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Abstract Mixed-integer two-stage stochastic programs with fixed recourse
matrix, random recourse costs, technology matrix, and right-hand sides are
considered. Quantitative continuity properties of its optimal value and so-
lution set are derived when the underlying probability distribution is per-
turbed with respect to an appropriate probability metric.
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1 Introduction

Mixed-integer two-stage stochastic programs model a variety of practical de-
cision problems under stochastic uncertainty, e.g., in chemical engineering,
power production, and trading planning [8,13,14]. The probability distribu-
tion of the stochastic programming model reflects the available knowledge
on the randomness at the modeling stage. When solving such stochastic pro-
gramming models, the probability distribution is approximately replaced in
most cases by a discrete probability measure with finite support. Hence, per-
turbing or approximating the probability distribution of such models is an
important issue for modeling, theory, and numerical methods in stochastic
integer programming. While much is known on the structure and algorithms
of /for mixed-integer two-stage stochastic programs (cf. the surveys [11,12,
21,22]), the available (quantitative) stability or statistical estimation results
do not cover situations with stochastic costs (or prices) (cf. [7,18,19]).
Mixed-integer two-stage stochastic programs are of the form

min{/gfo(a:,f)dP(g) ze X}, (1)
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where the (first-stage) feasible set X C R™ is closed, = is a closed subset of
R?, the function fy from R™ x = to the extended reals R is a random lower
semicontinuous function, and P belongs to the set of all Borel probability
measures P(Z) on =. Recall that fy is a random lower semicontinuous
function if its epigraphical mapping & — epi fo(-, &) := {(z,r) € R™ x R :
fo(z,€) < r} is closed-valued and measurable. In mixed-integer two-stage
stochastic programs, fo is of the form

fol@, &) = {c,x) + (q(£),h(§) =T (E)z) ((x,§) eR™ x 5),  (2)

where @(u,t) denotes the optimal value of the (second-stage) mixed-integer
program (with cost u and right-hand side t), and ¢(§), T(§), and h(§) are
the stochastic cost, technology matrix, and right-hand side, respectively.

With v(P) and S(P) denoting the optimal value and solution set of
(1), respectively, the quantitative stability results for stochastic programs
developed in [18] (see [18, Theorems 5 and 9]) imply, in particular, the
estimates

o(P) ~ 0(@) < L sup | /fo (P - Q)(de)| 3)

rzeX
0#5@Q € S(P)+¥e(Lswp| [ ol (P - Q@) ()

where L > 0 is some constant, X is assumed to be compact, ¥p is the
conditioning function, and P and @ belong to a suitable subset of P(Z).
The function ¥p depends on the growth behavior of the objective function
near the solution set and is specified in (11) of Section 3.

The aim of this paper is to extend the quantitative continuity proper-
ties of v(-) and S(-) in [16,20] to cover situations with stochastic costs. To
this end, we need quantitative continuity and growth properties of optimal
value functions and solution sets of parametric mixed-integer linear pro-
grams. Such properties are known for parametric right-hand sides [4,5,20]
and parametric costs separately [1,2,6]. Since to our knowledge simultaneous
perturbation results with respect to right-hand sides and costs are less fa-
miliar, we discuss such properties of optimal value functions in Proposition
1. These results are then used in Section 3 to obtain the desired quantita-
tive stability result (Theorem 1) for fully random mixed-integer two-stage
stochastic programs with fixed recourse. The relevant probability metric (9)
on subsets of P(Z) and its relations to Fortet-Mourier metrics and poly-
hedral discrepancies are also discussed (Remark 1). The latter metrics may
be used for designing moderately sized discrete approximations to P by
optimal scenario reduction of discrete probability measures [9,10].

2 Infima of mixed-integer linear programs

Consider the parametric mixed-integer linear program

min{({c,, r) + <Cyvy> D Agw + Ayy <breZ",yeR" "} (5)
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with ¢ = (¢g,¢y) € R™ and b € R” playing the role of the parameters and
A= (Az Ay) € Q™. Let M(b), v(b, c), and S(b, ¢) denote the feasible set,
optimal value, and solution set of (5), respectively, i.e.,

M) :={(z,y) € Z" xR™": A(z,y) < b}
v(b,c) := inf{(c, (z,y)) : (z,y) € M(b)}
S(b;¢) = A{(z,y) € M(b) : ¢, (x,9)) = v(b, 0)}.
Let K denote the polyhedral cone {(z,y) € R™ : A,z + Ayy < 0} and K* its

polar cone. Observe that v(b, ¢) is finite for b € B := dom M and ¢ € —K*.
Further, denote by Pr, M (b) the projection of M (b) onto the z-space, and

B*(t°) ;= {b€ B:Pr,M(b) =Pr,M(»")}  (° € B)
be the set of right-hand sides on which the projection of M (b) onto the z-
space is constant. It is well known (see [1, Chapter 5.6]) that the sets B*(b°)

are continuity regions of the function b — wv(b, ¢). These regions are further
characterized by the following result (Lemma 5.6.1 and 5.6.2 in [1]).

Lemma 1 B is a connected set equal to the union of a countable family of
convex polyhedral cones each of which is obtained by a translation of the
r-dimensional cone T := {t € R" : Jy € R™™™ such that t > A,y}.

For each b° € B, there exists t° € B and a finite set N C Z" \ Pry, M (b°)
such that

B ") =" +T)\ [) (Aez +T).
zeN

If Pr, M(b°) = Z", then N = 0 and B*(b°) =t° + T for some t° € B.

In the following we extend Lemma 2.3 in [20] and show local Lipschitz-
continuity of the optimal value of (5) with respect to simultaneous pertur-
bations of the right-hand side and the objective function coefficients where
the right-hand side perturbation does not leave the continuity region B*(b).
Otherwise, for arbitrary right-hand sides, a quasi-Lipschitz property of the
value function of (5) can be shown. For the proof we refer to the appendix.

Proposition 1 (i) Let b € B, b’ e B*(b), and ¢,/ € —=K*. Then the estimate
[v(b, ¢) —o (¥, )| < Ly max{]le]], [[¢'[ }]b—b"]| + Lo max{|[b]|, [|']], 1} [|e— €|

holds, where the constants L1 and Lo depend on A only.
(ii) Let b,/ € B and ¢, € —K*. Then we have

[0(b, ¢)—o(t', )| < max{]le], ||[}(LIb—b']| +26)+ L max{|[p], [ Hle—< |,
where the constants L and ¢ depend on A only.

The following result is [4, Theorem 2.1] and can be found in similar form
also in [2]. Together with Proposition 1 it is needed to prove Lemma 3.

Lemma 2 Let ¢ € —K*. The mapping b — S(b,c) is quasi-Lipschitz con-
tinuous on B with constants L1 and Lo not depending on b and c, i.e.,

du (S(b,c), SV, ¢)) < Lalb = ¥|| + Lo,

where dg denotes the Hausdorff distance on subsets of R™.
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3 Quantitative stability of mixed-integer two-stage stochastic
programs

Let us consider the stochastic program

min {(c.a) + [ $(a(©).h(©) ~ TP v X}, (@
where @ is the infimum function of a mixed-integer linear program given by
O(u,t) = inf {(u1,y) + (uz,5) : Wy + Wy <ty eZ", g eR™}  (7)

for all pairs (u,t) € R™*™ x R" and ¢ € R™, X is a closed subset of R™, =
a polyhedron in R®, W and W are (r,m)- and (r, m)-matrices, respectively,
q(&) e R™ ™ h(€) € R, and the (r,m)-matrix T'(£) are affine functions of
£ER®, and P € P(E).

We need the following conditions to have the model (6) well-defined:
(B1) The matrices W and W have only rational elements.
(B2) For each pair (z,&) € X x = it holds that h(¢) — T(&)xz € T, where

T :={teR" :3(y,y) € Z™ x R™ such that Wy + Wy < t}.
(B3) For each & € = the recourse cost ¢(§) belongs to the dual feasible set
U= {u = (u1,us2) € R™™ .32 ¢ R” such that W'z =u, W'z = uz} .

(B4) P € Py(2), ie., P € P(2) and [ [|€]*P(dE) < +oo0.

The conditions (B2) and (B3) mean relatively complete recourse and
dual feasibility, respectively. We note that (B2) and (B3) imply &(u,t) to
be finite for all (u,t) € U x 7. The following additional properties of the
value function @ on U x 7 are important in the context of this paper.

Lemma 3 Assume (B1)-(B3). Then there exists a countable partition of T
into Borel subsets B;, i.e., T = |J;cy Bi such that

(i) Bi = (bi + T) \ U, (bij + T), where bi,bij €R", i €N, j=1,..., Ny,
Ny € N does not depend on i, and T := {t € R" : Iy > 0 such that t >
Wy}. Moreover there exists an N1 € N such that for all t € T the ball
B(t,1) in R" is intersected by at most Ny different subsets B;.

(1) the restriction @‘u - where B} := B; N {h(§) —T()z|(x,§) € X x 5},
xB;

has the property that there exists a constant L > 0 independent of i, s.t.

|P(u, t)—P(a, t)] < Lmax{L, [¢], [[f]|}|u—all +max{1, [ull, ||l }t ).

Furthermore, the function @ is lower semicontinuous and piecewise polyhe-
dral on U x T and there exist constants D,d > 0 such that it holds for all
pairs (u,t), (4,t) €U x T:

|®(u, t)=@(a, 1)] < D(max{1, [[t]l, [} (|lu—al|+d)+max{1, |[ul], l[all}]t—])-
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The first part of (i) is Lemma 1. The second part is an extension of [20,
Lemma 2.5] to the function @(u,t) since the relevant constants in its proof
do not depend on the objective function as recalled in Lemma 2. Part (ii)
and the quasi-Lipschitz property of @ is Proposition 1.

The representation of @ is given on countably many (possibly unbounded)
Borel sets. This requires to incorporate the tail behavior of P and leads to
the following representation of the function fj.

Proposition 2 Assume (B1)-(B4) and X be bounded. For each R > 1 and
xr € X there exist disjoint Borel subsets Eﬁm of =, 7 =1,...,v, whose
closures are polyhedra with a uniformly bounded number of faces such that

v

fo(w, &) =Y ({e,@) + B(q(€), h(E) = T(€)2))1zr (§) ((2,6) € X x )

J=0
is Lipschitz continuous with respect to & on each Eﬁz, i =1,...,v, with
some uniform Lipschitz constant. Here, Z8, = =\ Ug’:lfﬁﬁ s contained

in {£ € R®:||€||oc > R}, v is bounded by a multiple of R" and 14 denotes
the characteristic function of a set A.

Proof Since q(+), h(-) and T'(+) are affine linear functions and X is bounded,
there exists a constant C' > 0 such that the estimate

max{|¢(§)lcc, [2(€) = T(E)[loc} < Cmax{1, [[{]loo} (8)

holds for each pairin X x =. Let R > 1 and 7 := 7 NCRB,, where B, is
the unit ball w.r.t. the maximum norm ||-||. As in [18, Proposition 34] there
exist a number v € N and disjoint Borel subsets {B;}7_; of CRB such
that their closures are polyhedra and their union contains 7. Furthermore,
when arguing as in the proof of [20, Proposition 3.1], v is bounded above
by kR", where the constant £ > 0 is independent of R. Now, let x € X and
consider the following disjoint Borel subsets of ="

Eih ={6€E (& -TEzeBy, |élle <R} (j=1,...,v),
Eie =5\ _UEfm c{¢eZ:[l¢le > R}

Il
-

J

Let z € X and ¢,¢' € 2%, for some j € {1,...,v}. By Lemma 3 we obtain

|fo(x,€) = fo(@,&)| = [@(a(€), h(&) — T(&)x) — D(a(§), h(§) = T(£')2)]
< L(max{L, [|g(§)llocs la(€) o }([[2(&) — A (&)l
+(T(€) = T(E))z[loo) + max{L, [[1(§) = T(€)zloo:
11(€) = T(&)z]loc Hla(€) — a(§)lls)
< LCR([[1(&) = M)l + I(T(€) = T(€)) ||
+la(€) — a(€)lloo)
< LiR|[€ = €| oo,
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where we used (8) for &,¢ € Z£ | affine linearity of q(-), h(-), and T(-), and

J,z

boundedness of X. We note that the constant L; is independ of R. O

In order to state quantitative stability results for model (6) and inspired
by the estimates (3) and (4), we need a distance of probability measures
that captures the behavior of fo(z,) (z € X) in its continuity regions
and the shape of these regions, respectively. This leads us to the following
probability metric on P2(=) for some k € N:

G (P.Q=swn{| [ HOP-Qe)]:1 € Fa2). B € B ()} ©)

Here, Bpy, (£) denotes the set of all polyhedra being subsets of = and having
at most k faces. The set F(=Z) contains all functions f : 5 — R such that

£(€)] < max{1, €]} and |f(&) — f(€)] < max{L, €], I€]I}II€ — €]l

holds for all £ ,é € =. We note that, unfortunately, the growth condition on
f is missing in the description of the set of functions in [16,18].

Before stating the main result, we define the function ¢p on Ry char-
acterizing the tail behavior of P by ¢p(0) =0 and

R>1

or(t)i= jut {R1e+ [ lE12P@e)} (>0 (10)
{£€E:|€lloo >R}
and the conditioning function Wp by

Wp(n) :=n+vp (27) (n€Ry), (11)

where the growth function ¥p on R, is
wr(r) = min { [ fuw. P~ o(P) s dlw S(P) = ra € X} (12

with inverse ¢5' (¢) := sup{T € R : ¢p(7) < t}. The functions ¢p and 1p
are nondecreasing, ¥p is increasing and all functions vanish at 0. Further-
more, one has ¢p(r) > 0if 7 > 0 and ¥p(n) \, 0 if n \, 0.

Theorem 1 Let the conditions (B1)-(B5) be satisfied and X be compact.
Then there exist constants L > 0 and k € N such that

< Lép(Capn, (P, Q)) (13)
0 # 5(Q) € S(P)+¥p(Lop(Capn, (P, Q)))B,

for each Q € Pa(Z). If [ ||EIIPP(dE) < +oo for some p > 2, the estimate
op(t) < Ctpiil holds for every t > 0 and some constant C' > 0.
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Proof Since the function @ is lower semicontinuous on U x 7 (Lemma 3), fo
is lower semicontinuous on X x = and, hence, a random lower semicontin-
uous function [17, Example 14.31]. Using Lemma 3 we obtain the estimate

[fo(z, )| < llellllzll + Dmax{1, A& + [T lz[}(lg(E)] + d)

+max{1, [[¢(E)[I} (IR + [T E)Il=])]
< Crymax{1, [|¢]]*}

for each pair (z,£) € X x Z and some constant C;. Hence, the objective
function (c, ) + [2 ®(q(€), (&) — T(&)z)Q(dE) is finite (if Q € P2(Z)) and
lower semicontinuous (due to Fatou’s lemma). Since X is compact, the so-
lution set S(Q) is nonempty.

From Proposition 2 we know that, for each R > 1 and = € X, there
exist Borel subsets 5[, j =1,...,v, of : such that the function ff%,(-) :=
folz, )1z =R, is Lipschitz continuous on =, with constant L, R. We extend

each funct1on fi R ( ) to the whole of = by preservmg the Lipschitz constant.

Then we have .(-) € F2(2). Furthermore, Proposition 2 implies that

L. R
the closures of Zf, are contained in Bpy, (Z) for some k € N, that the
number v is bounded above by kR", where the constant x > O is independent
on R, and that Zf!, := 5\ U1 _fz is a subset of {{ € = : ||{]| > R}.
For each @ € P2(Z) and z € X we obtain

| [ foaonP - Qd&\—\z [, B = Q)as)

<Z\/ TG P—Q)(d&)\ﬂf(ﬂ@)

<vIiiR sup
feF2 (&
j=1,...,v

)P - Q)(dS)| + IF(P,Q).

where the last summand on the right-hand side is given by
1rQ =| [ hwor- Q).
E0%e
Using v < kR" and arguing as in [18, Theorem 35] we continue
| [l (P = QO] < KL o (P.Q) + IH(P,Q).
For the term I7*(P,Q) we use the estimate |fo(x,&)| < C1||€]|? for any pair

(,) € X x {€ € Z:||€]|loo > R} and the norming constant Cs such that
[I€]] < C2]|€]|oo holds for all £ € R®. We get

IR(P.Q) < C1C2 / €12 (P + Q)(de).

{€eZ:I€ll o> R}



8 W. Rémisch, S. Vigerske

Since the set {£ € 5 : ||{]|c > R} can be covered by 2° intersections of =
with open halfspaces (whose closures belong to Bpp, (5)), we can estimate

/ 1€12.Q(d€) < 2°Capn (P, Q) + / €112 P(de).
{¢€Z:l€llo >R} {¢€Z:€llo >R}

Hence, combining the last three estimates we get

sup | [ fole. (P = QE)| < (LR + C1CEZ) g, (P.Q)

zeX

120,C2 / €112, P(de)
{¢€=:ElI> R}

for any R > 1. Taking the infimum with respect to R > 1 we obtain

sup| [ ol (P = Q)| < Cor(Gapn, (P.Q)

zeX

with some constant C' > 0. Now, the result is a consequence of the esti-
mates (3) and (4). If [ [|€]|PdP(§) < 400 for some p > 2, it holds that
Jicez el ry 1€]12,dP () < R*P [ ||£|[5,P(d€) by Markov’s inequality.

The desired estimate follows by inserting R =t~ 77T for small ¢ > 0 into
the function whose infinum w.r.t. R > 1is ¢p(t):

NS =N p e
¢p(t) <t rrr=T et [ IR P(dE) < Ctrir=t. O

The boundedness condition on X may be relaxed if localized optimal
values and solution sets are considered (see [18]). In case that the underlying
distribution P and its perturbations () have supports in some bounded
subset = of R?, the stability result improves slightly.

Corollary 1 Let the conditions (B1)-(B4) be satisfied, P € P(Z), X and
= be bounded. Then there exist constants L > 0 and k € N such that

[0(P) = v(Q) < La,pn, (P, Q)
®¢S( ) g ( )+WP(L<2,phk(PaQ))Ba
holds for each @Q € P(Z).

Proof Since = is bounded, we have P2(Z) = P(Z). Moreover, the function
®p(t) (see (10)) can be estimated by R" 1t for some sufficiently large R > 0.
Hence, Theorem 1 implies the assertion. O

Remark 1 Since 5 € Bpy, (Z) for some k € N, we obtain from (9) by choos-
ing B := = and f = 1, respectively,

max{C2(P, @), apn, (P, @)} < C2,pn, (P, Q) (14)



Quantitative stability of mixed-integer two-stage stochastic programs 9

for all P,Q € P2(Z). Here, (2 and apy, denote the second order Fortet-
Mourier metric [15, Section 5.1] and the polyhedral discrepancy

P, = sw_| [ sopue - [ sou)
CVphk (PvQ) = sup |P(B) - Q(B)|7
BeBphk(E)

respectively. Hence, convergence with respect to (2 pn, implies weak conver-
gence (see [3]), convergence of second order absolute moments, and conver-
gence with respect to the polyhedral discrepancy ay, - For bounded = C R®
the technique in the proof of [20, Proposition 3.1] can be employed to obtain

Copn (P.Q) < Cyapn, (P,Q)™  (P,Q € P(5)) (15)

for some constant Cs > 0. In view of (14), (15) the metric (2 pp, is stronger
than app, in general, but in case of bounded = both distances metrize the
same topology on P(Z).

For more specific models (6), improvements of the above results may be
obtained by exploiting specific recourse structures, i.e., by using additional
information on the shape of the sets B; in Lemma 3 and on the behavior
of the (value) function @ on these sets. This may lead to stability results
with respect to probability metrics that are (much) weaker than (3 pp, . For
example, if ¢ and T are fixed and h(:) is of the form h(§) := ¢ (i.e., r = s),
the closures of the B; belong to a class of polyhedra which is completely
characterized in [20, Section 3]. If, in addition, the model has pure integer
recourse, the stability result is valid with respect to the Kolmogorov metric

dic(P, Q) = sup |P((=00, 2]) = Q((=00, 2])]

on P(Z) instead of (3 pn, if = is bounded (see also [20, Proposition 3.4]).

A Proof of Proposition 1

Let b € B,V € B*(b), and ¢, € —K* be given. To show local Lipschitz
continuity of v(b, ¢), we estimate

[v(b,c) — v, )| < |v(b,e) — v, c)| + v, c) — v, ).

For the first difference we can proceed as for the proof of Lemma 2.3 in [20].
It is repeated here to keep the paper self-contained. We write (5) as

min{{(cz, z) + ¥(cy, b — Azx) : © € PryM(b)}

where ¥(c,,b) := min{(c,,y) : A,y < b}. Since ¥(c,,b) is the optimal value
function of a linear program and finite for b € B, ¢ € —K*, there exist
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finitely many matrices C;, which depend on A, only, such that ¥(c,,b) =
max; (b, Cjcy) (cf. [23]). Let Ly := max; ||C;||. Then, for ¢, fixed,

@ (cy,b) = W(cy, )] < Lalley|l 1o~ .
Let (z,y) € S(b,¢), («',y’) € S(V, ¢). Since Pry, M (b) = Pry M(b'), we have

v(b,c) — v, c) < (czy2’) + ¥(cy,b— Azx’) — (co, @) — ¥(cy, b — Az’)

<
< Lallef1b = ']

Due to symmetry the same estimate holds for v(¥, ¢) — v(b, ¢).
Before deriving an estimate for [v(b, ¢) —v(V, ¢)|, we recall the following
Lemma, which is [5, Theorem 1.2] and [6, Theorem 1].

Lemma 4 Let b € B, c € —K*. Let (Z,9) be a solution of
min{{cg, z) + {¢cy,y) : Agz + Ayy < b, (z,y) € R™}. (16)
Then there exists a solution (x,y) € S(b,c) such that

for some constant ¢ depending on A only.

Since (16) is a linear program, there exist finitely many matrices Dj,
which depend on A only, and such that each basis solution of (16) is given
by D;b for some j. We set L := max; || D;||. Now let (#’,7') be an optimal
basis solutions of problem (16) with right-hand side b’ and cost vector ¢’
By Lemma 4 there exists (2/,y") € SV, ) with ||(2',y") — (@, 7)] < £
Since v(V', ¢) < (cp, @) + (¢y,y') and ||(&,7)|| < L||t’||, we obtain

o' ) =o', ) < I,y lle = | < €+ LIV fle = €]

Due to symmetry, a similar estimate holds for v(V', ¢’) —v(V’, ¢). The second
part of Proposition 1 follows from Lemma 4 and stability results for linear
programs.
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