

Computing in the Cloud and **High Performance Computing** with **GAMS**

Franz Nelißen – FNelissen@gams.com

Agenda

Introduction

Computing in the Cloud - Solving MANY Scenarios

High Performance Computing - Solving **HUGE** Problems

Company

- Roots at World Bank, went commercial in 1987, pioneered Algebraic Modeling Languages
- GAMS Development Corp. (USA), GAMS Software GmbH (Germany)
- Software Tool Provider

GAMS at a Glance

Robust, scalable state-of-the-art algebraic modeling technology for complex, large-scale optimization

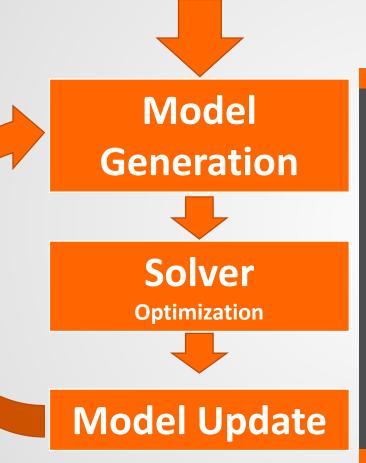
Open architecture and uniform interface to all major commercial and academic solvers (30+ integrated)

Used in more than 120 countries both for research and production in a broad range of applications

Agricultural Economics	Applied General Equilibrium			
Chemical Engineering	Economic Development			
Econometrics	Energy			
Environmental Economics	Engineering			
Finance	Forestry			
International Trade	Logistics			
Macro Economics	Military			
Management Science/OR	Mathematics			

Algebraic Modeling Languages (AML)

- Specialized programming languages for mathematical optimization problems
- Similar to algebraic notation: Model is executable algebraic description of optimization problem
- ➤ Not a solver: Algebraic Modeling Languages interact with solver, but do not solve problem directly
- Increased productivity: Simplified model development& maintenance


Nowadys AML are Standard for . . .

- Broad range of application areas
- Diverse kinds of users
 - > Anyone who took an "optimization" class
 - Newcomers to optimization
 - "Domain Experts" and anyone else with a technical background
- ... and trends favor this direction
 - Steadily faster and more powerful off-the-shelf solvers
 - Expanding options to incorporate models within hybrid schemes

Solving MANY Scenarios

What is time consuming?

- ➤ Model Generation / Update
 - GAMS Scenario Solver
- Solver (Optimization)
 - GAMS Grid Computing Facility
 - Solver on Demand
- > Both

GAMS Scenario Solver - Basics

Model Generation

Solver

Optimization

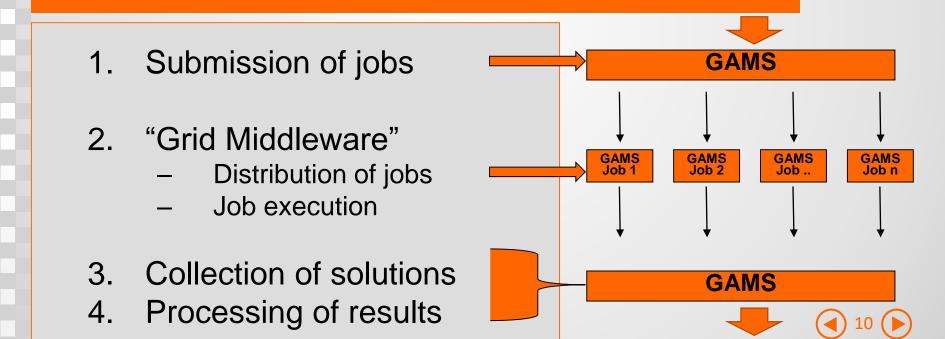
Model Update

- For Generates model once and updates the algebraic model keeping the model "hot" inside the solver
- Platform independent, works with all solvers
- Performance close to native solver API

GAMS Scenario Solver - Performance

Stochastic model: 66,320 (linear) instances

	Solve time		
Setting	(secs)	(%)	
Loop - communication through files	7,204	100%	
Loop - in core communication with solver	2,481	34%	
GAMS Scenario Solver	392	5%	
CPLEX Concert Technology	210	2%	



Grid Computing Facility

Runs GAMS jobs in a distributed environment

- Scalable, supports large grids (but also works on local machine)
- > Solver and Platform independent
- > Only minor changes to model required

Solver on Demand ("SaaS")

➤ Network Enabled Optimization System

- Free "optimization on demand" hosted by University of Wisconsin, Madison
- >Access through Website, email, or modeling language (Kestrel)
- >Over 40 solvers, several optimization modeling languages
- ➤ More than 537.00 total jobs submitted in 2017
- ➤ Satalia (UK): (kind of) commercial NEOS
- > Solver-Specific
 - Gurobi Instant Cloud
 - >IBM DoCloud

Application – Cloud Computing

Scenario Analysis at xyz Company

Challenge:

Solve 1,000+ scenarios (MIPs, one hour) every week overnight

Issues:

- Automation
- Security
- Licensing (Costs)

Application – Cloud Computing

Scenario Analysis at xyz Company

Implementation:

- Amazon Cloud: 1,000+ parallel machines (instances), Python, GAMS + OO Python API
- Fully automated setup
- > Only encrypted (obfuscated) files in the cloud
- Costs for virtual "Hardware" per run: \$70! (1,000 instances/run * \$0.07 instance / hour)
- Pricing for Licenses remains tricky

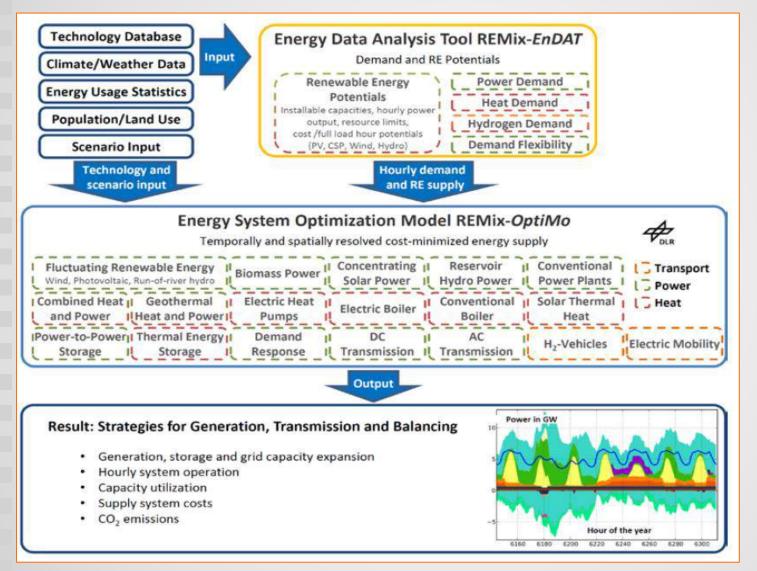
High Performance Computing -Solving Huge Problems

on the basis of a decision by the German Bundestag

BEAM-ME

Implementation of acceleration strategies from mathematics and computational sciences for optimizing energy system models

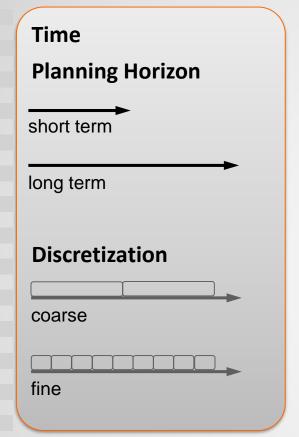
A PROJECT BY

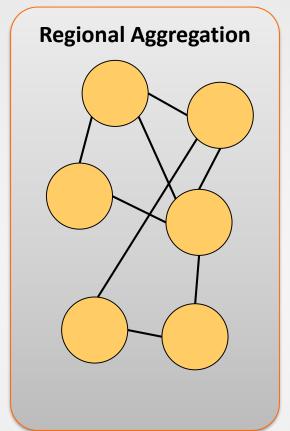


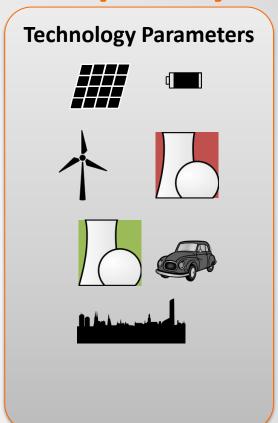
Energy System Models (ESM)

Motivation

Energy system models (ESM) must grow in complexity to provide valuable quantitative insights for policy makers and industry:


- Uncertainty
- Large shares of renewable energies
- Complex underlying electricity systems


Challenge:


- Increasing complexity makes solving ESM more and more difficult: Need for new solution approaches
- ESM is just one potential field of application

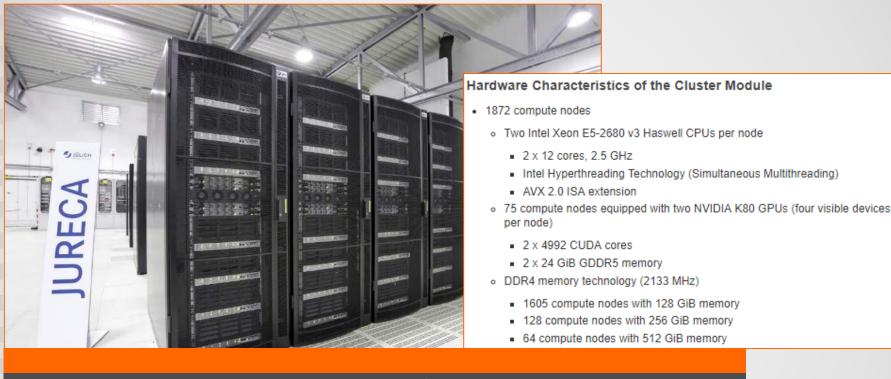
Model Parameters that Drive Complexity

(Very-) Large-scale LP

- > Scalable (resolution time, space, and technology)
- Block Structure

Solver: PIPS-IPM

- Open-Source parallel interior-point solver for LPs (and QPs), designed for high performance computing (HPC) platforms
- Originally for stochastic problems, extension to support linking constraints implemented by ZIB
- Already solved problems with more than 10⁹ variables
- Main developer: Cosmin Petra (Argonne National Lab.)



Model Annotation & Distributed Generation

JURECA at Jülich Supercomputing Centre

Also tested on other target platforms:

- Many-core platforms (JUQUEEN)
- ➤ Hazel Hen Supercomputer at the High-Performance Computing Center Stuttgart
- > Intel Xeon Phi Processors

Some Current Computational Results

	#regions	#time steps		mode	#rows	#columns	#NZ	Time [hh:mm:ss]	Memory [GB]
	250	8760	366	mono	21,725,667	23,917,146	86,449,311	08:36	16.50
			366	seq	21,725,667	23,917,146	86,449,311	06:37	6.50
			parallel @JURECA)	p1	21,725,667	23,917,146	86,449,311	02:12	366 x 3.40
			parallel @JURECA)	p2	21,725,667	23,917,146	86,449,311	01:05	366 x 1.30
			parallel @JURECA)	р3	21,725,667	23,917,146	86,449,311	00:26	366 x 0.08
	2000	35040	1461	mono	654,329,207	720,310,215	2,603,662,965	07:46:41	~540.00
			parallel @JURECA)	р3	654,329,207	720,310,215	2,603,662,965	03:04	1461 x 1.29

Summary

- Various options to run "many" scenarios
- What are the bottlenecks?
- Cloud Computing
 - Great potential for "burst computing"
 - > Automation, security, and licensing
- Very large problems remain challenging

Thank You

Questions?