

Open-source Quality Assurance and Performance Analysis Tools

Michael Bussieck MBussieck@gams.com

Steven P. Dirkse SDirkse@gams.com

Stefan Vigerske SVigerske@gams.com

GAMS Development Corp • GAMS Software GmbH

26TH EUROPEAN CONFERENCE ON OPERATIONAL RESEARCH ROME 1-4 JULY. 2013

Welcome/Agenda

SQA at GAMS

Effective Testing

Performance Analysis Tool Paver

Examples

Agenda

SQA at GAMS

Effective Testing

Performance Analysis Tool Paver

Examples

Motivation

Quality Assurance

- Essential component in most industries
- Important in most software engineering sectors

Mathematical Programming

- Less attention to quality assurance (small community)
- Specific QA issues for modeling systems (initially expensive)
- Different focus for industry and academic

Software Quality Assurance at GAMS

- Software configuration management
- Quality control and tests of the product
- Client model testing
- Performance Analysis tools: PAVER
- Solution verification tool: Examiner
- Model converter and "encryption" tool: Convert

Quality Test Models Library

- Include tests to verify proper behavior of the system
- More than 600 quality test models, each containing numerous pass/fail tests:

```
abort$card(delta) 'time routines have an error';
```

Check basic functionality of the solver and the link:

```
abort$$( abs(cost.m-cost_m) > tol) 'bad cost.m';
```

- Gives developer and users assurance about the basic functionality of the link and the solver
- Automatic generated test summaries with different level of information

Latest GAMS System Builds and Test Results

Monday 01Jul13 19:36 (UTC)

[Latest Builds | Alpha Builds | Beta Builds | Nightly Builds | Glossary]

Comments?

NOTE: The (nightly) alpha builds are internal development versions of the GAMS system. They may have known bugs, unfinished features, beta versions of third-party software, or may not function at all! Not for production use!

nightly a	System	Libraries	Build	Rev	Status an	d Time (UTC)	Initial Tests		Full Tests	
<u>Thursday</u>	<u>Inx</u>	<u>Download</u>	24.2.0	41150	Test started	28Jun2013 01:43:36	918 runs 1 failures (q=1,s=0)	Report	results pending	
Monday	<u>leg</u>	Download	24.2.0	41173	Test done	01Jul2013 17:15:28	777 runs 0 failures (q=0,s=0)	Report	2141 runs 1 failures (q=0,s=0,a=1)	Report
<u>Friday</u>	<u>vs8</u>	Download	24.2.0	41164	Test started	29Jun2013 01:06:54	920 runs 0 failures (q=0,s=0)	Report	results pending	
<u>Friday</u>	<u>wei</u>	Download	24.2.0	41166	Test started	29Jun2013 03:23:50	917 runs 1 failures (q=1,s=0)	Report	results pending	
nightly $\boldsymbol{\beta}$	System	Libraries	Build	Rev	Status an	d Time (UTC)	Initial Tests		Full Tests	
<u>Thursday</u>	<u>Inx</u>	Download	24.1.2	41150	Test done	01Jul2013 18:58:07	897 runs 0 failures (q=0,s=0)	Report	16714 runs 3 failures (q=0,s=3)	Report
Thursday	<u>vs8</u>	Download	24.1.2	41150	Test done	28Jun2013 07:47:08	761 runs 0 failures (q=0,s=0)	Report	11107 runs 0 failures (q=0,s=0)	Report
Friday	<u>wei</u>	Download	24.1.2	41166	Test done	01Jul2013 13:32:22	896 runs 0 failures (q=0,s=0)	Report	16768 runs 1 failures (q=0,s=1)	Report
alpha	System	Libraries	Build	Rev	Status an	d Time (UTC)	Initial Tests		Full Tests	
20130427	<u>aix</u>	Download	24.1.0	39956	Test done	27Apr2013 22:18:39	387 runs 1 failures (q=1,s=0)	Report	3427 runs 5 failures (q=1,s=1,e=3)	Report
20130627	deg	Download	24.2.0	41138	Test done	27Jun2013 12:50:22	706 runs 0 failures (q=0,s=0)	Report	10171 runs 0 failures (q=0,s=0)	Report
20130627	<u>leg</u>	Download	24.2.0	41138	Test done	27Jun2013 21:15:39	778 runs 0 failures (q=0,s=0)	Report	11666 runs 0 failures (q=0,s=0)	Report

Agenda

SQA at **GAMS**

Effective Testing

Performance Analysis Tool Paver

Examples

Effective Testing

- Test cases
 - Widely available collection of standardized test instances
- Data collection tools
 - Automatic collection of solution and statistics
 - Capture test environment setting (hardware, software)
- Data analysis tools
 - Standard quality and performance measurements
- Give the tools in the hand of the user.
 Make your own benchmarks!

GAMS World

The Worlds

CONE
GLOBAL
MINLP
MPEC
MPSGE
Performance
Translation

Search

Contact

Welcome to the GAMS World

This is the home page of the GAMS World, a web site aiming to bridge the gap between academia and industry by providing highly focused forums and dissemination services in specialized areas of mathematical programming.

Substantial progress was made in the 1980s and 1990s with the development of algebra based modeling systems, algorithms, and computer codes to solve large and complex mathematical programs. The application of these tools, however, was less than expected. The abstraction, expression, and translation of real world problems into reliable and effective operational systems requires highly specialized and domains specific knowledge. The process of acquisition and dissemination of this knowledge is complex and poorly understood and the number of "good modelers" is much less than we all hoped for. Similarly, the process of transforming a new algorithm into a reliable and effective solution system is a slow and expensive process and there are few "good implementers". This web site hopes to address some of these problems by helping with the collection and dissemination of domain specific information and knowledge that is outside the established channels because of its content or form.

For example, model structures and results get published in commercial and academic papers but it is virtually impossible to reproduce any of those results or lift model components and data from one study to be used in some other study. Algorithm implementers face a similar dilemma when trying to get their hands on real world data models and data to test and refine their systems. This web site offers a few, well focused and maintained services to help with the dissemination of problems and solutions.

The GAMS World Google discussion group is associated with GAMS World.

Performance World

Editorial Board

PerformanceLib

Performance Tools

PAVER Server

Performance List

Related Links

Search

Contact

Welcome to the Performance World!

Performance World is a forum for discussion and dissemination of information and tools about all aspects of performance testing of solvers for mathematical programming problems. This world has been established in response to user demands for independent and reproducible performance results.

Overall performance highly depends on problem formulation, solver, and tuning parameters. Our performance tools are designed to serve the different needs of our user community. One user may be interested in finding the most reliable way to solve a proprietary or classified model. On the other hand, an academic researcher may be interested in testing a new algorithm against a set of existing test problems and competing approaches. The main features are:

- · Uniform access to a comprehensive set of established and new test problems
- Automation tools for collecting performance measurements
- · Tools for analyzing and visualizing test results

What's New:

- Experimental PAVER 2.0 Server is on-line.
- The paper PAVER 2.0: An Open Source Environment for Automated Performance Analysis of Benchmarking Data is available.
- Several new libraries (Fixed Cost Network Flow and the Princeton NLP collection) have been added to the Performance Libraries.
- A collection of quadratically constrained programs (QCP) have been added to the LINLIB set of models.
- . The paper A Server for Automated Performance Analysis and Benchmarking of Optimization Software is available which includes an NLP benchmark using PAVER. See the resuls on (all models or a subset of models).
- Presentations on benchmarking and performance testing from the INFORMS 2002. San Jose conference have been added to the related links section
- Try our online PAVER Server for automated performance analysis and visualization, batch file creation and model translation
- New tools for analyzing non-convex or discrete models (quality of solution information)
- . MINLP type models from the MINLP World have been added to the PerformanceLib

les

MacMOOP - A Collection of Multiobjective Optimization Testproblems

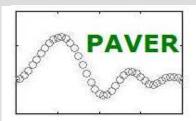
MacMOOP is a collection of multiobjective optimizatin testproblems from Sven Leyffer. See the <u>MacMOOP Collection</u>. The GAMS models were translated by Andre Savistky as is from the <u>original AMPL</u> source.

The raw GAMS models were converted into GAMS scalar format using the CONVERT facility. For models with multiple solves, only the first solve instance is translated.

Download

Download MacMOOPLib.zip

Total number of models: 14


Original Source: My AMPL Collection of Multiobjective Optimization Testproblems (Sven Leyffer)

Name	Type	#Eqns	#Vars	#NZ	#NNZ	Bestknown Objective	GAMS Scalar	AMPL Source	GAMS Source
abc-comp	NLP	4	3	9	4	17.96428571	gms	amp1	raw gams
<u>ex001</u>	NLP	4	6	21	11	0.55508075	gms	amp1	raw gams
<u>ex002</u>	NLP	3	6	13	3	8.00000000	gms	amp1	raw gams
<u>ex003</u>	NLP	3	3	7	5	7.25098758	gms	ampl	raw gams
<u>ex004</u>	LP	4	3	7	0	2.00000000	<u>gms</u>	amp1	raw gams
<u>ex005</u>	NLP	1	3	3	2	-4.00000000	gms	amp1	raw gams
<u>hs05x</u>	NLP	4	6	13	5	0.14049587	gms	amp1	raw gams
<u>liswetm</u>	NLP	3	9	13	7	-3.41233322	<u>gms</u>	amp1	raw gams
molpg 1	NLP	9	9	51	0	-26.01668874	gms	amp1	raw gams
molpg 2	NLP	17	13	67	0	-13.37500000	gms	amp1	raw gams
molpg 3	NLP	15	11	55	0	-13.40000000	<u>gms</u>	amp1	raw gams
moqp 1	NLP	14	24	102	60	-57.29327326	gms	amp1	raw gams
moqp 2	NLP	13	24	102	60	-13.16755651	<u>gms</u>	amp1	raw gams
moqp 3	NLP	14	24	101	60	-24.54193065	gms	ampl	raw gams

```
* MINLP written by GAMS Convert
                                               # MINLP written by GAMS Convert
Variables
                                               var b1 binarv;
b1,b2,i3,i4,i5,i6,i7,i8,x9;
                                               var b2 binary;
Binary Variables b1,b2;
                                               var i3 integer >= 0, <= 15;</pre>
                                       rial
Integer Variables i3, i4, i5, i6, i7, i8;
                                               var i4 integer >= 0, <= 15;</pre>
                                       ver of
Equations
                                         roll-t var i5 integer >= 0, <= 5;
                                         of pro
e1, e2, e3, e4, e5, e6, e7, e8, e9, e10,
                                               var i6 integer >= 0, <= 5;
                                       er roll
           e11,e12,e13;
                                               var i7 integer >= 0, <= 5;
                                        dth
                                               var i8 integer >= 0, <= 5;</pre>
                                        oducts
e1.. 0.1*b1 + 0.2*b2 + i3 + i4 - x9
                                        peats o
= E = 0:
                                               minimize obj:
e2.. 460*i5 + 570*i7 = L = 1900;
                                                     0.1*b1 + 0.2*b2 + i3 + i4;
                                       s of pa
e3.. 460*i6 + 570*i8 = L = 1900;
                                       ts I pr
e4.. 460*i5 + 570*i7 = G = 1700;
                                               subject to
                                       le;
e5.. 460*i6 + 570*i8 = G = 1700;
e6.. i5 + i7 = L = 5;
                                               e2: 460*i5 + 570*i7 <= 1900;
                                        le m, n;
e7.. i6 + i8 = T = 5:
                                               e3: 460*i6 + 570*i8 <= 1900;
e8.. i3*i5 + i4*i6 = G = 8:
                                       h \text{ width}(|e4: 460*i5 + 570*i7 >= 1700;
                                        |_exist(| e5: 460*i6 + 570*i8 >= 1700;
e9.. i3*i7 + i4*i8 = G = 7;
e10.. b1 - i3 = L = 0;
                                               e6: i5 + i7 <= 5;
                                        + cc[j]
e11.. b2 - i4 =L= 0;
                                               e7: i6 + i8 <= 5;
                                        i])
                                               e8: i3*i5 + i4*i6 >= 8;
e12... - 15*b1 + i3 = L = 0;
                                        il) + De
e13.. - 15*b2 + i4 = L = 0;
                                               e9: i3*i7 + i4*i8 >= 7;
                                               e10: b1 - i3 <= 0;
                                        i])
* set non default bounds
                                               e11: b2 - i4 \le 0;
i3.up = 15; i4.up = 15; i5.up = 5;
                                               e12: -15*b1 + i3 <= 0;
i6.up = 5; i7.up = 5; i8.up = 5;
                                               e13: -15*b2 + i4 <= 0;
Model m / all /;
Solve m using MINLP minimizing x9;
                                        minlp:
```


GAMSWorld Translation Service

[Home | Tools | Links/Other | Performance World]

PAVER - GAMS Model Translation Web Submission Tool (GMS2XX)

The PAVER GAMS model translation web-submission tool runs the <u>GAMS/CONVERT</u> "solver" to translate GAMS models into the following supported languages:

AlphaECPGAMS (scalar)

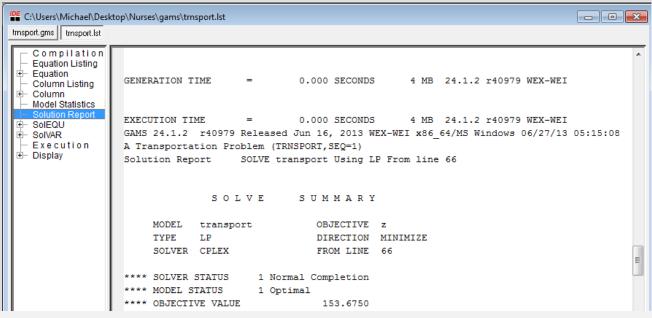
•AMPL •Jacobian

•AmpINLC •Lago

•BARON •Lgo

•CoinFML •LindoMPI

•CplexLP •LINGO


•CplexMPS •MINOPT

•Dict •NLP2MCP

•FixedMPS •ViennaDag

Data Collection – GAMS Trace Files

- * Trace Record Definition
- * GamsSolve
- * InputFileName, ModelType, SolverName, OptionFile, Direction, NumberOfEquations,
- * NumberOfVariables, NumberOfDiscreteVariables, NumberOfNonZeros,
- * NumberOfNonlinearNonZeros, ModelStatus, SolverStatus, ObjectiveValue,
- * ObjectiveValueEstimate,SolverTime,ETSolver,NumberOfIterations,NumberOfNodes

30n20b8, MIP,SCIP,1,0, 577,18381,11098,109709,0,1,1, 302, 302, 186.80, 189.833, 464659, 466 acc-tight5,MIP,SCIP,1,0,3053, 1340, 1339, 16136,0,1,1, 0, 0, 366.28, 367.651,1788064,1971 aflow40b, MIP,SCIP,1,0,1443, 2729, 1364, 8148,0,1,1,1168,1168,1411.99,1425.472,5232401,3773

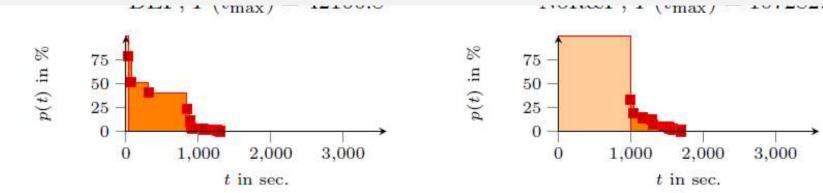
More Data Collection – MIP|SolveTrace

Timo Berthold: Measuring the impact of primal heuristics

$$P(T) := \int_{t=0}^{T} p(t),$$

```
* solvetrace file SCIP.miptrace: ID = SCIP 3.0.1

* fields are lineNum, seriesID, node, seconds, bestFound, bestBound


1, S, 1, 0, 260614197.6, 216717059.8

2, T, 3, 1.1205, 260614197.6, 217028062.2

...

63, E, 2550, 38.3884, 220249516.8, 217928729.7

* solvetrace file closed
```


Agenda

SQA at GAMS

Effective Testing

Performance Analysis Tool Paver

Examples

PAVER Server

- PAVER server (Performance Analysis and Visualization for Effortless Reproducibility)
- 2013: Complete rewrite PAVER 2.0(Python):
 - New functionality:
 - consistency checks
 - comparison against solution database
 - many more metrics
 - Easily extendable
 - Open source (COIN-OR project)

PAVER 2 – Web Submission

PAVER 2 SERVER - Performance Analysis Web Submission Tool

The PAVER web-submission tool runs the PAVER perform **Optional Settings:**

paver.zip. See the README for details.

Users can input their data in the form of trace files, which d format.

If you find this tool useful, please consider citing the paper M. Bussieck, S. Dirkse, S. Vigerske (2013). PAVER 2.0: A

Note: there is a maximum total file size limit of 1Mb.

Submit trace files:

- Trace 1 Browse... blitzen.trc Trace 2 Browse... comet.trc Trace 3 Browse... cupid.trc
- Trace 4 Browse... No file selected.
- Trace 5 No file selected. Browse...
- Trace 6 No file selected. Browse... Trace 7
- Browse... No file selected. Trace 8 No file selected. Browse...

Submit solution files (optional):

- MINLPLib GlobalLib
- LinLib
- MIPLIB 2010

Solutions 1 Browse... No file selected.

Relative Tolerance on Bounds: (Consistency Checks) 1e-6 Absolute Tolerance on Bounds: 0.0001 (Consistency Checks) (Primal) Feasibility Tolerance: 2e-6 (Consistency Checks w.r.t. Examiner computed val Optimality (Dual Feasibility) Tolerance: 2e-6 (Consistency Checks w.r.t. Examiner computed val Reference Solver (Name): (Performance Evaluation) Shift for Time (s): (Performance Evaluation) 10 Shift for Number of Nodes: 100 (Performance Evaluation) Minimal Time: (Performance Evaluation) Time in case of failure: (Performance Evaluation) Number of Nodes in case of failure: (Performance Evaluation) (Relative) Gap Tolerance: (Performance Evaluation) 1e-6 Threshold for being relatively faster: 0.1 (Performance Evaluation) Threshold for relatively better obj. value: 0.1 (Performance Evaluation) Regard Dual Bounds (if available): **√** (Performance Evaluation) 40 Number of ticks (points): (Performance Profiles) Extended Performance Profiles: (Performance Profiles) Include virt, best solver: (Performance Profiles) Option file name is runname: (Reading)

Run PAVER

RESET

PAVER 2 – Output

Analysis Results

Your data was successfully submitted to the PAVER - Perfo

http://www.gamsworld.org/performance/paver2/anal

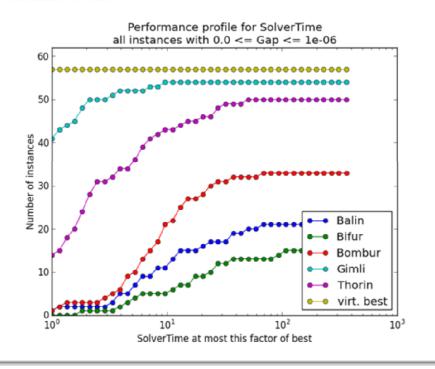
You can also download the results at

http://www.gamsworld.org/performance/paver2/anal

Submit data:

Date/Time Mon Jul 1 16:02:46 EDT 2013

Log file


Solver Runs

- Thorin
- Gimli
- BomburBalin
- Bifur

Solving Data

Statistics (Counts and Means)

Performance Profiles

Agenda

SQA at GAMS

Effective Testing

Performance Analysis Tool Paver

Examples

PAVER Example

- 5 MIP Solvers
 - Thorin, Gimli, Bombur, Balin, Bifur
 - Models from MIPLIB 2010 (Benchmark set)
 - Time limit: 1 hour

```
python src/paver/paver.py \
  balin.trc bifur.trc bombur.trc gimli.trc thorin.trc \
  solu/miplib2010.solu \
  --failtime 3600 --refsolver Gimli --writehtml mip
```