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Abstract: According to the most widely accepted classification the Multiobjective Mathematical Programming 
(MMP) methods can be classified as a priori, interactive and a posteriori, according to the decision stage in 
which the decision maker expresses his/her preferences. Although the a priori methods are the most popular, the 
interactive and the a-posteriori methods convey much more information to the decision maker. Especially, the a-
posteriori (or generation) methods inform the decision maker about the whole context of the decision alternatives 
before his/her final decision. However, the generation methods are the less popular due to their computational 
effort and the lack of widely available software. The basic step towards further penetration of the generation 
methods in MMP applications, is to provide appropriate codes for Mathematical Programming (MP) solvers that 
are widely used by people in engineering, economics, agriculture etc. The present work is an effort to effectively 
implement the ε-constraint method for producing the efficient solutions in a MMP. We propose a variation of the 
method (augmented ε-constraint method-AUGMECON) that produces only efficient solutions (no weakly 
efficient solutions) and also avoids redundant iterations as it can perform early exit from the relevant loops (that 
lead to infeasible solutions), accelerating the whole process. Finally, we implement the method in an adjustable 
GAMS model using an example from the energy sector, describing in detail the necessary code. 

 

1. Multiobjective Mathematical Programming and efficient solutions 
The solution of Mathematical Programming (MP) problems with only one objective function is a 
straightforward task. The output is the optimal solution and all the relevant information about the 
values of the decision variables, shadow prices etc. In Multiobjective Mathematical Programming 
(MMP) there are more than one objective functions and there is no single optimal solution that 
simultaneously optimizes all the objective functions. In these cases the decision makers are looking for 
the “most preferred” solution. In MMP the concept of optimality is replaced with that of efficiency or 
Pareto optimality. The efficient (or Pareto optimal, nondominated, non-inferior) solutions are the 
solutions that cannot be improved in one objective function without deteriorating their performance in 
at least one of the rest. The mathematical definition of the efficient solution is the following (without 
loss of generality assume that all the objective functions fi, i=1…p are for maximization): A feasible 
solution x of a MMP problem is efficient if  there is no other feasible solution x’ such as fi(x’) ≥ fi(x) 
for every i=1, 2, …,p with at least one strict inequality. Every efficient solution corresponds to a 
nondominated or non-improvable vector in the criterion space. If we replace the condition fi(x’) ≥ fi(x) 
with fi(x’) > fi(x) we obtain the weakly efficient solutions. Weakly efficient solutions are not usually 
pursued in MMP because they may be dominated by other efficient solutions. The rational decision 
maker is looking for the most preferred solution among the efficient solutions of the MMP. In the 
absence of any other information, none of these solutions can be said to be better than the other. 
Usually a decision maker is needed to provide additional preference information and to identify the 
“most preferred” solution. 



 
2. Classification of the MMP methods 
According to Hwang and Masud (1979) the methods for solving MMP problems can be classified into 
three categories according to the phase in which the decision maker involves in the decision making 
process expressing his/her preferences: The a priori methods, the interactive methods and the 
generation or a posteriori methods. In a priori methods the decision maker expresses his/her 
preferences before the solution process (e.g. setting goals or weights for the objective functions). The 
criticism about the a priori methods is that it is very difficult for the decision maker to know 
beforehand and to be able to accurately quantify (either by means of goals or weights) his/her 
preferences. In the interactive methods phases of dialogue with the decision maker are interchanged 
with phases of calculation and the process usually converges after a few iterations to the most 
preferred solution. The decision maker progressively drives the search with his answers towards the 
most preferred solution. The drawback is that he never sees the whole picture (the set of efficient 
solutions) or an approximation of it. Hence, the most preferred solution is “most preferred” in relation 
to what he/she has seen and compare so far. In a posteriori methods (or generation methods) the 
efficient solutions of the problem (all of them or a sufficient representation) are generated and then the 
decision maker involves, in order to select among them, the most preferred one (see e.g. the interactive 
filtering process proposed by Steuer, 1986).  

 
3. Generation methods 
The generation methods are the less popular due to their computational effort (the calculation of the 
efficient solutions is usually a time consuming process) and the lack of widely available software. 
However, they have some significant advantages. The solution process is divided into two phases: 
First, the generation of the efficient solutions and subsequently the involvement of the decision maker 
when all the information is on the table. Hence, they are favourable whenever the decision maker is 
hardly available and the interaction with him is difficult, because he is involved only in the second 
phase, having at hand all the possible alternatives (the efficient solutions of the MMP). Besides, the 
fact that none of the potential solutions has been left undiscovered, reinforces the decision maker’s 
confidence on the final decision. 

For special kind of MMP problems (mostly linear problems) of small and medium size, there are also 
methods that produce the entire efficient set (see e.g. Steuer 1986, Mavrotas 1998, Miettinen 1999). 
Here we will focus on the general case, where relatively large MMP problems can be tackled. In 
general, the most widely used generation methods are the weighting method and the ε-constraint 
method. These methods are used to provide a representative subset of the efficient set. problems. 
Assume the following MMP: 

max (f1(x), f2(x), . . . , fp(x))   

st  

x ∈ S 

where x is the vector of decision variables, f1(x), …fp(x) are the p objective functions and S is the 
feasible region.  



3.1 The weighting method 
In the weighting method, the weighted sum of the objective functions is optimized. The problem is 
stated as follows: 

max (w1×f1(x) + w2×f2(x) + . . . + wp×fp(x))   

st             (1) 

x ∈ S 

By varying the weights wi we obtain different efficient solutions.  

3.2 The ε-constraint method 
In the ε-constraint method we optimize one of the objective functions using the other objective 
functions as constraints, incorporating them in the constraint part of the model as shown below: 

max f1(x)  

st 

f2(x) ≥ e2  

f3(x) ≥ e3            (2) 

. . .  

fp(x) ≥ ep 

x ∈ S 

By parametrical variation in the RHS of the constrained objective functions (ei) the efficient solutions 
of the problem are obtained.  

The e-constrained method has several advantages over the weighting method.  

1. For linear problems, the weighting method is applied to the original feasible region and results 
to a corner solution (extreme solution), thus generating only efficient extreme solutions. On 
the contrary, the ε-constraint method alters the original feasible region and is able to produce 
non-extreme efficient solutions. As a consequence, with the weighting method we can spend a  
lot of runs that are redundant in the sense that there can be a lot of combination of weights that 
result in the same efficient extreme solution. On the other hand, with the ε-constraint we can 
exploit almost every run to produce a different efficient solution, thus obtaining a more  rich 
representation of the efficient set.  

2. The weighting method cannot produce unsupported efficient solutions in multiobjective 
integer and mixed integer programming problems, while the ε-constraint method does not 
suffer from this inadequacy (Steuer 1986, Miettinen 1999). 

3. In the weighting method the scaling of the objective functions has strong influence in the 
obtained results. Therefore, we need to scale the objective functions to a common scale before 
forming the weighted sum. In the e-constrained method this is not necessary. 

4. An additional advantage of the ε-constraint method is that we can control the number of the 
generated efficient solutions by properly adjusting the number of grid points in each one of the 
objective function ranges. This is not so easy with the weighting method (see point 1 above).  



 
4. The augmented ε-constraint method (AUGMECON) 
Despite its advantages over the weighting method the ε-constraint method has two points that need 
attention: the range of the objective functions over the efficient set (mainly the calculation of nadir 
values) and the guarantee of efficiency of the obtained solution. Let’s take a closer look to these two 
points.  

In order to properly apply the ε-constraint method we must have the range of every objective function 
at least for the p-1 objective functions that will be used as constraints. The calculation of the range of 
the objective functions over the efficient set is not a trivial task (see e.g. Isermann and Steuer 1987, 
Reeves and Reid 1988, Steuer 1997). While the best value is easily attainable as the optimal of the 
individual optimization, the worst value over the efficient set (nadir value) is not. The most common 
approach is to calculate these ranges from the payoff table (the table with the results from the 
individual optimization of the p objective functions). The nadir value is usually approximated with the 
minimum of the corresponding column (see e.g. Cohon 1978, Steuer 1986, Miettinen 1999). However, 
even in this case, we must be sure that the obtained solutions from the individual optimization of the 
objective functions are indeed efficient solutions. In the presence of alternative optima the obtained by 
a commercial software optimal solution is not a guaranteed efficient solution. In order to overcome 
this ambiguity we propose the use of lexicographic optimization for every objective function in order 
to construct the payoff table with only efficient solutions. A simple remedy in order to bypass the 
difficulty of estimating the nadir values of the objective functions is to define reservation values for 
the objective functions. The reservation value acts like a lower (or upper for minimization objective 
functions) bound. Values worse than the reservation value are not allowed.   

The second point of attention is that the optimal solution of problem (2) is guaranteed to be an effcient 
solution only if all the (p-1) objective functions’ constraints are binding (Miettinen 1999, Ehrgott and 
Wiecek 2005). Otherwise, if there are alternative optima (that may improve one of the non binding 
constraints that corresponds to an objective function) the obtained optimal solution of problem (2) is 
not in fact efficient but it is a weakly efficient solution. In order to overcome this ambiguity we 
propose the transformation of the objective function constraints to equalities by explicitly 
incorporating the appropriate slack or surplus variables. In the same time, the sum of these slack or 
surplus variables is used as a second term (with lower priority) in the objective function forcing the 
program to produce only efficient solutions. The second term drives the search to look among the 
possible alternative optima of max f1(x) for the one that maximizes the sum. The new problem 
becomes: 

max (f1(x) + δ× (s2 + s3 +…+ sp)) 

st 

f2(x) – s2 = e2  

f3(x) – s3 = e3            (3) 

. . .  

fp(x) – sp = ep 

x ∈ S  and  si ∈ R+ 

where δ is a small number (usually between 10-3 and 10-6).  



Proposition: The above formulation (3) of the ε-constraint method produces only efficient solutions (it 
avoids the generation of weakly efficient solutions). 

Proof: Assume that the problem (2) has alternative optima and one of them (depicted as x’) dominates 
the optimal solution (depicted as x) obtained from problem (3). This means that the vector (z1, e2+s2, 
…, ep+sp) is dominated by the vector (z1, e2+s2’, …, ep+sp’) or in other words: (remember that z1 = max 
f1(x) is the same for the two cases as we have alternative optima): 

e2 + s2 ≤ e2 + s2’ 

e3 + s3 ≤ e3 + s3’ 

. . .             (4) 

ep + sp ≤ ep + sp’ 

with at least on strict inequality. Taking the sum of these relations and based on the fact that there is at 
least one strict inequality we conclude that: 
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But this contradicts the initial assumption that the optimal solution of (3) maximizes the sum of si. 
Hence, there is no solution x’ that dominates the obtained solution x, or, in other words the obtained 
solution x from problem (3) is efficient. □  

In order to avoid any scaling problems it is recommended to replace the si in the second term of the 
objective function by si/ri, where ri is the range of the i-th objective function (as calculated from the 
payoff table). Thus, the objective function of the ε-constraint method becomes: 

max (f1(x) + eps× (s2 /r2 + s3 /r3 +…+ sp /rp))        (6) 

The proposed version of the ε-constraint method that corresponds to model (3) with the objective 
function (6) will be called hereafter augmented ε-constraint method or AUGMECON method. 

Practically, the ε-constraint method is implemented as follows: From the payoff table we obtain the 
range of each one of the p-1 objective functions that are going to be used as constraints. Then we 
divide the range of the i-th objective function to qi equal intervals using (qi-1) intermediate equidistant 
grid points. Thus we have in total (qi+1) grid points that are used to vary parametrically the RHS (ei) 
of the i-th objective function. The total number of runs becomes (q2+1) × (q3+1) × . . . × (qp+1). A 
desirable characteristic of the ε-constraint method is that we can control the density of the efficient set 
representation by properly assigning the values to the qi. The higher the number of grid points the 
more dense is the representation of the efficient set but with the cost of higher computation times. A 
trade off between the density of the efficient set and the computation time is always advisable.  

An innovative addition to the algorithm is the early exit from the nested loop when the problem (3) 
becomes infeasible for some combination of ei. The early exit from the loops work as follows: The 
bounding strategy for each one of the objective function starts from the more relaxed formulations 
(lower bound for a maximization objective function or upper bound for a minimization) and move to 
the most strict (individual optima). In this way, when we arrive to an infeasible solution there is no 
need to perform the remaining runs of the loop (as the problem will become even stricter and thus 
remains infeasible) and we force an exit from the loop (see the example in Figure 1).  



   

max z1
max z2
max z3
st
z1+z2+z3 <= 1

P(e2, e3)
max z1
st
z2 >= e2
z3 >= e3
z1+z2+z3 <= 1

ε-constraint

z1

z3
z2

P(e2=0.5, e3=0.6) = INF

Bypass four grid points (stars)
Go to P(e2=0.6, e3=0.0) 

early exit from the e3-loop

 

Figure 1: Graphical example for the early exit from the nested loops in a multi-objective problem with 
three objective functions.  

 

The early exit saves a lot of computational time in problems with more than 2-3 objective functions. 
As the number of the objective functions increase the reduction in computation time is more apparent. 
In a real case study problem with 6 objective functions, 236 variables and 96 constraints a 45% 
reduction in iterations and accordingly in computation time was observed (with 5 grid point per 
objective function the initial 25 runs = 3125 were reduced to 1705 with the early exit from the loops). 

4.1 Illustrative example 
In order to show the weak points of the ε-constraint and the proposed remedies we use the following 
simple numerical example. 

max f1 = X1 
max f2 = 3 X1 + 4 X2 
st 
X1 <= 20 
X2 <= 40 
5 X1 + 4 X2 <= 200 
 

The feasible region and the direction of the two objective functions are shown in Figure 2. The 
efficient set (or efficient frontier, Pareto set, nondominated set) for this problem is depicted with the 
heavy line (segment QR).  
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Figure 2: Feasible region and directions of objective functions 

Following the conventional ε-constraint method we first calculate the payoff table by simply 
calculating the individual optima of the objective functions. A conventional LP optimizer will produce 
the payoff table shown in Table 1. 

Table 1: Payoff table obtained by a conventional LP optimizer 

 f1 f2 
max f1 20 60 
max f2 8 184 

 

It can be noticed that the optimal solution obtained for f1 (f1=20, f2=60) that corresponds to point P is a 
dominated solution in the problem due to alternative optima (see e.g. point Q). However, it is almost 
sure that a conventional LP optimizer will calculate the solution of point P first and will stop the 
searching giving this solution as output. In order to avoid this situation we proceed to the 
lexicographic optimization of the objective functions and the results are shown in Table 2.  

Table 2: Payoff table obtained by the lexicographic optimization of the objective functions 

 f1 f2 
max f1 20 160 
max f2 8 184 

 

With the lexicographic optimization we obtain as the solution that maximizes f1 the one that 
corresponds to point Q which is a non dominated solution.  

In general, the lexicographic optimization of a series of objective functions is to optimize the first 
objective function and then among the possible alternative optima optimize for the second objective 
function and so on. Practically, the lexicographic optimization is performed as follows: we optimize 
the first objective function (of higher priority), obtaining max f1=z1*. Then we optimize the second 
objective function by adding the constraint f1=z1* in order to keep the optimal solution of the first 



optimization. Assume that we obtain max f2 = z2*. Subsequently, we optimize the third objective 
function by adding the constraints f1=z1* and f2 = z2* in order to keep the previous optimal solutions 
and so on until we finish with the objective functions (see also Erwin Karvelagen’s example in 
http://www.gams.com/~erwin/book/lp.pdf, page 231).   

After the calculation of the payoff table we divide the ranges of the objective functions to four equal 
intervals and we use the five grid points as the values of e2 in the ε-constraint method. In the first case 
we apply the model (2) of the conventional ε-constraint method. The results are shown in the diagram 
of Figure 3  
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Figure 3: Results of the conventional ε-constraint method 

The solutions that correspond to the points A, B, C, D, E are the output of the method. In fact only 
point E is efficient while the other 4 are weakly efficient point (dominated by point Q). However, if 
we have used (with the same payoff table) the augmented ε-constraint method (model (3)) the output 
would be point Q (obtained 4 times) and point E which are both non dominated points. It means that 
although there was a dominated solution in the payoff table the augmented ε-constraint method 
produces the correct results due to the corrective use of the maximization (in a second level) of the 
surplus variables.  

Nevertheless, if we use the payoff table from the lexicographic optimization the results of the ε-
constraint method are even better as we obtain a much more dense representation of the efficient set 
(see Figure 4). We can see that points A’, B’, C’, D’ and E’ are all efficient points that adequately 
describe the efficient set.   
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Figure 4: Results of the augmented ε-constraint method for model (3) 

In the implementation of the ε-constraint method to the GAMS model we have incorporated these two 
features (lexicographic optimization for the calculation of the payoff table and use the augmented ε-
constraint method to avoid weakly efficient solutions) in order to overcome the known shortcomings 
of the conventional ε-constraint method. 

 
5. Implementation of the augmented ε-constraint method in GAMS 

5.1 The example 
We will show the implementation of the augmented ε-constraint method in GAMS using a simplified 
example from the power generation field. Assume that we have four type of power generation units in 
a region, namely, lignite fired, oil fired, natural gas fired and units exploiting renewable energy 
sources (RES) which are mostly small hydro and wind. The characteristics of these units are shown in 
Table 3 

Table 3: Power generation characteristics 

 Lignite  Oil  Natural Gas  RES  

Maximum production per year (GWh) 31000 15000 22000 10000 

Cost of production (€/MWh) 30 75 60 90 

CO2 emission coefficient (t/MWh) 1.44 0.72 0.45 0 

 

The yearly demand is 64000 GWh and is characterized by a load duration curve which can be divided 
into three type of loads: base load (60%), medium load (30%) and peak load (10%). The lignite fired 
units can be used only for base and middle load, the oil fired units for middle and peak load, the RES 
units for base and peak load and the natural gas fired units for all type of loads. The endogenous 
sources are lignite and RES. We consider three objective functions: the minimization of production 
cost, the minimization of CO2 emissions and the minimization of external dependence (i.e. oil and 



natural gas) and we want to generate the relative efficient solutions of the problem. The multiobjective 
model is as follows: 

MIN 30 LIGN + 75 OIL + 60 NG + 90 RES 
MIN 1.44 LIGN + 0.72 OIL + 0.45 NG  
MIN OIL + NG 
ST 
LIGN – LIGN1 – LIGN2 = 0 
OIL – OIL2 – OIL3 = 0 
NG – NG1 – NG2 – NG3 = 0 
RES – RES1 – RES3 = 0 
LIGN <= 31000 
OIL <= 15000 
NG <= 22000 
RES <= 10000 
LIGN1  + NG1 + RES1 >= 38400 
LIGN2 + OIL2 + NG2 >= 19200 
OIL3 + NG3 + RES3 >= 6400 
 

The GAMS model that implements the ε-constraint method for the specific problem is presented in the 
model library of GAMS (no 319, name “epscm”, http://www.gams.com/modlib/libhtml/epscm.htm). 
The concept is to split each problem into two models: One model with the specific problem’s 
characteristics (indicated with $STitle Example model definitions in line 57) and one 
model with the required characteristics of the ε-constraint method (indicated as $STitle eps-
constraint method in line 106). For a new problem the user must alter only the parts that 
describe the specific problem and properly modify the parameters that are necessary for the ε-
constraint. More specifically the user alters the following lines of the GAMS code according to the 
specific characteristics of the MMP problem: 

Line 75: The user inputs the number of the objective functions of the problem (set k) 

Lines 79-80: The user inputs the direction of the objective functions (1 for maximization and -1 for 
minimization).  

Line 171: The name of the output file with the Pareto optimal solutions 

Line 174: The number of grid points for each objective function in the ε-constraint method. It can be 
modified for some objective functions with the dynamic set handling in line 186. 

Line 214: In the output building section of the code, beside the values of the objective functions the 
user may add any other decision variable that wish to record for every efficient solution. In this case it 
is recommended to appropriately add labels to the label row in line 195.  

The output of the specific GAMS model is the display of the unique Pareto optimal solutions (using 
some posix utilities) at the end of the *.lst file. The payoff table as well as the grid points are also 
displayed in the *.lst file.  

5.2 Comments on the GAMS code 
• The computation time for the generation of the efficient solutions in the case of 4 interval per 

objective function is 6 seconds in a Pentium M 1.7 Ghz. For the case of 10 intervals per objective 
function the computation time increases to 22 seconds.  



• The user may input reservation values for the objective functions by adding upper or lower bounds 
to the z-variables (using the .up or .lo suffix). By the term reservation values we mean the worst 
acceptable value for each one of the objective functions. In other words the reservation value is a 
lower bound for a maximization objective function and an upper bound for a minimization. The 
payoff table is calculated taken into account the user input about the reservation values for the 
objective functions. As the reservation values for one objective function may influence the optimal 
values for some other objective functions (as they are incorporated as constraints in the model) a 
little trial and error is recommended (input reservation values, check the payoff table for the 
individual optima and if they are seriously deteriorated try some other reservation values and 
repeat this interactive procedure). By default there are no reservation values. 

• The payoff table is calculated performing k lexicographic optimizations in lines 154-164.  

• The “repeat – until” loop in line 194-206 is used to exhaustively visit all the grid points and 
minimize the redundant runs after an infeasible solution occurs (when the problem becomes very 
strict). The traversing strategy is to start from the more relaxed formulations (lower bound for a 
maximization objective function or upper bound for a minimization) and move to the most strict 
(individual optima).     

• The above presented code can also be used without any changes for Multiobjective Integer 
Programming problems or Multiobjective Mixed Integer Programming problems as well as for the 
corresponding Non Linear cases. In the case of MIP problems the It must be stressed that even 
duality gaps in non-convex problems do not harm the ability of the ε-constraint method to produce 
every efficient point of the MMP problem. 

 
6. Concluding remarks 
In the present text we propose a way of implementation of the ε-constraint method in GAMS. Special 
care is taken in order to secure the efficiency of the obtained solutions by using the augmented ε-
constraint method. The code can be easily adapted to the needs of the user (number and direction of 
the objective functions, density of the efficient set representation, reservation values for the objective 
functions). We also incorporate some acceleration issues (early exit from the loops) which are 
particularly useful when there are a lot of objective functions.  

After the generation of the efficient solutions, the next step is to assist the decision maker in selecting 
his/her most preferred solution among them. The problem then is reduced to the selection among 
several alternatives evaluated in multiple criteria. Although this task is beyond the scope of the current 
paper we can say that there are a lot of Multiple Criteria Decision Analysis methods that can be useful 
and the interested reader can find more information in Figueira et al (2005), Belton and Stewart (2000) 
that extensively cover the current trends in the field.  

  

References 
Belton, V. and T. Stewart. 2000. Multiple Criteria Decision Analysis. An Integrated Approach, 

Kluwer Academic Publishers. 

Cohon, J.L. (1978). Multiobjective Programming and Planning. Academic Press, New York. 



Ehrgott M. and Wiecek M. (2005) “Multiobjective Programming” in: J.Figueira, S.Greco, M. Ehrgott 
(eds) Multiple Criteria Decision Analysis. State of the Art Surveys pp. 667-722, Springer 

Figueira, J. Greco, S. and Ehrgott M. (2005) Multiple Criteria Decision Analysis. State of the Art 
Surveys, Springer 

Hwang, C.L., Masud, A. (1979). Multiple Objective Decision Making. Methods and Applications: A 
state of the art survey. Lecture Notes in Economics and Mathematical Systems Vol. 164. 
Springer-Verlag, Berlin. 

Isermann, H. and Steuer, R.E. (1987) “Computational experience concerning payoff tables and 
minimum criterion values over the efficient set”, European Journal of Operational Research 
33, 91-97. 

Mavrotas G. and Diakoulaki D. (2005), “Multi-criteria branch & bound: A vector maximization 
algorithm for Mixed 0-1 Multiple Objective Linear Programming”, Applied Mathematics and 
Computation, 171(1) 53-71. 

Reeves, G.R. and Reid, R.C. (1988) “Minimum values over the efficient set in multiple objective 
decision making”, European Journal of Operational Research 36, 334-338. 

Steuer, R.E. (1997) “Non-Fully Resolved Questions about the Efficient/Nondominated set” in: J. 
Climaco (ed) Multicriteria Analysis pp. 585-589, Springer. 

Steuer, R.E. (1986). Multiple Criteria Optimization.Theory, Computation and Application, 2nd 
edition, Krieger, Malabar FL. 

http://www.gams.com/~erwin/book/lp.pdf  

  


