

Recent Enhancements in GAMS

Toni Lastusilta: tlastusilta@gams.com

20th CONFERENCE OF THE INTERNATIONAL FEDERATION OF OPERATIONAL RESEARCH SOCIETIES

Agenda

Overview of Enhancements

Paver 2

Youtube Channel: GAMS lessons

Summary

Algebraic Modeling Languages (AML)

- 1
- High-level computer programming languages
 - Formulation of mathematical optimization problems
 - Notation similar to algebraic notation

2

• **Do not solve problems directly**, but offer links to state-of-the-art algorithms ("solver-links")

What does a modeler

have to think about?

- 1. Application
- 2. Mathematics
- 3. Programming
- 4. Performance
- 5. Scalability
- 6. Connectivity
- 7. Deployment
- 8. Maintenance (Life Cycle)
- 9. ...

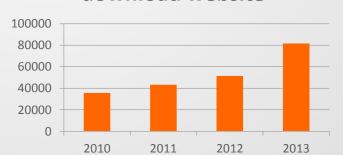
GAMS makes modeling easier

Design Principle

Simple modeling language with a balanced mix of declarative and procedural elements

• Open architecture and interfaces to other systems, independent layers

Broad User Community and Network



GAMS used in more than 120 countries

25+ Years
GAMS Development

Number of visits to GAMS download website

Broad Range of Application Areas

Agricultural Economics	Applied General Equilibrium	
Chemical Engineering	Economic Development	
Econometrics	Energy	
Environmental Economics	Engineering	
Finance	Forestry	
International Trade	Logistics	
Macro Economics	Military	
Management Science/OR	Mathematics	
Micro Economics	Physics	

Agenda

What is GAMS?

Overview of Enhancements

Paver 2

Youtube Channel: GAMS lessons

Summary

Upcoming release – GAMS 24.3 (estimated release date: August 2014)

Enhancements during last year

GAMS System Updates

Solver Updates

New Tools and API Updates

New Model Library Examples

Enhancements during last year

Singleton set

Obfuscate restart file

CPP function library

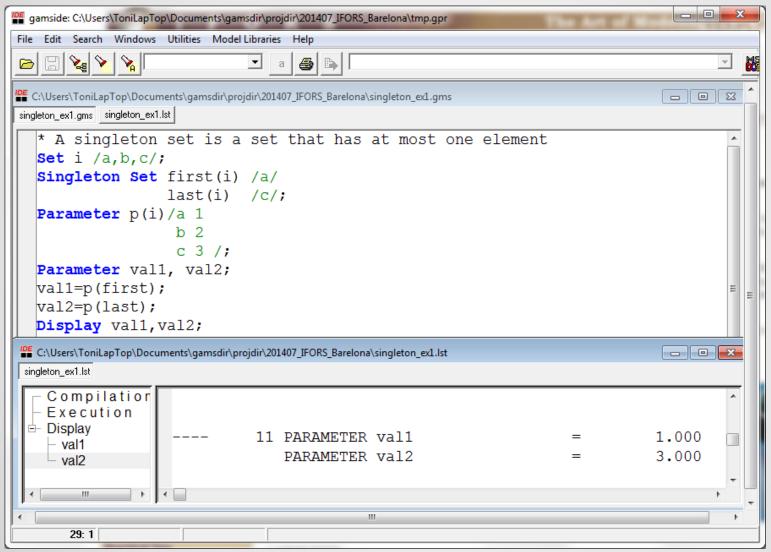
- Automatic differentiation
- Multi-variate Normal Distributions

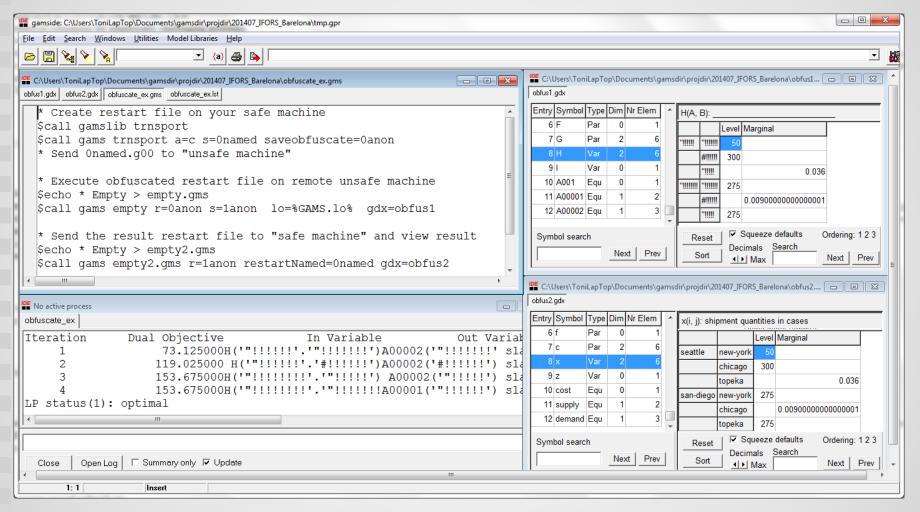
Solver Updates for > 15 solvers

BARON 14.0.0: Significant advances in the handling of integer programs

CONOPT: New option to control definitional equations.

GUSS/Scenario solver can now be combined with the GAMS Grid Facility.


...


GAMS

Singleton set

Obfuscate restart file

New tools and API updates

GDXRENAME: Rename the same unique elements in a GDX file using a mapping given by a second GDX file.

GDXDUMP: new option **SymbolsAsSet** - to write the symbol table for a set as data.

.NET, Java and Python fixes and improvements.

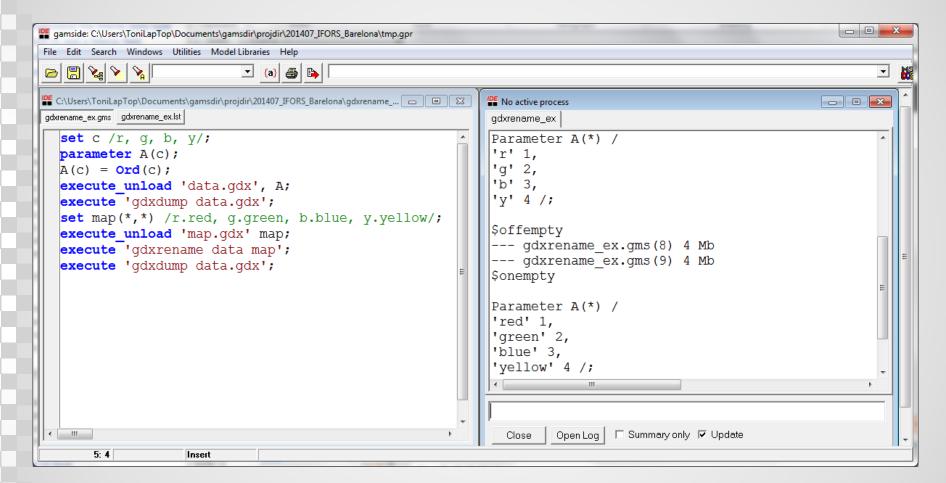
New Model Library Examples

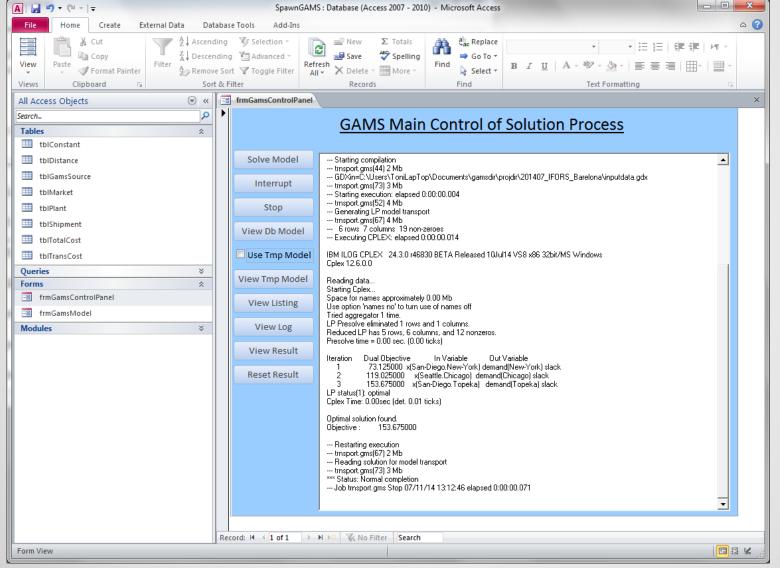
New examples to:

- ➤ Model Library = 7
- > Test Library = 48
- Data Utilities = 5
- ➤ EMP Library = 4

Total > 1250 models

Note: The GAMS System includes also a Practical **Financial Optimization** Models Library





GDXRENAME Tool

GAMS

SpawnGAMSAccess (Datalib,#87)

SpawnGAMSAccess (Datalib,#87)

The Access VBA code is in control

From VBA we can write a GDX file either with:

- GDXAPI
- MDB2GMS tool

Spawn GAMS. Note that we can also control (stop) the GAMS solver.

We use **GDXDUMP** to write a text file that is transferred to Access.

Notes.

The GAMS model is saved in an Access Memo field.

A temporary model can be modified in the GAMSIDE and executed from Access.

Agenda

What is GAMS?

Overview of Enhancements

Paver 2

Youtube Channel: GAMS lessons

Summary

GAMS related advances

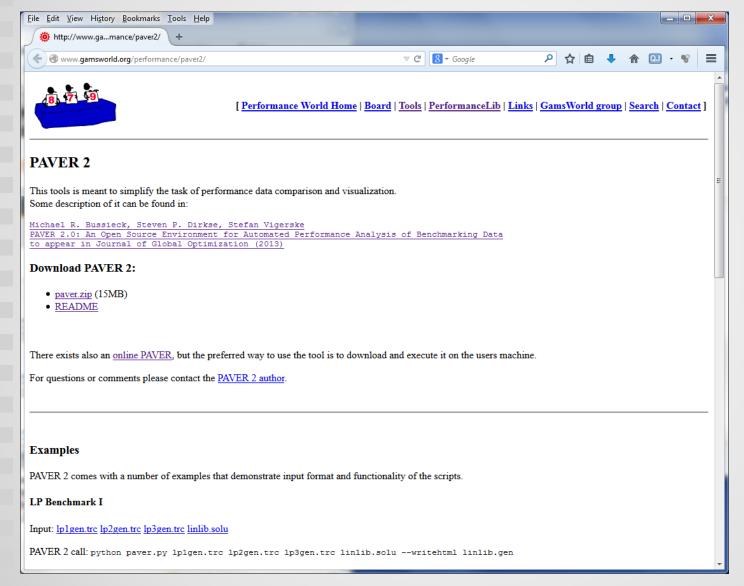
Paver 2

www.gamsworld.org/performance/paver2/

Paver 2

PAVER server (Performance Analysis and Visualization for Effortless Reproducibility)

Complete rewrite PAVER 2.0, 2013 (Python)


New functionality:

- Consistency checks
- Comparison against solution database
- Many more metrics

Open source (COIN-OR project)

Paver 2

Paver 2

PAVER 2 SERVER - Performance Analysis Web Submission Tool

The PAVER web-submission tool runs the PAVER performance tool	Optional Settings:		
paver.zip. See the <u>README</u> for details. However, in the first test in the form of two files which are been as	Relative Tolerance on Bounds:	1e-6	(Consistency Checks)
Users can input their data in the form of trace files, which can be ge format.	Absolute Tolerance on Bounds: (Primal) Feasibility Tolerance:	0.0001 2e-6	(Consistency Checks) (Consistency Checks w.r.t. Examiner computed values)
If you find this tool useful, please consider citing the paper M. Bussieck, S. Dirkse, S. Vigerske (2013). PAVER 2.0: An Open S	Optimality (Dual Feasibility) Tolerance: Reference Solver (Name):	2e-6	(Consistency Checks w.r.t. Examiner computed values) (Performance Evaluation)
	Shift for Time (s):	10	(Performance Evaluation)
Note: there is a maximum total file size limit of 1Mb. Submit trace files:	Shift for Number of Nodes: Minimal Time:	100	(Performance Evaluation) (Performance Evaluation)
Trace 1 Browse blitzen.trc	Time in case of failure: Number of Nodes in case of failure:		(Performance Evaluation) (Performance Evaluation)
Trace 2 Browse comet.trc Trace 3 Browse cupid.trc	(Relative) Gap Tolerance: Threshold for being relatively faster:	1e-6	(Performance Evaluation) (Performance Evaluation)
Trace 4 Browse No file selected.	Threshold for relatively better obj. value:	0.1	(Performance Evaluation)
Trace 5 Browse No file selected. Trace 6 Browse No file selected.	Regard Dual Bounds (if available): Number of ticks (points):	40	(Performance Evaluation) (Performance Profiles)
Trace 7 Browse No file selected. Trace 8 Browse No file selected.	Extended Performance Profiles: Include virt, best solver:	▽	(Performance Profiles) (Performance Profiles)
Submit solution files (optional):	Option file name is runname:		(Reading)
MINLPLib GlobalLib	Run PAVER RESET		
LinLib MIPLIB 2010			
Solutions 1 Browse No file selected.	For questions or comments please contact the <u>PAVER 2 author</u> .		

Paver 2

Analysis Results

Your data was succesfully submitted to the PAVER - Perfo

http://www.gamsworld.org/performance/paver2/ana

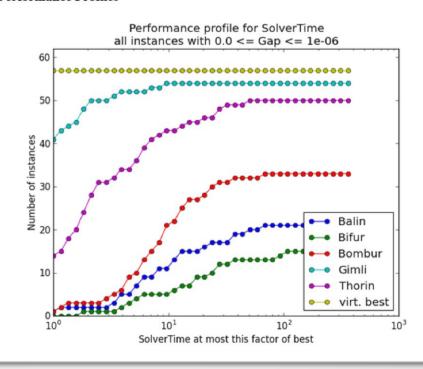
You can also download the results at

http://www.gamsworld.org/performance/paver2/ana

Submit data:

Date/Time Mon Jul 1 16:02:46 EDT 2013

Log file


Solver Runs

- · Thorin
- Gimli
- Bombur
- Balin
- · Bifur

Solving Data

Statistics (Counts and Means)

Performance Profiles

Agenda

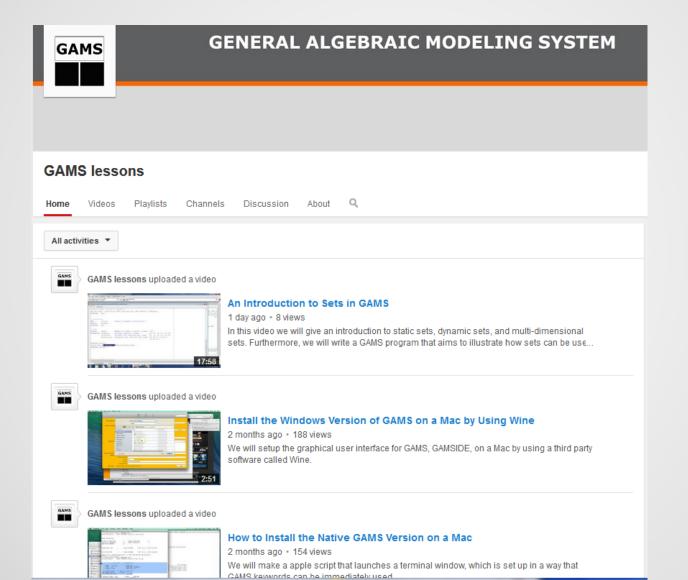
What is GAMS?

Overview of Enhancements

Paver 2

Youtube Channel: GAMS lessons

Summary


GAMS related advances

Youtube Channel: GAMS lessons

www.youtube.com/channel/ UCfTAizXPo4vN54CC-Zs9TTg

Youtube Channel: GAMS lessons

Agenda

What is GAMS?

Overview of Enhancements

Paver 2

Youtube Channel: GAMS lessons

Summary

Summary

GAMS 24.3 System

Enhancements

Singleton sets

CPP function library

GAMS related advances

Paver 2

Youtube Channel

Thank You

USA

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007

USA

Phone: +1 202 342 0180

+1 202 342 0181 Fax:

sales@gams.com

Europe

GAMS Software GmbH

P.O. Box 40 59

50216 Frechen, Germany

Phone: +49 221 949 9170

Fax: +49 221 949 9171

info@gams.de