Linking GAMS to Solvers
Using COIN-OSI

Michael Bussieck
Steve Dirkse
GAMS Development Corporation

INFORMS - Denver
October 24-27, 2004
Outline

• Background & motivation
• Common agenda: COIN & GAMS
• GAMS/COIN links
 – Helper class for GAMS models
 – Requirements for GAMS solvers
• Future work
 – Nonlinear extensions
 – Model interface in addition to solver
Background

• GAMS has been and remains *user-focused*
 – User needs trump solver conventions
 – Focus on the model, not on the solver

• Typical user expectations:
 – “out-of-the-box” installation
 – GAMS solver conventions (e.g. optcr, reslim)
 – Tech support when things don’t work well
Why add COIN?

• Offer something to non-typical users
 – Willing & able to build solvers themselves
 – Don’t require GAMS conventions or support
• Does not destroy existing markets
 – Preserves the value of our existing systems
• Can be done easily
• A good start on further development
• Accelerate the pace of R&D
 – Reuse instead of reinvent.
 – Reduce dev. time & increase robustness.
 – Increase interoperability (open standards).

• Define standards and interfaces
 – Peer reviewed and freely available

• Provide tools for practitioners
Reuse? What’s that?!?

Solver links
- Baron
- ...
- ...
- Zoom
- (59 total)

Solver Libraries
- CONOPT
- MINOS
- SNOPT
- PATH
- MILES
- CPLEX
- OSL
- XPRESS

Library Interfaces
- Fortran I/O Library
- C I/O Library
- Delphi I/O Library
GAMS Agenda

• Eliminate redundant I/O libraries
• Find and eliminate common link code
 – Move code into I/O library
 – Optional presolving layer
 – More uniform interface to solvers

• Requires solver interface standards
 – Must be done by the algorithm R&D groups
 – We can facilitate this, bring them together
GAMS’ Open Stance

- Our approach is an open one
- Independent Modeling System
 - Solvers from different vendors, multiple platforms
- GAMS fits into larger projects, doesn’t dictate
 - One piece of the puzzle
 - We must work well with other software
 - Interface with other data sources and formats
 - Can be driver or driven
- Translation tools to and from GAMS
GAMS/COIN links

- Included in the GAMS CD
 - CoinGLPK
 - CoinSBB
- Source and build instructions available
 - Required/libs available from GAMS
 - Migration to COIN repository ongoing
• Current builds: Windows and Linux
 – Other (GAMS) platforms should work as well
 – Windows build uses MinGW and MSYS
• Links are very lightweight
 – Primarily use generic (OSI) interface.
• Link source to be freely available (CPL?)
• Use a helper class GamsModel
 – Also to be available under CPL
 – Insulate link from GAMS details and changes
GamsModel class

- Model class for LP and MIP problems
- Encapsulate *most* of what is GAMS-specific
 - Problem data (matrix, bounds, integer types)
 - Objective function versus objective variable
 - Algorithm parameters (iterlim, ??)
 - Input/output conventions
- Use C++ to interface with COIN-OSI
- Use OSI compatible data structures (matrix)
What’s missing?

• Time limit
 – All GAMS solvers honor a time limit
 – Links use solver-dependent layer for this
• “Best bound” and optcr – the GAMS way
 – Solver links monitor progress of B&B search
 – Quit when incumbent is within optcr of the best bound
 – Return status that indicates this condition – distinct from proven optimality
• Other GAMS controls not implemented
 – MIP: cutoff, cheat, priorities, optca, nodlim
 – Option file (default solver options only)
• A facility to query a COIN-OSI solver re: its capabilities would be useful
 – Allows for unimplemented options
 – Avoids the solver-dependent layer
 – Enforces uniformity of implemented options
• Similar for returns (e.g. node count, best bound)
Early success

• Client (OR consultant) developed cutting stock model for small business solution provider (cheap!)

• Reasons to implement this with GAMS
 – Cutting stock model in GAMS Model library
 – Excellent extended user support (modeling help)
 – Attractive pricing due to “free” GAMS/CoinSBB: $5,600 versus $17,850 (with GAMS/CPLEX)
Conclusions – current OSI

- Springboard for GAMS and COIN for further cooperation
- Working prototype of seamless connection between GAMS and OSI solvers
- "Trend setter" for other commercial problem providers:
 - MPL will also interface to OSI
LP vs. NLP

• Problem specification: what format?
• What does the solver see?
 – Point-based information (func, grad, hess)
 – More info needed for global solvers
• Must handle arithmetic errors (sqrt(-1))
 – Quit on first error or use non-stop arithmetic?
 – Helpful messages about errors are crucial
• Algorithmic issues
NLP Solvers

• Solver links more difficult to write/maintain
 – Not specific to the GAMS case
• Input format may be solver-specific
 – SIF, conic programming, callbacks, C/F77
 – Makes changing or adding solvers difficult
• Can the model be presolved?
 – May depend on problem format used
 – Presolving steps may change model structure
Difficulty = Opportunity

• OSI-NLP extensions could have great impact
• Improves area that needs it most
• GAMS interested in NLP standards
 – Reduce development/maintenance costs
 – Improve robustness and software quality
• Standards must be a cooperative effort
 – We have experience and links to developers
 – Large user base and model collections
Expert Users

• With interface to problem providers COIN could become the way of implementing complex algorithms (research & commercially)

• Sophisticated solvers use basic MP technology:
 – SBB (Arki/GAMS - B&B requiring NLP technology)
 – DICOPT (OA requiring NLP+MIP)
 – BARON (NLP+LP)
 – LogMip (NLP+MIP)
 – DEA (LP)
Architecture for Expert Users

Sophisticated Algorithm/Solver

Open Model Interface

Communication Corridor

Open Solver Interface

Other Basic MP Technology, e.g. Factorization

GAMS

AMPL

SIMPL

CONOPT

GLPK

XPRESS
Conclusions

• Overlap in COIN and GAMS agenda
• GAMS/COIN extends COIN user base
• Adds freebie solvers to GAMS solver stable
• Future work
 – Improved OSI MIP interface
 – Generic interface to problem providers
 – OSI NLP interface
• Potentially optimal architecture for expert users