Recent enhancements in GAMS

Lutz Westermann
lwestermann@gams.com

GAMS Software GmbH
GAMS Development Corporation
www.gams.com

International Conference on Operations Research
MUNICH 2010
September 1st - 3rd
GAMS at a Glance

Algebraic Modeling System

- Facilitates to formulate mathematical optimization problems similar to algebraic notation
 ➔ Simplified model building

- Provides links to appropriate state-of-the-art external algorithms
 ➔ Efficient solution process
GAMS at a Glance

General Algebraic Modeling System

- Roots: World Bank, 1976
- Went commercial in 1987
- GAMS Development Corp.
- GAMS Software GmbH
- Broad academic & commercial user community and network
GAMS’ Fundamental concepts

- Platform independence
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements
 - Declaration of Sets, Parameters, Variables, Equations, Models, …
 - Procedural Elements like loops, if-then-else, …
GAMS’ Fundamental concepts

• Different layers with separation of
 – model and data
 – model and solution methods
 – model and operating system
 – model and interface

➔ Models benefit from
 – advancing hardware
 – enhanced / new solver technology
 – improved / upcoming interfaces to other systems
GAMS at a Glance

General Algebraic Modeling System

- Algebraic Modeling Language
- 10+ Supported Platforms
- 25+ Integrated Solvers
- 10+ Supported MP classes
- Connectivity & Productivity Tools
 - IDE
 - Model Libraries
 - GDX, Interfaces & Tools
 - Grid Computing
 - Benchmarking
 - Compression & Encryption
 - Deployment System
 - …
GAMS at a Glance

The GAMS/BASE Module

• Compiler and Execution System
• GAMS IDE (Windows)
• Documentation + Model libraries
• GDX Utilities
• Free Solvers/Solver Links
Integrated Development Environment

- Project management
- Editor / Syntax coloring / Spell checking
- Launching and monitoring of (multiple) GAMS processes
- Listing file / Tree view / Syntax-error navigation
- Solver selection / Option selection
- GDX viewer
 - Data cube
 - Data export (e.g. to MS Excel)
 - Charting facilities
- Model libraries
- Documentation
Documentation

• **Distributed Documentation**
 – GAMS Users Guide
 – Expanded GAMS Users Guide (McCarl)
 – Solver Manuals
 – GAMS Utility Manuals

• **Wikis**
 – Support Wiki http://support.gams-software.com
 – Interfaces Wiki http://interfaces.gams-software.com

• **Search all GAMS Websites**
 http://www.gams.com/search.htm
Distributed Model Libraries

- **GAMS Model Library**
 - Example and user-contributed models
 - Very often used as templates
 - Tests for
 - Solver robustness and correctness
 - Backward compatibility

- **GAMS Test Library**
 - Transparent and reproducible Quality Assurance Tests
 - Tests for
 - Solver correctness
 - Special functions
 - GAMS utilities
Distributed Model Libraries

• **GAMS Data Utilities Library**
 – Demonstration of the various utilities interfacing GAMS with other applications
 – E.g. gdxxrw, mdb2gms, sql2gms

• **GAMS EMP Library**
 – Examples for the use of Extended Mathematical Programming

• **Practical Financial Optimization Models**

Models of the book

“PRACTICAL FINANCIAL OPTIMIZATION – A Library of GAMS Models”

by Consiglio, Nielsen and Zenios
Gams Data eXchange

Binary Data Exchange

- Fast exchange of data
- Syntactical check on data before model starts
- Data Exchange at any stage (Compile and Run-time)
- Platform Independent
- Direct GDX interfaces and general API
- Scenario Management Support
- Full Support of Batch Runs

GDX Tools

- Invert
- IDE
- GDX Viewer
- GDXrank
- GDX2HAR/HAR2GDX
- GDXmerge
- GDXdump
- MDB2GMS
- GDXdiff
- GDXcopy
GAMS at a Glance

The GAMS/BASE Module

Free Solvers

- Convert
- EMP/JAMS, LOGMIP, NLPEC
- BENCH, EXAMINER, GAMSCHK
- BDMLP, LS, and MILES
- COIN-OR Cbc, IpOpt, BonMin, Couenne
- Glpk, Scip (academic only)
New GAMS Distribution 23.5.2

Released August, 18th

www.gams.com/download

Download GAMS Distribution 23.5.2 - August 18, 2010

Note: To deliver GAMS with the best performance we are using the Amazon CloudFront web service, a global network of edge locations for content delivery.

Please consult the release notes before downloading a system. The installation notes for Windows and UNIX and the complete system documentation are included in any system.

<table>
<thead>
<tr>
<th>Windows</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 64 bit</td>
<td>Windows 7 x64, Windows Vista x64, Windows XP x64, Windows Server 2008 x64, Windows Server 2003 x64, and compatible on AMD- or Intel-based (x64_64) architectures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AIX</td>
<td>AIX 5.3 or higher, PowerPC chip, 64 bit (ppc_64)</td>
</tr>
<tr>
<td>Digital UNIX</td>
<td>Digital Unix 4 or higher on DEC Alpha (sparc_64). Please note that the current GAMS distribution for Digital Unix is 22.7</td>
</tr>
<tr>
<td>HP-UX</td>
<td>HP-UX 11 or higher on HP PA-RISC (hpux_32). Please note that the current GAMS distribution for HP-UX is 22.1</td>
</tr>
<tr>
<td>IRIX</td>
<td>IRIX 6.2 or higher on SGI MIPS (sgi_32). Please note that the current GAMS distribution for IRIX is 22.3</td>
</tr>
</tbody>
</table>

Mac OS X Intel 32 bit
- Macintosh Intel-based systems (x86_32) built on Darwin 9. Please note that this is a Mac OS X Terminal application and must be installed and executed using the command line interface. [Additional Information](#)

Mac OS X Intel 64 bit
- Macintosh Intel-based systems (x64_64) built on Darwin 9. Please note that this is a Mac OS X Terminal application and must be installed and executed using the command line interface. [Additional Information](#)

Mac OS X PPC
- Macintosh PowerPC-based systems for G4/G5 processors (ppc_fat) built on Darwin 8.4. Please note that the current GAMS distribution for Mac OS X PPC is 23.3.3 and that this is a Mac OS X Terminal application and must be installed and executed using the command line interface. [Additional Information](#)

Solaris SPARC 32 bit
- Solaris 2.8 or higher on SUN Sparc (sparc_32). Missing Fortran Run-Time Environment?

Solaris SPARC 64 bit
- Solaris 2.8 or higher on SUN Sparc (sparc_64)

Solaris x64 64 bit
- Solaris 10 or higher on AMD- or Intel-based 64-bit (x64_64)

Please also visit the information about the distribution history, changes, and incremental updates. For older distributions please follow this link. There are some mailing lists, which will inform you about forthcoming releases, provide additional information, and are useful for questions about GAMS and modeling issues.
New GAMS Distribution 23.5 cont’d

- **Solver updates**
 - BARON 9.0.6
 - CPLEX 12.2
 - GUROBI 3.0.1
 - LINDOGLOBAL 6.1.1
 - MOSEK 6
 - SCIP 1.2
 - XPRESS 20.00
 - Coin-OR
 (CBC 2.4, Bonmin 1.3, Couenne 0.3, Ipopt 3.8, Glpk 4.43, OS 2.1)

- **New platforms**
 - 64bit Intel Mac
 - 64bit AIX
New GAMS Distribution 23.5 cont’d

- Free Coin-OR OSI-based links to CPLEX, GUROBI, MOSEK and XPRESS

- GAMS on Amazon EC2

- **GAMS API’s**
 - Improvements on all frontiers
 - Now supported: Python
 - Examples/Documentation
 - Project and configuration files

- ...
Interfacing: GAMS in Control

GAMS Model

Direct GDX Interface
External Database

Import

Direct GDX Interface
External Database

Export

GUIs
Interfacing: Application in Control

Application

GDX API
GDX Container
Creating Input

GAMS (Executable / DLL)
Call GAMS

GDX API
GDX Container
Reading Solution
GAMS Application Programming Interfaces

GAMS in Control vs. Application in Control

- Need to support a variety of applications
 - Web application (server side)
 - Application Builder
 - Oracle, Eclipse, .NET, ...
 - Regular Programming language C(++), C#, Java, VB, Fortran, Python, ...
 - MS Office Application / VBA
Calling GAMS from your Application

Creating Input for GAMS Model
- Data handling using **GDX** API

Callout to GAMS
- GAMS option settings using **Option** API
- Starting GAMS using **GAMS** API

Reading Solution from GAMS Model
- Data handling using **GDX** API
Calling GAMS from Python

```python
if __name__ == "__main__":

    numberParams = len(sys.argv)
    if numberParams != 2:
        print "Usage:", sys.argv[0], "sysDir"
        os._exit(1)

    gdxHandle = new_gdxHandle_tp()
    optHandle = new_optHandle_tp()
    gamsxHandle = new_gamsxHandle_tp()

    sysDir = sys.argv[1]
    print sys.argv[0], "using GAMS system directory:", sys.argv[1]

    assert gamsxCreateD(gamsxHandle, sysDir, GMS_SSSIZE)[0]
    assert gdxCreateD(gdxHandle, sysDir, GMS_SSSIZE)[0]
    assert optCreateD(optHandle, sysDir, GMS_SSSIZE)[0]

    status = writeModelData(gdxHandle, "demanddata.gdx")
    if not status:
        print("Model data not written")
        terminate(gdxHandle, gamsxHandle, optHandle)

    status = callGams(gamsxHandle, optHandle, sysDir)
    if not status:
        print("Call to GAMS failed")
        terminate(gdxHandle, gamsxHandle, optHandle)

    status = readSolutionData(gdxHandle, "results.gdx")
    if not status:
        print("Could not read solution back")
    terminate(gdxHandle, gamsxHandle, optHandle)
```

Creating Input for GAMS Model

Callout to GAMS

Reading Solution from GAMS Model
Creating Input for GAMS Model

```python
def writeModelData(gdxHandle, fngdxfile):
    ret, errNr = gdxOpenWrite(gdxHandle, fngdxfile, "Example1")
    if errNr:
        print("*** Error gdxOpenWrite: " + gdxErrorStr(gdxHandle, errNr)[1])
        return False
    if not gdxDataWriteStrStart(gdxHandle, "Demand", "Demand data", 1, GMS_DT_PAR, 0):
        reportGDXError(gdxHandle, "DataWriteStrStart")
    values = doubleArray(GMS_VAL_MAX)
    values[GMS_VAL_LEVEL] = 324.0
    gdxDataWriteStr(gdxHandle, ["New-York"], values)
    values[GMS_VAL_LEVEL] = 299.0
    gdxDataWriteStr(gdxHandle, ["Chicago"], values)
    values[GMS_VAL_LEVEL] = 274.0
    gdxDataWriteStr(gdxHandle, ["Topeka"], values)
    if not gdxDataWriteDone(gdxHandle):
        reportGDXError(gdxHandle, "WriteData")
    errNr = gdxGetLastError(gdxHandle)
    if errNr:
        print("*** Error while writing GDX File: " + gdxErrorStr(gdxHandle, errNr)[1])
        return False
    errNr = gdxClose(gdxHandle)
    if errNr:
        print("*** Error gdxClose: " + gdxErrorStr(gdxHandle, errNr)[1])
        return False
    return True
```
Calling GAMS from Python cont’d

```python
def callGams(gamsxHandle, optHandle, sysDir):
    deffile = sysDir + "\optgams.def"
    if optReadDefinition(optHandle, deffile):
        print "*** Error ReadDefinition, cannot read def file:" + deffile
        return False

    optSetStrStr(optHandle, "SysDir", sysDir)
    optSetStrStr(optHandle, "Input", "model2.gms")
    optSetIntStr(optHandle, "LogOption", 3)
    ret = gamsxRunExecDLL(gamsxHandle, optHandleToPtr(optHandle), sysDir, 1)
    if ret[0] != 0:
        print "*** Error RunExecDLL: Error in GAMS call = " + str(ret[1])
        return False

    return True
```

Callout to GAMS
Calling GAMS from Python cont’d

Reading Solution from GAMS Model

def readSolutionData(gdxHandle, fngdxfile):
 errNr = gdxOpenRead(gdxHandle, fngdxfile)[1]
 if errNr:
 print "**** Error OpenRead: " + gdxErrorStr(gdxHandle, errNr)[1]
 return False

 ret, varNr = gdxFindSymbol(gdxHandle, "result")
 if not ret:
 print "*** Error FindSymbol: Could not find variable result"
 return False

 ret, symName, dim, varType = gdxSymbolInfo(gdxHandle, varNr)
 if dim != 2 or varType != GMS_DT_VAR:
 print "**** Error SymbolInfo: result is not a a two dimensional variable"
 return False

 ret, nrRecs = gdxDataReadStart(gdxHandle, varNr)
 if not ret:
 reportGDXError(gdxHandle, "DataReadStart")
 return False

 ...
Calling GAMS from Excel (VBA)
The GAMS Macro Facility

- **Basic Definition**
 - \$macro name macro body
 - \$macro name(arg1,...) macro body with tokens arg1,...

- **Multi-Argument Example**

 \$macro ratio(a,b) a/b

 \[z = ratio(x1,x2); \]

 \[z = x1/x2; \]

- **Macros within Macros**

 \$macro product(a,b) a*b

 \$macro addup(i,x,z) sum(i,product(x(i),z))

 \[z = addup(j,a1,x1); \]

 \[z = sum(j,a1(j)*x1); \]
The GAMS Macro Facility (contd.)

- Careful expansion (&)

  ```
  $macro f(i)  sum(j, x(i,j))
  $macro equ(q) equation equ_&q; equ_&q.. q =e= 0;
equ(f(i))
  => equation equ_f(i); equ_f(i).. sum(j, x(i,j)) =e= 0;
  ```

- Removing outer set of quotes (&&)

  ```
  $macro d(q) display &&q;
d('"here it is", i, k')
  => display "here it is", i, k;
  
  $macro dd(q) &&q)
z=dd('sum(j,a1(j)');
  => z=sum(j,a1(j));
  ```
Enhanced Data Statements

- Allow initial values for equations and variables
- Follow the syntax for list and table data statement for parameters by adding an additional dimension to specify the specific data attribute

Variable table \(x(i,j) \) initial values

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>seattle. new-york</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>seattle. Chicago</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>seattle. topeka</td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>san-diego. new-york</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>san-diego. Topeka</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>san-diego.chicago</td>
<td>0.009</td>
<td>;</td>
</tr>
</tbody>
</table>
Matrix Utilities

- **INVERT**
 - Calculates the inverse of a matrix

- **CHOLESKY**
 - Computes the Cholesky factors of a symmetric positive-definite matrix

- **EIGENVALUE**
 - Computes the eigenvalues of a symmetric matrix

- **EIGENVECTOR**
 - Computes the eigenvalues and eigenvectors of a symmetric matrix
How to stay Up To Date

http://www.gams.com/maillist/

The GAMS Mailing List

GAMS users worldwide use the list name GAMS-L to exchange information about GAMS. GAMS-L is open to everyone around the world and can easily be reached via the internet.

Subscribe (and more information)

Bruce McCarl's GAMS Newsletter

With his newsletter Bruce McCarl wants to provide some additional information on the use and features which emerge as GAMS develops. He intends to periodically issue a very short newsletter that informs people of things that are new and or under documented as well as opportunities to learn more about GAMS features and usage.

Archive/Subscribe/Unsubscribe

The GAMS Release Mailing List

For people interested in receiving the latest information about new GAMS releases and trying out beta releases.

Subscribe/Unsubscribe

Please visit us at our booth in the exhibit area!
Contacting GAMS

Europe

GAMS Software GmbH
Eupener Str. 135-137
50933 Cologne
Germany

Phone: +49 221 949 9170
Fax: +49 221 949 9171
http://www.gams.de

info@gams.de

USA

GAMS Development Corp.
1217 Potomac Street, NW
Washington, DC 20007
USA

Phone: +1 202 342 0180
Fax: +1 202 342 0181
http://www.gams.com

sales@gams.com
support@gams.com