

GMO: GAMS' Next-Generation Model API

Steve Dirkse

sdirkse@gams.com

GAMS Development Corporation

www.gams.com

GMO: A Team Effort

- Michael Bussieck
- Jan-Hendrik Jagla
- Alex Meeraus
- Paul van der Eijk
- Lutz Westermann

Team projects introduce challenges and advantages
 → more on this later

Background

GAMS' Fundamental concepts

- Different layers with separation of
 - model and data
 - model and solution methods
 - model and operating system
 - model and interface

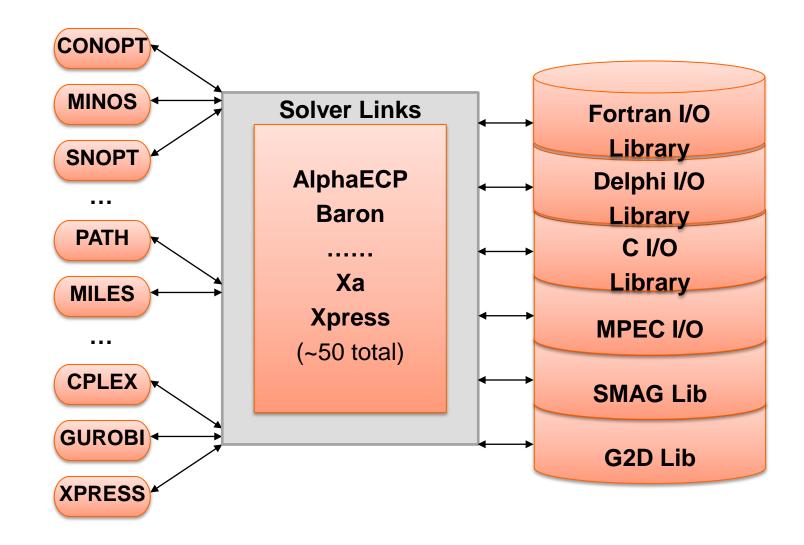
Background

GAMS' Fundamental concepts

- Different layers with separation of
 - model and data
 - model and solution methods
 - model and operating system
 - model and interface

Solver Links – Different Perspectives

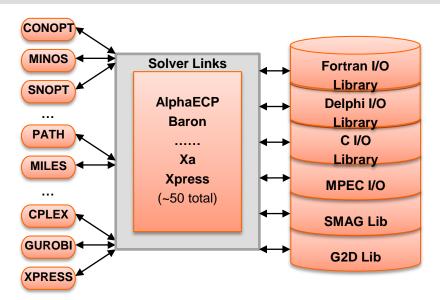
GAMS User


 Standardized solver interface allows "hassle free" replacement of solvers: option nlp=conopt;

Solver & Solver-link Developer – our focus here

- IO Library provides access to
 - Matrix
 - Function/Gradient/Hessian evaluations
 - Solution file writer
 - Output handling
 - GAMS Options (e.g. resource limit)
 - Problem attributes (SOS, semicont, semiint, priorities, scales)
 - Utility routines problem rewriting, matrix reordering, SBB, ...

Reuse? What's that?!?


Talk Outline

- Why a new model API?
- What do we need it to do?
- What does it look like? How is it put together?
- How did we do it?
- When are we going to be finished?

Multiple I/O Libraries - Advantages

- proven over many years
- all platforms supported
- all GAMS-features available

- written by language experts, use all language features
- resulted in high-quality links across solvers and platforms
 has been one factor in our success

Multiple I/O Libraries - Disadvantages

Not always intuitive to use
 Linking your Solver to GAMS
 - THE COMPLETE NOTES
 (160 pages !!)

- Outdated design I/O, STOP
- feature-poor (e.g. no automatic reformulation of objective func/var)
- inconvenient & expensive to maintain
- painful to move 'inert mass' forward not agile
- linking your solver (without buddy at GAMS) is very difficult

Philosophy behind GMO

- Then
 - Computing environment: limited time and memory
 - Algorithm APIs not uniform or language-neutral
 - Expert users who understand optimization
 - Don't use unnecessary space or time
 - If the link gets in trouble, just abort, the user will fix things up and re-run.
- Now
 - Most users won't hit space/time limits
 - APIs look similar, are language-neutral
 - Users may be domain experts, not MP experts
 - Use of additional space & time to give the GMO and GAMS user a better experience is justified.

Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

GMO: Powerful and Convenient API

- What's a powerful call?
 - Basic CS: information hiding, encapsulation, object model, abstraction
 - One call to do the job required, e.g. Hessian setup
 - No preconditions, magic calls, or nasty side effects
 - Should handle failure gracefully
- Convenience multiple routines and "flavors"
 - Jacobian row- vs. column-wise, tuples
 - Objective reformulation function or variable
 - Free rows yes or no
 - Column evals: dense or sparse, all or just NL
 - Common/typical tasks done in GMO, not the link

Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

Solver Integration

solve mymodel minimizing z using lp
mymodel.solvelink = {ChainScript, CallScript,
 CallModule, AsyncGrid, AsyncSimulate, LoadLibrary};

- ChainScript: Solver process, GAMS vacates memory
 - + Maximum memory available to solver
 - + protection against solver failure (hostile link)
 - swap to disk
- Call{Script/Module}: Solver process, GAMS stays live
 - + protection against solver failure (hostile link)
 - + no swap of GAMS database
 - file based model communication

Solver Integration – cont.

- LoadLibrary: Solver DLL in GAMS process
 - + fast memory based model communication
 - + update of model object inside the solver (hot start)
 - not (yet) supported by all solvers
- trnsport.gms (LP) solved 500 times with CPLEX:

```
set ss /s1*s500/; loop {ss,
    solve transport minimizing z using lp};
```

ChainScript: 33.04 s (28.9s)*

CallModule: 13.78 s (12.7s)

LoadLibrary: 2.37 s (2.0s)

Hot Start: 0.37 s (0.4s)

Cplex simplex time: 0.2 s

* without Virus Scanner

Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

Implement Once, Run Everywhere

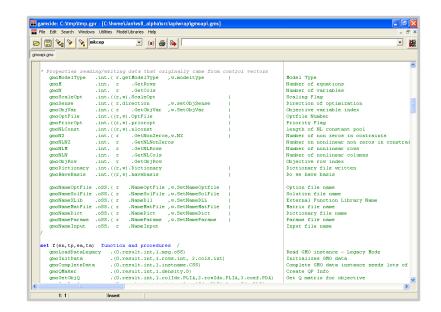
- All GMO coding done in a single language and style
 - Allows code sharing with other components
 - Allows for shared development
- All GMO coding is platform-independent
 - Makes writing code faster, more reliable
 - Maintenance is simplified
- Platform-dependent code isolated in utility libraries
 - Makes adding a new platform easier
 - Maintenance is simplified
 - Unit testing is easy and effective

Automated Generation of APIs

'The GAMS Wrapper'

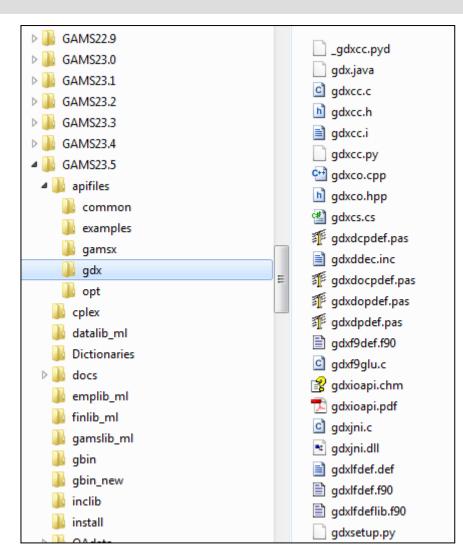
- API is defined using the GAMS language
- A tool written in GAMS is used to regenerate APIs for all languages
- Executed on request and nightly

```
gamside: C:\tmp\tmp.gpr - [C:\home\Jan\vs8_alpha\src\apiwrap\gmoapi.gms
File Edit Search Windows Utilities Model Libraries Help
    Properties reading/writing data that originally came from control vectors
    gmoModelType .int.( r.getModelType ,w.modeltype
    gmo H
                    .int. r
                              .GetRows
                                                                                   Number of equations
     gmoScaleOpt
                    .int.((r,w).ScaleOpt
                                                                                   Scaling Flag
     amoSense
                    .int. ( r.direction
                                            .v.setObiSense
                                                                                   Direction of optimization
     ama ObiVar
                               .GetObjVar ,w.SetObjVar
                    .int.(r
                                                                                    Objective variable index
                                                                                   Optfile Number
     gmoOptFile
                    .int.((r,w).OptFile
     cmoPriorOpt
                    .int.((r.w).prioropt
                                                                                   Priority Flag
                                                                                    length of NL constant pool
     qmoNLConst
                    .int.((r,w).nlconst
                              .GetNonZeros.w.NZ
                                                                                    Number of non zeros in contraints
     cmoNLNZ
                                .GetNLNonZeros
                                                                                   Number on nonlinear non zeros in constrai
     cmoNLM
                                .GetNLRows
                                                                                   Number of nonlinear rows
                                .GetNLCols
                                                                                    Number of nonlinear columns
                                .GetObiRow
                                                                                   Objective row index
     gmoObjRow
     gmoDictionary .int.((r,w).Dictionary
                                                                                   Dictionary file written
     gmoHaveBasis .int.((r,w).havebasis
     cmmoNameOptFile .oSS.(r .NameOptFile .w.SetNameOptfile
                                                                                    Option file name
     gmoNameSolFile .oSS.( r .NameSolFile ,v.SetNameSolFile
                                                                                    Solution file name
                               .NameD11
                                                                                    External Function Library Name
     cmoNameMatFile .oSS. ( r
                              .NameMatFile .w.SetNameMatFile
                                                                                    Matrix file name
     qmoNameDict .oSS.(r
                               .NameDict
                                          , w.SetNameDict
                                                                                   Dictionary file name
                                                                                    Params file name
     qmoNameInput .oSS. r
                              .NameInput
                                                                                    Input file name
  set f(en,tp,ea,ta) function and procedures /
    gmoLoadDataLegacy .(0.result.int,1.msg.oSS)
                                                                                    Read GMO instance - Legacy Mode
                         .(O.result.int.1.rows.int, 2.cols.int)
     gmoCompleteData
                         .(O.result.int,1.instname.CSS)
                                                                                    Complete GMO data instance
                         .(O.result.int,1.densitv.D)
     cmo OMaker
                                                                                   Create OP Info
     gmoGetObjQ
                         .(O.result.int,1.colIdx.PLIA,2.rowIdx.PLIA,3.coef.PDA)
                                                                                   Get Q matrix for objective
```


- → A change in the definition of the API immediately makes it into all language interfaces
- → No manual and therefore error-prone efforts required

Automated Generation of APIs

'The GAMS Wrapper'

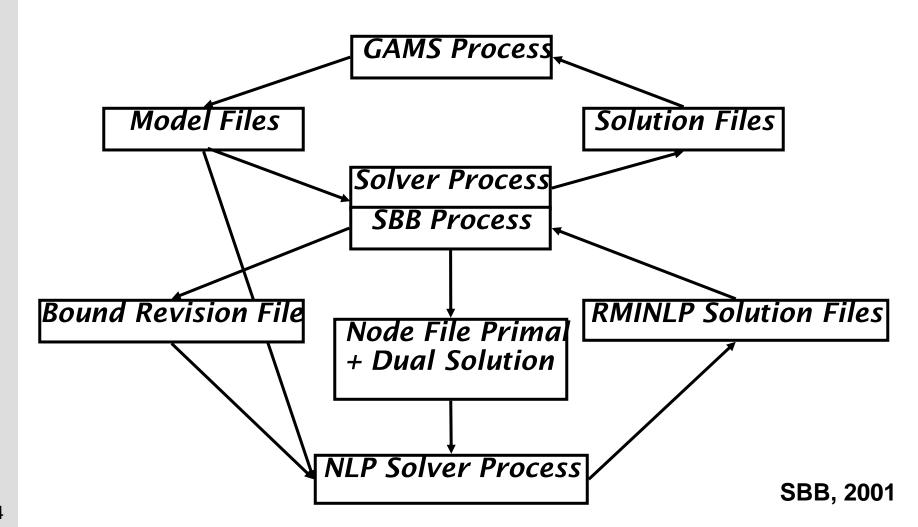

- Automated nightly testing
- API version checks
- Reusable for multiple GAMS component libraries
 - GMO
 - GAMS
 - GDX
 - Option

Distributed GAMS APIs

- Component Libraries
 - GAMS
 - GDX
 - Option
- Supported languages
 - C, C++, C#
 - Delphi
 - Fortran
 - Java
 - VBA, VB.Net
 - Python
- Examples/Documentation

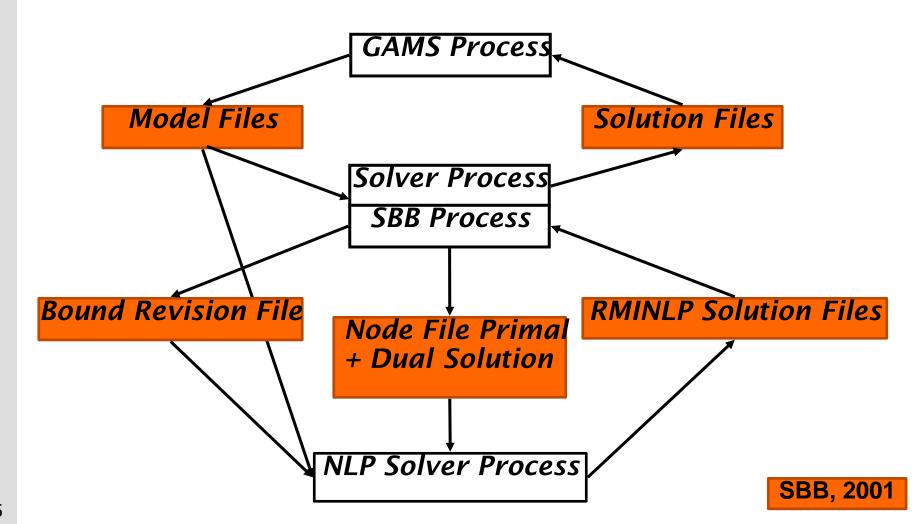
Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

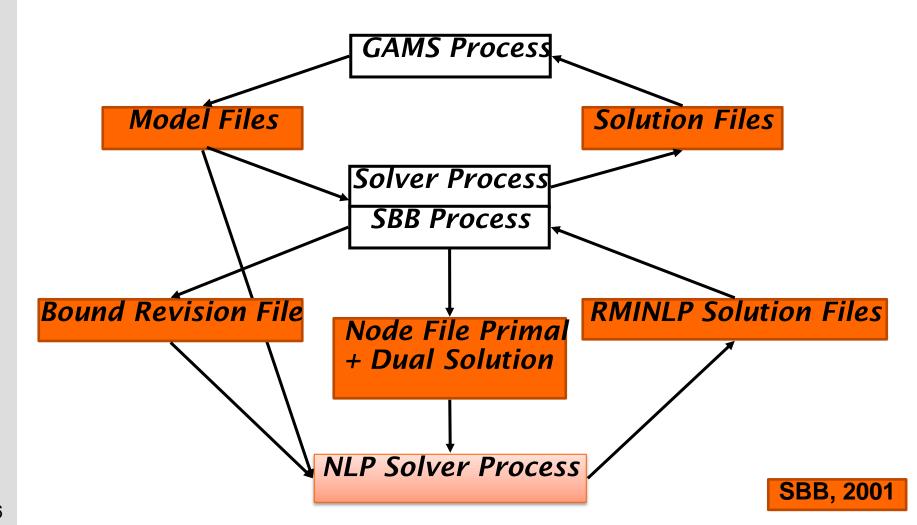


Separating Model & Environment

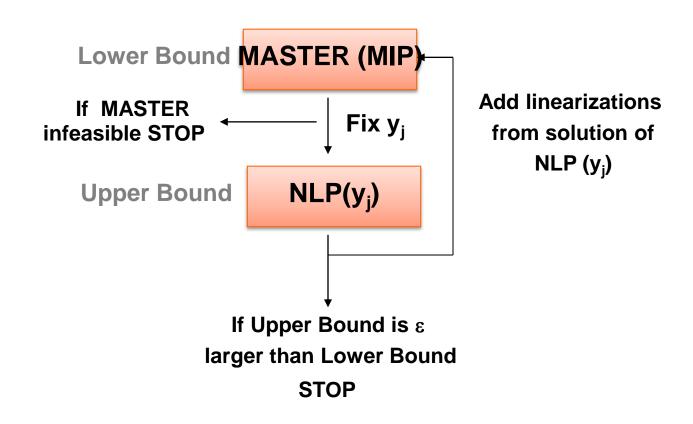
- Detach GMO from 'GAMS Environment'
- Ease linking of experimental solvers to GAMS
- Simplify use of GAMS as one piece of a puzzle
- E.g. sophisticated solvers use basic MP technology:
 - SBB (B&B requires NLP technology)
 - DICOPT (OA requires NLP+MIP)
 - BARON (requires NLP+LP)
 - LogMip (NLP+MIP)



'Efficient' Implementation of B&B



'Efficient' Implementation of B&B



'Efficient' Implementation of B&B

Dicopt (Outer Approximation)

Series of NLP and MIP solves

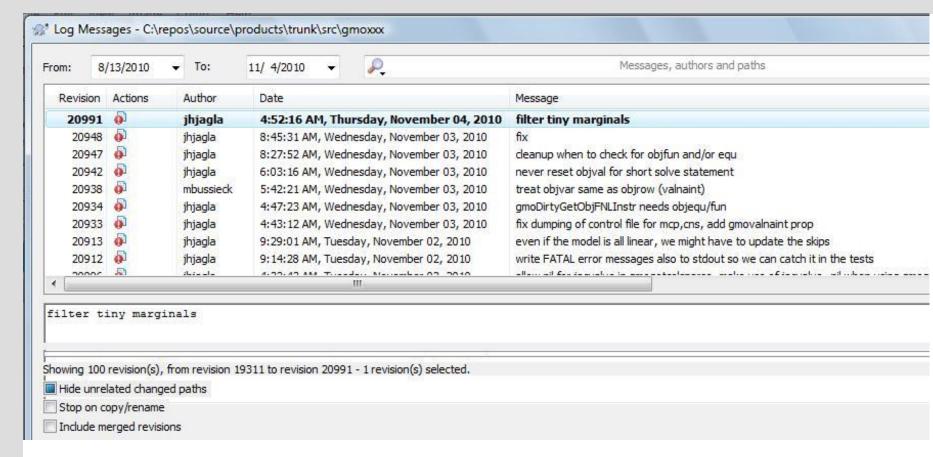
DICOPT: Log File:											
Major	Major	Objective	CPU time	Itera-	${\tt Evaluation}$	Solver					
Step	Iter	Function	(Sec)	tions	Errors						
NLP	1	1.04923	0.02	38	0	conopt					
MIP	1	9.07274	0.09	28	0	cplex					
NLP	2	*Infeas*	0.00	10	0	conopt					
MIP	2	13.02091	0.13	32	0	cplex					
NLP	3	1.26864<	0.03	27	0	conopt					
MIP	3	13.93760	0.11	29	0	cplex					
NLP	4	*Infeas*	0.02	7	0	conopt					
MIP	4	13.99258	0.11	19	0	cplex					
NLP	5	*Infeas*	0.02	13	0	conopt					
MIP	5	21.03812	0.11	23	0	cplex					
NLP	6	1.26864	0.02	17	0	conopt					
DI	COPT:	Terminating									

- Lots of file writing and reading to communicate between Dicopt,
 MIP, and NLP solver
- Basically start a whole new process over and over

New Dicopt Implementation

Joined work with Ignacio Grossmann, Juan Pablo Ruiz (Carnegie Mellon University)

- Object Oriented
- Use C++ Interface to GMO
- Use standardized solver interface to call NLP/MIP solver in-core (pass GMO 'handle' on to solver)
- Algorithmic improvements



Checklist for GMO

- Powerful & convenient API a few calls do the job
- In-core communication between GAMS and the solver, making potentially large model scratch files unnecessary
- Implement once, run everywhere (multiple platforms & multiple languages)
 - Platform-independent code, isolate the "dirty bits".
 - API wrapper & multi-language interface
- Support meta-solvers (e.g. DICOPT, SBB, Examiner)
- Separate Model from Environment
- Comprehensive one-stop shop for all linking needs
- Support shared-library implementation of solver links
- Support multiple models

How We Did It: SVN

Everybody agrees: SVN is a game-changer

How We Did It: Automation & Testing

[Home | Support | Sales | Solvers | Documentation | Model Library | Search | Con

Latest GAMS System Builds and Test Results

Tuesday 09Nov10 15:

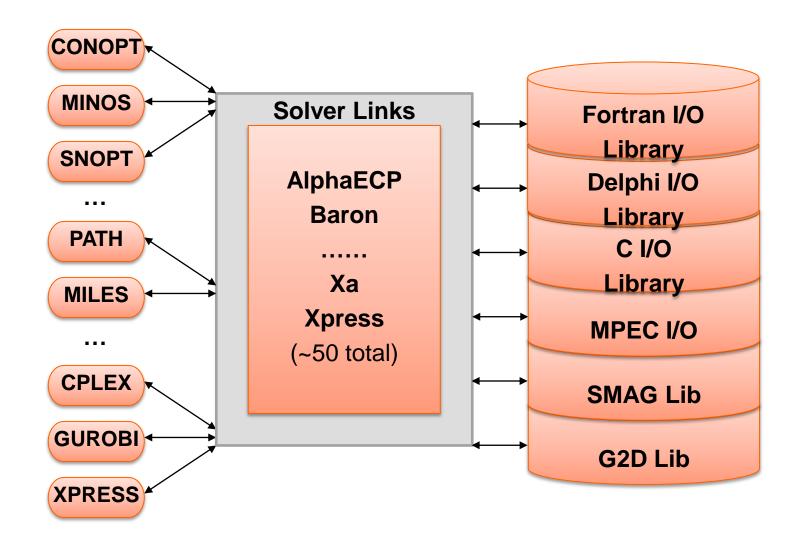
[Latest Builds | Alpha Builds | Beta Builds | Nightly Builds | System Codes | History]

Cor

nightly a	System	Libraries	Build	Rev	Status a	and Time (UTC)	Initial Tests		Full Tests
Monday	<u>lnx</u>	Download	23.7.0	21065	Test done	09Nov2010 06:52:24	712 runs 0 failures (q=0,s=0)	Report	8902 runs 2 failures (q=1,s=1)
Monday	<u>lx3</u>	Download	23.7.0	21065	Test done	09Nov2010 09:11:56	732 runs 0 failures (q=0,s=0)	Report	9385 runs 2 failures (q=1,s=1)
Tuesday	vs8	Download	23.7.0	21075	Test done	09Nov2010 14:32:06	734 runs 0 failures (q=0,s=0)	Report	9397 runs 2 failures (q=1,s=1)
Monday	<u>wei</u>	Download	23.7.0	21072	Test done	09Nov2010 07:05:24	682 runs 1 failures (q=1,s=0)	Report	8364 runs 5 failures (q=2,s=3)
nightly β	System	Libraries	Build	Rev	Status a	and Time (UTC)	Initial Tests		Full Tests
Monday	<u>lnx</u>	Download	23.6.0	21070	Test	09Nov2010 07:22:45	712 runs 0 failures	Report	8901 runs 2 failures

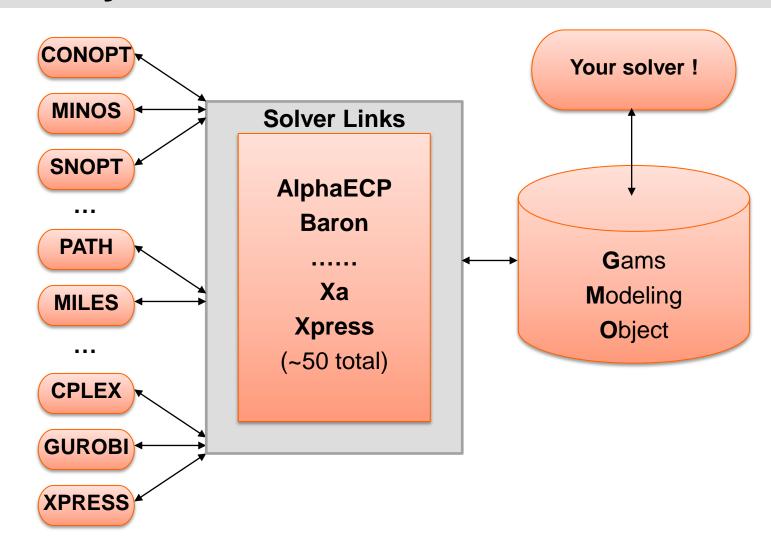
How We Did It: Automation & Testing

- SVN, other tools automate builds on all platforms
- Extensive, automated tests
 - Test library (501 models), other libraries (hundreds)
 - Runs over all solvers, some NLP/MIP combinations
 - Recent beta: 17 test machines, each ~ 3K 10K
 - Collecting, archiving, sharing of test results
- PAVER used to compare to previous versions
 - Helps find outliers (bugs), problem cases
 - http://www.gamsworld.org/performance/paver/



When Will We Be Finished?

- GAMS 23.6.2 (current distribution)
 - Couenne, IPOPT
 - Gurobi
 - OSI-based links to CPLEX, GUROBI, GLPK, MOSEK, XPRESS
 - All previous Fortran links (e.g. CONOPT, MINOS, SNOPT)
 - All links using 2nd-order info (e.g. KNITRO, PATH, MOSEK)
 - Misc others
- GAMS 23.7 possibly out in April 2011
 - All MCP solvers
 - Meta-solvers like BENCH, Examiner ??



Summary

Summary

Summary

- GMO is part of GAMS distribution
- GMO is used by the majority of GAMS Solver Links eventually by all
- GMO eases maintenance and makes development process more flexible, more agile
- GMO opens up new possibilities for moving GAMS forward
- GMO interfaces are not yet public but alpha version can be made available on request

Contacting GAMS

<u>Europe</u>

GAMS Software GmbH Eupener Str. 135-137 50933 Cologne Germany

Phone: +49 221 949 9170 Fax: +49 221 949 9171

http://www.gams.de

info@gams.de

<u>USA</u>

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA

Phone: +1 202 342 0180 Fax: +1 202 342 0181 http://www.gams.com

sales@gams.com support@gams.com