

Formulating and solving non-standard model types using gams/emp

Jan-Hendrik Jagla <u>ihjagla@gams.com</u>

Michael Ferris <u>ferris@cs.wisc.edu</u>

Alex Meeraus <u>ameeraus@gams.com</u>

GAMS Software GmbH

www.gams.de

GAMS Development Corp.

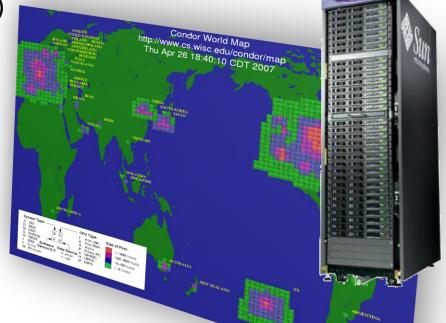
www.gams.com

Agenda

- General Algebraic Modeling System
- New Solution Concepts
 - Extended Mathematical Programming

Session ??

Parallel Nonlinear Programming Algorithms


 GAMS supports solvers which make use of multiple threads and/or concurrent strategies

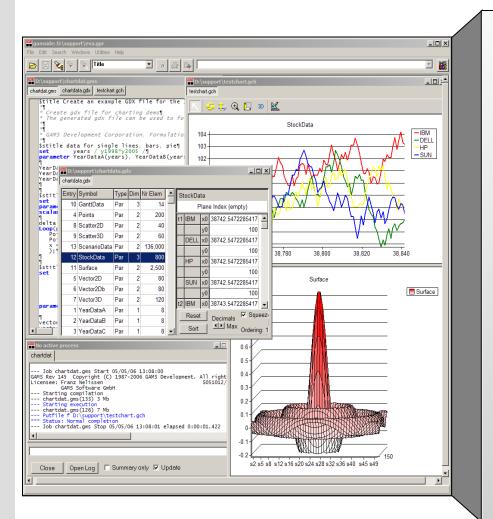
• MIP (CPLEX, GUROBI, XA, XPRESS)

• NLP (CONOPT4, MOSEK)

• GAMS Grid Computing

Switch

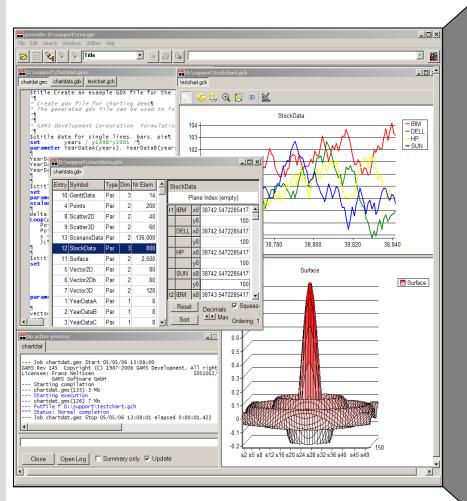
Agenda


General Algebraic Modeling System

New Solution Concepts

Extended Mathematical Programming

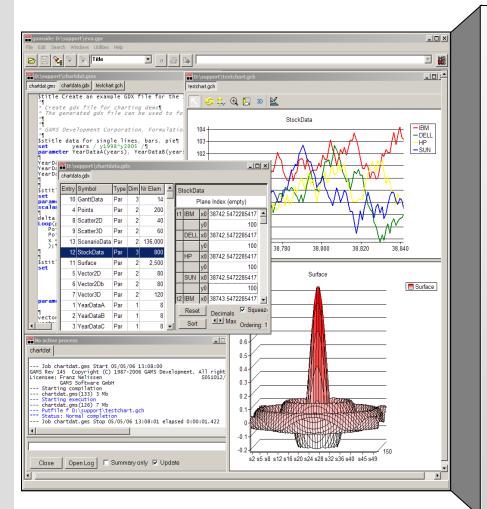
GAMS at a Glance



Algebraic Modeling System

- Facilitates to formulate mathematical optimization problems similar to algebraic notation
 - → Simplified model building
- Provides links to appropriate stateof-the-art external algorithms
 - → Efficient solution process

GAMS at a Glance


General Algebraic Modeling System

- Roots: World Bank, 1976
- Went commercial in 1987
- GAMS Development Corp.
- GAMS Software GmbH
- Broad academic & commercial user community and network

GAMS at a Glance

General Algebraic Modeling System

- Algebraic Modeling Language
- 25+ Integrated Solvers
- 10+ Supported MP classes
- 10+ Supported Platforms
- Connectivity- & Productivity Tools
 - IDE
 - Model Libraries
 - GDX, Interfaces & Tools
 - Grid Computing
 - Benchmarking
 - Compression & Encryption
 - Deployment System
 - ...

Agenda

General Algebraic Modeling System

New Solution Concepts


Extended Mathematical Programming

Traditional but fundamental concept of AMLs

Different layers with separation of

- model and data
- model and solution methods
- model and operating system
- model and interface

Current state: Model-Side

Traditional problem format

$$\min_{x} c(x)$$
 s.t. $A_1(x) \le b_1$, $A_2(x) = b_2$

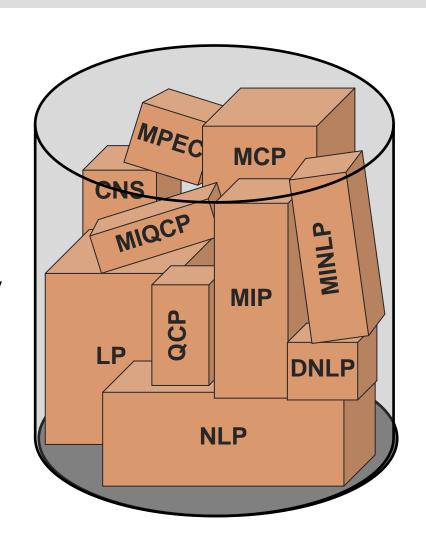
- Support for complementarity constraints
- Interactions between models possible
 - Series of models
 - Scenario analyses / parallelized model runs
 - Iterative sequential feedback
 - Decomposition

Current state: Solver-Side

Support of a wide collection of established MP classes through solver cluster!

→ Tremendous algorithmic and computational progress

LP


in fact only restricted by available memory

MIP

- Some (academic) problems still unsolvable
- Commercial problems mostly docile

NLP/MINLP

 Predictions are problem and data specific, global vs. local solutions

Non-traditional solution concepts

- MP with Equilibrium Constraints (MPEC)
 - > NLPEC
 - Solves MPECs through reformulation into NLPs
- Solving non-integer models as MCPs
 - > PATHNLP
 - reformulation via KKT conditions (1st and 2nd order deriv.)
- Mathematical Programming System for General Equilibrium analysis
 - > MPSGE
- Indicator Constraints (CPLEX)
 - Alternative to conventional BigM formulations

Non-traditional solution concepts

- Global Optimization
 - > BARON, LINDOGLOBAL
 - Proven global optimum
 - > LGO, OQNLP
 - Stochastic convergence to global optimum
- Stochastic Programming
 - > DECIS
 - solves two-stage stochastic linear programs with recourse
 - two-stage decomposition (Benders)
 - stores only one instance of the problem and generates scenario subproblems as needed
 - solution Strategies (Universe problem/Importance sampling)

• ...

New solution concepts

- Embedded Complementarity Systems
- Disjunctive Programs
- Bilevel Programs
- Extended Nonlinear Programs
- Variational Inequalities
- - Breakouts of traditional MP classes
 - No conventional syntax
 - Limited support with common model representation
 - Incomplete/experimental solution approaches
 - ➤ Lack of reliable/any software

What now?

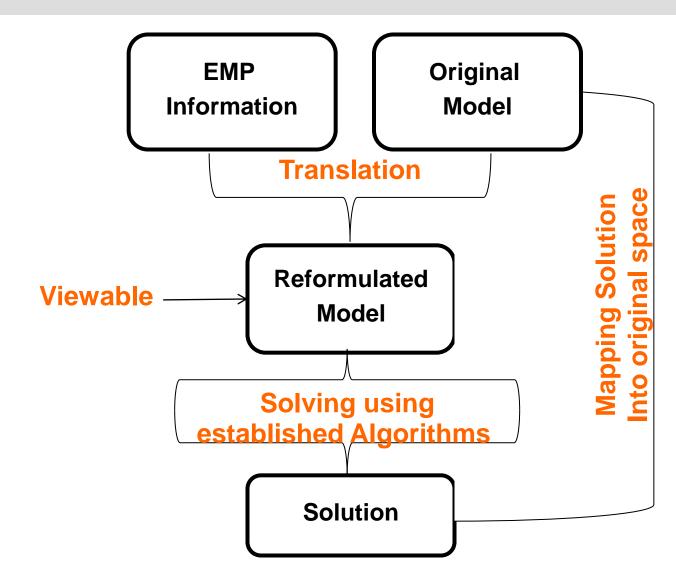
Do not:

- overload existing GAMS notation right away!
- · attempt to build new solvers right away!

But:

- Use existing language features to specify additional model features
- Distribute information as part of the production system
- Express extended model in symbolic form and apply existing matured solution technology
 - → Extended Mathematical Programming (EMP)

Agenda


General Algebraic Modeling System

New Solution Concepts

Extended Mathematical Programming

GAMS "Solver" EMP

Embedded Complementarity Systems

This is not an optimization model! How to solve?

Embedded Complementarity Systems

Write model as regular NLP with side constraints/variables

$$\min_{x} f(x,y)$$
s.t. $g(x,y) \le 0 \quad (\pm \lambda \ge 0)$

$$H(x,y,\lambda) = 0 \quad (\pm y \text{ free})$$

Provide the additional information

 EMP automatically creates the equivalent MCP model

$$abla_{x}\mathcal{L}(x,y,\lambda) \quad \perp x \text{ free} \\
-\nabla_{\lambda}\mathcal{L}(x,y,\lambda) \quad \perp \lambda \geq 0 \\
H(x,y,\lambda) = 0 \quad \perp y \text{ free}$$

ECS Example

```
parameter
                         Terminal capital stock
        kterm
UTIL..
                    UTILITY = E = SUM(t, 10 * dfactor(t) * L(t) * LOG(C(t)/L(t));
CC(t)..
                       C(t) = E = Y(t) - I(t);
YY(t)..
                       Y(t) = E = phi * L(t) **(1-kvs) * K(t) **kvs;
KK(t)..
                       K(t) = L = (1-delta) **10 * K(t-1) + 10 * I(t-1) + kinit$tfirst(t);
                      kterm =E= sum(tlast, (1-delta) **10 * K(tlast) + 10 * I(tlast));
TERMCAP...
model ramsey NLP Model using parameter kterm /all/;
set iter /iter1*iter20/;
kterm = kinit * power(1+q, card(t));
parameter
                 invest(t,iter) Investment in successive iterations
                 kt(iter)
                                 Terminal capital stock in successive iterations:
loop(iter,
        kt(iter) = kterm;
        solve ramsey maximizing UTILITY using NLP;
        invest(t,iter) = I.L(t);
        kterm = sum(tlast(t), K.L(tlast) * Y.L(t)/Y.L(t-1));
                                                                 (Thomas F. Rutherford)
);
```


EMP Formulation

```
*Substitute TERMCAP of NLP by TERMCAPV (using variable KTERMV instead of parameter kterm)
TERMCAPV.. KTERMV =E= sum(tlast, (1-delta) **10 * K(tlast) + 10 * I(tlast));

*First-order-condition for terminal capital stock variable
SSTERM.. sum(tlast(t),I(t)/I(t-1) - Y(t)/Y(t-1)) =E= 0;

model ramseynlpd /UTIL,CC,YY,KK,TERMCAPV,SSTERM/;

$onecho > %emp.info%
dualequ SSTERM KTERMV
$offecho

option nlp=emp;

solve ramseynlpd maximizing UTILITY using nlp;
```


Disjunction Example

A set of tasks is to be processed on a single machine.

- The execution of the tasks is non-preemptive (ie cannot be interrupted).
- Every task has a release date, duration and due date are given.

```
    table data(times,job)

    1
    2
    3
    4
    5
    6
    7

    release
    2
    5
    4
    8
    9

    duration
    5
    6
    8
    4
    2
    4
    2

    due
    10
    21
    15
    10
    5
    15
    22
```

Objective: What is the sequence that minimizes the maximum tardiness?

Disjunction Example

```
seq(i,j)$(not sameas(i,j)).. comp(i) =l= start(j);
```

- Either has to hold for (i,j) or (j,i)
- How to model these disjunctions:
 - BigM Formulation
 - Convex Hull Formulation
 - Indicator constraints (CPLEX)
- Which is adequate/best formulation for my problem?

Hierarchical Models

Bilevel Program:

$$\min_{x,y} f(x,y)$$
s.t. $g(x,y) \le 0$,
 $y \text{ solves } \min_{s} v(x,s) \text{ s.t. } h(x,s) \le 0$

Additional Information:

\$onecho > %emp.info%
Bilevel x min v h
\$offecho

 EMP Tool automatically creates an MPEC by expressing the lower level optimization problem through its optimality conditions

Bilevel Model

Conejo A J, Castillo E, Minguez R, and Garcia-Bertrand R; Decomposition Techniques in Mathematical Programming, Springer, Berlin, 2006.

EMP Information File + EMP Summary Log

```
option nlp=emp;

$onecho > %emp.info%
bilevel x1 x2 x3 x4
min h1 defh1 e1
min h2 defh2 e2
$offecho

solve bilevel us nlp min z;
```


Extended Nonlinear Programming

Soft penalization of constraints

```
• Model: \min_{x_1,x_2,x_3} \exp(x_1)

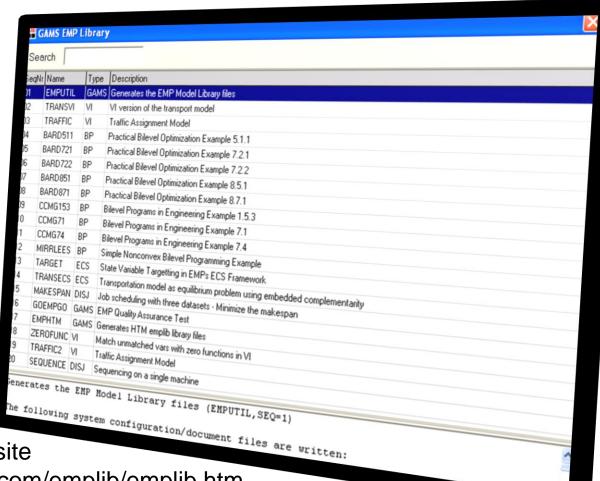
s.t. \log(x_1) = 1

x_2^2 \le 2

x_1/x_2 = \log(x_3), 3x_1 + x_2 \le 5, x_1 \ge 0, x_2 \ge 0
```

Additional information:

```
$onecho > %emp.info%
Adjustequ
e1 sqr 5
e2 MaxZ 2
$offecho
```


```
$onecho > %gams.scrdir%empinfo2.scr
Strategy MCP
Adjustequ
e1 sqr 5
e2 MaxZ 2
$offecho
```

• EMP Tool creates the NLP model (or the MCP via KKT):

$$\min_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} \exp(x_1) + 5 \|\log(x_1) - 1\|^2 + 2 \max(x_2^2 - 2, 0)$$

s.t.
$$x_1/x_2 = \log(x_3), 3x_1 + x_2 \le 5, x_1 \ge 0, x_2 \ge 0$$

EMP Library

 Distributed with GAMS

 Available on website http://www.gams.com/emplib/emplib.htm

Conclusion

EMP

- automates symbolic reformulations to avoid error-prone and time-consuming manual algebra (re)writing
- offers solutions where solutions couldn't be offered before
- facilitates to compare concurrent strategies
- free

But: non-exhaustive

Thank you!

Europe

GAMS Software GmbH Eupener Str. 135-137 50933 Cologne Germany

Phone: +49 221 949 9170 Fax: +49 221 949 9171

http://www.gams.de

info@gams.de support@gams-software.com

<u>USA</u>

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA

Phone: +1 202 342 0180 Fax: +1 202 342 0181

http://www.gams.com

sales@gams.com support@gams.com