
Generation of efficient solutions in Multiobjective Mathematical
Programming problems using GAMS.

Effective implementation of the ε-constraint method
George Mavrotas

Lecturer, Laboratory of Industrial and Energy Economics, School of Chemical Engineering
National Technical University of Athens, Zografou Campus, Athens 15780, Greece.

 Tel: +30 210-7723202, fax: +30 210 7723155, e-mail: mavrotas@chemeng.ntua.gr

Abstract: According to the most widely accepted classification the Multiobjective Mathematical Programming
(MMP) methods can be classified as a priori, interactive and a posteriori, according to the decision stage in
which the decision maker expresses his/her preferences. Although the a priori methods are the most popular, the
interactive and the a-posteriori methods convey much more information to the decision maker. Especially, the a-
posteriori (or generation) methods inform the decision maker about the whole context of the decision alternatives
before his/her final decision. However, the generation methods are the less popular due to their computational
effort and the lack of widely available software. The basic step towards further penetration of the generation
methods in MMP applications, is to provide appropriate codes for Mathematical Programming (MP) solvers that
are widely used by people in engineering, economics, agriculture etc. The present work is an effort to effectively
implement the ε-constraint method for producing the efficient solutions in a MMP. We propose a variation of the
method (augmented ε-constraint method-AUGMECON) that produces only efficient solutions (no weakly
efficient solutions) and also avoids redundant iterations as it can perform early exit from the relevant loops (that
lead to infeasible solutions), accelerating the whole process. Finally, we implement the method in an adjustable
GAMS model using an example from the energy sector, describing in detail the necessary code.

1. Multiobjective Mathematical Programming and efficient solutions
The solution of Mathematical Programming (MP) problems with only one objective function is a
straightforward task. The output is the optimal solution and all the relevant information about the
values of the decision variables, shadow prices etc. In Multiobjective Mathematical Programming
(MMP) there are more than one objective functions and there is no single optimal solution that
simultaneously optimizes all the objective functions. In these cases the decision makers are looking for
the “most preferred” solution. In MMP the concept of optimality is replaced with that of efficiency or
Pareto optimality. The efficient (or Pareto optimal, nondominated, non-inferior) solutions are the
solutions that cannot be improved in one objective function without deteriorating their performance in
at least one of the rest. The mathematical definition of the efficient solution is the following (without
loss of generality assume that all the objective functions fi, i=1…p are for maximization): A feasible
solution x of a MMP problem is efficient if there is no other feasible solution x’ such as fi(x’) ≥ fi(x)
for every i=1, 2, …,p with at least one strict inequality. Every efficient solution corresponds to a
nondominated or non-improvable vector in the criterion space. If we replace the condition fi(x’) ≥ fi(x)
with fi(x’) > fi(x) we obtain the weakly efficient solutions. Weakly efficient solutions are not usually
pursued in MMP because they may be dominated by other efficient solutions. The rational decision
maker is looking for the most preferred solution among the efficient solutions of the MMP. In the
absence of any other information, none of these solutions can be said to be better than the other.
Usually a decision maker is needed to provide additional preference information and to identify the
“most preferred” solution.

2. Classification of the MMP methods
According to Hwang and Masud (1979) the methods for solving MMP problems can be classified into
three categories according to the phase in which the decision maker involves in the decision making
process expressing his/her preferences: The a priori methods, the interactive methods and the
generation or a posteriori methods. In a priori methods the decision maker expresses his/her
preferences before the solution process (e.g. setting goals or weights for the objective functions). The
criticism about the a priori methods is that it is very difficult for the decision maker to know
beforehand and to be able to accurately quantify (either by means of goals or weights) his/her
preferences. In the interactive methods phases of dialogue with the decision maker are interchanged
with phases of calculation and the process usually converges after a few iterations to the most
preferred solution. The decision maker progressively drives the search with his answers towards the
most preferred solution. The drawback is that he never sees the whole picture (the set of efficient
solutions) or an approximation of it. Hence, the most preferred solution is “most preferred” in relation
to what he/she has seen and compare so far. In a posteriori methods (or generation methods) the
efficient solutions of the problem (all of them or a sufficient representation) are generated and then the
decision maker involves, in order to select among them, the most preferred one (see e.g. the interactive
filtering process proposed by Steuer, 1986).

3. Generation methods
The generation methods are the less popular due to their computational effort (the calculation of the
efficient solutions is usually a time consuming process) and the lack of widely available software.
However, they have some significant advantages. The solution process is divided into two phases:
First, the generation of the efficient solutions and subsequently the involvement of the decision maker
when all the information is on the table. Hence, they are favourable whenever the decision maker is
hardly available and the interaction with him is difficult, because he is involved only in the second
phase, having at hand all the possible alternatives (the efficient solutions of the MMP). Besides, the
fact that none of the potential solutions has been left undiscovered, reinforces the decision maker’s
confidence on the final decision.

For special kind of MMP problems (mostly linear problems) of small and medium size, there are also
methods that produce the entire efficient set (see e.g. Steuer 1986, Mavrotas 1998, Miettinen 1999).
Here we will focus on the general case, where relatively large MMP problems can be tackled. In
general, the most widely used generation methods are the weighting method and the ε-constraint
method. These methods are used to provide a representative subset of the efficient set. problems.
Assume the following MMP:

max (f1(x), f2(x), . . . , fp(x))

st

x ∈ S

where x is the vector of decision variables, f1(x), …fp(x) are the p objective functions and S is the
feasible region.

3.1 The weighting method
In the weighting method, the weighted sum of the objective functions is optimized. The problem is
stated as follows:

max (w1×f1(x) + w2×f2(x) + . . . + wp×fp(x))

st (1)

x ∈ S

By varying the weights wi we obtain different efficient solutions.

3.2 The ε-constraint method
In the ε-constraint method we optimize one of the objective functions using the other objective
functions as constraints, incorporating them in the constraint part of the model as shown below:

max f1(x)

st

f2(x) ≥ e2

f3(x) ≥ e3 (2)

. . .

fp(x) ≥ ep

x ∈ S

By parametrical variation in the RHS of the constrained objective functions (ei) the efficient solutions
of the problem are obtained.

The e-constrained method has several advantages over the weighting method.

1. For linear problems, the weighting method is applied to the original feasible region and results
to a corner solution (extreme solution), thus generating only efficient extreme solutions. On
the contrary, the ε-constraint method alters the original feasible region and is able to produce
non-extreme efficient solutions. As a consequence, with the weighting method we can spend a
lot of runs that are redundant in the sense that there can be a lot of combination of weights that
result in the same efficient extreme solution. On the other hand, with the ε-constraint we can
exploit almost every run to produce a different efficient solution, thus obtaining a more rich
representation of the efficient set.

2. The weighting method cannot produce unsupported efficient solutions in multiobjective
integer and mixed integer programming problems, while the ε-constraint method does not
suffer from this inadequacy (Steuer 1986, Miettinen 1999).

3. In the weighting method the scaling of the objective functions has strong influence in the
obtained results. Therefore, we need to scale the objective functions to a common scale before
forming the weighted sum. In the e-constrained method this is not necessary.

4. An additional advantage of the ε-constraint method is that we can control the number of the
generated efficient solutions by properly adjusting the number of grid points in each one of the
objective function ranges. This is not so easy with the weighting method (see point 1 above).

4. The augmented ε-constraint method (AUGMECON)
Despite its advantages over the weighting method the ε-constraint method has two points that need
attention: the range of the objective functions over the efficient set (mainly the calculation of nadir
values) and the guarantee of efficiency of the obtained solution. Let’s take a closer look to these two
points.

In order to properly apply the ε-constraint method we must have the range of every objective function
at least for the p-1 objective functions that will be used as constraints. The calculation of the range of
the objective functions over the efficient set is not a trivial task (see e.g. Isermann and Steuer 1987,
Reeves and Reid 1988, Steuer 1997). While the best value is easily attainable as the optimal of the
individual optimization, the worst value over the efficient set (nadir value) is not. The most common
approach is to calculate these ranges from the payoff table (the table with the results from the
individual optimization of the p objective functions). The nadir value is usually approximated with the
minimum of the corresponding column (see e.g. Cohon 1978, Steuer 1986, Miettinen 1999). However,
even in this case, we must be sure that the obtained solutions from the individual optimization of the
objective functions are indeed efficient solutions. In the presence of alternative optima the obtained by
a commercial software optimal solution is not a guaranteed efficient solution. In order to overcome
this ambiguity we propose the use of lexicographic optimization for every objective function in order
to construct the payoff table with only efficient solutions. A simple remedy in order to bypass the
difficulty of estimating the nadir values of the objective functions is to define reservation values for
the objective functions. The reservation value acts like a lower (or upper for minimization objective
functions) bound. Values worse than the reservation value are not allowed.

The second point of attention is that the optimal solution of problem (2) is guaranteed to be an effcient
solution only if all the (p-1) objective functions’ constraints are binding (Miettinen 1999, Ehrgott and
Wiecek 2005). Otherwise, if there are alternative optima (that may improve one of the non binding
constraints that corresponds to an objective function) the obtained optimal solution of problem (2) is
not in fact efficient but it is a weakly efficient solution. In order to overcome this ambiguity we
propose the transformation of the objective function constraints to equalities by explicitly
incorporating the appropriate slack or surplus variables. In the same time, the sum of these slack or
surplus variables is used as a second term (with lower priority) in the objective function forcing the
program to produce only efficient solutions. The second term drives the search to look among the
possible alternative optima of max f1(x) for the one that maximizes the sum. The new problem
becomes:

max (f1(x) + δ× (s2 + s3 +…+ sp))

st

f2(x) – s2 = e2

f3(x) – s3 = e3 (3)

. . .

fp(x) – sp = ep

x ∈ S and si ∈ R+

where δ is a small number (usually between 10-3 and 10-6).

Proposition: The above formulation (3) of the ε-constraint method produces only efficient solutions (it
avoids the generation of weakly efficient solutions).

Proof: Assume that the problem (2) has alternative optima and one of them (depicted as x’) dominates
the optimal solution (depicted as x) obtained from problem (3). This means that the vector (z1, e2+s2,
…, ep+sp) is dominated by the vector (z1, e2+s2’, …, ep+sp’) or in other words: (remember that z1 = max
f1(x) is the same for the two cases as we have alternative optima):

e2 + s2 ≤ e2 + s2’

e3 + s3 ≤ e3 + s3’

. . . (4)

ep + sp ≤ ep + sp’

with at least on strict inequality. Taking the sum of these relations and based on the fact that there is at
least one strict inequality we conclude that:

∑∑
==

<
p

i
i

p

i
i ss

2

'

2
 (5)

But this contradicts the initial assumption that the optimal solution of (3) maximizes the sum of si.
Hence, there is no solution x’ that dominates the obtained solution x, or, in other words the obtained
solution x from problem (3) is efficient. □

In order to avoid any scaling problems it is recommended to replace the si in the second term of the
objective function by si/ri, where ri is the range of the i-th objective function (as calculated from the
payoff table). Thus, the objective function of the ε-constraint method becomes:

max (f1(x) + eps× (s2 /r2 + s3 /r3 +…+ sp /rp)) (6)

The proposed version of the ε-constraint method that corresponds to model (3) with the objective
function (6) will be called hereafter augmented ε-constraint method or AUGMECON method.

Practically, the ε-constraint method is implemented as follows: From the payoff table we obtain the
range of each one of the p-1 objective functions that are going to be used as constraints. Then we
divide the range of the i-th objective function to qi equal intervals using (qi-1) intermediate equidistant
grid points. Thus we have in total (qi+1) grid points that are used to vary parametrically the RHS (ei)
of the i-th objective function. The total number of runs becomes (q2+1) × (q3+1) × . . . × (qp+1). A
desirable characteristic of the ε-constraint method is that we can control the density of the efficient set
representation by properly assigning the values to the qi. The higher the number of grid points the
more dense is the representation of the efficient set but with the cost of higher computation times. A
trade off between the density of the efficient set and the computation time is always advisable.

An innovative addition to the algorithm is the early exit from the nested loop when the problem (3)
becomes infeasible for some combination of ei. The early exit from the loops work as follows: The
bounding strategy for each one of the objective function starts from the more relaxed formulations
(lower bound for a maximization objective function or upper bound for a minimization) and move to
the most strict (individual optima). In this way, when we arrive to an infeasible solution there is no
need to perform the remaining runs of the loop (as the problem will become even stricter and thus
remains infeasible) and we force an exit from the loop (see the example in Figure 1).

max z1
max z2
max z3
st
z1+z2+z3 <= 1

P(e2, e3)
max z1
st
z2 >= e2
z3 >= e3
z1+z2+z3 <= 1

ε-constraint

z1

z3
z2

P(e2=0.5, e3=0.6) = INF

Bypass four grid points (stars)
Go to P(e2=0.6, e3=0.0)

early exit from the e3-loop

Figure 1: Graphical example for the early exit from the nested loops in a multi-objective problem with
three objective functions.

The early exit saves a lot of computational time in problems with more than 2-3 objective functions.
As the number of the objective functions increase the reduction in computation time is more apparent.
In a real case study problem with 6 objective functions, 236 variables and 96 constraints a 45%
reduction in iterations and accordingly in computation time was observed (with 5 grid point per
objective function the initial 25 runs = 3125 were reduced to 1705 with the early exit from the loops).

4.1 Illustrative example
In order to show the weak points of the ε-constraint and the proposed remedies we use the following
simple numerical example.

max f1 = X1
max f2 = 3 X1 + 4 X2
st
X1 <= 20
X2 <= 40
5 X1 + 4 X2 <= 200

The feasible region and the direction of the two objective functions are shown in Figure 2. The
efficient set (or efficient frontier, Pareto set, nondominated set) for this problem is depicted with the
heavy line (segment QR).

0

10

20

30

40

50

0 10 20 30 40 50X1

X2

f1

f2

efficient frontier

Q

P

S R

Figure 2: Feasible region and directions of objective functions

Following the conventional ε-constraint method we first calculate the payoff table by simply
calculating the individual optima of the objective functions. A conventional LP optimizer will produce
the payoff table shown in Table 1.

Table 1: Payoff table obtained by a conventional LP optimizer

 f1 f2
max f1 20 60
max f2 8 184

It can be noticed that the optimal solution obtained for f1 (f1=20, f2=60) that corresponds to point P is a
dominated solution in the problem due to alternative optima (see e.g. point Q). However, it is almost
sure that a conventional LP optimizer will calculate the solution of point P first and will stop the
searching giving this solution as output. In order to avoid this situation we proceed to the
lexicographic optimization of the objective functions and the results are shown in Table 2.

Table 2: Payoff table obtained by the lexicographic optimization of the objective functions

 f1 f2
max f1 20 160
max f2 8 184

With the lexicographic optimization we obtain as the solution that maximizes f1 the one that
corresponds to point Q which is a non dominated solution.

In general, the lexicographic optimization of a series of objective functions is to optimize the first
objective function and then among the possible alternative optima optimize for the second objective
function and so on. Practically, the lexicographic optimization is performed as follows: we optimize
the first objective function (of higher priority), obtaining max f1=z1*. Then we optimize the second
objective function by adding the constraint f1=z1* in order to keep the optimal solution of the first

optimization. Assume that we obtain max f2 = z2*. Subsequently, we optimize the third objective
function by adding the constraints f1=z1* and f2 = z2* in order to keep the previous optimal solutions
and so on until we finish with the objective functions (see also Erwin Karvelagen’s example in
http://www.gams.com/~erwin/book/lp.pdf, page 231).

After the calculation of the payoff table we divide the ranges of the objective functions to four equal
intervals and we use the five grid points as the values of e2 in the ε-constraint method. In the first case
we apply the model (2) of the conventional ε-constraint method. The results are shown in the diagram
of Figure 3

0

10

20

30

40

50

0 10 20 30 40 50X1

X2

e2=60

e2=91

e2=122

A

C

B

e2=153

e2=184

D

E

Q

Figure 3: Results of the conventional ε-constraint method

The solutions that correspond to the points A, B, C, D, E are the output of the method. In fact only
point E is efficient while the other 4 are weakly efficient point (dominated by point Q). However, if
we have used (with the same payoff table) the augmented ε-constraint method (model (3)) the output
would be point Q (obtained 4 times) and point E which are both non dominated points. It means that
although there was a dominated solution in the payoff table the augmented ε-constraint method
produces the correct results due to the corrective use of the maximization (in a second level) of the
surplus variables.

Nevertheless, if we use the payoff table from the lexicographic optimization the results of the ε-
constraint method are even better as we obtain a much more dense representation of the efficient set
(see Figure 4). We can see that points A’, B’, C’, D’ and E’ are all efficient points that adequately
describe the efficient set.

0

10

20

30

40

50

0 10 20 30 40 50X1

X2

A

C'
B'

e2=160

e2=184

E'

D'

A'

Figure 4: Results of the augmented ε-constraint method for model (3)

In the implementation of the ε-constraint method to the GAMS model we have incorporated these two
features (lexicographic optimization for the calculation of the payoff table and use the augmented ε-
constraint method to avoid weakly efficient solutions) in order to overcome the known shortcomings
of the conventional ε-constraint method.

5. Implementation of the augmented ε-constraint method in GAMS

5.1 The example
We will show the implementation of the augmented ε-constraint method in GAMS using a simplified
example from the power generation field. Assume that we have four type of power generation units in
a region, namely, lignite fired, oil fired, natural gas fired and units exploiting renewable energy
sources (RES) which are mostly small hydro and wind. The characteristics of these units are shown in
Table 3

Table 3: Power generation characteristics

 Lignite Oil Natural Gas RES

Maximum production per year (GWh) 31000 15000 22000 10000

Cost of production (€/MWh) 30 75 60 90

CO2 emission coefficient (t/MWh) 1.44 0.72 0.45 0

The yearly demand is 64000 GWh and is characterized by a load duration curve which can be divided
into three type of loads: base load (60%), medium load (30%) and peak load (10%). The lignite fired
units can be used only for base and middle load, the oil fired units for middle and peak load, the RES
units for base and peak load and the natural gas fired units for all type of loads. The endogenous
sources are lignite and RES. We consider three objective functions: the minimization of production
cost, the minimization of CO2 emissions and the minimization of external dependence (i.e. oil and

natural gas) and we want to generate the relative efficient solutions of the problem. The multiobjective
model is as follows:

MIN 30 LIGN + 75 OIL + 60 NG + 90 RES
MIN 1.44 LIGN + 0.72 OIL + 0.45 NG
MIN OIL + NG
ST
LIGN – LIGN1 – LIGN2 = 0
OIL – OIL2 – OIL3 = 0
NG – NG1 – NG2 – NG3 = 0
RES – RES1 – RES3 = 0
LIGN <= 31000
OIL <= 15000
NG <= 22000
RES <= 10000
LIGN1 + NG1 + RES1 >= 38400
LIGN2 + OIL2 + NG2 >= 19200
OIL3 + NG3 + RES3 >= 6400

The GAMS model that implements the ε-constraint method for the specific problem is presented in the
model library of GAMS (no 319, name “epscm”, http://www.gams.com/modlib/libhtml/epscm.htm).
The concept is to split each problem into two models: One model with the specific problem’s
characteristics (indicated with $STitle Example model definitions in line 57) and one
model with the required characteristics of the ε-constraint method (indicated as $STitle eps-
constraint method in line 106). For a new problem the user must alter only the parts that
describe the specific problem and properly modify the parameters that are necessary for the ε-
constraint. More specifically the user alters the following lines of the GAMS code according to the
specific characteristics of the MMP problem:

Line 75: The user inputs the number of the objective functions of the problem (set k)

Lines 79-80: The user inputs the direction of the objective functions (1 for maximization and -1 for
minimization).

Line 171: The name of the output file with the Pareto optimal solutions

Line 174: The number of grid points for each objective function in the ε-constraint method. It can be
modified for some objective functions with the dynamic set handling in line 186.

Line 214: In the output building section of the code, beside the values of the objective functions the
user may add any other decision variable that wish to record for every efficient solution. In this case it
is recommended to appropriately add labels to the label row in line 195.

The output of the specific GAMS model is the display of the unique Pareto optimal solutions (using
some posix utilities) at the end of the *.lst file. The payoff table as well as the grid points are also
displayed in the *.lst file.

5.2 Comments on the GAMS code
• The computation time for the generation of the efficient solutions in the case of 4 interval per

objective function is 6 seconds in a Pentium M 1.7 Ghz. For the case of 10 intervals per objective
function the computation time increases to 22 seconds.

• The user may input reservation values for the objective functions by adding upper or lower bounds
to the z-variables (using the .up or .lo suffix). By the term reservation values we mean the worst
acceptable value for each one of the objective functions. In other words the reservation value is a
lower bound for a maximization objective function and an upper bound for a minimization. The
payoff table is calculated taken into account the user input about the reservation values for the
objective functions. As the reservation values for one objective function may influence the optimal
values for some other objective functions (as they are incorporated as constraints in the model) a
little trial and error is recommended (input reservation values, check the payoff table for the
individual optima and if they are seriously deteriorated try some other reservation values and
repeat this interactive procedure). By default there are no reservation values.

• The payoff table is calculated performing k lexicographic optimizations in lines 154-164.

• The “repeat – until” loop in line 194-206 is used to exhaustively visit all the grid points and
minimize the redundant runs after an infeasible solution occurs (when the problem becomes very
strict). The traversing strategy is to start from the more relaxed formulations (lower bound for a
maximization objective function or upper bound for a minimization) and move to the most strict
(individual optima).

• The above presented code can also be used without any changes for Multiobjective Integer
Programming problems or Multiobjective Mixed Integer Programming problems as well as for the
corresponding Non Linear cases. In the case of MIP problems the It must be stressed that even
duality gaps in non-convex problems do not harm the ability of the ε-constraint method to produce
every efficient point of the MMP problem.

6. Concluding remarks
In the present text we propose a way of implementation of the ε-constraint method in GAMS. Special
care is taken in order to secure the efficiency of the obtained solutions by using the augmented ε-
constraint method. The code can be easily adapted to the needs of the user (number and direction of
the objective functions, density of the efficient set representation, reservation values for the objective
functions). We also incorporate some acceleration issues (early exit from the loops) which are
particularly useful when there are a lot of objective functions.

After the generation of the efficient solutions, the next step is to assist the decision maker in selecting
his/her most preferred solution among them. The problem then is reduced to the selection among
several alternatives evaluated in multiple criteria. Although this task is beyond the scope of the current
paper we can say that there are a lot of Multiple Criteria Decision Analysis methods that can be useful
and the interested reader can find more information in Figueira et al (2005), Belton and Stewart (2000)
that extensively cover the current trends in the field.

References
Belton, V. and T. Stewart. 2000. Multiple Criteria Decision Analysis. An Integrated Approach,

Kluwer Academic Publishers.

Cohon, J.L. (1978). Multiobjective Programming and Planning. Academic Press, New York.

Ehrgott M. and Wiecek M. (2005) “Multiobjective Programming” in: J.Figueira, S.Greco, M. Ehrgott
(eds) Multiple Criteria Decision Analysis. State of the Art Surveys pp. 667-722, Springer

Figueira, J. Greco, S. and Ehrgott M. (2005) Multiple Criteria Decision Analysis. State of the Art
Surveys, Springer

Hwang, C.L., Masud, A. (1979). Multiple Objective Decision Making. Methods and Applications: A
state of the art survey. Lecture Notes in Economics and Mathematical Systems Vol. 164.
Springer-Verlag, Berlin.

Isermann, H. and Steuer, R.E. (1987) “Computational experience concerning payoff tables and
minimum criterion values over the efficient set”, European Journal of Operational Research
33, 91-97.

Mavrotas G. and Diakoulaki D. (2005), “Multi-criteria branch & bound: A vector maximization
algorithm for Mixed 0-1 Multiple Objective Linear Programming”, Applied Mathematics and
Computation, 171(1) 53-71.

Reeves, G.R. and Reid, R.C. (1988) “Minimum values over the efficient set in multiple objective
decision making”, European Journal of Operational Research 36, 334-338.

Steuer, R.E. (1997) “Non-Fully Resolved Questions about the Efficient/Nondominated set” in: J.
Climaco (ed) Multicriteria Analysis pp. 585-589, Springer.

Steuer, R.E. (1986). Multiple Criteria Optimization.Theory, Computation and Application, 2nd
edition, Krieger, Malabar FL.

http://www.gams.com/~erwin/book/lp.pdf

