate
good. The intermediate good is “maintained land”. Essentially, the following
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production problem replaces (A.1):

minyM ,yL,yr,g wL(yM + yL) + wryr

subject to yr ≥ (1− βc − ε)g
yM ≥ εg

φcy
βc

L g
1−βc ≥ 1,

yM , yL, yr, g ≥ 0.

Note that the variable yM represents “maintenance labour” and g repre-
sents the amount of “maintained land” produced, an intermediate good. The
process of generating maintained land uses a Leontieff production function,
namely

min(λryr, λMyM) ≥ g.
Here λM = 1

ε
, ε small, corresponds to small amounts of maintenance labour,

while λr =
1

1−βc−ε
is chosen to calibrate the model correctly. A simple cal-

culus exercise then generates appropriate demand and cost expressions. The
resulting complementarity problem comprises (A.3), (A.6), (A.7) and

γc,r =
wβc

L

φc

(
wLε+ wr(1− βc − ε)

1− βc

)1−βc

0 ≤ wL ⊥ eL ≥∑
r,c

xc,rγc,r

(
βc

wL

+
ε(1− βc)

wLε+ wr(1− βc − ε)
)

0 ≤ wr ⊥ ar ≥
∑

c

xc,rγc,r(1− βc)(1− βc − ε)
wLε+ wr(1− βc − ε)

After making the appropriate modifications to the model file, PATH 4.x
solved the problem on defaults without any difficulties. All indicators showed
the problem and solution found to be well-posed.
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technique for forcing convergence in algorithms for constrained optimiza-
tion. Mathematical Programming Study, 16:1–17, 1982.
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