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Abstract. The paper describes a software package called LaGO for
solving nonconvex mixed integer nonlinear programs (MINLPs). The
main component of LaGO is a convex relaxation which is used for gene-
rating solution candidates and computing lower bounds of the optimal
value. The relaxation is generated by reformulating the given MINLP as
a block-separable problem, and replacing nonconvex functions by convex
underestimators. Results on medium size MINLPs are presented.
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1 Introduction

Several strategies for solving nonconvex MINLPs have been proposed [BP03].
Exact solution approaches include branch-and-reduce [TS02], branch-and-bound
[ADFN98,SP99], interval analysis [VEH96] and outer approximation [KAGB01].
On the other side, heuristic solution algorithms explicitely addressing MINLP,
such as the multistart scatter search heuristic [ULP+02], appeared rather rarely
in the literature. More information on global optimization algorithms can be
found in [Flo00,HP95,BSV+01].

LaGO (LagrangianGlobalOptimizer) is an object oriented library for solving
nonconvex mixed integer nonlinear programs (MINLPs) written in C++. The
basic component of the solver is a relaxation, which is used for generating solution
candidates and computing lower bounds of the optimal value. It is very important
that the quality of the relaxation is good enough, in the sense that the amount
of work to retrieve a good solution from the relaxation is not too high. For
improving a given relaxation, a series of operations, which can be performed

† The work was supported by the German Research Foundation (DFG) under grant
NO 421/2-1.

‡ ivo@mathematik.hu-berlin.de, corresponding author



relatively fast and take advantage of a partially separable structure of the given
optimization problem, is used.

The software can be used as a general purpose MINLP solver or as a toolbox
for developing specialized solution algorithms. The object oriented design of
the library allows easy replacement of modules, such as linear algebra routines
and various solvers. Optimization problems can be either provided in AMPL-
format [FGK93] or coded in C++ using LaGO ’s class MinlpProblem. The solver
supports two types of structural properties: partial separability, i.e. the Hessians
have almost block-diagonal structure, and sparse and low rank Hessians, i.e.
there exist fast methods for multiplying a vector with a Hessian.

The basic components of the current version of LaGO are: preprocessing,
convex relaxation and relaxation-based heuristic, which are described in Sections
2, 3 and 4. A branch-and-cut algorithm is currently under development and will
be added in the future. In Section 5 we report preliminary results, and give
conclusions in Section 6.

Notation. Let J ⊂ {1, . . . , n} be an index set. We denote by |J | the number

of elements of J . A subvector xJ ∈ IR|J| of x ∈ IRn is defined by (xj)j∈J . Simi-
larly, a function fJ(x) is defined by (fj(x))j∈J . The space of k times differentiable
functions f : IRn 7→ IRm is denoted by Ck(IRn, IRm).

2 Preprocessing

We assume that the given MINLP problem has the form:

(P)

min h0(x)
s.t. hI(x) ≤ 0

hE(x) = 0
x ∈ Y

where
Y = {x ∈ [x, x] | xj ∈ {xj , xj} for j ∈ B},

x, x ∈ IRn, B ⊆ {1, . . . , n}, I ∪ E = {1, . . . , m} with I ∩ E = ∅, and hi ∈
C2(IRn, IR) for i = 0, . . . , m. Note that MINLPs with piecewise twice differen-
tiable functions and integrality constraints, xi ∈ [xi, xi]∩ZZ, can be transformed
into the form (P) by introducing additional binary variables.

To facilitate the construction of a relaxation, problem (P) is transformed into
the following block-separable extended reformulation.

(Pext)

min cT x + c0

s.t. AIx + bI ≤ 0
AEx + bE = 0
gk(xJk

) ≤ 0, k = 1, . . . , p

x ∈ Y

where {J1, . . . , Jp} is a partition of {1, . . . , n}, i.e.
⋃p

k=1 Jk = {1, . . . , n} and



Ji ∩ Jk = ∅ for i 6= k, gk ∈ C2(IRnk , IRmk), k = 1, . . . , p, with nk = |Jk|, c ∈ IRn,

b ∈ IRm, AI ∈ IR(|I|,n) and AE ∈ IR(|E|,n). To obtain the block functions gk(xJk
)

used in (Pext) we construct the sparsity graph Gs = (V, Es) with the nodes
V = {1, . . . , n} and the edges

Es =
{

(i, j) ∈ V 2
∣

∣

∣

∂2hk(x)

∂xi∂xj

6= 0 for some k ∈ {0, . . . , m} and x ∈ [x, x]
}

.

Let {J̃1, . . . , J̃p} be a partition of V . We define the set of nodes of
⋃p

l=k+1 J̃l

connected to J̃k by Rk = {i ∈
⋃p

l=k+1 J̃l | (i, j) ∈ Es, j ∈ Jk}, for k = 1, . . . , p.
The set Rk can be interpreted as the set of flows of a nonlinear network problem
connecting a component J̃k with components J̃l, where k < l. After introducing
new variables yk ∈ IR|Rk| for every set Rk, and using the copy-constraints xRk

=
yk, problem (P) is formulated as a block-separable program with respect to the
blocks Jk = (J̃k, Rk), with k = 1, . . . , p. Finally, nonlinear equality constraints
hi(x) = 0 for i ∈ E are replaced by the two inequality constraints hi(x) ≤ 0 and
−hi(x) ≤ 0, and block-separable constraints

p
∑

k=1

hk
i (xJk

) ≤ 0

are replaced by

p
∑

k=1

tik ≤ 0, hk
i (xJk

) ≤ tik, k = 1, . . . , p.

The resulting program has the form (Pext), with gk
i (xJk

, tik) = hk
i (xJk

)−tik . For
the sake of simplicity we keep the notation n, m, B, I, E, Y as in (P) including
the new variables tik into the block xJk

.
Furthermore, the type (linear, convex, concave) of all functions is determined

by evaluating the minimum and maximum eigenvalue of each Hessian at sample
points. Since the given MINLP is coded in AMPL [FGK93], all functions are
given in a black-box representation, i.e. there exist only procedures for evaluating
functions, gradients and Hessians. Therefore, the generation of the sparsity graph
and the determination of function types is performed by sampling techniques.

Problem (P) assumes the existence of bounds xj and xj for all j = 1, . . . , n.
This is not the usual case in the instances collected from MINLPLib [BDM03]
for instance. Since we need the box [x, x] to compute convex relaxations and
for the above sampling technique, we generate missing bounds by determining
the maximum and minimum value of a variable over a domain defined by the
convex constraints of problem (P). If there are not enough convex constraints to
determine a variable bound, we use a simple guessing algorithm.

3 Convex relaxation

A convex relaxation of problem (Pext) is defined by



(C)

min cT x + c0

s.t. AIx + bI ≤ 0
AEx + bE = 0
ğk(xJk

) ≤ 0, k = 1, . . . , p

x ∈ [x, x]

where ğk are convex underestimators of gk over Xk = [xJk
, xJk

], i.e. ğk(x) ≤

gk(x) for all x ∈ Xk and ğk is convex over Xk. The best convex underesti-
mators are convex envelopes. Since computing convex envelopes of nonconvex
functions can be computationally very expensive, we use the following procedure
for generating convex relaxations.

We construct at first a polynomial relaxation of (Pext) by replacing non-
quadratic functions by polynomial underestimators. We assume that the non-
quadratic functions of (Pext) are of the form g(x) = bT x + f(xN ) where the
number |N | of nonlinear variables is small. We use as an underestimator for f a
multivariate polynomial defined by

p(x) = aT ϕ(x) (1)

where ϕ(x) = (xβ1 , . . . , xβr )T , βj ∈ INn
0 , for 1 ≤ j ≤ r, is a vector of monomials,

and a ∈ IRr is the vector of coefficients for each monomial. The degree of the
polynomial p is the number d = maxr

j=1 |βj | with |β| =
∑n

i=1 βi. For our pub-
lished results, we use d = 2, but in our implementation larger degree polynomial
can be used. Let Dk be a differential operator defined by

Dk(f(x)) =

(

∂kf(x)

∂xβl

)

1≤l≤rk

,

with |βl| = k for l = 1, . . . , rk ≤
(

r
k

)

can be at most all the possible monomials
of degree k, but in fact the sparsity pattern is used and fewer monomial than
(

r
k

)

are needed. In order to determine the coefficients a ∈ IRr of the polynomial
underestimator (1), we solve the linear program

(U)
min
a∈IRr

2
∑

k=0

δk

∑

x∈Sk

‖Dk(f(x) − aT ϕ(x))‖1

s.t. aT ϕ(x) ≤ f(x), x ∈ S0.

The coefficients δ0 > δ1, δ2 give the relative importance to the information that
comes from the evaluation of the function, the gradient and the Hessian re-
spectively. The finite sample sets Sk, k = 0, 1, 2 contain sample points for the
computation of the function, gradient and Hessian respectively. In general, this
approach is only rigorous for certain kind of functions such as convex and con-
cave.

The polynomial relaxation of (Pext) can be reformulated by adding some
extra variables and constraints as the following mixed-integer quadratic program

(MIQQP)



(Q)

min cT x + c0

s.t. AIx + bI ≤ 0
AEx + bE = 0
qk(xJk

) ≤ 0, k = 1, . . . , p

x ∈ Y

where qk, k = 1, . . . , p, are quadratic forms. We use two methods for convexifying
(Q).

The first method is based on replacing all nonconvex quadratic forms by
the so-called α-underestimators introduced by Adjiman and Floudas [AF97]. An
α-underestimator of a function f ∈ C2(IRn, IR) is the function

f̆(x) = f(x) + αT r(x)

where
r(x) = Diag(x − x)(x − x) (2)

and Diag(·) denotes a diagonal matrix. The parameter α ∈ IRn is computed
according to

α =
1

2
max{0,−ρ}Diag(w)−2e

where e ∈ IRn is the vector of ones, w = x − x is the diameter vector of the
interval, and

ρ ≤ λ1(Diag(w)∇2f(x) Diag(w)), x ∈ [x, x],

is a bound on the the minimum eigenvalue of the transformed Hessian of f

over [x, x]. If f is a quadratic form, i.e. ∇2f is constant, ρ can be determined
by eigenvalue computation. In the general case it can be computed by interval
Hessians [AF97] or using a sampling technique. It is clear that f̆(x) ≤ f(x) for

all x ∈ [x, x], and f̆ is convex. Note that f = f̆ if f is convex.
Applying the α-underestimator technique directly to the original functions

would also give a convex relaxation. However, our method is often tighter because
the α-convexification depends only on the curvature of the function and not
on the function behaviour. For more clarification see the example in Figure 1
where f is the original function, f̆ the α-convexification of f , q the polynomial
underestimator, and q̆ the α-convexification of q.

The second method for convexifying problem (Q) is based on replacing the
box-constraints xC ∈ [xC , xC ] and the binary constraints xB ∈ {xB , xB} by
the quadratic constraints rC(x) ≤ 0, and rB(x) = 0 respectively, where the
quadratic form r is defined as above, and C = {1, . . . , n} \ B is the index set of
continuous variables. The resulting reformulation of (Q) is all-quadratic, and its
dual is a semidefinite program. There exist several methods for solving semidef-
inite programs [WSV00]. We use a method based on formulating the dual as an
eigenvalue optimization problem [Now02]. This approach allows fast computa-
tion of near optimal dual solutions and supports decomposition. For each dual
point µ produced by this algorithm, the Lagrangian is convex, and defines the
following convex Lagrangian relaxation
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q
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Fig. 1. α-convex underestimator versus the convexification of the polynomial underes-
timator.

(Rµ) min
x∈[x,x]

L(x; µ),

where L(·; µ) is the Lagrangian to the all-quadratic programming reformulation
of (Q).

Besides of the above convexification methods, one further method for con-
structing a convex relaxation (C) is implemented. It uses quadratic convex global

underestimators proposed by Phillips, Rosen and Walke [PRW95]. Their method
for approximating the convex envelope of a nonlinear function f by a quadratic
function was improved in LaGO to reduce the absolute value of the smallest
eigenvalue of the obtained quadratic underestimator. Let S ⊂ [x, x] be a finite
sample set, and define the quadratic function

q(x; a, b, c) = c + 2bT x + xT Diag(a)x,

where a, b ∈ IRn and c ∈ IR. Then q(·; a, b, c) is convex, if and only if a ≥ 0. The
tightest quadratic convex underestimator q(·; a, b, c) over the set S is provided
by the program

(CGU)

min
a,b,c

∑

x∈S

f(x) −q(x; a, b, c) + δeT a

s.t. f(x) ≥ q(x; a, b, c), for all x ∈ S

a ≥ 0.

Since q depends linearly on a, b, c, problem (CGU) is a linear program. The term
δeT a reduces the absolute value of the smallest eigenvalue of Diag(a) in the
case where (CGU) is degenerated. The quality of these underestimators depends
strongly on the sample set S. If S contains all minimizers of f over [x, x], the
bound is rigorous. Since we cannot guarantee to find all minimizers, this approach
provides a heuristic underestimator.



4 Relaxation-based heuristic

For computing solution candidates of a MINLP a rounding heuristic was devel-
oped, which is based on a convex relaxation of the given problem. The heuristic
works by computing a solution point of problem (C), and rounding some binary
components of this point. The rounded variables are fixed and the restricted
convex relaxation is solved. This procedure is repeated as long, as either the
restricted convex relaxation is infeasible, or all binary variables are fixed. In the
latter case a local search is started from the last solution of the restricted con-
vex relaxation giving a solution candidate. The values of the binary variables are
recursively switched and the whole process is repeated as long, as either all com-
binations of binary variables are searched, or the number of solution candidates
exceeds a given number smax.

RoundHeu:

Z = ∅;
FixVariables(0, ∅);

FixVariables(y, J):

if Ω̆ ∩ Uy,J = ∅, then return;
if J = B,
then Optimize(y);
else begin

get a solution x of (Cy,B);
get K ⊂ B \ J where min{xj − xj , xj − xj} is small for j ∈ K;
for j ∈ K, round xj ;
repeat

call FixVariables(x, J ∪ K);
switch some components of xK to get a new binary combination of xK ;

until (|Z| ≥ smax or all combinations of xK are searched);
end

Optimize(y):

if |B| = n,
then if y ∈ Ω, then add y to Z;
else get a solution candidate of (Py,B) by using a local search starting from the

solution of (Cy,B), and add the point to Z;

Fig. 2. Algorithm rounding heuristic

To describe this method more detailed, let us define the original problem and
the relaxed problem with fixed binary variables



(Py.J) min{cT x | x ∈ Ω ∩ Uy,J}

and

(Cy,J ) min{cT x | x ∈ Ω̆ ∩ Uy,J}

where

Uy,J = {x ∈ IRn | xJ = yJ},

y ∈ [x, x], J ⊂ {1, . . . , n}, and Ω and Ω̆ are the feasible sets of problems (Pext)
and (C) respectively. The recursive algorithm described in Fig. 2 computes a set
Z of binary feasible solution candidates of problem (Pext).

In order to improve the simple method Optimize for solving the continuous
nonlinear program (Py,B), a neighbourhood search or a deformation heuristic,
as described in [AN02], can be used.

5 Preliminary numerical results

We tested the described algorithm using a set of instances of MINLP that were
obtained from the GAMS web-site [BDM03,CG02]. For the computation of the
minimum eigenvalue and corresponding eigenvector we used the Lanczos method
ARPACK++ [GS97]. The sequential quadratic programming code SNOPT

[GMS97] is used for finding local solutions of nonlinear optimization problems.
To analyse its performance, the code was run on a machine with a 1GHz Pentium
III processor and 256 MB RAM. Table 2 reports the performance on a selected
set of problems using Algorithm RoundHeu. The definition of each column is
explained in Table 1. The limit on |Sf |, the maximum number of feasible points
explored was set to 50.

6 Conclusions

We described the C++ library LaGO for solving general nonconvex MINLPs.
Main features of LaGO are: (i) the objective and constraint functions can be
given in a black-box formulation, i.e. it is only assumed that functions, gra-
dients and Hessians can be evaluated; (ii) the given MINLP is automatically
reformulated as a block-separable formulation giving the possibility to apply de-
composition techniques; (iii) the object oriented design of the software allows
easy extensions and modifications of the current code.

Preliminary results with a relaxation-based rounding heuristic were pre-
sented, demonstrating that the current version of LaGO is able to solve medium
size MINLP instances in a reasonable time. The only two instances that were
not solved to known global optimality were those were the limit of |Sf | ≤ 50
feasible solutions was reached.



Table 1. Descriptions of the columns of Table 2.

rel.
error

|fheu − fbest|/(1 + |fbest|), where fheu, and fbest are the objective
value obtained with the heuristic and the best known objective value
for the problem respectively.

heu.
time

seconds required by Algorithm RoundHeu (without preprocessing) to
obtain the heuristic solution xheu, and its corresponding objective
value fheu.

k k ≤ 2|B| number of fixed binary combinations explored

|Sf | |Sf | ≤ k, number of feasible solutions obtained from each (Cy,B)

description of the MINLP instances.

n number of variables,

m number of constraints,

|E| number of equality constraints,

|C| number of continuous variables,

|B| number of binary variables,

|U | number of unbounded variables
(U = {i | xi = −∞ or xi = +∞}).

The performance of the described solution approach depends mainly on the
quality of the relaxation. In order to improve the relaxation, and to search sys-
tematically for a global solution, a branch-and-cut algorithm with box-reduction
is currently under development and will be added in the future.
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