Computational Experience with Logmip
Solving Linear and Nonlinear
Disjunctive Programming Problems

Aldo Vecchietti, INGAR – Instituto de Desarrollo y Diseño
E-mail:aldovec@ceride.gov.ar
Ignacio E. Grossmann, Carnegie Mellon University,
E-mail: grossmann@cmu.edu
Alexander Meeraus, GAMS Development
E-mail:alex@gams.com
Motivation

- Modeling framework for facilitating the formulation of models that can be expressed in terms of algebraic, disjunctive and symbolic logic expressions.

- Language compiler within GAMS for disjunctions expressions, logic constraints and logic propositions.

- Solution algorithms and techniques for solving linear /nonlinear disjunctive programming problems.
Generalized Disjunctive Programming (GDP)

- Raman and Grossmann (1994)

\[
\begin{align*}
\min & \quad Z = \sum_k c_k + f(x) \\
\text{s.t.} & \quad r(x) \leq 0 \\
& \quad \begin{bmatrix}
Y_{jk} \\
g_{jk}(x) \leq 0 \\
c_k = \gamma_{jk}
\end{bmatrix}, \quad k \in K \\
& \quad \Omega(Y) = \text{true} \\
& \quad x \in \mathbb{R}^n, \quad c_k \in \mathbb{R}^1 \\
& \quad Y_{jk} \in \{\text{true, false}\}
\end{align*}
\]

Objective Function
Common Constraints
Disjunction
Constraints
Fixed Charges
Logic Propositions
Continuous Variables
Boolean Variables

Relaxation?
Big-M MINLP (BM)

- MINLP reformulation of GDP

\[
\begin{align*}
\text{min } Z &= \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} y_{jk} + f(x) \\
\text{s.t. } r(x) &\leq 0 \\
g_{jk}(x) &\leq M_{jk} (1 - y_{jk}) , j \in J_k, k \in K \\
\sum_{j \in J_k} y_{jk} &= 1, \quad k \in K \\
\quad Ay &\leq a \\
\quad x &\geq 0, \quad y_{jk} \in \{0, 1\}
\end{align*}
\]

NLP Relaxation

\[
0 \leq y_{jk} \leq 1
\]
Convex Hull Formulation

- **Consider Disjunction** \(k \in K \)

\[
\begin{bmatrix}
Y_{jk} \\
g_{jk}(x) \leq 0 \\
c = \gamma_{jk}
\end{bmatrix}
\]

- **Theorem: Convex Hull of Disjunction** \(k\) *(Lee, Grossmann, 2000)*
 - **Disaggregated variables** \(v^j \)
 \[
 \{(x, c) \mid x = \sum_{j \in J_k} v^j, \quad c = \sum_{j \in J_k} \lambda_{jk} \gamma_{jk},

 0 \leq v^j \leq \lambda_{jk} U_{jk}, \quad j \in J_k

 \sum_{j \in J_k} \lambda_{jk} = 1, \quad 0 < \lambda_{jk} \leq 1,

 \lambda_{jk} g_{jk}(v^j / \lambda_{jk}) \leq 0, \quad j \in J_k\}

 - \(\lambda_j \) - weights for linear combination

- Generalization of Stubbs and Mehrotra (1999)
Convex Relaxation Problem (CRP)

CRP:

$$\text{min } Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} \lambda_{jk} + f(x)$$

$$s.t. \quad r(x) \leq 0$$

$$x = \sum_{j \in J_k} v_{jk}, k \in K$$

$$0 \leq v_{jk} \leq \lambda_{jk} U_{jk}, j \in J_k, k \in K$$

$$\sum_{j \in J_k} \lambda_{jk} = 1, k \in K$$

$$\lambda_{jk} g_{jk} (v_{jk} / \lambda_{jk}) \leq 0, \quad j \in J_k, k \in K$$

$$A \lambda \leq a$$

$$x, v_{jk} \geq 0, 0 \leq \lambda_{jk} \leq 1, \quad j \in J_k, k \in K$$

Property: The NLP (CRP) yields a lower bound to optimum of (GDP).

Remark: MINLP reformulation by setting $\lambda_{jk} = 0,1$
Theorem: The relaxation of (CRP) yields a lower bound that is greater than or equal to the lower bound that is obtained from the relaxation of problem (BM):

\[
\text{RBM: } \quad \min Z = \sum_{k \in K} \sum_{j \in J_k} \gamma_{jk} y_{jk} + f(x) \\
\text{s.t. } \quad r(x) \leq 0 \\
g_{jk}(x) \leq M_{jk} (1 - y_{jk}) \quad j \in J_k, k \in K \\
\sum_{j \in J_k} y_{jk} = 1, \quad k \in K \\
Ay \leq a \\
x \geq 0, \quad 0 \leq y_{jk} \leq 1
\]
Methods Generalized Disjunctive Programming

GDP

Logic based methods

Branch and bound
(Lee & Grossmann, 2000)

Decomposition
Outer-Approximation
Generalized Benders
(Turkay & Grossmann, 1997)

Reformulation MI(N)LP

Outer-Approximation
Generalized Benders
Extended Cutting Plane

Convex-hull Big-M
Cutting plane
(Sawaya & Grossmann, 2004)

LogMIP
LogMIP Language Syntax

Properties of LogMIP language
- Simple syntax
- Semantic close to disjunction expression to model blocks, exclusive between them
- The syntax must be known for a regular user
- The syntax construction must allow the definition of embedded disjunctions

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>< ></td>
<td>The phrase enclosed is a syntactic rule</td>
</tr>
<tr>
<td>Word</td>
<td>Token</td>
</tr>
<tr>
<td>[]</td>
<td>Optional expression</td>
</tr>
<tr>
<td>{ }</td>
<td>Expression that can be repeated</td>
</tr>
<tr>
<td>()</td>
<td>Expression enclosed can be grouped</td>
</tr>
<tr>
<td>::=</td>
<td>Define like</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rules describing LogMIP syntax

<LOGMIP Model> ::=<Disjunction Declaration> {; <LogMIP Model>} | <Disjunction Definition> {; <LogMIP Model>} ;
<Disjunction Declaration> ::=disjunction identifier {, identifier} ;
<Disjunction Definition> ::=disjunction identifier is <If Sentence> ;
<If Sentence> ::=if <condition> then <components> else <components> end if ;
| if <condition> then <components> {elsif <condition> then <components>} end if ;
| entity {; entity} [; <If Sentence>] ;
Examples

Modeling two terms disjunction

\[
\begin{bmatrix}
\text{True} \\
\text{Constraint } 1
\end{bmatrix} \lor
\begin{bmatrix}
\text{False} \\
\text{Constraint } 2
\end{bmatrix}
\]

IF (condition\(_1\)) THEN
Constraints to be considered when condition\(_1\) is True
ELSE
Constraints to be considered when condition\(_1\) is False
END IF

Modeling a multi-term disjunction

\[
\begin{bmatrix}
1 \\
\text{Constraints } 1
\end{bmatrix} \lor
\begin{bmatrix}
2 \\
\text{Constraints } 2
\end{bmatrix} \lor \ldots \lor
\begin{bmatrix}
N \\
\text{Constraints } N
\end{bmatrix}
\]

IF (condition\(_1\)) THEN
Constraints to be considered when condition\(_1\) is True
ELSIF (condition\(_2\)) THEN
Constraints to be considered when condition\(_1\) is True
ELSIF (condition\(_3\)) THEN
...
ELSIF (condition\(_N\)) THEN
Constraints to be considered when condition\(_1\) is True
END IF
Small Example

\[\min c + 2x_1 + x_2 \]

s.a.:

\[
\begin{bmatrix}
Y_1 \\
-x_1 + x_2 + 2 \leq 0 \\
c = 5
\end{bmatrix} \lor \begin{bmatrix}
Y_2 \\
2 - x_2 \leq 0 \\
c = 7
\end{bmatrix}
\]

\[
\begin{bmatrix}
Y_3 \\
x_1 - x_2 \leq 1
\end{bmatrix} \lor \begin{bmatrix}
\neg Y_3 \\
x_1 = 0
\end{bmatrix}
\]

\[
Y_1 \land \neg Y_2 \Rightarrow \neg Y_3 \\
\neg(Y_2 \land Y_3)
\]

\[
0 \leq x_1 \leq 5 \quad 0 \leq x_2 \leq 5 \quad c \geq 0
\]

\[Y_j \in \{true, false\}, j = 1, 2, 3 \]
$ONTEXT BEGIN LOGMIP

DISJUNCTION D1, D2;
D1 IS
IF Y('1') THEN
 EQUAT1;
 EQUAT2;
ELSIF Y('2') THEN
 EQUAT3;
 EQUAT4;
ENDIF;
Y('1') and not Y('2') -> not Y('3');
Y('2') -> not Y('3') ;
Y('3') -> not Y('2') ;

$OFFTEXT END LOGMIP

OPTION MIP=LOGMIPM;
MODEL PEQUE /ALL/;
SOLVE PEQUE USING MIP MINIMIZING Z;

SET I /1*3/;
SET J /1*2/;
BINARY VARIABLES Y(I);
POSITIVE VARIABLES X(J), C;
VARIABLE Z;
EQUATIONS EQUAT1, EQUAT2, EQUAT3,
 EQUAT4, EQUAT5, EQUAT6,
 DUMMY, OBJECTIVE;

EQUAT1.. X('2')- X('1') + 2 =L= 0;
EQUAT2.. C =E= 5;
EQUAT3.. 2 - X('2') =L= 0;
EQUAT4.. C =E= 7;
EQUAT5.. X('1')-X('2') =L= 1;
EQUAT6.. X('1') =E= 0;
DUMMY.. SUM(I, Y(I)) =G= 0;

OBJECTIVE.. Z =E= C + 2*X('1') + X('2');
X.UP(J)=20;
C.UP=7;

GAMS
Recent developments

- Disjunctions specified with IF Then ELSE statements

```
DISJUNCTION D1(I,K,J);
D1(I,K,J)
    with (L(I,K,J)) IS
IF Y(I,K,J) THEN
    NOCLASH1(I,K,J);
ELSE
    NOCLASH2(I,K,J);
ENDIF;
```

- Logic can be specified in symbolic form (⇒, OR, AND, NOT) or special operators (ATMOST, ATLEAST, EXACTLY)
- Linear case: MILP reformulation big-M, convex hull
- Nonlinear: Logic-based OA
LogMIP Compiler Architecture

MBL Compiler -> Lexer -> Parser -> Semantic Analizer -> Model Composer -> Logic Extractor

Input File

Errors Manager

Errors Manager

LogMIP Symbol Table

LogMIP Solver

Solution

Filter

Pipe

GAMS
Problem statement: *Hifi (1998)*

- Given a set of small rectangles with width w_i and length l_i.
- Large rectangular strip of fixed width W and unknown length L.
- Objective is to fit small rectangles onto strip without overlap and rotation while minimizing length L of the strip.

![Diagram of strip-packing problem](image)
GDP Model For Strip-packing Problem

Objective function
Minimize length

Disjunctive constraints
No overlap between rectangles

Bounds on variables

<table>
<thead>
<tr>
<th>Expression</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min lt</td>
<td>Minimize length</td>
</tr>
<tr>
<td>$st. \quad lt \geq x_i + L_i$</td>
<td>Subject to: lt is greater than or equal to $x_i + L_i$ for all $i \in N$</td>
</tr>
<tr>
<td>$x_i + L_i \leq x_j$</td>
<td>Disjunctive constraints: $x_i + L_i$ is less than or equal to x_j for all $i, j \in N, i < j$</td>
</tr>
<tr>
<td>$x_j + L_j \leq x_i$</td>
<td></td>
</tr>
<tr>
<td>$y_i - H_i \geq y_j$</td>
<td></td>
</tr>
<tr>
<td>$y_j - H_j \geq y_i$</td>
<td></td>
</tr>
<tr>
<td>$x_i \leq UB_i - L_i$</td>
<td>Bounds on variables: x_i is less than or equal to $UB_i - L_i$ for all $i \in N$</td>
</tr>
<tr>
<td>$H_i \leq y_i \leq W$</td>
<td></td>
</tr>
</tbody>
</table>

$lt, x_i, y_i \in \mathbb{R}_+ \ , \ Y_{ij}^1, Y_{ij}^2, Y_{ij}^3, Y_{ij}^4 \in \{True, False\}$

For all $i, j \in N, i < j$
- Set of jobs $i \in I$ must be processed sequentially on a set of consecutive stages $j \in J$.
 - All jobs can be sequenced on a subset of stages $j \in J(i)$.
 - Zero-wait transfer is assumed between stages.
- Objective is to obtain a schedule that *minimizes makespan*.

![Diagram of stages with A and B tasks]

Stage 1
```
A | B
---|---
```

Stage 2
```
   | B
---|---
```

Stage 3
```
A | B
---|---
```
GDP Model For
Zero-wait Job-shop Scheduling Problem

\[
\begin{align*}
\text{Min} & \quad m_s \\
\text{s.t.} & \quad m_s \geq t_i + \sum_{j \in J(i)} TAU_{ij} \quad \forall i \in I \\
& \quad t_j + \sum_{m \in J(j)} TAU_{jm} \leq t_k + \sum_{m \in J(k)} TAU_{km} \quad \forall j \in C_{ik}, \forall i, k \in I, i < k
\end{align*}
\]

Objective function
Minimize makespan

Disjunctive constraints
No clashes between jobs

\[m_s, t_j \in \mathbb{R}_+, Y_{ik}^1, Y_{ik}^2 \in \{True, False\} \quad \forall i, k \in I, i < k\]
Retrofit Planning Problem

Problem Statement: *Jackson J. & Grossmann I.E. (2002)*

- Retrofit: Redesign of existing plant.
 - Improvements such as higher yield, increased capacity, energy reduction.
- Objective is to identify modifications that maximize economic potential, given time horizon and limited capital investments.
GDP Model For Retrofit Planning Problem

Objective function
Maximize economic potential

Common constraints
Mass balances

Disjunctive constraints
Conversion/Capacity scenarios

Disjunctive constraints
Energy reduction scenarios

Common constraint
Investment limit

Logic constraints
Connect disjunctions
Computational Results

Linear Disjunctive Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th># disc. var.</th>
<th># var.</th>
<th># Equat.</th>
<th>CPU BigM (sec.)</th>
<th>iter. BigM</th>
<th>nodes BigM</th>
<th>CPU CH (sec.)</th>
<th>iter CH</th>
<th>nodes CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>cut-1</td>
<td>24</td>
<td>34</td>
<td>30</td>
<td>0.05</td>
<td>64</td>
<td>32</td>
<td>0.11</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>cut-2</td>
<td>180</td>
<td>202</td>
<td>236</td>
<td>7.19</td>
<td>29,196</td>
<td>4673</td>
<td>43.78</td>
<td>44,434</td>
<td>873</td>
</tr>
<tr>
<td>jobshop-1</td>
<td>12</td>
<td>21</td>
<td>13</td>
<td>0.05</td>
<td>5</td>
<td>0</td>
<td>0.001</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>jobshop-2</td>
<td>245</td>
<td>253</td>
<td>78</td>
<td>0.16</td>
<td>341</td>
<td>86</td>
<td>0.93</td>
<td>2155</td>
<td>200</td>
</tr>
<tr>
<td>jobshop-3</td>
<td>320</td>
<td>319</td>
<td>219</td>
<td>3.57</td>
<td>10,034</td>
<td>2209</td>
<td>154.45</td>
<td>207,605</td>
<td>20,600</td>
</tr>
<tr>
<td>jobshop-4</td>
<td>125</td>
<td>131</td>
<td>106</td>
<td>0.11</td>
<td>288</td>
<td>55</td>
<td>2.25</td>
<td>3035</td>
<td>299</td>
</tr>
<tr>
<td>retrofit</td>
<td>72</td>
<td>160</td>
<td>211</td>
<td>0.72</td>
<td>1449</td>
<td>136</td>
<td>0.11</td>
<td>122</td>
<td>0</td>
</tr>
<tr>
<td>retrofitNS</td>
<td>336</td>
<td>1685</td>
<td>2935</td>
<td>1810.11</td>
<td>6,995,748</td>
<td>494,291</td>
<td>2.08</td>
<td>3019</td>
<td>18</td>
</tr>
<tr>
<td>pipeline</td>
<td>387</td>
<td>1640</td>
<td>3385</td>
<td>327.52</td>
<td>89,820</td>
<td>13,657</td>
<td>940.65</td>
<td>420,574</td>
<td>23,750</td>
</tr>
</tbody>
</table>

Performance of big-M and Convex Hull (CH) is problem dependent

CPLEX 7.5
Computational Results

Nonlinear Disjunctive Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th># disc. var.</th>
<th># var.</th>
<th># Equat.</th>
<th># nlp initial.</th>
<th># nlp total</th>
<th># master</th>
<th>CPU master (sec.)</th>
<th>CPU nlp (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 processes</td>
<td>8</td>
<td>42</td>
<td>70</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1.2</td>
<td>0.22</td>
</tr>
<tr>
<td>batch-design</td>
<td>54</td>
<td>113</td>
<td>217</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.82</td>
<td>0.18</td>
</tr>
<tr>
<td>spectroscopy</td>
<td>30</td>
<td>99</td>
<td>162</td>
<td>1</td>
<td>14</td>
<td>14</td>
<td>1.71</td>
<td>0.74</td>
</tr>
<tr>
<td>methanol</td>
<td>17</td>
<td>310</td>
<td>557</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>0.55</td>
<td>1.27</td>
</tr>
</tbody>
</table>

Logic-based Outer-Approximation (CPLEX 7.5/CONOPT)
Conclusions

1. LogMIP provides unique capability for formulating and solving discrete/continuous optimization problems (GDPs) in GAMS environment:
 - Handling disjunctions
 - Handling symbolic logic propositions

2. Numerical results show following:
 - For linear GDPs performance of big-M and convex hull is problem dependent
 - For nonlinear GDPs robustness increased with logic-based outer-approximation

3. Future work:
 - Extend big-M and convex hull reformulation to nonlinear GDPs
 - Branch and bound for linear and nonlinear GDPs

LogMIP can be downloaded from http://www.ceride.gov.ar/logmip/