A Student-centric Class and Exam Scheduling System at West Point

Monique Guignard
University of Pennsylvania
The Wharton School

Siqun Wang
Singapore Management University

Michael Bussieck
Alex Meeraus
GAMS Development Corp.

Fred O’Brien
University Apps Inc

INFORMS Annual Meeting
2005 - San Francisco
Change in Focus

<table>
<thead>
<tr>
<th>Computation – Past</th>
<th>Model – Present</th>
<th>Application – Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Algorithm limits application</td>
<td>- Modeling skill limits applications</td>
<td>- Domain expertise limits application</td>
</tr>
<tr>
<td>- Problem representation is low priority</td>
<td>- Algebraic model representation</td>
<td>- Off-the-shelf graphical user interfaces</td>
</tr>
<tr>
<td>- Large costly projects</td>
<td>- Smaller projects</td>
<td>- Links to other types of models</td>
</tr>
<tr>
<td>- Long development times</td>
<td>- Rapid development</td>
<td>- Models embedded in business applications</td>
</tr>
<tr>
<td>- Centralized expert groups</td>
<td>- Decentralized modeling teams</td>
<td>- Internet/web</td>
</tr>
<tr>
<td>- High computational cost, mainframes</td>
<td>- Low computational cost, workstations</td>
<td>- Users hardly aware of model</td>
</tr>
<tr>
<td>- Users left out</td>
<td>- Machine independence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Users involved</td>
<td></td>
</tr>
</tbody>
</table>
Scheduling US Military Academy West Point

“... each student’s daily activities are a carefully regimented balance of academic, military, and physical requirements.”
USMA is Different

- **Technically**
 - Day1/day2 schedule
 - Special rules (e.g. < 30% athletes in class)
 - Sufficient number of rooms, teachers, …

- **Scheduling around the cadets needs**
 - No conflicting activities
 - Individual schedule of activities is compliant to vast catalogue of *business rules*

Software evaluation did not find an “off the shelf” product that could handle USMA requirements
ATTENDANCE PERIODS

1-DAY CLASS PERIODS

0735 0830 0840 0935 0945 1040 1145 1245 1340 1350 1445 1455 1550

A LAB B LAB C LAB D NOON MEAL CMDT’S HOUR E F

2-DAY CLASS PERIODS

0735 0830 0840 0935 0945 1040 1145 1245 1340 1350 1445 1455 1550

G LAB H LAB I LAB J NOON MEAL DEAN’S HOUR K L

R/S/T/U LAB HOURS
Academic Scheduling

• Course scheduling
 – For a given set of course offerings find good schedules for all cadets.

• Term End Exam (TEE) scheduling
 – Scheduling preparation
 – Find good schedules for exam courses and cadets.
Course Scheduling

- Given course hours & capacity
 - MA481,AB,36
 - MA481,CD,18
 - MA481,EF,18
 - PE300,C,180
 - PE300,J,60
 - MA371,F,18

- Given cadet’s course registration
 - 043671XXX,MA481
 - 043671XXX,PE300

- Objective: Find a *good* assignment of cadet’s course requests to course hours
 - 043671XXX,MA481,CD
 - 043671XXX,PE300,J
Problems with a Model

- There is no solution subject to all constraints/rules for real data
- Infeasibilities
 - Individual Cadet Infeasibilities
 - System Infeasibility (e.g. Capacity)
- Goal Programming:
 - Relax constraints/rules by penalizing violations
 - How to Select penalties for constraint violations
 - Penalty depend on individual Cadet
An Optimization Model

\[
\begin{align*}
\min & \quad \sum_{ro} (p_{1,ro} \times \pi_{1,ro} + p_{2,ro} \times \pi_{2,ro}) + \sum_{c} (p_{3,c} \times \pi_{3,c} + p_{4,c} \times \pi_{4,c}) \\
\sum_{o} x_{c,ro} &= 1 \quad \text{(for all 8TAP entries)} \\
\sum_{r} x_{c,ro} &\leq 1 + \pi_{3,c} \quad \text{(for all cadets c for all time slots o)} \\
-\sigma - \pi_{4,c} &\leq \sum_{ro \text{ on day-1}} x_{c,ro} - \sum_{ro \text{ on day-2}} x_{c,ro} \leq \sigma + \pi_{4,c} \quad \text{(for all cadets c)} \\
x_{c,ro} &= 0 \quad \text{(for all c, ro where c has activity at o)} \\
\sum_{c} x_{c,ro} &\leq cap_{ro} + \pi_{1,ro} \quad \text{(for all course hours ro)} \\
\sum_{c \text{ freshman&athlete}} x_{c,ro} - 0.6 \sum_{c} x_{c,ro} &\leq \pi_{2,ro} \quad \text{(for all course hours ro)}
\end{align*}
\]

- 60,000 Variables, 500,000 Non-Zeros
- 24 hours CPLEX 6.6 and no integer solution
Decomposition

- **Pre-Scheduling**
 - Filter cadets with no feasible schedule
 - Overcome infeasibility by relaxation/data changes

- **Scheduling**
 - All individual constraints/rules are hard constraints
 - Find assignment that does not exceed capacity (or penalize overloads)
Pre-Scheduling

• One cadet at a time
 – Check feasibility
 – If infeasible produce several infeasible schedules ranked by severeness of infeasibility
 • Hour Conflict
 • Day – Day Balance
 • Last Hour Free
 – Human Intervenes

• Thousands of small MIPs
Results

- AY 2000/2 parallel tested
- AY 2001/1 deployed

<table>
<thead>
<tr>
<th></th>
<th>Legacy System + human deconflicter</th>
<th>New System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Relaxations</td>
<td>203/304/116</td>
<td>58/25/4</td>
</tr>
<tr>
<td>Capacity Overloads</td>
<td>12/54</td>
<td>9/21</td>
</tr>
<tr>
<td>Number of Schedulers</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Time to produce Schedule</td>
<td>4 Weeks</td>
<td>1 Day</td>
</tr>
</tbody>
</table>
Term End Exam Scheduling

Term End Exam Courses

- **Morning Period:**
 - CE371
 - CH384
 - CS383
 - HI366

- **Afternoon Period:**
 - CE404
 - LG484
 - LS362
 - MS350

Exam Scheduling Details

- Approximately 4000 cadets
- Approximately 20000 exams

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE371</td>
<td>CH101</td>
<td>EV203</td>
</tr>
<tr>
<td>CH384</td>
<td>CS408</td>
<td>PH203</td>
</tr>
<tr>
<td>CS383</td>
<td>EE301</td>
<td>PL300</td>
</tr>
<tr>
<td>HI366</td>
<td>EN302</td>
<td>LR204</td>
</tr>
<tr>
<td>CE404</td>
<td>LF382</td>
<td>CE403</td>
</tr>
<tr>
<td>LG484</td>
<td>SE388</td>
<td>CS380</td>
</tr>
<tr>
<td>LS362</td>
<td>SS388</td>
<td>SS201</td>
</tr>
<tr>
<td>MS350</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Overcoming Conflicts

• Schedule with conflicts

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE371</td>
<td>CH101</td>
<td>EV203</td>
</tr>
<tr>
<td>CH384</td>
<td>CS408</td>
<td>PH203</td>
</tr>
<tr>
<td>CS383</td>
<td>EE301</td>
<td>PL300</td>
</tr>
<tr>
<td>HI366</td>
<td>EN302</td>
<td>LR204</td>
</tr>
<tr>
<td>CE404</td>
<td>LF382</td>
<td>CE403</td>
</tr>
<tr>
<td>LG484</td>
<td>SE388</td>
<td>CS380</td>
</tr>
<tr>
<td>LS362</td>
<td>SS388</td>
<td>SS201</td>
</tr>
<tr>
<td>MS350</td>
<td>CE403</td>
<td>...</td>
</tr>
</tbody>
</table>

Cadet’s 8TAP:

| PL300 |
| CE372 |
| CE403 |
| CS380 |
| EV180 |
| HI302 |

• Makeup/ahead for an exam course:
 - An additional exam offering for a small group of cadets who can not go to the primary exam offering

• Resolve conflicts by adding makeup/ahead
• Given exam courses
 - MA481 CE371 CH100 ...
• Given exam periods
 - p1, p2, p3, ... p12
• Given cadet’s exam course ‘requests’
 - 043671571,CE403
 - 043671571,CE380
• Find an assignment of exam course sessions (primaries, makeups) to periods and cadet’s requests to exam courses sessions.
 - CE403,prim,p12 CE403,mkup,p4 CE380,prim,p4 ...
 - 043671571,CE403,p4 043671571,CE380,p4 ...
• Objective: Minimize the total number of makeups
An Optimization Model

- **Variables**
 - $x(c, r, p)$: course/period cadet request
 - Value: 250.000
 - $y(r, s, p)$: course session to period
 - Value: $|S|\times 3.000$
 - $z(r, p)$: primary indicator
 - Value: 3.000

- **Constraints**
 - Conflict
 - Value: 50.000
 - Assign
 - Value: 20.000
 - PrimEnroll
 - Value: 3.250
 - Consecutive
 - Value: 36.000
 - Exams per day
 - Value: 6.000
 - Inclusive
 - Value: $|I|\times 12$
 - Exclusive
 - Value: $|S||I|\times 12$
 - Fixed, Prohibit, No makeup, Finished
 - Coupling of x and y
 - Value: $\sum x(c, r, p) \leq enroll(r) \cdot y(r, s, p) \cdot |S|\times 3.000$
Solution Approach

• Heuristic based on a collection of medium sized optimization models produces conflict free schedules and automatically relaxes constraints.

• Improvement module starts with a good/mediocre solution and a set of relaxed constraints and tries to
 – Improve number of makeups
 – Reinforce relaxed constraints
Solution Improvement

- Decompose the problem
 - Assignment of cadet request to exam course session
 - Assignment of exam sessions to periods

- Given a feasible schedule – iterate until no progress

20000 Exams

Cadet

CE380, primary
CE380, makeup

CE403, primary
CE403, makeup

HI302, primary
HI302, makeup

1 2 6

250 courses

250 courses

Timetable

250 courses
Feasibility Study

- TEE last application of legacy system
 - Mainframe, Cobol, ~1980
 - Maintenance + on-site personnel: $500,000/year
- By March 2001: decision for renewal

TEE Schedule for AY2001/2 (End of May 2001)
- Chuck + Legacy system
 - Partial schedule, approx. 90 makeups (4 Weeks)
- Chuck + GAMS TEE scheduler
 - Complete schedule, no conflicts, 60 makeups (10 minutes)
 - The improver module produced schedule with 40 makeups
More Computational Results

- Three data sets 01/2, 02/1 (early), 02/1
- Constraint violations ‘OK’

<table>
<thead>
<tr>
<th>Year</th>
<th>Courses</th>
<th>Periods</th>
<th>Requests</th>
<th>Makeups</th>
</tr>
</thead>
<tbody>
<tr>
<td>01/2</td>
<td>226</td>
<td>12</td>
<td>18937</td>
<td>38</td>
</tr>
<tr>
<td>02/1 early</td>
<td>213</td>
<td>12</td>
<td>18512</td>
<td>49</td>
</tr>
<tr>
<td>02/1</td>
<td>252</td>
<td>11</td>
<td>21175</td>
<td>61</td>
</tr>
</tbody>
</table>
Before

CADET BASIC TRAINING

During the Flexed Arm Hang event in the Warrior Competition, a new cadet grimaces as he hangs there but does not let go of the chin-up bar.

CADET WARRIORS

West Point
After
Conclusions

• Two Student-Centric Scheduling Problems
 – Course Scheduling
 – TEE scheduling
• Math. Programming Approaches
• Successful Applications
• Running at USMA without model changes for several years (changes in hardware, interface, newer solver versions, …)