Extended Mathematical Programming in GAMS

Jan-Hendrik Jagla
Michael Ferris
Alex Meeraus

jhjagla@gams.com
ferris@cs.wisc.edu
ameeraus@gams.com

GAMS Software GmbH
www.gams.de
GAMS Development Corp.
www.gams.com
Agenda

General Algebraic Modeling System

New Solution Concepts

Extended Mathematical Programming
Agenda

General Algebraic Modeling System
New Solution Concepts
Extended Mathematical Programming
GAMS at a Glance

General Algebraic Modeling System

- Roots: World Bank, 1976
- Went commercial in 1987
- GAMS Development Corp.
- GAMS Software GmbH
- Broad academic & commercial user community and network
GAMS at a Glance

General Algebraic Modeling System

- Algebraic Modeling Language
- 25+ Integrated Solvers
- 10+ Supported MP classes
- 10+ Supported Platforms
- Connectivity- & Productivity Tools
 - IDE
 - Model Libraries
 - GDX, Interfaces & Tools
 - Grid Computing
 - Benchmarking
 - Compression & Encryption
 - Deployment System
 - …
Agenda

- General Algebraic Modeling System
- New Solution Concepts
- Extended Mathematical Programming
Different layers with separation of

- model and data
- model and solution methods
- model and operating system
- model and interface
Current state: Model-Side

- Traditional problem format

\[\min_{x} c(x) \quad s.t. \quad A_1(x) \leq b_1, \ A_2(x) = b_2 \]

- Support for complementarity constraints

- Interactions between models possible
 - Series of models
 - Scenario analyses / parallelized model runs
 - Iterative sequential feedback
 - Decomposition
Current state: Solver-Side

Support of a wide collection of established MP classes through solver cluster!

- Tremendous algorithmic and computational progress
 - LP
 - In fact only restricted by available memory
 - MIP
 - Some (academic) problems still unsolvable
 - Commercial problems mostly docile
 - NLP/MINLP
 - Predictions are problem and data specific, global vs. local solutions
Model Translation Tools

- **GAMS/Convert**
 - GAMS \rightarrow other formats/languages
 - Symbolic model translations and processing are very fast
 - Algebraic information still available ("source to source")
 - E.g.
 - **NLP2MCP**
 Converts non-integer model into a scalar MCP model
 - **CHull**
 Creates the convex hull of a (nonlinear) disjunctive program
Extended Interface between Model & Solver

Solvers that are based upon reformulation

- **GAMS/DECIS**
 - solves two-stage stochastic linear programs with recourse
 - two-stage decomposition (Benders)
 - stores only one instance of the problem and generates scenario sub-problems as needed
 - solution Strategies (Universe problem/Importance sampling)

- **GAMS/NLPEC**
 - Solves MP with Equilibrium Constraints (MPECs) as NLPs
 - 20+ different reformulation strategies

- **GAMS/PATHNLP**
 - solves NLPs as MCPs
 - internal reformulation via KKT conditions
 - requires 1\text{st} and 2\text{nd} order derivatives
Extended Interface between Model&Solver

Hybrid Approaches

• traditional model representation
• additional information

– Mathematical Programming System for General Equilibrium analysis (MPSGE)

– Logical Mixed Integer Programming (LogMIP)
 • Reformulation and logic-based methods on Generalized Disjunctive Programs (GDP)

– Indicator constraints (CPLEX)
 • Alternative to conventional BigM formulations
New Solution Concepts

- Extended Nonlinear Programs
- Embedded Complementarity Systems
- Bilevel Programs
- Disjunctive Programs

- Breakouts of traditional MP classes
- No conventional syntax
- Limited support with common model representation
- Incomplete/experimental solution approaches
- Lack of reliable/any software
What now?

Do not:
• overload existing GAMS notation right away!
• attempt to build new solvers right away!

But:
• Use existing language features to specify additional model features
• Distribute information as part of the production system
• Express extended model in symbolic form and apply existing matured solution technology

⇒ Extended Mathematical Programming (EMP)
Agenda

- General Algebraic Modeling System
- New Solution Concepts
- Extended Mathematical Programming
GAMS “Solver” EMP

• Takes responsibility to offer translation services

• Uses existing language features to specify additional model features

• Expresses extended model in symbolic form and passes it to existing solution methods via embedded GAMS calls

• Reads solution back into original space

• Facilitates to write out the reformulated model (“Look and Feel”)
Extended Nonlinear Programming

Soft penalization of constraints

• Model:
 \[
 \begin{align*}
 \min_{x_1,x_2,x_3} & \quad \exp(x_1) \\
 \text{s.t.} & \quad \log(x_1) = 1 \\
 & \quad x_2^2 \leq 2 \\
 & \quad x_1/x_2 = \log(x_3), \: 3x_1 + x_2 \leq 5, \: x_1 \geq 0, \: x_2 \geq 0
 \end{align*}
 \]

• Additional information:

  ```
  $onecho > %emp.info%
  Adjustequ
  e1  sqr  5
  e2  MaxZ  2
  $offecho
  ```

• EMP Tool creates the NLP model (or the MCP via KKT):
 \[
 \begin{align*}
 \min_{x_1,x_2,x_3} & \quad \exp(x_1) + 5 \| \log(x_1) - 1 \|^2 + 2 \max(x_2^2 - 2, 0) \\
 \text{s.t.} & \quad x_1/x_2 = \log(x_3), \: 3x_1 + x_2 \leq 5, \: x_1 \geq 0, \: x_2 \geq 0
 \end{align*}
 \]
Embedded Complementarity Systems

• Models with side constraints/variables:

$$\min \limits_{x} f(x, y)$$

s.t. $$g(x, y) \leq 0 \quad (\perp \lambda \geq 0)$$

$$H(x, y, \lambda) = 0 \quad (\perp y \text{ free})$$

• Additional Information:

```plaintext
$onecho > %emp.info%
dualequ H y
dualvar \lambda g
$offecho
```

• EMP Tool creates the MCP model:

$$\nabla_x \mathcal{L}(x, y, \lambda) \quad \perp x \text{ free}$$

$$-\nabla_\lambda \mathcal{L}(x, y, \lambda) \quad \perp \lambda \geq 0$$

$$H(x, y, \lambda) = 0 \quad \perp y \text{ free}$$
ECS Example

- Rutherford, Thomas F. (http://www.mpsge.org/nlptarget/)

```gams
parameter
    kterm                          Terminal capital stock

UTIL1  UTILITY =E= SUM(t, 10 * dfactor(t) * L(t) * LOG(C(t)/L(t)));
CC(t)   C(t) =E= Y(t) - I(t);
YY(t)   Y(t) =E= phi * L(t)**(1-kvs) * K(t)**kvs;
KK(t)   K(t) =L= (1-delta)**i1U * K(t-1) + u0 * i(t-1) + kinit*trirst(t);
TERMCA1 kterm =E= SUM(tlast, (1-delta)**i0U * K(tlast) + 10 * I(tlast));

model ramsey NLP Model using parameter kterm /all/;

set iter /iter1*iter20/;

kterm = kinit * power(1+g, card(t));

parameter
    invest(t,iter) Investment in successive iterations
    kt(iter)       Terminal capital stock in successive iterations;

loop(iter,
    kt(iter) = kterm;
    solve ramsey maximizing UTILITY using NLP;
    invest(t,iter) = I.L(t);
    kterm = SUM(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));
);
```
EMP Formulation

*Substitute TERMCA of NLP by TERMCAV (using variable KTERMV instead of parameter kterm)
TERMCAV.. KTERMV =E= sum(tlast, (1-delta)**10 * K(tlast) + 10 * I(tlast));

*First-order-condition for terminal capital stock variable
SSTERM.. sum(tlast(t),I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;

model ramseynlpdf /UTIL,CC,YY,KK,TERMCAV,SSTERM/;

$onecho > %emp.info%
dualequ SSTERM KTERMV
$offecho

option nlp=emp;

solve ramseynlpdf maximizing UTILITY using nlp;

Extended Mathematical Programming (EMP)
--
--- EMP Summary (errors=0)
 Adjusted Equations = 0
 Dual Variable Maps = 0
 Dual Equation Maps = 1
 Bilevel Followers = 0
 Disjunctions = 0
--- The model C:\home\distrib\tvis_alpha\convtest\emp\225a\emp.scr will be solved by GAMS
Hierarchical Models

• Bilevel Program:

\[
\begin{align*}
\min_{x,y} & \quad f(x, y) \\
\text{s.t.} & \quad g(x, y) \leq 0, \\
& \quad y \text{ solves } \min_s v(x, s) \text{ s.t. } h(x, s) \leq 0
\end{align*}
\]

• Additional Information:

$\text{onecho > %emp.info%}$

Bilevel x min v h

offecho

• EMP Tool automatically creates an MPEC by expressing the lower level optimization problem through its optimality conditions
Bilevel Model


```gams
variables  z, x1, x2, x3, x4, h1, h2, u1, u2, u3, u4, v1, v2, v3, v4;
equations  defobj, defh1, defh2, a1, e1, e2;
defobj..  z  =e=  sqr(x1+x2-2)  +  sqr(x3+x4-2);
a1..  x1-x2  =e=  3;
defh1..  h1  =e=  sqr(u1-x1)  +  sqr(u2-x2)  +  sqr(u3-x3)  +  sqr(u4-x4);
e1..  3*u1 + u2 + 2*u3 + u4  =e=  6;
defh2..  h2  =e=  sqr(v1-x1)  +  sqr(v2-x2)  +  sqr(v3-x3)  +  sqr(v4-x4);
e2..  v1 + v2 + v3 + 2*v4  =e=  7;
model  bilevel / all /
```
EMP Information File + EMP Summary Log

```plaintext
option nlp=emp;

$onecho > %emp.info%
bilevel x1 x2 x3 x4
min h1 defh1 e1
min h2 defh2 e2
$offecho

solve bilevel us nlp min z;
```

Extended Mathematical Programming (EMP)
--
--- EMP Summary (errors=0)
 Adjusted Equations = 0
 Dual Variable Maps = 0
 Dual Equation Maps = 0
 Bilevel Followers = 2
 Disjunctions = 0
--- The model C:\home\distrib\tvis_alpha\convtest\emp\225a\emp.scr will be solved by GAMS

Disjunction Example

• Three jobs (A, B, C) must be executed sequentially in three steps, but not all jobs require all the stages. Once a job has started it cannot be interrupted.

• The objective is to obtain the sequence of task, which minimizes the completion time.

<table>
<thead>
<tr>
<th>Stage Job</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
Data Definition

\[
\begin{array}{ccc}
\text{table } p(j,s) & \text{processing time} \\
1 & 2 & 3 \\
A & 5 & 3 \\
B & 3 & 2 \\
C & 2 & 4 \\
\end{array}
\]

\text{alias (j,jj), (s,ss);}

\text{parameter } c(j,s) & \text{stage completion time} \\
& w(j,jj) & \text{maximum pair wise waiting time} \\
& pt(j) & \text{total processing time}; \\
\text{set } less(j,jj) & \text{upper triangle;}

\begin{align*}
c(j,s) &= \sum_{ss}(ss \leq (s), p(j,ss)); \\
w(j,jj) &= \max(s, c(j,s) - c(jj,s-1)); \\
pt(j) &= \sum(s, p(j,s)); \\
less(j,jj) &= \text{ord}(j) < \text{ord}(jj);
\end{align*}
Basic Model Definition

\begin{verbatim}
variables t completion time
 x(j) job starting time
positive variable x;

equations comp(j) job completion time
 seq(j,jj) job sequencing j before jj;

comp(j).. t =g= x(j) + pt(j);

seq(j,jj)$(not sameas(j,jj)).. x(j) + w(j,jj) =l= x(jj);
\end{verbatim}

Above equation is incomplete!

If (j,jj) is active then (jj,j) should be relaxed
Traditional BigM Formulation

binary variable y(j, jj) job precedence;

parameter big the famous big M;
big = sum(j, pt(j));
big=100000;

seq(j, jj) $(\text{not} \ sameas(j, jj)) ..

x(j) + w(j, jj) = l = x(jj) + big*(y(j, jj) $\text{less}(j, jj)
+ (1-y(jj, j))$\text{less}(jj, j));

model m / all /; m.optcr=0;
solve m using MIP minimizing t;
EMP Disjunction Formulation

seq(j,jj)$(\texttt{not} \ \texttt{sameas}(j,jj)).. \ x(j) + w(j,jj) =e= x(jj);

model m / all /

file emp / '%emp.info%' /; put emp ' * EMP for example 1';
loop(less(j,jj),
 put ' disjunction * ' seq.tn(j,jj) ' else ' seq.tn(jj,j));
putclose;

option mip=emp;

solve m using MIP minimizing t;

* EMP for example 1
 disjunction * seq('A','B') \texttt{ else seq('B','A')}
 disjunction * seq('A','C') \texttt{ else seq('C','A')}
 disjunction * seq('B','C') \texttt{ else seq('C','B')}
EMP Info Syntax Summary

- **AdjustEQU** `equ abs|sqr|maxz|huber|... { weight { param } }

- **DualEqu** `{equ var}
- **DualVar** `{var equ}

- **BiLevel** `{var} { MAX|MIN obj {equ} }

- **Disjunction** `[NOT] var|* {equ} { ELSEIF [NOT] var|* {equ} } [ELSE {equ}]`
Conclusion

EMP is

– an framework for automated symbolic reformulations
– non-exhaustive and experimental

EMP needs

– Input from other researchers !!
 • Automate further reformulation strategies
 – More of the same, boring to some, exiting to others
 – Concurrent strategies
 • Examples from existing publications
 – EMP Library
EMP promotes non-traditional MP classes through:

- Automation of symbolic reformulations to avoid error-prone and time-consuming manual algebra (re)writing
- Availability of theoretical benefits to users from a wide variety
- Solutions through established and powerful solution engines
- Availability of nonstandard model information to solver developers \rightarrow new algorithms/software?

\rightarrow bridge the gap between academia and industry
The GAMS Beta Distribution 22.8 is available for download

http://beta.gams-software.com

- New Solver Libraries, e.g.
 - CPLEX 11.1
 - Coin-OR Solvers
- Experimental solvers offering in-core communication
- Two new model libraries
- New utilities (gdx2xls, invert, xlstalk)
- …
Contacting GAMS

<table>
<thead>
<tr>
<th>Europe</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMS Software GmbH</td>
<td>GAMS Development Corp.</td>
</tr>
<tr>
<td>Eupener Str. 135-137</td>
<td>1217 Potomac Street, NW</td>
</tr>
<tr>
<td>50933 Cologne</td>
<td>Washington, DC 20007</td>
</tr>
<tr>
<td>Germany</td>
<td>USA</td>
</tr>
<tr>
<td></td>
<td>Phone: +1 202 342 0180</td>
</tr>
<tr>
<td></td>
<td>Fax: +1 202 342 0181</td>
</tr>
<tr>
<td>http://www.gams.de</td>
<td>http://www.gams.com</td>
</tr>
<tr>
<td>info@gams.de</td>
<td>sales@gams.com</td>
</tr>
<tr>
<td>support@gams-software.com</td>
<td>support@gams.com</td>
</tr>
</tbody>
</table>

Phone: +49 221 949 9170
Fax: +49 221 949 9171