Optimization under Uncertainty using GAMS: Success Stories and some Frustrations

Franz Nelißen
GAMS Software GmbH

F Nelissen@gams.com

GOR Workshop “Optimization under Uncertainty”
Bad Honnef, Germany, October 20-21, 2005
Overview

- Algebraic Modeling Languages and GAMS
- Dealing with uncertainty
 - Static Models: The Mean Variance Model
 - Dynamic Models (Stochastic Programming)
- Summary
- **General Algebraic Modeling System**
- Started as a research project at the World Bank 1976
- Went commercial in 1987
- Professional software tool provider
- Operating in a segmented niche market
- Broad academic and commercial user base
- Offices in Washington, D.C and Cologne
Modeling Tools

- Spreadsheets
- General programming languages
 → C++, Delphi, FORTRAN, Java, VBA, …
- Algebraic Modeling Languages
- Specialized software for certain applications
- Mixture of different approaches
What are Algebraic Modeling Languages?

→ Allow efficient handling of mathematical optimization problems

Goals:

- Support the decision making process
- Increase productivity during model building and solution process
- Adapt models quickly to new situations
Key Elements of Algebraic Modeling Languages

- **Declarative** approach
 - Implementation of the optimization problem is close to its mathematical formulation:
 - Variables, constraints with arbitrary names
 - Sets, indices, algebraic expressions, powerful sparse index and data handling
 - Efficient but simple syntax
 - Model formulation contains no hints how to process the model → Algebraic Modeling Language translates this representation into another form suitable for the optimization algorithm

- Also **procedural elements**: Loops, procedures, macros, …
GAMS Basic Principles

- Balanced mix of declarative and procedural approaches
- Separation of model and data: Core model is data independent and scalable
 - Separation of model and solution methods:
 - Multiple model types: LP, MIP, NLP, QCP, MIQCP, MINLP, MCP…
 - Maintained links to commercial and research algorithms (open solver interface)
- Separation of model and operating system: Models are platform independent
- Open architecture and interfaces to other systems: GUI, Excel, database, programming languages etc.
- Maintainable models and protection of investments in models
Typical GAMS Application Areas*

- Agricultural Economics
- Applied General Equilibrium
- Chemical Engineering
- Economic Development
- Econometrics
- Energy
- Environmental Economics
- Engineering
- Finance
- Forestry
- International Trade
- Logistics
- Macro Economics
- Military
- Management Science and OR
- Mathematics
- Micro Economics
- Physics

* Illustrative examples in the GAMS Model Library
Uncertainty in Finance

- Very active area with significant contributions to modeling and with important practical applications
- Some of the reasons:
 - Obvious impact of uncertainty
 - Dealing with uncertainty = Risk Management (Basel II)
 - *Real money*“ - a small difference may mean a big advantage
 - High availability of data
 - Very competitive and liquid markets → Many instruments and strategies
Optimization Models in Finance

- “Static” models: The **decision is made once, no further changes possible**
 - Mean-Variance Models
 - *Portfolio Models for Fixed Income*
 - *Indexation Models ("Tracking Models")*

- **Scenario based Optimization**

- “Dynamic” models: **Sequence of decisions**
 - Stochastic Programming
Mean-Variance Model

Markowitz (1952) → Nobel prize 1990

Some investments x_i with historical data:

- Expected returns of investments: μ_i; **Mean** of historical returns
- Risk: **Variance** of investments $Q_{i,j}$

Goal: **Balance risk** r of portfolio against expected **returns** of portfolio

→ **Minimize variance** v of portfolio for a **given target return** r
Mean-Variance Model Equations

\[
\begin{align*}
\text{Min} & \quad \sum_{i=1}^{I} \sum_{j=1}^{J} x_i Q_{i,j} x_j \\
\text{s.t.} & \quad \sum_{i=1}^{I} \mu_i x_i = r \\
& \quad \sum_{i=1}^{I} x_i = 1, \quad x_i \geq 0
\end{align*}
\]

Algebraic Representation:

```gams
zdef.. v =g= sum((i,j), x(i)*q(i,j)*x(j));
rdef.. r =e= sum(i, mu(i)*x(i));
budget.. sum(i, x(i)) =e= 1;
x.lo(i) = 0;   # no borrowing
```
$eolcom #
Set i analyzed investments; alias (i,j) ;
Parameter q(i,j) variance matrix;
Variables v variance of portfolio,
 r expected return for the portfolio,
 x(i) fraction of the portfolio that consists
 of i;
Equations zdef variance of portfolio
 rdef expected return of portfolio
 budget budget constraint ;
zdef.. v =g= sum((i,j), x(i)*q(i,j)*x(j));
rdef.. r =e= sum(i, mu(i)*x(i));
budget.. sum(i, x(i)) =e= 1;
Set i / cn, fr, gr, jp, sw, uk, us /;
Parameter mu(i)/
 cn 0.1287, fr 0.1096, gr 0.0501, jp 0.1524,
 sw 0.0763, uk 0.1854, us 0.0620 /;
Table q(i,j)
 cn fr gr jp sw uk us
 cn 42.18
 fr 20.18 70.89
 gr 10.88 21.58 25.51
 jp 5.30 15.41 9.60 22.33
 sw 12.32 23.24 22.63 10.32 30.01
 uk 23.84 23.80 13.22 10.46 16.36 42.23
 us 17.41 12.62 4.70 1.00 7.20 9.90 16.42 ;
q(i,j)$(ord(j) gt ord(i)) = q(j,i) ;
Mean-Varance Model

Procedural Elements

$include data.inc # get data from external file
x.lo(i) = 0; # no borrowing

Model var / all /;
set p points for efficient frontier /minv, p1*p8, maxr/,
 pp(p) points used for loop / p1*p8 /;
parameter minr, maxr, # minimal and maximal return
 rep(p,*), repx(p,i); # some quick reports

solve var minimizing v using qcp; # find portfolio with minimal variance
rep('minv','return') = r.l; minr=r.l;
rep('minv','variance') = v.l; repx('minv',i) = x.l(i);

solve var maximizing r using qcp; # find portfolio with maximal return
rep('maxr','return') = r.l; maxr=r.l;
rep('maxr','variance') = v.l; repx('maxr',i) = x.l(i);

loop(pp, # trace efficient frontier
 r.fx = minr + (maxr-minr)/(card(pp)+1)*ord(pp);
solve var minimizing v using qcp;
 rep(pp,'return') = r.l;
 rep(pp,'variance') = v.l;
 repx(pp,i) = x.l(i);
);

display rep, repx;
Mean-Variance Model Solution

Efficient Portfolios

Target Return of Portfolio vs. Variance of Portfolio

Efficient Portfolios for Different Target Returns

Share

Target Return of Portfolio
Different risk attitudes:

\[
\min \lambda \sum_{i=1}^{I} \sum_{j=1}^{J} x_i Q_{i,j} x_j - (1 - \lambda) \sum_{i=1}^{I} x_i \mu_i; \lambda \in \{0,\ldots,1\}
\]

- \(x_j\) may become negative \(\rightarrow\) Allowing borrowing (Short Sales)
- Trading Restrictions ("Zero or Range" – Constraints) \(\rightarrow\) Mixed Integer Quadratic Problem
Table bdata(i,pd) portfolio data and trading restrictions

* - increase - - decrease -

<table>
<thead>
<tr>
<th>Country</th>
<th>old</th>
<th>umin</th>
<th>umax</th>
<th>lmin</th>
<th>lmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>cn</td>
<td>0.2</td>
<td>0.03</td>
<td>0.11</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>fr</td>
<td>0.2</td>
<td>0.04</td>
<td>0.10</td>
<td>0.04</td>
<td>0.10</td>
</tr>
<tr>
<td>gr</td>
<td>0.0</td>
<td>0.04</td>
<td>0.07</td>
<td>0.04</td>
<td>0.07</td>
</tr>
<tr>
<td>jp</td>
<td>0.0</td>
<td>0.03</td>
<td>0.11</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td>sw</td>
<td>0.2</td>
<td>0.03</td>
<td>0.20</td>
<td>0.03</td>
<td>0.20</td>
</tr>
<tr>
<td>uk</td>
<td>0.2</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
<td>0.10</td>
</tr>
<tr>
<td>us</td>
<td>0.2</td>
<td>0.03</td>
<td>0.10</td>
<td>0.03</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Trading Restrictions – Formulation

Variables
- \(xi(i) \) fraction of portfolio increase
- \(xd(i) \) fraction of portfolio decrease
- \(y(i) \) binary switch for increasing current holdings of \(i \)
- \(z(i) \) binary switch for decreasing current holdings of \(i \)

Binary Variables: \(y, z \)
Positive variables: \(xi, xd \)

Equations
- \(xdef(i) \): final portfolio definition,
- \(maxinc(i) \): bound of maximum lot increase of fraction of \(i \),
- \(mininc(i) \): bound of minimum lot increase of fraction of \(i \),
- \(maxdec(i) \): bound of maximum lot decrease of fraction of \(i \),
- \(mindec(i) \): bound of minimum lot decrease of fraction of \(i \),
- \(binsum(i) \): restrict use of binary variables;

Model var2 /all/; Solve var2 minimizing v using miqcp;
Trading Restrictions – Solution

Variance of Portfolio:
- Original: 21.419
- QCP, no Rest.: 9.66
- MIQCP: 14.853
Recent Developments

- Support of codes, which take advantage of special problem structures:
 - Quadratic / Mixed Integer Quadratic Programming via Interior Point Methods / QP Simplex
- Support of global optimization codes
Stochastic Programming

- Stochastic Programming models allow sequence of decisions
- Elements:
 - **Scenarios**: Complete set of possible discrete realizations of the uncertain parameters with probabilities, capture complex interactions between different uncertain parameters (risk factors), what are “good scenarios”? How many scenarios are necessary? How do we generate scenarios?
 - **Stages**: Decisions points. First stage decisions now, second stage decision (depending on the outcome of the first stage decision) after a certain period and so on
 - **Recourse**: Describes how decision variables can adept to the different outcomes of the random parameters at each stage
A simple Scenario Tree

- combines scenarios, stages and probabilities
Another Scenario Tree

Years

Exchange Rate

1999 2000 2001 2002
Stochastic Programming
Some Challenges

- **Domain** specific knowledge
- **Impacts** of uncertainty:
 - Does it make a difference and is it worth the effort?
 - How far can one get with a certain budget?
- **Development** and **Fall-Back Strategy**?
- **Data** (availability and importance of certain and uncertain parameter) → Generation of “good” scenarios and definition of stages
- Interpretation and Presentation of **Results**
- **Maintenance** of the system
Stochastic Programming
Technical Challenges

- **Deterministic equivalent**: Includes all scenarios and stages → Size of model explodes

- Challenges (among others):
 - Programming and generation difficult
 - Solution may not be possible
 - Interpretation and validation of results
Facing these (tech.) Challenges

1. How does GAMS support the modeling of Stochastic Programming Problems?
2. Some scenarios only differ slightly → Can we reduce the number of scenarios?
3. Stochastic Programming Problems are structured → How can we take advantage of specialized solution techniques for Stochastic Programming
Stochastic Programming in GAMS

- Support for **huge problem instances**: 64 Bit OS (PC) and **Grid Computing** (experimental)
- **Reliable** and **fast import** and **export** of data and results
- **Visualization** of results
- **New language elements** might improve reliability of:
 - Random distributions for some problem data
 - Special expressions and conventions for scenario trees and stages
 - Special sets for trees: Root, nodes, leafs, ancestor and child relations; automated generation of trees
 - Connection of variables or constraints to certain stages: A variable or constraints is only active at a certain stage: x.stage(i)=1;
Scenario Reduction

Goal: Find an approximation of the original scenario tree with less nodes
Scenario Reduction Steps

1. Write a stochastic model including the full tree structure
2. Pass the tree structure to SCENRED*
3. Reduce tree and reallocate probabilities
4. Import reduced tree back to GAMS
5. Solve the model with the reduced tree structure

* SCENRED has been developed by Groewe-Kuska, Heitsch & Römisch, Humboldt-University Berlin, Germany
Specialized Algorithms

OSL Stochastic Extensions (IBM):

- Solves **n-stage stochastic linear programs** with recourse
- Nested **Benders decomposition**
- Requires **deterministic equivalent** representation of the problem, which may be **huge** but is **solver independent**
- GAMS made substantial investment producing a solver independent interface, but unfortunately the product is **no longer supported** by IBM
Specialized Algorithms

DECIS (Infanger)

- Solves **two-stage** stochastic linear programs with recourse
- **Benders decomposition** and advanced importance sampling techniques
- Requires additional information describing the uncertain elements of the core model in a form, which is **not compatible** with other solvers
Specialized Algorithms

Main Problem:

→ No uniform (solver independent) problem representation (both for the input and output)

→ Various approaches, not yet clear which standard will be adopted
Summary

- Large classes of problems can be solved
- GAMS provides a powerful and flexible framework for these classes of models

- Stochastic Programming still challenging and developing field
- Limited application of Stochastic Programming in practice