High Throughput Computing and Sampling Issues for Optimization in Radiotherapy

Michael C. Ferris, University of Wisconsin
Alexander Meeraus, GAMS Development Corporation

Optimization Days, Montreal, May 2006
Outline

- Introduce a medical application
- Describe a sampling solution approach
- Convert the serial approach to parallel and/or distributed computing.
- Speculation about the resurrection of the service bureau
Cancer is the 2nd leading cause of death in U.S.
- Only heart disease kills more

Expected this year in the U.S. (American Cancer Society)
- New cancer cases = 1.33 million (> 3,600/day)
- Deaths from cancer = 556,500 (> 1,500/day)
- New brain/nerv. sys. cancer cases > 18,300 (> 50/day)

Cancer treatments: surgery, radiation therapy, chemotherapy, hormones, and immunotherapy
Radiation As Cancer Treatment

- Interferes with growth of cancerous cells
- Also damages healthy cells, but these are more able to recover
- **Goal:** deliver specified dose to tumor (PTV) while avoiding excess dose to healthy tissue and at-risk regions (organs)
Conformal Radiotherapy

- Fire from multiple angles
- Superposition allows high dose in target, low elsewhere
- Beam shaping via collimator
- Gradient across beam via wedges
Conformal Radiotherapy
Example
Beam’s eye view at a given angle is determined based upon the beam source that intersects the tumor.

The view is constructed using a multi-leaf collimator.
Wedges

- A metallic wedge filter can be attached in front of the collimator.
- It attenuates the intensity of radiation in a linear fashion from one side to other.
- Particularly useful for a curved patient surface

- 5 positions considered: Open, North, East, South, and West.
Sample Display
Notation

Dose delivered by a beam of unit weight to voxel \((i,j,k)\) by an angle \(A\)
Dose Distribution

- Experts determine an ideal dose distribution for a particular target
 - Covers target (tumor)
 - Limits radiation to healthy/at-risk regions
- Delivery plan = optimization problem
Patient Example

- Grey – prostate
- Pink – rectum
- Red - bladder
Cumulative Dose Volume

![Graph showing cumulative dose volume for different tissues: Prostate (blue), Bladder (red), Rectum (black), Normal (green).]
min

subject to

\[
\begin{align*}
\text{Dose}(i) &= \sum_A w_A \text{Dose}_A(i) \\
\text{Dose}(\text{Sens}(k)) &\leq U(k) \\
L &\leq \text{Dose}(\text{Target}) \\
w_A &\geq 0
\end{align*}
\]

plus some integrality constraints
\[
\psi_A = \begin{cases}
1 & \text{if use angle } A \\
0 & \text{else}
\end{cases}
\]

\[
0 \leq w_A \leq W \psi_A
\]

\[
\sum_A \psi_A \leq K
\]

\[
Dose(i) := \sum_A w_A D_A(i)
\]
Dose/Volume Constraints

- e.g. no more than 5% of region R can receive more than U Gy

\[
(\bar{U} - U) \text{Viol}(i) \geq \text{Dose}(i) - U
\]

\[
\sum_{R} \text{Viol}(i) \leq \frac{5|R|}{100}
\]

\[\text{Viol}(i) \in \{0, 1\}\]
Problems

- Large computational times
- Large variance in computing times
- Ineffective restarts (what if trials?)
- Large amounts of data

- Try sampling of voxels (size reduction)
- High level branching (choice reduction)
Solution Times

Pelvis example: solution times for various sample rates;
True Objective Values

Pelvis example: objective values for various sample rates;
Naïve sampling fails

- Normal tissue
 - Huge numbers of voxels
 - Streaking effects undesirable (hot spots)
 - Use 5x sample on 2nd largest structure

- Small structures
 - Minimum sample size

- Homogeneity/min/max on PTV
 - 2x sample on PTV, rind sampling

- Large gradients on OAR’s
 - 2x sample on OAR’s

- Need adaptive mechanism
Sampling Issues

- For Details see: Sampling Issues for Optimization in Radiotherapy, by Michael C Ferris, David Shepard, Rikhardur Einarsson and Ziping Jiang. Preprint from ferris@cs.wisc.edu).
- Three Phase adaptive Sampling proved to be very successful
- We will only hint at sampling issues
Processing Time
Angle Histograms

Angle histogram, 1% rate

Angle histogram, 9% rate

Angle histogram, 13% rate

Angle histogram, 21% rate
Three Phase Sampling

- Reduce solution time without compromising quality
- Phase I:
 - Sample 10 times at low rate to predict angles to use
 - Each structure sampled proportionally with largest structure sample limited
 - Determine angles used in “best few” solutions
- Phase II:
 - Increase sample rate, using only proposed angles
- Phase III:
 - Increase sample rate, fix angles and wedge orientations
Sampling Process

- Determine initial sample size
- Phase I: use all angles
 - 10 sample LP’s used to adapt sample
 - 10 adapted sample LP’s solutions determine
- Phase II: use reduced set of angles
 - 10 sample MIP’s determine
- Phase III: use further reduced set
 - Refine sample, solve single MIP, highly accurate solution
Patient Case Results

- **Head/neck case:**
 - Original time: 47,000 secs
 - Phase I time: 5.26 secs/sample
 - Phase II time: 51.21 secs/sample
 - Phase III time: 2.91 secs/sample
 - Solutions same: angles = 40, 140, 230 (+ wedges)

- **Pancreas case:**
 - Original time: 346,000 secs
 - Phase I time: 4 secs/sample
 - Phase II time: 77.31 secs/sample
 - Phase III time: 3.42 secs
 - Solutions same: angles = 80, 290, 350 (+ wedges)
Pelvis case

- 3K prostate, 1.5K bladder, 1K rectum, 557K normal
- Time for “full problem”: 12.5K secs
- Time Phase I: 32 secs/sample
- Time Phase II: 18 secs/sample
- Time Phase III: 147 secs
- Solution: 80, 110, 130, 240, 270, 320
Dose Histogram
Axial Slice
Key contributions

- Use multiple (small) samples and multiple phases to determine plan
- Adaptive sampling via linear program solution
- High level branching via multiple samples and ranking
- Significant time reductions without loss in quality
- Applicable to more general treatment planning domains, and MIP applications
Remaining Issues

- Overall solution times still high
- Would like to consider more angles
- Work with higher sampling rates
- Use more samples
- Exhausted smart modeling
- Considerer high throughput computing
- How to convert from serial to parallel and distributed computing
New Opportunities

- The original model was implemented in GAMS and used CPLEX
- GAMS introduced an experimental grid computing facility
- High Throughput Computing via the Condor system and the SUN Grid Engine connected to GAMS
- Multi CPU desktop systems available
What is Grid Computing?

- A pool of connected computers managed and available as a common computing resource
 - Allows parallel task execution
 - Allows effective sharing of CPU power
 - Licensing issues
 - Scheduler handles management tasks
 - Can be rented or owned in common
 - E.g. Condor, Sun Grid Engine, Globus
Economics of Grid Computing

- Yearly cost, 2-CPU workstation: $5200
 - Hardware - $1200
 - Software - $4000
- Hourly cost on the grid: $2
 - $1/hour for CPU time (to grid operator)
 - $1/hour for software (GAMS, model owner)
- 1 workstation == 50 hrs/week grid time
- Up-front vs. deferred, as-needed costs
Use a GAMS Grid

- Solve the samples in parallel, e.g.
 - 200 CPUs: 15 minutes
- Marginal cost is $100
- No programming required (almost)
- Model stays maintainable
- Separation of model and solution maintained
Results for 4096 MIPS

- Submission start Jan 11 at 16:00 pm
- All job submitted by Jan 11 at 23:00 pm
- All jobs returned by Jan 12, 12:40 pm
 - 20 hours wall time, 5000 CPU hours
 - Peak number of CPUs: 500
- Different Instance:
 - 24 hours wall time, 3000 CPU hours
loop(s,
 b(j) = dem(s,j);
 Solve tr using lp minimizing z;
 repx(s,i,j) = x.l(i,j);
 repy(s,'solvestat') = tr.solvestat;
 repy(s,'modelstat') = tr.modelstat);
parameter \(h(s) \) store the instance handle;

\[\text{tr.solveLink} = 3; \] // turn on grid option

loop(s,
 \[b(j) = \text{dem}(s,j) \]
 Solve \(\text{tr} \) using lp minimizing \(z \);
 \[h(s) = \text{tr.handle}; \] // save instance handle
Solution Collection Loop

Repeat

loop(s$h(s),

if(handlestatus(h(s))=2,

tr.handle = handle(s); execute_loadhandle tr;
repx(s,i,j) = x.l(i,j); repy(s,'solvestat') = tr.solvestat;
repy(s,'modelstat') = tr.modelstat;
display$hhandledelete(h(s)) 'Could not remove handle';
h(s) = 0)) ; // indicate solution is loaded

if(card(h), execute 'sleep 1');

until card(h) = 0 or timeelapsed > 100;
Grid Specifics Scripts

echo "#!/bin/bash" > ${3}runit.sh
echo $1 $2 >> ${3}runit.sh
echo gmscr_ux.out $2 >> ${3}runit.sh
echo mkdir ${3}finished >> ${3}runit.sh
cmod 750 ${3}runit.sh
${3}runit.sh > /dev/null &
@echo off
echo %1 %2 >> %3runit.cmd
gmscr_nx.exe %2 >> %3runit.cmd
echo mkdir %3finished >> %3runit.cmd
start /b /BELOWNORMAL %3runit.cmd > nul
Conclusions

- Massive parallel and distributed computing environments are becoming available (SUN just introduced a 5000 node network in the US).
- Simple language extensions in existing modeling systems provide easy access.
- Today's modeling languages are well suited to experiment with coarse grain parallel approaches for solving difficult problem.