Optimization of Gamma Knife Radiosurgery

Michael Ferris, Jin-Ho Lim University of Wisconsin, Computer Sciences

David Shepard
University of Maryland School of Medicine

Supported by Microsoft, NSF and AFOSR

Overview

- Details of machine and problem
- Optimization formulation
 - modeling dose
 - shot/target optimization
- Results
 - Two-dimensional data
 - Real patient (three-dimensional) data

The Gamma Knife

201 cobalt gamma ray beam sources are arrayed in a hemisphere and aimed through a collimator to a common focal point.

The patient's head is positioned within the Gamma Knife so that the tumor is in the focal point of the gamma rays.

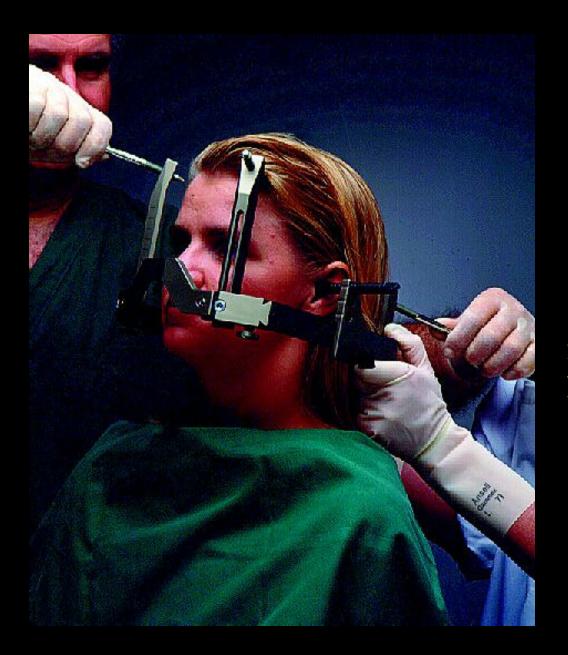
What disorders can the Gamma Knife treat?

- Malignant brain tumors
- Benign tumors within the head
- Malignant tumors from elsewhere in the body
- Vascular malformations
- Functional disorders of the brain
 - Parkinson's disease

Gamma Knife Statistics

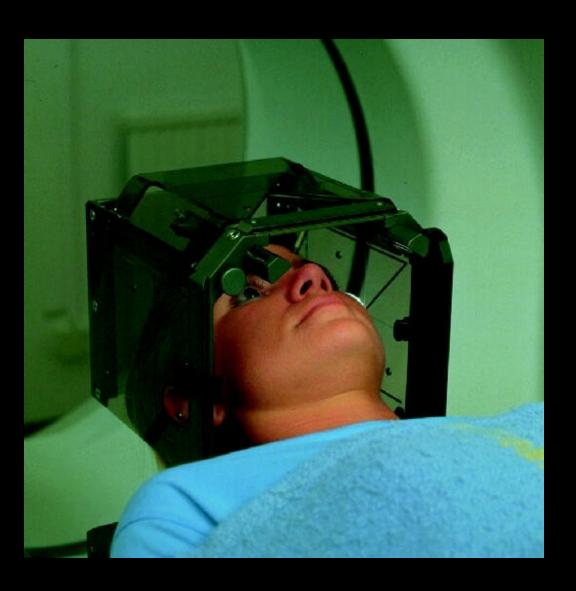
- 120 Gamma Knife units worldwide
- Over 20,000 patients treated annually
- Accuracy of surgery without the cuts
- Same-day treatment

Expensive instrument

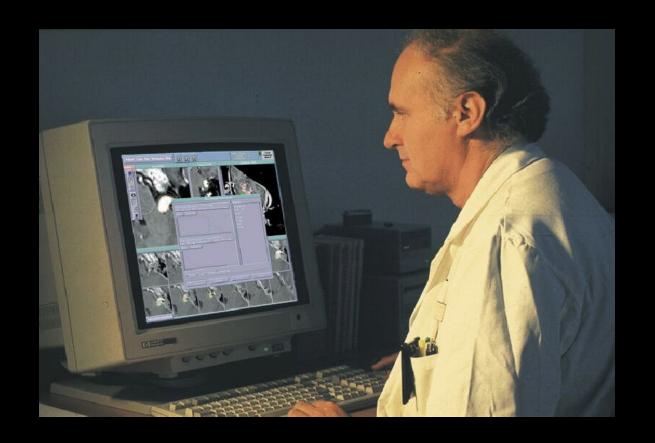


How is Gamma Knife Surgery performed?

Step 1: A stereotactic head frame is attached to the head with local anesthesia.

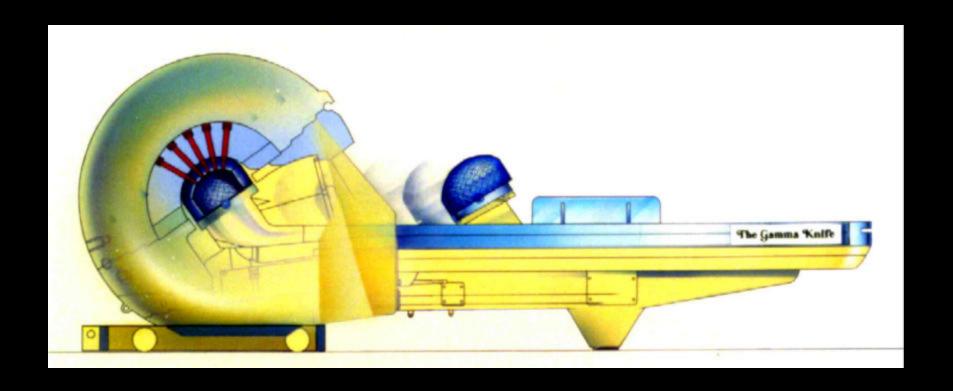


Step 2: The head is imaged using a MRI or CT scanner while the patient wears the stereotactic frame.



Step 3: A treatment plan is developed using the images. Key point: very accurate delivery possible.

Step 4: The patient lies on the treatment table of the Gamma Knife while the frame is affixed to the appropriate collimator.



Step 5: The door to the treatment unit opens. The patient is advanced into the shielded treatment vault. The area where all of the beams intersect is treated with a high dose of radiation.

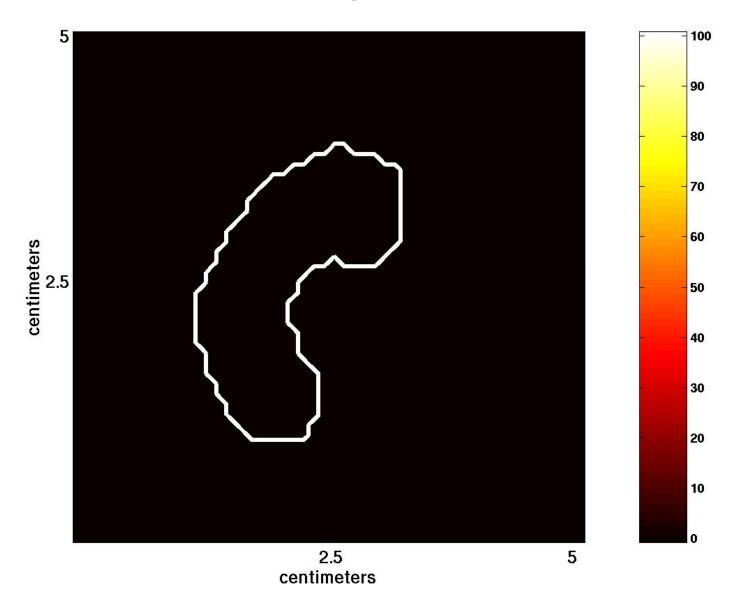
Before

After

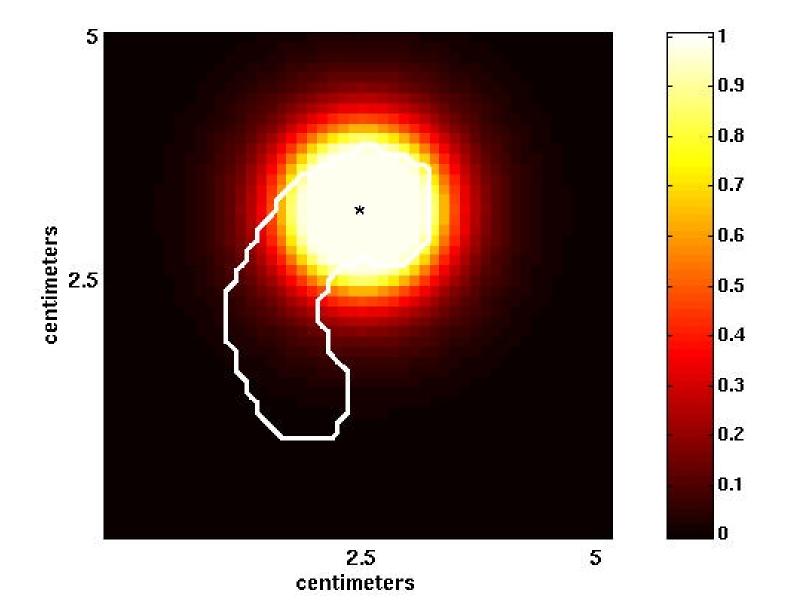
Treatment Planning

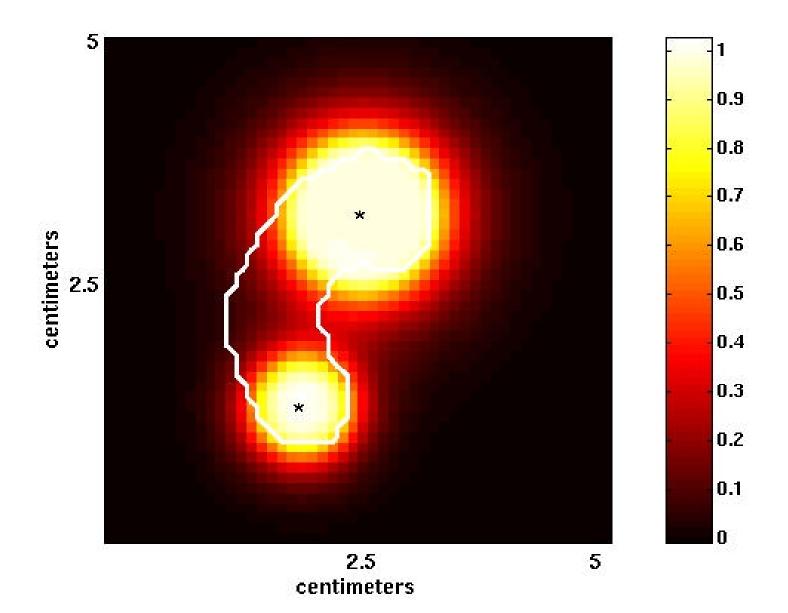
- Through an iterative approach we determine:
 - the number of shots
 - the shot sizes
 - the shot locations
 - the shot weights
- The quality of the plan is dependent upon the patience and experience of the user

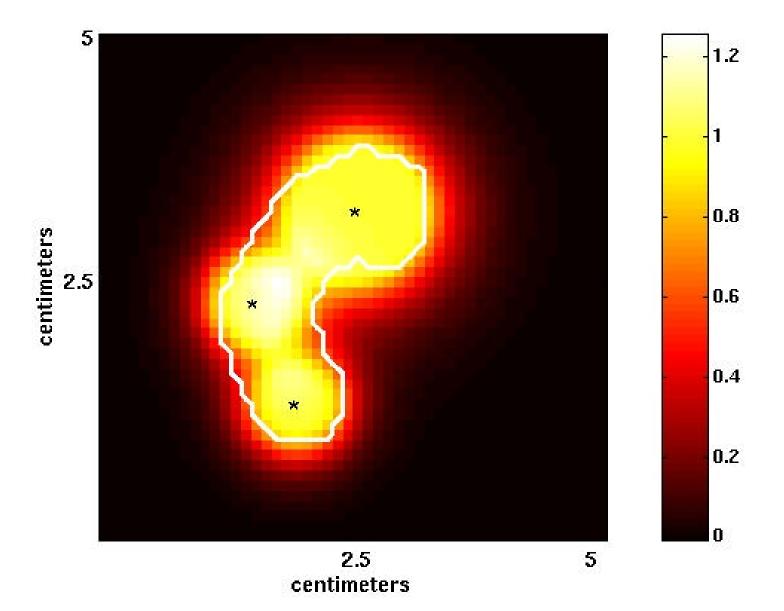
Target

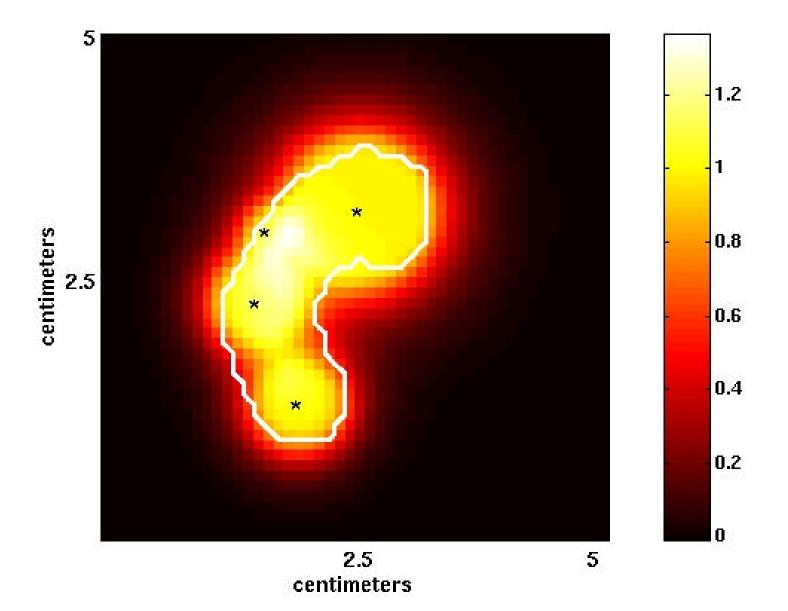


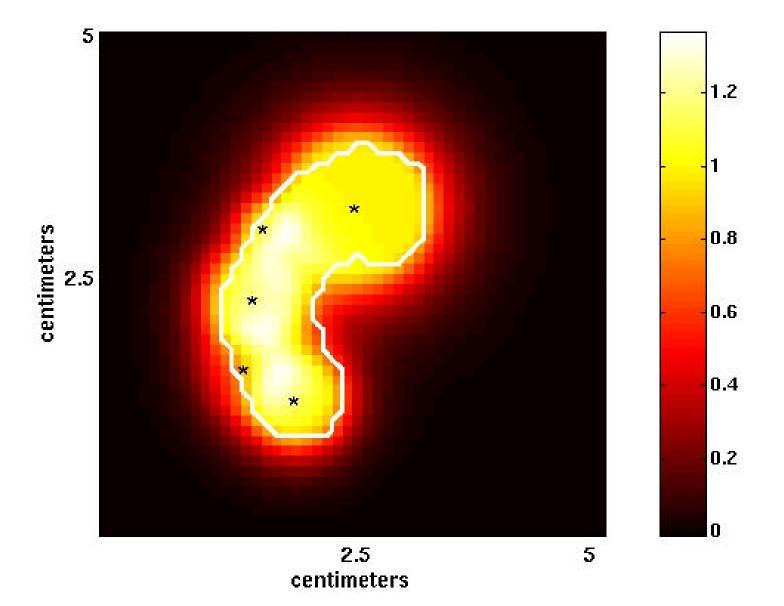
1 Shot











Inverse Treatment Planning

- Develop a fully automated approach to Gamma Knife treatment planning.
- A clinically useful technique will meet three criteria: robust, flexible, fast

- Benefits of computer generated plans
 - uniformity, quality, faster determination

Computational Model

- Target volume (from MRI or CT)
- Maximum number of shots to use
 - Which size shots to use
 - Where to place shots
 - How long to deliver shot for
 - Conform to Target (50% isodose curve)
 - Real-time optimization

Summary of techniques

Method	Advantage	Disadvantage
Sphere Packing	Easy concept	NP-hard
		Hard to enforce constraints
Dynamic		Not flexible
Programming	Easy concept	Not easy to implement
		Hard to enforce constraints
Simulated	Global solution	Long-run time
Annealing	(Probabilistic)	Hard to enforce constraints
Mixed Integer	Global solution	Enormous amount of data
Programming	(Deterministic)	Long-run time
Nonlinear	Flexible	Local solution
Programming		Initial solution required

I deal Optimization

$$\min_{t_{s,w},x_s} Dose(NonTarget)$$

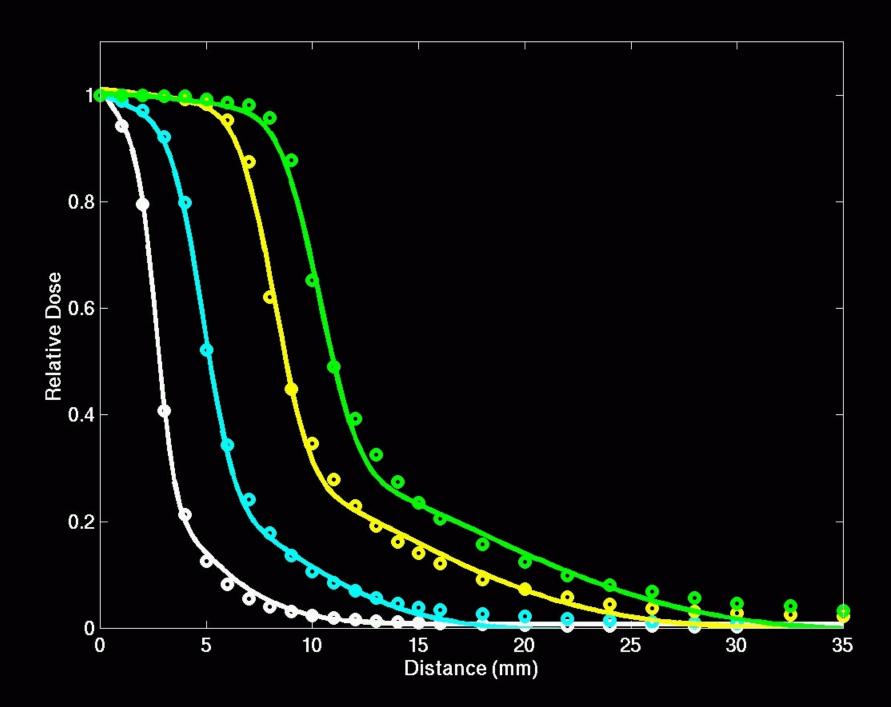
subject to

$$Dose(i) = \sum_{s \in S, w \in W} t_{s,w} D_w(x_s, i)$$

$$0.5 \le Dose(Target) \le 1$$

$$t_{s,w} \ge 0$$

$$|S| \le n$$



Dose calculation

- Measure dose at distance from shot center in 3 different axes
- Fit a nonlinear curve to these measurements (nonlinear least squares)
- Functional form from literature, 10 parameters to fit via least-squares

$$m_1 \ erf(\frac{d_1(x)-r_1}{\sigma_1}) + m_2 \ erf(\frac{d_2(x)-r_2}{\sigma_2})$$

MIP Approach

Choose a subset of locations from S

$$\psi_{s,w} = \left\{ egin{array}{ll} 1 & \mbox{if use shot s of width w} \\ 0 & \mbox{else} \end{array} \right.$$

$$D_{s,w}(i) := D_w(x_s, i)$$

$$Dose(i) = \sum_{s \in S, w \in W} t_{s,w} D_{s,w}(i)$$

Features of MIP

- Large amounts of data/integer variables
- Possible shot locations on 1mm grid too restrictive
- Time consuming, even with restrictions and CPLEX
- but ... have guaranteed bounds on solution quality

Data reduction via NLP

Let x_s be variable locations

$$s = 1, 2, \dots, N$$

 $D_w(x_s,i)$ is nasty nonlinear function

What width shot to use at x_s ?

$$\psi_{s,w} = \begin{cases} 1 & \text{if shot s is width w} \\ 0 & \text{else} \\ \underline{T}\psi_{s,w} \leq t_{s,w} \leq \overline{T}\psi_{s,w} \\ \sum_{s,w} \psi_{s,w} \leq n \end{cases}$$

$$\min_{t_{s,w},x_s,y_s} Under(Target)$$

$$\mathrm{s.t.} \ Dose(i) = \sum_{s \in S,w \in W} t_{s,w} D_w(x_s,i)$$

$$Under(i) \geq 1 - Dose(i) \geq 0$$

$$Dose(Target)/(\sum_{s,w} t_{s,w} \overline{D_w}) \geq P$$

$$\sum_{s,w} \psi_{s,w} \leq n$$

$$\overline{T}\psi_{s,w} \ge t_{s,w} \ge \underline{T}\psi_{s,w}$$

I terative approach

Approximate via "arctan"

$$\sum_{s,w} \frac{2}{\pi} arctan(t_{s,w}) \leq n$$

 First, solve with coarse approximation, then refine and reoptimize

Difficulties

- Nonconvex optimization
 - speed
 - robustness
 - starting point
- Too many voxels outside target
- Too many voxels in the target (size)
- What does the neurosurgeon really want?

$$\min_{t_{s,w},x_s,y_s} Under(Target)$$

$$\mathrm{s.t.} \ Dose(i) = \sum_{s \in S,w \in W} t_{s,w} D_w(x_s,i)$$

$$Under(i) \geq 1 - Dose(i) \geq 0$$

$$Dose(Target)/(\sum_{s,w} t_{s,w} \overline{D_w}) \geq P$$

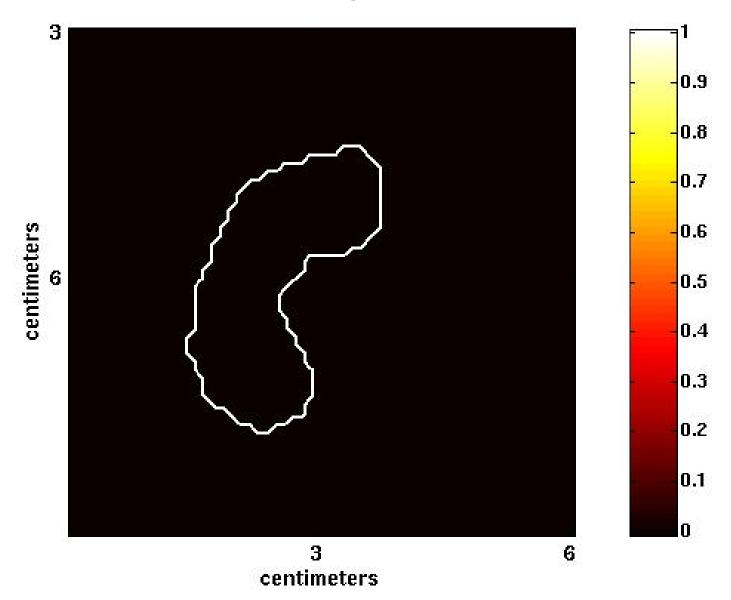
$$\sum_{s,w} \arctan(t_{s,w}) \leq n \ \pi/2$$

$$t_{s,w} > 0$$

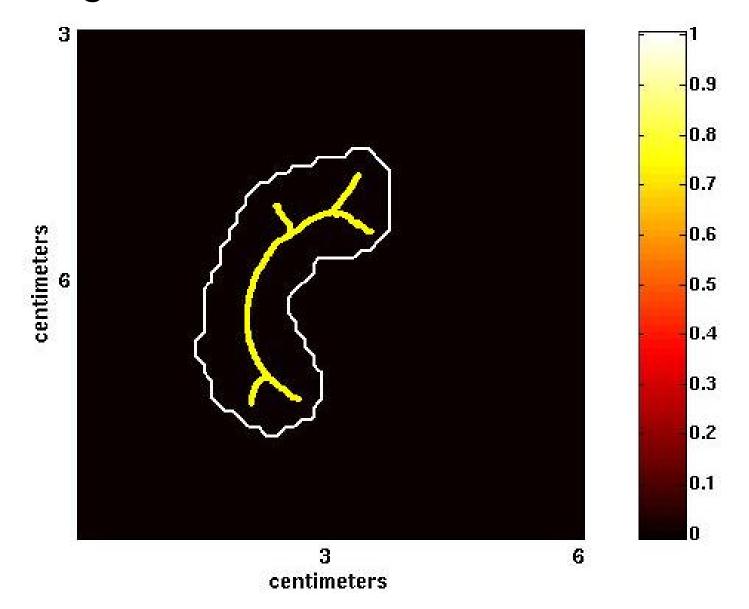
Conformity estimation

$$\begin{aligned} & \min & & \sum_{(s,w) \in S \times W} \bar{D}_w t_{s,w} \\ & \text{subject to} & & Dose(i) = \sum_{(s,w) \in S \times W} t_{s,w} D_w(x_s,i) \\ & & 0 \leq Under Dose(i) \geq 1 - Dose(i) \\ & & \sum_{i \in Target} Under Dose(i) \leq NP_U \\ & & \sum_{i \in Target} arctan(t_{s,w}) \leq n \\ & & (s,w) \in \{1,\dots,n\} \times W \\ & & 0 \leq t_{s,w} \leq \bar{t} \end{aligned}$$

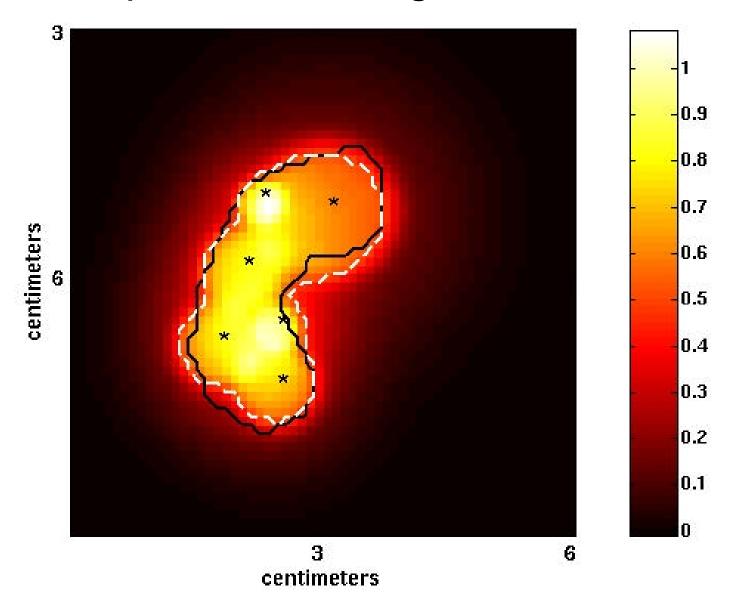
Target

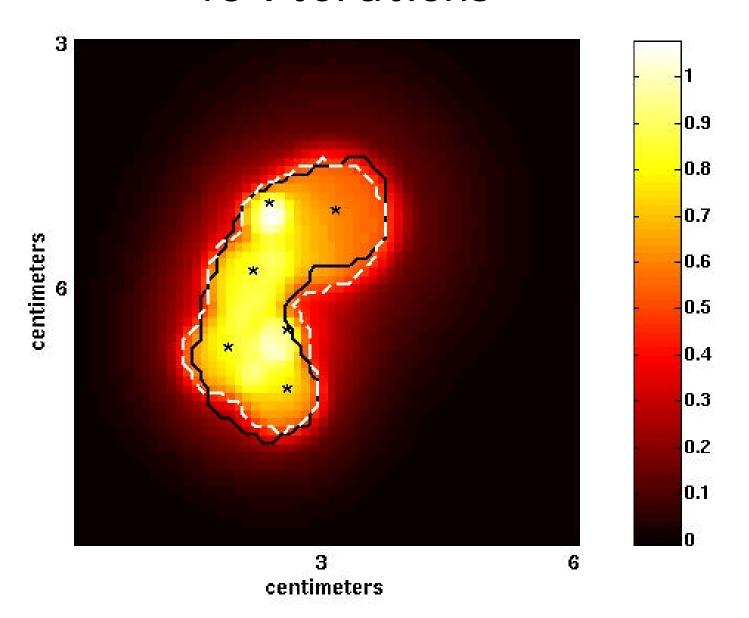


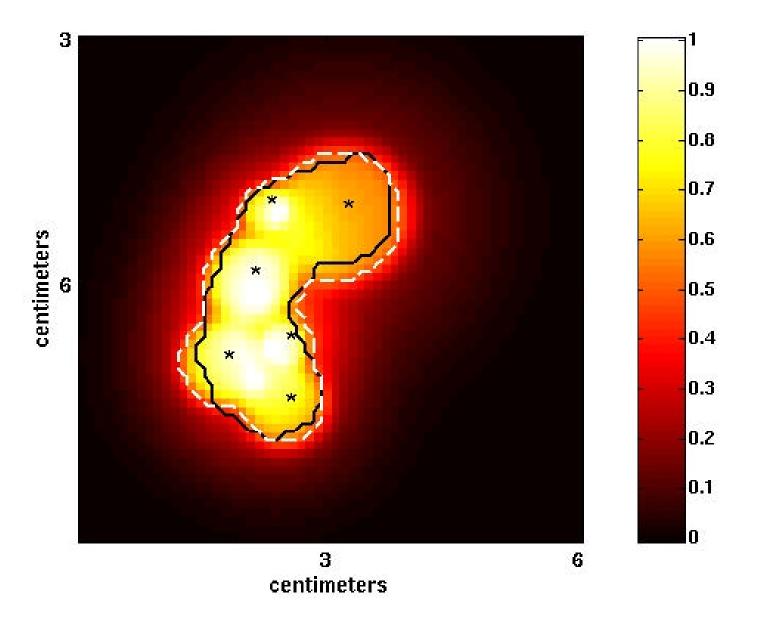
Target Skeleton is Determined

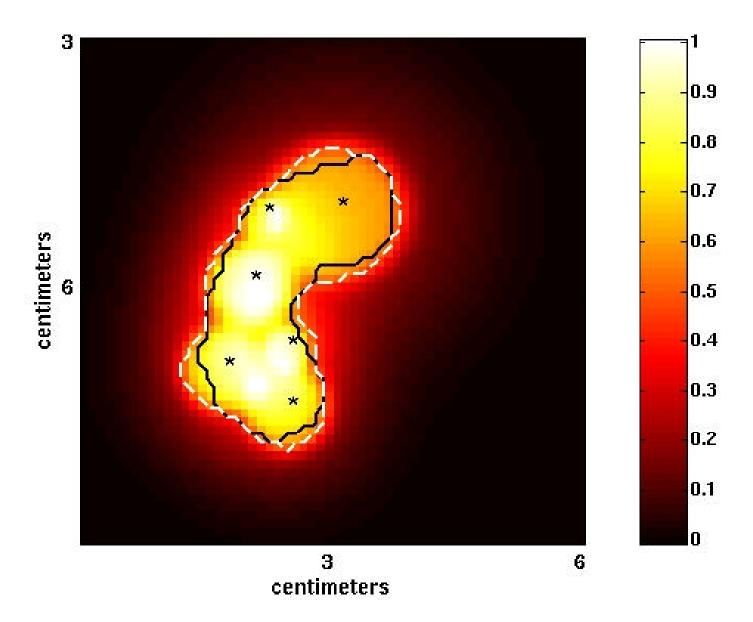


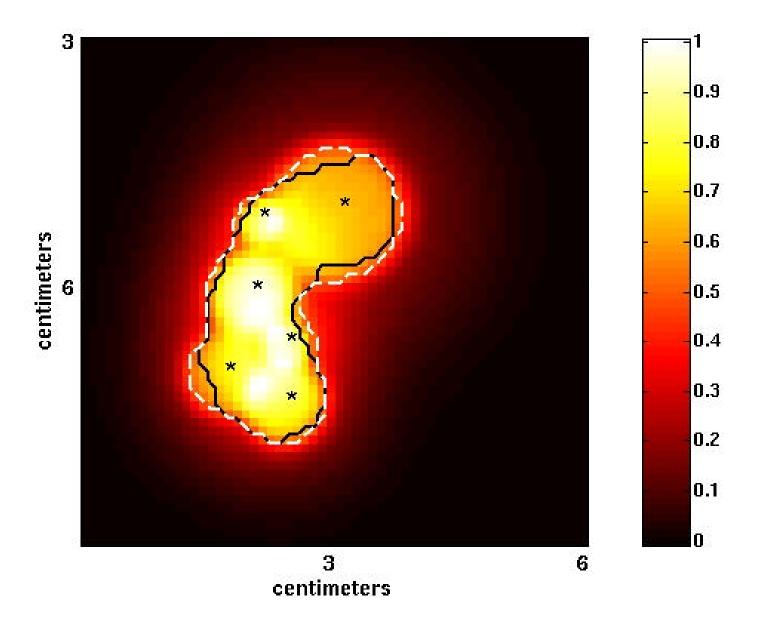
Sphere Packing Result











I terative Approach

- Rotate data (prone/supine)
- Skeletonization starting point procedure
- Conformity subproblem (P)
- Coarse grid shot optimization
- Refine grid (add violated locations)
- Refine smoothing parameter
- Round and fix locations, solve MIP for exposure times

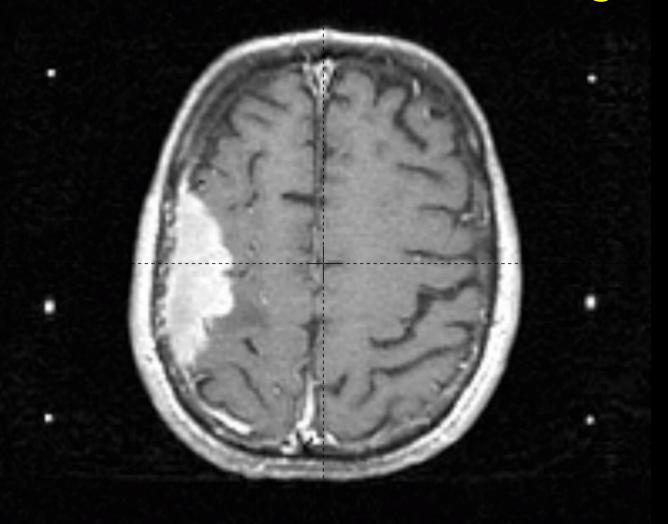
Status

- Automated plans have been generated retrospectively for over 30 patients
- The automated planning system is now being tested/used head to head against the neurosurgeon
- Optimization performs well for targets over a wide range of sizes and shapes

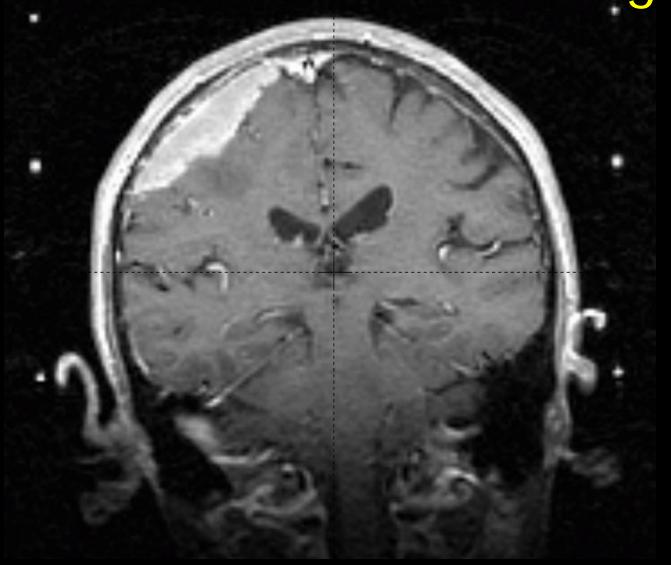
Environment

- All data fitting and optimization models formulated in GAMS
 - Ease of formulation / update
 - Different types of model
- Nonlinear programs solved with CONOPT (generalized reduced gradient)
- LP's and MIP's solved with CPLEX

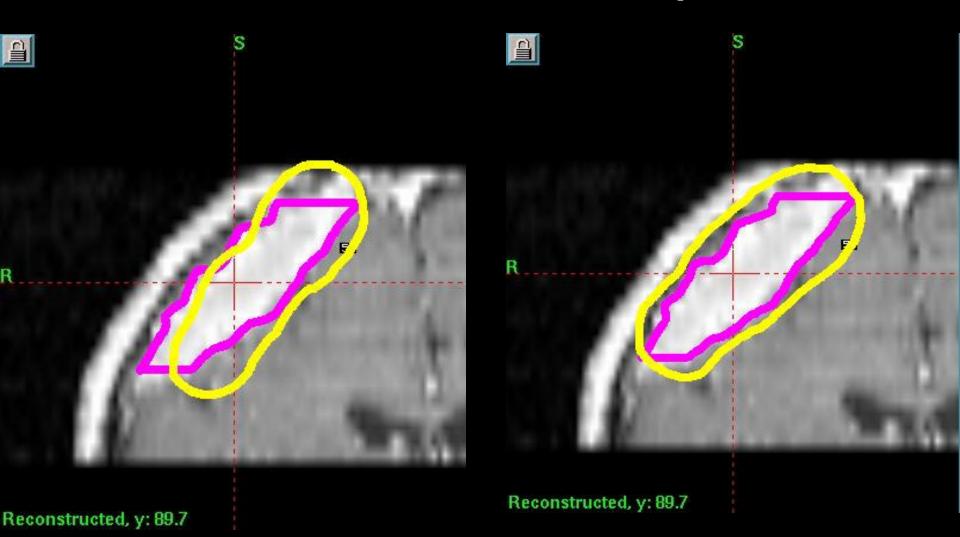
Patient 1 - Axial I mage

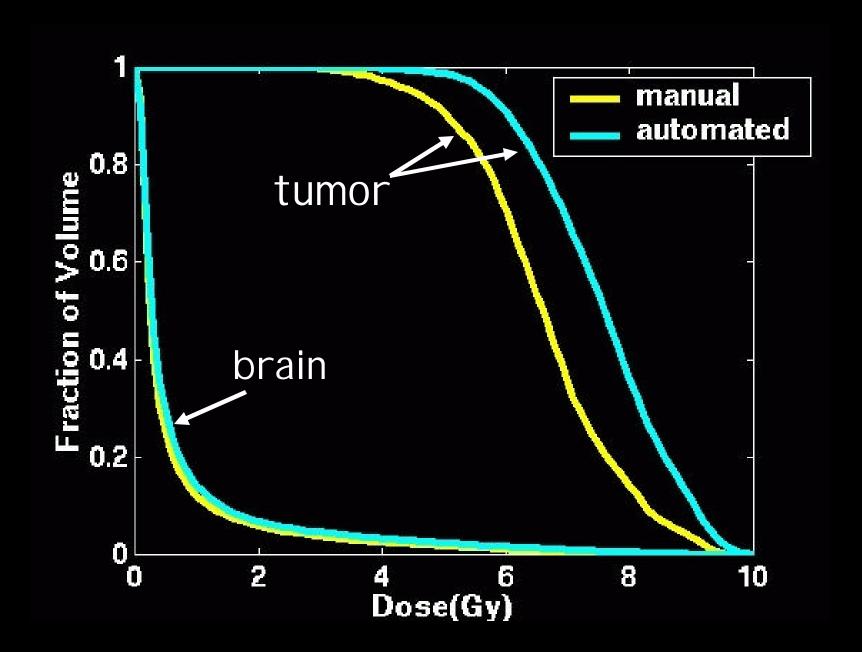


Patient 1 - Coronal I mage

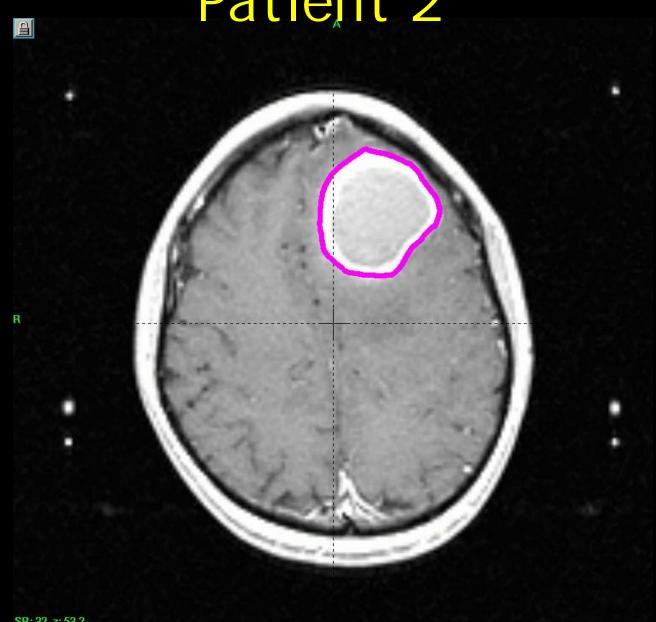


optimized



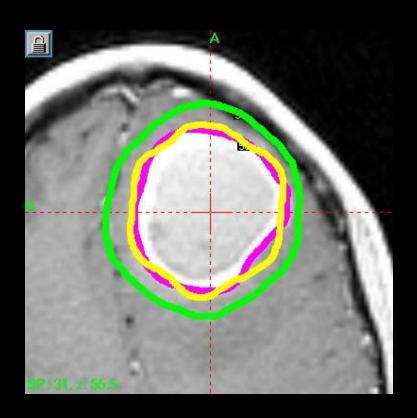


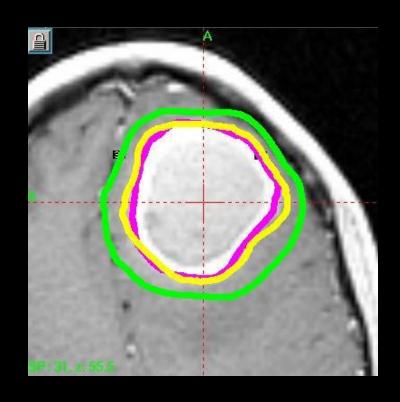
Patient 2



Patient 2 - Axial slice

15 shot manual 12 shot optimized

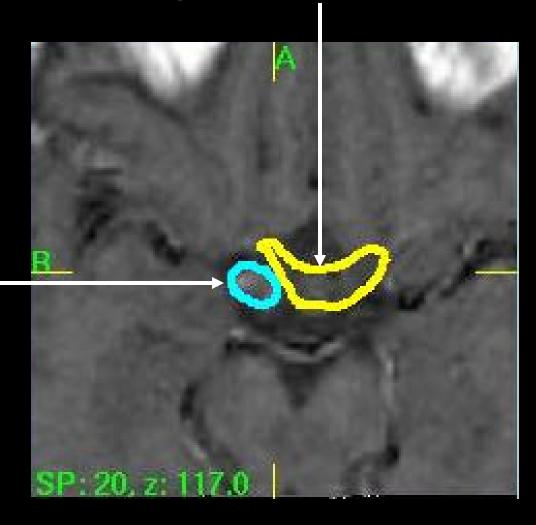


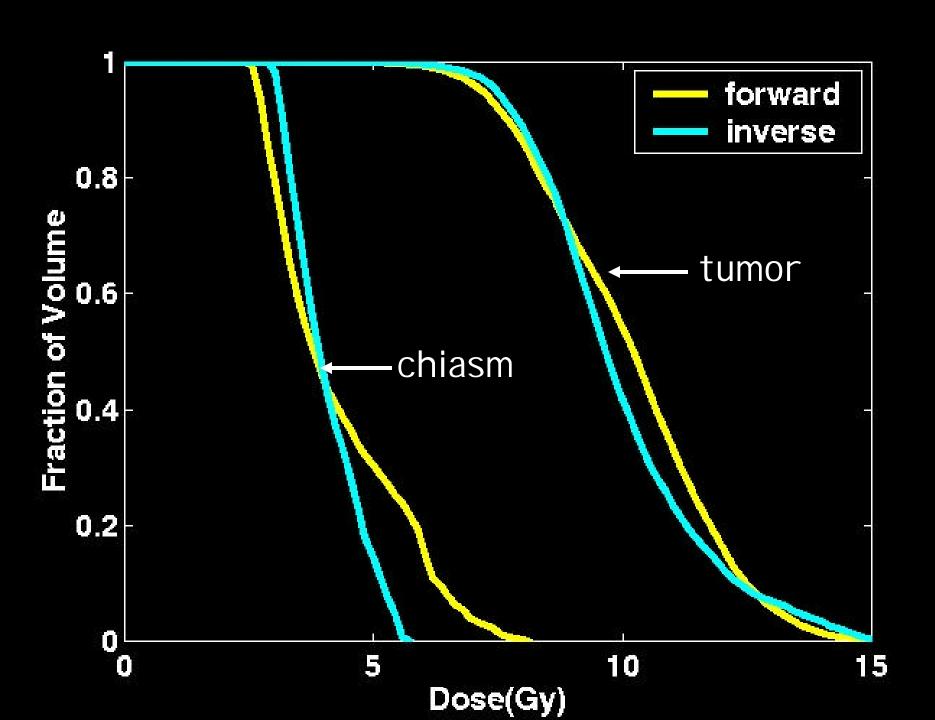


Patient 3

optic chiasm

pituitary _ adenoma

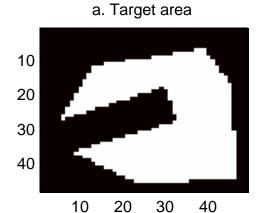




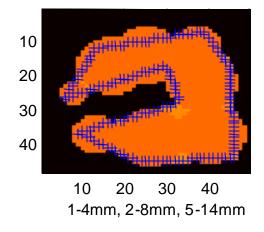
Speed

- Speed is quite variable, influenced by:
 - tumor size, number of shots
 - computer speed
 - grid size, quality of initial guess
- In most cases, an optimized plan can be produced in 10 minutes or less on a Sparc Ultra-10 330 MHz processor
- For very large tumor volumes, the process slows considerably and can take more than 45 minutes

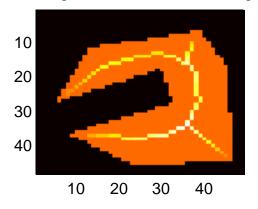
Skeleton Starting Points



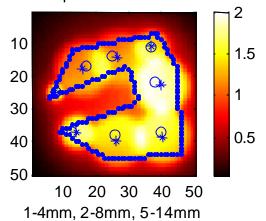
c. 8 initial shots are identified



b. A single line skeleton of an image



d. An optimal solution: 8 shots



Run Time Comparison

Average Run Time	Size of Tumor					
	Small	Medium	Large			
Random	2 min 33 sec	17 min 20 sec	373 min 2 sec			
(Std. Dev)	(40 sec)	(3 min 48 sec)	(90 min 8 sec)			
SLSD	1 min 2 sec	15 min 57 sec	23 min 54 sec			
(Std. Dev)	(17 sec)	(3 min 12 sec)	(4 min 54 sec)			

DSS: Estimate number of shots

– Motivation:

- Starting point generation determines reasonable target volume coverage based on target shape
- Use this procedure to estimate the number of shots for the treatment

- Example,

- Input:
 - number of different helmet sizes = 2;
 - (4mm, 8mm, 14mm, and 18mm) shot sizes available
- Output:

Helmet size(mm)	4 & 8	4 & 14	4 & 18	8 & 14	8 & 18	14 & 18
# shots estimated	25	10	9	7	7	7

Conclusions

- An automated treatment planning system for Gamma Knife radiosurgery has been developed using optimization techniques (GAMS, CONOPT and CPLEX)
- The system simultaneously optimizes the shot sizes, locations, and weights
- Automated treatment planning should improve the quality and efficiency of radiosurgery treatments

Conclusions

- Problems solved by models built with multiple optimization solutions
- Constrained nonlinear programming effective tool for model building
- Interplay between OR and MedPhys crucial in generating clinical tool
- Gamma Knife: optimization compromises enable real-time implementation