Agricultural Impact Analysis using GAMS

Introduction to GAMS

Bruce A. McCarl

Specialist in Applied Optimization
Professor of Agricultural Economics, Texas A&M
Principal, McCarl and Associates

mccarl@tamu.edu
mccarl@bihs.net
agrinet.tamu.edu/mccarl

409-693-5694
409-845-1706
Introduction to GAMS

GAMS Generalized Algebraic Modeling System

GAMS, the way we use it, is a language for setting up and solving mathematical programming optimization models. (GAMS can also solve simultaneous systems of equations and deal with computable general equilibrium models)

GAMS allows one to specify the structure of an optimization model, specify and calculate data that go into that model, solve that model, do report writing on a model, and do a comparative statics analysis on that model, all in one package.

The GAMS documentation is in the documents directory and is called userguide.pdf
Suppose we wish to solve the optimization problem

\[
\begin{align*}
\text{Maximize} & \quad 109 \left(X_{\text{corn}} \right) + 90 \left(X_{\text{wheat}} \right) + 115 \left(X_{\text{cotton}} \right) \\
\text{subject to} & \quad X_{\text{corn}} + X_{\text{wheat}} + X_{\text{cotton}} \leq 100 \quad \text{(land)} \\
& \quad 6X_{\text{corn}} + 4X_{\text{wheat}} + 8X_{\text{cotton}} \leq 500 \quad \text{(labor)} \\
& \quad X_{\text{corn}}, X_{\text{wheat}}, X_{\text{cotton}} \geq 0 \quad \text{(nonnegativity)}
\end{align*}
\]

The simplest GAMS formulation I can conceive of is

(file is in examples INTRO.GPR called SIMPfarm.GMS)

```
VARIABLES             Z; 
POSITIVE VARIABLES    Xcorn ,    Xwheat , Xcotton; 
EQUATIONS     OBJ,  land ,  labor; 
OBJ.. Z =E= 
    109 * Xcorn + 90 * Xwheat + 115 * Xcotton; 
land..      Xcorn +      Xwheat +      Xcotton =L= 100; 
labor..   6*Xcorn +  4 * Xwheat +  8 * Xcotton =L= 500; 
MODEL PROBLEM /ALL/; 
SOLVE PROBLEM USING LP MAXIMIZING Z; 
```
VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

GAMS requires all models to be of a special form

Namely given the model

maximize cx

It must be re written as

Maximize R

R=CX

where R is a variable unrestricted in sign named however you want it named
Introduction to GAMS
Dissecting the GAMS formulation
The VARIABLES specification

VARIABLES Z;
POSITIVE VARIABLES Xcorn , Xwheat , Xcotton;
EQUATIONS OBJ, land , labor;
OBJ.. Z =E=
 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

GAMS requires the variables in each problem to be identified. In the reference problem we have variables

Z, Xcorn , Xwheat , Xcotton

The POSITIVE modifier on the variable definition means that these variables are nonnegative i.e. Xcorn , Xwheat , Xcotton

The use of the word VARIABLES without the POSITIVE modifier (note several other modifiers are possible) means that the named variables are unrestricted in sign. Z above

There always must be at least one of these in every problem which is the objective function variable.
VARIABLES
 Z;
POSITIVE VARIABLES Xcorn , Xwheat , Xcotton;
EQUATIONS OBJ, land , labor;
OBJ.. Z =E=
 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

GAMS requires that the modeler name each equation which is active in the optimization model. Later each equation is specified using the .. notation.

In this formulation the equations are named in the EQUATION line

 OBJ is the name for the objective function equation
 Land is the name for the first constraint equation
 Labor the name for the second constraint equation

The objective function is always counted as one of the equations and must always been named.
The GAMS equations specification actually consists of two parts.

The first part naming equations, was discussed on the previous page.

The second part involves specifying the exact algebraic structure of the equations. This is done using the .. notation. In this notation we give equation name followed by a .. then algebraic form of the equation in the model. This algebraic form involves use of a special syntax to tell the exact form of the equation which may be actually be an inequality.

\[=E=\] is used to indicate an equality constraint
\[=L=\] indicates a less than or equal to constraint
\[=G=\] indicates a greater than or equal to constraint.
Introduction to GAMS
Dissecting the GAMS formulation

The MODEL specification

```
VARIABLES             Z;
POSITIVE VARIABLES    Xcorn ,    Xwheat , Xcotton;
EQUATIONS     OBJ,  land ,  labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land..      Xcorn +      Xwheat +      Xcotton =L= 100;
labor..   6*Xcorn +  4 * Xwheat +  8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
```

Once all the model structural elements have been defined than one employs a MODEL statement to identify models that will be solved. Generally I use a MODEL statement of the form above. Therein following MODEL than a name for the model is given followed by the names of the equations enclosed in slashes. Using /ALL/ includes all the equations.

One could alternatively have a model statement like that below.

```
MODEL FARM /obj, Land,labor/;
```

or omitting CONSTRAIN1 from the model

```
MODEL ALTPROBLEM / obj,CONSTRAIN1/;
```
Introduction to GAMS

Dissecting the GAMS formulation

The SOLVE specification

VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E=
 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

The **SOLVE** statement causes GAMS to use a solver to optimize the model named immediately after the **SOLVE** statement. That model must already have been defined in a **MODEL** statement.

The **solve** statement tells the solver to maximize or minimize a defined variable. That variable must be unrestricted in sign and is the variable we referred to above as the objective function variable.

The example statement solves a linear programming problem ("using LP").

One also can have solve statements which

solve nonlinear programs using the syntax "using nlp", mixed integer programs using the syntax "using MIP" or a number of other forms.
Introduction to GAMS
Dissecting the GAMS formulation

The ;

VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

GAMS requires users to terminate each statement with a ;

Statements may be several lines long or may contain several elements.

;'s are a very important part of the syntax. Their omission often causes many syntax errors to be reported by the GAMS compiler.
GAMS is used in two phases.

First, one uses a text editor and creates a file which contains GAMS instructions.

Second, one submits the file to GAMS which executes those instructions doing calculations, invoking the solver and creating a file of results.

Two ways to do this.

Traditional method – use a text editor set up the model then use DOS (or UNIX) instructions to run.

A newer way the GAMS IDE. Here one uses a graphical interface to run GAMS

There costs and benefits of these approaches.

The IDE is much easier for simple models but currently limited to PCs.

The DOS approach can be better for multiple stage models.
This class will concentrate on the IDE approach. However what you learn about setting up GAMS instructions applies equally well to either approach.

```gams
VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4*Xwheat + 8*Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
```
Introduction to GAMS
Using GAMS through the IDE.
Steps to using

Steps to using

1. Install on Computer

2. Click on IDE icon

3. Open an existing project or define a new project

4. Open a file

5. Run it by punching run button

6. Access LST file through process window
Steps to using assuming install done and IDE open

3. Open project called INTRO on /example/class
Introduction to GAMS

Using GAMS through the IDE.

Steps to using

4. Open file called simpfarm.gms
Introduction to GAMS
Using GAMS through the IDE.
Steps to using

Do a Little Housekeeping

Drag the window that shows the file into the upper left hand corner

GAMS Editor: C:\gams\ag\class\examples\gamintro\intro.gpr

File Edit Search Window Help

GAMS Editor: C:\gams\ag\class\examples\gamintro\simpfarm.gms

simpfarm.gms

VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
Introduction to GAMS
Using GAMS through the IDE.
Steps to using

5. Run it by punching run button

```
VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =E= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =E= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
```
Introduction to GAMS
Using GAMS through the IDE.
Steps to using

Do a Little more Housekeeping.

Drag the new window that shows the process history to the far right
6. Navigate using the process window. Double Click on Last blue line

VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 100 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 1;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 50;
MODEL PROBLEM /ILL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
Introduction to GAMS

Using GAMS through the IDE.

Steps to using

6. You have now been placed in the simpfarm..LST file

```
0 INFEASIBLE
0 UNBOUNDED

EXECUTION TIME = 0.000 SECONDS 0.2 Mb BDC-13

USER: Agricultural Economics
Texas Agricultural Exp. Sta.

**** FILE SUMMARY

INPUT C:\GAMS\AG\CLASS\EXAMPLES\GAMINTRO\SIMPFARM.GMS
OUTPUT C:\GAMS\AG\CLASS\EXAMPLES\GAMINTRO\SIMPFARM.LST

--- Restarting execution
--- SIMPFARM.GMS(9) 0 M
--- Reading solution for
--- SIMPFARM.GMS(9) 0 M
*** Status: Normal completion
--- Erasing scratch file
```
Introduction to GAMS

Finding Text

The IDE provides four ways to find and/or replace text strings.

For finding strings three dialogs can be used

The fundamental ones involve use of the flashlight and search windows

Type the text string target you are after in the widow

Hitting the \text{ } finds what you want in the \textit{current file}

Hitting the \text{ } finds what you want in the \textit{directory where the project is located}

You can also access search and replace through the search menu. That dialogue gives more options, but only searches or replaces within the current file
Find equation listing in lst file (look for first ----)

--- OBJ =E=

OBJ.. Z - 109*XCORN - 90*XWHEAT - 115*XCOTTON =E= 0 ; *(LHS = 0)

---- LAND =L=

LAND.. XCORN + XWHEAT + XCOTTON =L= 100 ; *(LHS = 0)

---- LABOR =L=

LABOR.. 6*XCORN + 4*XWHEAT + 8*XCOTTON =L= 500 ; *(LHS = 0)

Options
Introduction to GAMS
Finding the Solution (not only IDE)

Find solution (look for word solution) and page down or look for ----

<table>
<thead>
<tr>
<th></th>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQU OJ</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>1.0000</td>
</tr>
<tr>
<td>EQU LAND</td>
<td>-INF</td>
<td>100.0000</td>
<td>100.0000</td>
<td>52.0000</td>
</tr>
<tr>
<td>EQU LABOR</td>
<td>-INF</td>
<td>500.0000</td>
<td>500.0000</td>
<td>9.5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAR Z</td>
<td>-INF</td>
<td>9950.0000</td>
<td>+INF</td>
<td>.</td>
</tr>
<tr>
<td>VAR XCORN</td>
<td>.</td>
<td>50.0000</td>
<td>+INF</td>
<td>.</td>
</tr>
<tr>
<td>VAR XWHEAT</td>
<td>.</td>
<td>50.0000</td>
<td>+INF</td>
<td>.</td>
</tr>
<tr>
<td>VAR XCOTTON</td>
<td>.</td>
<td>.</td>
<td>+INF</td>
<td>-13.0000</td>
</tr>
</tbody>
</table>
Introduction to GAMS

Using GAMS

What happened during the run
-- The Process window or screen in DOS/UNIX

GAMS 2.50.094 Copyright (C) 1988-1998 GAMS Development. All rights reserved
--- Starting compilation
--- SIMPFARM.GMS(9) 0 Mb
--- Starting execution
--- Generating model PROBLEM
--- SIMPFARM.GMS(9) 1 Mb
--- 3 rows, 4 columns, and 10 non-zeroes.
--- Executing OSL

OSL Release 2, GAMS Link level 3 --- 386/486 DOS 1.3.055-033
Work space allocated -- 0.09 Mb

Reading data...
Starting OSL...
Scale...
Presolve...
Crashing...
Primal Simplex...
 Iter Objective Sum Infeasibilities
Postsolve...
Primal Simplex...
 2 9950.000000 Normal Completion
 Optimal

--- Restarting execution
--- SIMPFARM.GMS(9) 0 Mb
--- Reading solution for model PROBLEM
--- SIMPFARM.GMS(9) 0 Mb
*** Status: Normal completion

*** GAMS stops

©Bruce A. McCarl, Oct 1998.
Introduction to GAMS
Using GAMS – Finding Errors

Spelling Mistakes (**simperr.gms**)

```plaintext
VARIABLES  
  Z;
POSITIVE VARIABLES  Xcorn,  Xwheat,  Xcotton;
EQUATIONS  OBJ,  land,  labor;
OBJ..  Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land..   Xcorn + Xwheat + Xcotton =L= 100;
labor..  6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;
```

Punch the run button
Introduction to GAMS
Using GAMS Finding Errors

Double Click on the first Red Line

Why this error, cotton is misspelled in previous line (for a discussion of error repair see fixmodel.pdf)
The problem above is a special case of the general resource allocation problem

\[
\begin{align*}
\text{Max} & \quad \sum_{j} c_j X_j \\
\text{s.t.} & \quad \sum_{j} a_{ij} X_j \leq b_i \quad \text{for all } i \\
& \quad X_j \geq 0 \quad \text{for all } j
\end{align*}
\]

Maximize \(109 X_{\text{corn}} \% 90 X_{\text{wheat}} \% 115 X_{\text{cotton}}\)

subject to \(X_{\text{corn}} \% X_{\text{wheat}} \% X_{\text{cotton}} \leq 100\) (land)
\(6 X_{\text{corn}} \% 4 X_{\text{wheat}} \% 8 X_{\text{cotton}} \leq 500\) (labor)
\(X_{\text{corn}}, X_{\text{wheat}}, X_{\text{cotton}} \geq 0\) (nonnegativity)

\[j = \{ \text{corn} \quad \text{wheat} \quad \text{cotton} \}\]

\[i = \{ \text{land} \quad \text{labor} \}\]

\[x_j = \{ X_{\text{corn}} \quad X_{\text{wheat}} \quad X_{\text{cotton}} \}\]

\[c_j = \{ 109 \quad 90 \quad 115 \}\]

\[a_{ij} = \begin{bmatrix} 1 & 1 & 1 \\ 6 & 4 & 8 \end{bmatrix}\]

\[b_i = \{ 100 \quad 500 \}'\]
GAMS and Algebra

GAMS is built around summation notation

You have to be comfortable using summation notation to use GAMS (reference for those wishing to review summation notation and see its inner links to GAMS -- see appendix one of newbook.pdf)

Suppose \(x_i \) is defined with three elements

\[
\begin{align*}
\text{Algebra} \\
\quad & x_i \\
\quad & x_1 \% x_2 \% x_3
\end{align*}
\]

\[
\begin{align*}
\text{GAMS} \\
\quad & z = \text{SUM}(I, X(I));
\end{align*}
\]

\(i \) is a set in GAMS
\(z \) is a scalar or variable
\(x(i) \) is a parameter or variable defined over set \(i \)
the sum automatically treats all cases of \(i \)

This equation can be either a model equation in an LP or an item to be calculated in the code
Introduction to GAMS
A Better algebraic model

VARIABLES Z;
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
EQUATIONS OBJ, land, labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL PROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

New (algebra.gms)
SET j /Corn,Wheat,Cotton/
 i /Land ,Labor/;
PARAMETER
 c(j) / corn 109 ,wheat 90 ,cotton 115/
 b(i) /land 100 ,labor 500/;
TABLE a(i,j)
corn wheat cotton
 land 1 1 1
 labor 6 4 8 ;
POSITIVE VARIABLES x(j);
VARIABLES PROFIT ;
EQUATIONS OBJECTive , constraint(i) ;
OBJECTive.. PROFIT=E= SUM(J,(c(J))*x(J)) ;
constraint(i).. SUM(J,a(i,J) *x(J)) =L= b(i);
MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

Note GAMS is not terribly sensitive about capitalization as the example illustrates. Any alternative capitalization sequence can be used. However, GAMS uses the first found capitalization sequence in all displays.
Introduction to GAMS
Dissecting the GAMS formulation -- The set

Above we needed to use the subscripts i and j for addressing the variables equations and data items.

In GAMS subscripts are SETs. In order to use any subscript one must declare an equivalent set.

The set declaration contains
the set name
a list of elements contained in the set (up to 31 characters long spaces etc allowed in quotes)
optional labels describing the whole set
optional labels defining individual set elements

General format for a set statement is:

```
SET setname   optional defining text
    / first set element name defining text
    second set element name defining text
    ... /;
```

Examples

```
SETS   j   /x1,x2,x3/
   i   /r1 ,r2/;
SET   PROCESS   PRODUCTION PROCESSES   /X1,X2,X3/;
SET   commodities Crop commodities   /
    corn    in bushels,
    wheat   in metric tons,
    milk    in hundred pounds/ ;
```
Introduction to GAMS
Dissecting the GAMS formulation -- Data entry

Above we needed data for c(j), a(i,j), b(i)

How were they entered

GAMS provides for three forms of data entry. These involve PARAMETER, SCALAR and TABLE formats

SCALAR format is used to enter items which are not defined with respect to sets.

```gams
scalar
    item1name   optional label text /numerical value/
    item2name   optional label text /numerical value/
    ...
    ;
```

Examples include

```gams
scalar dataitem   /100/;
scalar landonfarm total arable acres /100/;
scalars
    landonfarm /100/
    pricecorn 1992 corn price per bushel /2.20/;
```
Introduction to GAMS
Dissecting the GAMS formulation -- Data entry

PARAMETERs

Parameter format is used to enter items defined with respect to sets. Generally parameter format is used when data items which are one-dimensional (vectors) although multidimensional cases can be entered.

The general format for parameter entry is:

Parameter
 itemname(setdependency) optional text
 / first set name appropriate value,
 second set name appropriate value,
 ... /;

Examples

 PARAMETER c(j) / x1 3 , x2 2 , x3 0.5/
 b(i) / r1 10 , r2 3/;

 PARAMETER
 PRICE(PROCESS) PRODUCT PRICES BY PROCESS
 / X1 3 , X2 2 , X3 0.5/;
 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY
 / CONSTRAINT1 10 , CONSTRAINT2 3/;
 Parameter multidim(i,j,k) three dimensional / i1.j1.k1 100 , i2.j1.k20 /;

Multidimensional parameters particular the useful when bringing data in other programs.
TABLE format is used to enter items which are dependent on two more sets.

The general format is

 Table itemname(setone, settwo ...) descriptive text
 set_2_element_1 set_2_element_2
 set_1_element_1 value_11 value_12
 set_1_element_2 value_21 value_22;

Examples include

 TABLE a(i,j)
 corn wheat cotton
 land 1 1 1
 labor 6 4 8 ;
 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
 Makechair Maketable Makelamp
 plantcap 3 2 1.1
 salecontract 1 -1;
 Table fivedim(i,j,k,l,m) fivedimensional
 l1.m1 l2.m2
 i1.j1.k2 11 13
 i2.j1.k11 6 -3
 + i3.m1 i2.m7
 i1.j1.k2 1 3
 i10.j1.k4 7 9;

Alignment is important
GAMS permits up to ten character names for variables, the equations and other structural elements. Structural elements can also have explanatory comments attached to them.

GAMS also allows us to treat common structures algebraically. The above example does none of this and is really an example of bad GAMS coding so let us illustrate with a better example (also see appendix I in fixmodel.pdf for discussion)
SET PROCESS PRODUCTION PROCESSES
 / makechair chair manufacture(X1) ,
 maketable table manufacture(X2),
 makelamp Lamp Manufacture(X3)/
 RESOURCE TYPES OF RESOURCES
 / plantcap Plant Capacity (CONSTRAIN1)
 salecontrct Sales agreement limiting production (CONSTRAIN2)/;

PARAMETER
 PRICE(PROCESS) PRODUCT PRICES BY PROCESS
 /makechair 6.5, maketable 3, makelamp 0.5/
 Yield(process) yields per unit of the process
 /Makechair 2, maketable 6, makelamp 3/
 PRODCOST(PROCESS) COST BY PROCESS
 /Makechair 10 ,Maketable 6, Makelamp 1/
 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE
 Makechair Maketable Makelamp
 plantcap 3 2 1.1
 salecontrct 1 -1;

POSITIVE VARIABLES
 PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;
 VARIABLES PROFIT TOTALPROFIT;

EQUATIONS
 OBJT OBJECTIVE FUNCTION (PROFIT)
 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;
 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)
 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;
 AVAILABLE(RESOURCE)...
 SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)
 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);
 MODEL RESALLOOC /ALL/;
 SOLVE RESALLOOC USING LP MAXIMIZING PROFIT;
Introduction to GAMS
Dissecting the GAMS formulation
Calculated Data – In the Model

PARAMETER
 PRICE(PROCESS) PRODUCT PRICES BY PROCESS
 /makechair 6.5, maketable 3, makelamp 0.5/
Yield(process) yields per unit of the process
 /Makechair 2, maketable 6, makelamp 3/
PRODCOST(PROCESS) COST BY PROCESS
 /Makechair 10, maketable 6, makelamp 1/

OBJT.. PROFIT=E= SUM(PROCESS, (PRICE(PROCESS)*yield(process)
 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

Terms can be included in a GAMS model which involve calculations. When calculations are included in model specification equations (those identified with the ..), then the calculations are automatically executed every time the model is set up.

Example

 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
 price(“makechair”)=8;
 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

Model is first solved at the original price of 6.5, then the price is changed to equal 8 and model is solved again with the altered price in effect doing a comparative statics analysis of solution sensitivity to price.
Data do not only have to be directly entered in the code as constants. Rather data can be calculated or altered in many different ways.

Example (trnsport.gms)

Table distance(Source,Destinaton) distance in thousands of miles
new-york chicago topeka
seattle 2.5 1.7 1.8
san-diego 2.5 1.8 1.4 ;
Scalar prmilecst freight cost in $ per case per 1000 miles /90/
loadcost freight loading cost in $ per case /25/ ;
Parameter trancost(Source,Destinaton) transport cost in dollars per case ;
 trancost(Source,Destinaton) =
 loadcost + prmilecst * distance(Source,Destinaton) ;
Costsum .. totalcost =e= sum((Source,Destinaton),
 trancost(Source,Destinaton)*transport(Source,Destinaton));

Thus GAMS allows potentially rather extensive data manipulation.

Watch out for the dynamic vs. the non-dynamic calculation. The calculations such as the one above are only once. Calculations in the model equations are done every time the model is set up.
GAMS allows one to display an array of data

General format

```plaintext
display itemname;
```

Example (trnsport.gms)

Entering

```plaintext
display trancost;
```

Results in the following in the trnsport.LST file

```plaintext
---- 24 PARAMETER TRANCOST transport cost in dollars per case
      New York    Chicago    Topeka
Seattle    250.000     178.000     187.000
San Diego  250.000     187.000     151.000
```

You can also control precision in displays

```plaintext
option decimals=0;
display trancost;
```

Yields

```plaintext
---- 26 PARAMETER TRANCOST transport cost in dollars
      New York    Chicago    Topeka
Seattle       250         178         187
San Diego     250         187         151
```
Introduction to GAMS
Looking at your model with LIMROW LIMCOL

GAMS can cause one to lose touch with the exact optimization model being solved. The algebraic model gives a general feel for model structure but because

a) data can be calculated
b) models can be big and
c) unanticipated cases can be covered
modelers often don’t know exactly what is in the model.

Thus, when setting up a model one may need to look at individual equations and variables. GAMS permits this through the use of model element displays stimulated by the LIMROW and LIMCOL options.

When GAMS runs a display of the first three variables and equations in each block is included in the LST file

For equations we get something like (trnsport.gms)

```gams
---- COSTSUM =E=  total transport cost -- objective function
COSTSUM.. 250*TRANSPORT(Seattle,New York) -178*TRANSPORT(Seattle,Chicago)
          - 187*TRANSPORT(Seattle,Topeka) - 250*TRANSPORT(San Diego,New York)
          - 187*TRANSPORT(San Diego,Chicago)-151*TRANSPORT(San Diego,Topeka)
          + TOTALCOST =E= 0 ; (LHS = 0)

---- SUPPLYBAL =L=  supply limit at source plants
SUPPLYBAL(Seattle)..  TRANSPORT(Seattle,New York) + TRANSPORT(Seattle,Chicago)
          + TRANSPORT(Seattle,Topeka) =L= 350 ; (LHS = 0)
```

©Bruce A. McCarl, Oct 1998.
Introduction to GAMS
Looking at your model with LIMROW LIMCOL

For variables we get something like (trnsport.gms)

--- TRANSPORT shipment quantities in cases
TRANSPORT(Seattle,New York)
 (.LO, .L, .UP = 0, 0, +INF)
 -250 COSTSUM
 1 SUPPLYBAL(Seattle)
 1 DEMANDBAL(New York)

TRANSPORT(Seattle,Chicago)
 (.LO, .L, .UP = 0, 0, +INF)
 -178 COSTSUM
 1 SUPPLYBAL(Seattle)
 1 DEMANDBAL(Chicago)
REMAINING 3 ENTRIES SKIPPED
--- TOTALCOST total transportation costs in dollars
TOTALCOST
 (.LO, .L, .UP = -INF, 0, +INF)
 1 COSTSUM

If we want more or less variables or equations we can do this by altering the LIMROW and LIMCOL options.
To eliminate place the following in the code
 Option limrow=0;
 option limcol=0;
To expand place the following in the code
 Option limrow=100; (or any other number)
 option limcol=100;

Unfortunately for large models using this model examination procedure can generate very substantial output files
Introduction to GAMS
Looking at your model with GAMSCHK

I have developed an alternative way of displaying models called GAMSCHK. To run GAMSCHK we insert the following line in the model right before the solve

```
option lp=gamschk;
```

We also create another file - the GCK file - which tells GAMSCHK what to do

Example

Given the file `gamschkt.gms` create the file `gamschkt.gck` which contains (see `gamschk.pdf` for GCK file contents description)

```
displaycr
variables
  transport(se*)
equations
  dem*(n*)
picture
  blockpic
postopt
```

The `GAMSCHKT.LST` file then contains the output on the following pages
Then we get

----#### Executing DISPLAYCR

----### DISPLAYING VARIABLES

----## VAR TRANSPORT

TRANSPORT(Seattle,"New York")
COSTSUM -250.00
SUPPLYBAL(Seattle) 1.0000
DEMANDBAL("New York") 1.0000

TRANSPORT(Seattle,Chicago)
COSTSUM -178.00
SUPPLYBAL(Seattle) 1.0000
DEMANDBAL(Chicago) 1.0000

TRANSPORT(Seattle,Topeka)
COSTSUM -187.00
SUPPLYBAL(Seattle) 1.0000
DEMANDBAL(Topeka) 1.0000

----### DISPLAYING EQUATIONS

----## EQU DEMANDBAL

DEMANDBAL("New York")
TRANSPORT(Seattle,"New York") 1.0000
TRANSPORT("San Diego","New York") 1.0000
 =G= 325.00
Introduction to GAMS

Looking at model with GAMSCHK - PICTURE

PICTURE - COEFFICIENT CODES

<table>
<thead>
<tr>
<th>LOWER BOUND</th>
<th>CODE</th>
<th>UPPER BOUND (INCLUSIVE)</th>
<th>(LESS THAN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.00000</td>
<td>F</td>
<td>1000.00000</td>
<td></td>
</tr>
<tr>
<td>10.00000</td>
<td>E</td>
<td>100.00000</td>
<td></td>
</tr>
<tr>
<td>1.00000</td>
<td>D</td>
<td>10.00000</td>
<td></td>
</tr>
<tr>
<td>1.00000</td>
<td>C</td>
<td>1.00000</td>
<td></td>
</tr>
<tr>
<td>0.00000</td>
<td>0</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>-0.50000</td>
<td>1</td>
<td>0.00000</td>
<td></td>
</tr>
<tr>
<td>-1.00000</td>
<td>2</td>
<td>-0.50000</td>
<td></td>
</tr>
<tr>
<td>-1.00000</td>
<td>3</td>
<td>-1.00000</td>
<td></td>
</tr>
<tr>
<td>-10.00000</td>
<td>4</td>
<td>-1.00000</td>
<td></td>
</tr>
<tr>
<td>-100.00000</td>
<td>5</td>
<td>-10.00000</td>
<td></td>
</tr>
<tr>
<td>-1000.00000</td>
<td>6</td>
<td>-100.00000</td>
<td></td>
</tr>
</tbody>
</table>

T	T	T	T	T	T	T	R				
R	R	R	R	R	R	R	H				
P	N	A	A	A	A	A	T				
S	O	E	R								
N	N	N	N	N	N	N	C				
S	S	S	S	S	S	S	O				
I	A	A	A	W							
P	P	P	P	P	C	E	T	I	T	I	C
O	O	O	O	O	O	F	I	J	J	N	
R	R	R	R	R	R	S	F	V	V	T	
T	T	T	T	T	T	T	S	E	S	E	S
1	2	3	4	5	6	1	}				

COSTSUM 1	6	6	6	6	6	6	C	=	0	1	6	7
SUPPLYBAL 1	C	C	C	<	F	3	0	3				
SUPPLYBAL 2	C	C	C	<	F	3	0	3				
DEMANDBAL 1	C	C	>	F	2	0	2					
DEMANDBAL 2	C	C	>	F	2	0	2					
DEMANDBAL 3	C	C	>	F	2	0	2					

| POSITIVE | 2 | 2 | 2 | 2 | 1 |
| COLUMN CTS | 2 | 2 | 2 | |

TRANSPORT 1	1: TRANSPORT(Seattle,"New York")	
TRANSPORT 2	2: TRANSPORT(Seattle,Chicago)	
TRANSPORT 3	3: TRANSPORT(Seattle,Topeka)	
TRANSPORT 4	4: TRANSPORT("San Diego","New York")	
TOTALCOST 1	1: TOTALCOST	

COSTSUM 1	1: COSTSUM	
SUPPLYBAL 1	1: SUPPLYBAL(Seattle)	
SUPPLYBAL 2	2: SUPPLYBAL("San Diego")	
DEMANDBAL 1	1: DEMANDBAL("New York")	

©Bruce A. McCarl, Oct 1998. Introduction to GAMS 43 (gamintro)
Introduction to GAMS

Looking at your model with GAMSCHK- Blockpic

A. Aggregate Block Picture -- Strip 1

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>+</th>
<th>E</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTSUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPPLYBAL</td>
<td>+</td>
<td></td>
<td>L</td>
<td>+</td>
</tr>
<tr>
<td>DEMANDBAL</td>
<td>+</td>
<td></td>
<td>G</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+</th>
<th>u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Typ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Picture Giving Number of Coefficients by Block

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>T</th>
<th>o</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>N</td>
<td>A</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>R</td>
<td>n</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
<td>H</td>
<td>t</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>S</td>
<td>s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1+</th>
<th></th>
<th>1+</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTSUM</td>
<td>6-</td>
<td></td>
<td>6-</td>
<td></td>
</tr>
<tr>
<td>SUPPLYBAL</td>
<td>6+</td>
<td>L</td>
<td>2+</td>
<td>6+</td>
</tr>
<tr>
<td>DEMANDBAL</td>
<td>6+</td>
<td>G</td>
<td>3+</td>
<td>6+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>12+</th>
<th>1+</th>
<th>5+</th>
<th>13+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeff Cnts</td>
<td>6-</td>
<td></td>
<td>6-</td>
<td></td>
</tr>
<tr>
<td># of Vars</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Typ</td>
<td>>=0</td>
<td><0></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

©Bruce A. McCarl, Oct 1998.
C. Picture Giving Average Number of Coefficients by Column

<table>
<thead>
<tr>
<th>T</th>
<th>T</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>O</td>
<td>s</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>f</td>
</tr>
<tr>
<td>N</td>
<td>A</td>
<td>P</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>e</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>r</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COSTSUM</th>
<th>1+</th>
<th>E</th>
<th>1+</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td></td>
<td>6-</td>
<td></td>
</tr>
<tr>
<td>SUPPLYBAL</td>
<td>1+</td>
<td>L</td>
<td>2+</td>
<td>3+</td>
</tr>
<tr>
<td>DEMANDBAL</td>
<td>1+</td>
<td>G</td>
<td>3+</td>
<td>2+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cfs PerVar</th>
<th>2+</th>
<th>1+</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of Vars</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Var Type</td>
<td>>=0</td>
<td><0></td>
<td></td>
</tr>
</tbody>
</table>

D. Scaling Data - Maximum & Minimum Coefficients by Block

<table>
<thead>
<tr>
<th>R</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>R</td>
<td>S</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COSTSUM</th>
<th>Max</th>
<th>250</th>
<th>1</th>
<th>250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>151</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SUPPLYBAL</td>
<td>Max</td>
<td>1</td>
<td>600</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>350</td>
<td>1</td>
</tr>
<tr>
<td>DEMANDBAL</td>
<td>Max</td>
<td>1</td>
<td>325</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>275</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Var</th>
<th>Max</th>
<th>250</th>
<th>1</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>1</td>
<td>1</td>
<td>275</td>
</tr>
</tbody>
</table>
ROW SUMMING EQUATIONS

EQU COSTSUM

COSTSUM

<table>
<thead>
<tr>
<th>VAR</th>
<th>Aij</th>
<th>Xj</th>
<th>Aij*Xj</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPORT(Seattle,"New York")</td>
<td>-250.00</td>
<td>50.000</td>
<td>-12500.</td>
</tr>
<tr>
<td>TRANSPORT(Seattle,Chicago)</td>
<td>-178.00</td>
<td>300.00</td>
<td>-53400.</td>
</tr>
<tr>
<td>TRANSPORT(Seattle,Topeka)</td>
<td>-187.00</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>TRANSPORT("San Diego","New York")</td>
<td>-250.00</td>
<td>275.00</td>
<td>-68750.</td>
</tr>
<tr>
<td>TRANSPORT("San Diego",Chicago)</td>
<td>-187.00</td>
<td>0.00000E</td>
<td>0.00000</td>
</tr>
<tr>
<td>TRANSPORT("San Diego",Topeka)</td>
<td>-151.00</td>
<td>275.00</td>
<td>-41525.</td>
</tr>
<tr>
<td>TOTALCOST</td>
<td>1.0000</td>
<td>176180</td>
<td>176180</td>
</tr>
</tbody>
</table>

RHS COEFF | 0.00000E+00

SHADOW PRICE | 1.0000

BUDGETING VARIABLES

VAR TRANSPORT

TRANSPORT(Seattle,"New York")

<table>
<thead>
<tr>
<th>EQN</th>
<th>Aij</th>
<th>Ui</th>
<th>Aij*Ui</th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTSUM</td>
<td>-250.00</td>
<td>1.0000</td>
<td>-250.00</td>
</tr>
<tr>
<td>SUPPLYBAL(Seattle)</td>
<td>1.0000</td>
<td>0.00000E+00</td>
<td>0.00000E+00</td>
</tr>
<tr>
<td>DEMANDBAL("New York")</td>
<td>1.0000</td>
<td>250.00</td>
<td>250.00</td>
</tr>
<tr>
<td>TRUE REDUCED COST</td>
<td></td>
<td></td>
<td>0.00000E+00</td>
</tr>
</tbody>
</table>
The GAMSIDE has a tie-in to documentation. In particular, suppose we wish to know about a particular item and there happens to be a file on that item. For example, suppose we are going to use GAMSCHK and our source code contains the line:

```
option lp=gamschk;
```

If we place the cursor over the word GAMSCHK and press the <F1> key as follows:

```
-Electric1(xam, q, contract xam):

option lp=gamschk;
model formod /all/;
solve formod minimizing profit using lp;
```

we get:

```
GAMSCHK USER DOCUMENTATION
Version 1.1

A System for Examining the Structure and Solution Properties of Linear Programming Problems
Solved using GAMS
```

©Bruce A. McCarl, Oct 1998.
Introduction to GAMS
Accessing documentation on GAMS through the IDE.

In fact we can get any of the following
Introduction to GAMS
Accessing documentation on GAMS through the IDE.

The files used are those in the docs directory that were created for this course. You can add more. Any file with a pdf or html extension will work if you add it to docs.

It does not have to be a command GAMS recognizes.

Try putting in the following

*gams

In turn you get

GAMS
A USER'S GUIDE