

Stochastic Programming

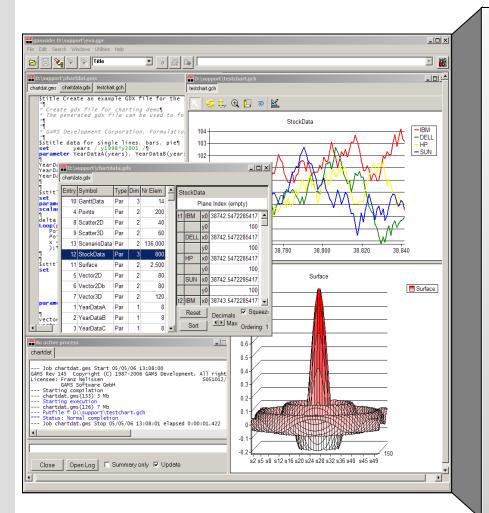
Lutz Westermann

lwestermann@gams.com

GAMS Software GmbH GAMS Development Corporation

www.gams.com

GAMS at a Glance

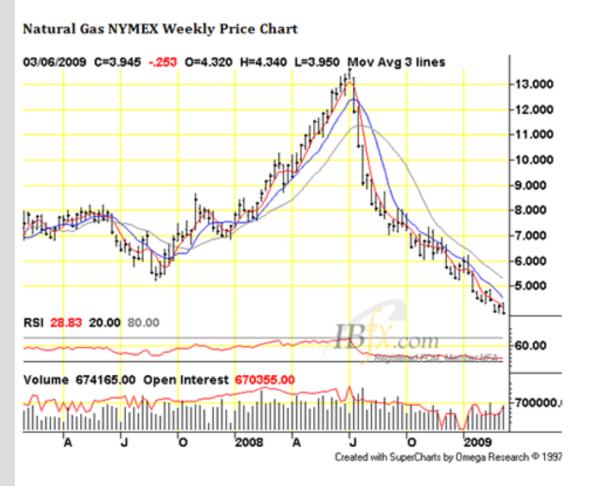


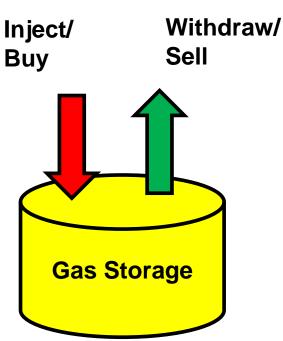
General Algebraic Modeling System

- Algebraic Modeling Language
- 30+ Integrated Solvers
- 10+ Supported MP classes
- 10+ Supported Platforms
- Connectivity- & Productivity Tools
 - IDE
 - Model Libraries
 - GDX, Interfaces & Tools
 - Grid Computing
 - Benchmarking
 - Compression & Encryption
 - Deployment System
 - APIs (C, Fortran, Java, .Net ...)
 - •

Example Model: Gas Price Model

2070





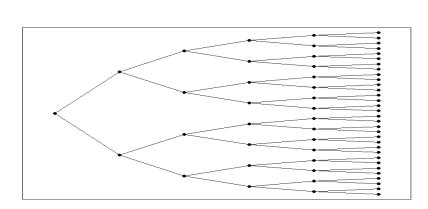
n-Stage Stochastic Programs

- Construct Scenario Tree:
 - Start with today's price and use a (discrete) distribution
 - Realizations: up, down
- Stochastic Linear Program (block structure)
 - Nested Bender's Decomposition (OSLSE, FortSP, AIMMS)
 - In practice Deterministic Equivalent with Barrier method

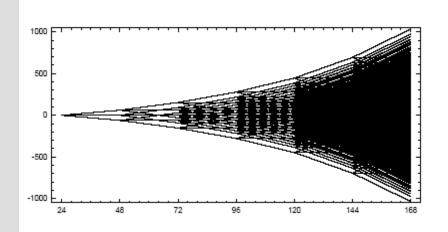
$$Z_{H\!N} = \min_{\mathbf{x}_1} \quad \left\{ \ c_1 \mathbf{x}_1 + E_{\xi_2} \bigg[\min_{\mathbf{x}_2} c_2 \mathbf{x}_2 + E_{\xi_3 \mid \xi_2} \bigg[\min_{\mathbf{x}_3} c_3 \mathbf{x}_3 + \ldots + E_{\xi_T \mid \xi_{T-1} \mid \ldots \mid \xi_2} \ \min_{\mathbf{x}_T} c_T \mathbf{x}_T \ \bigg] \bigg] \right\}$$

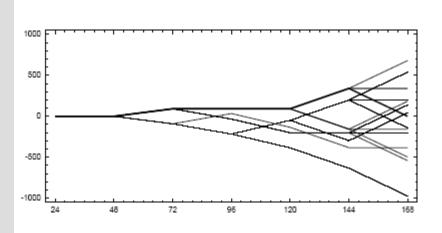
subject to:

$$\begin{array}{llll} A_{11}x_1 & = b_1 \\ A_{21}x_1 + & A_{22}x_2 & = b_2 \\ A_{31}x_1 + & A_{32}x_2 + & A_{33}x_3 & = b_3 \\ \vdots & & \ddots & \vdots \\ A_{T1}x_1 + & A_{T2}x_2 + & A_{T3}x_3 + & \dots & + A_{TT}x_T = b_T \\ \ell_t \leq x_t \leq u_t; \end{array}$$



ScenRed (Römisch et. al., HU Berlin)



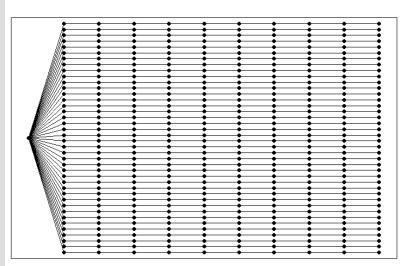


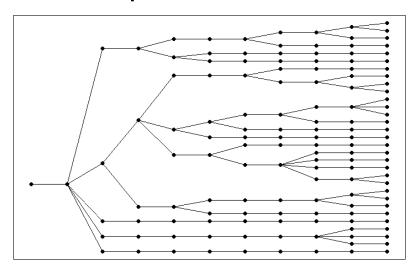
- Find good approximation of original scenario tree of significant smaller size
- Available since 2002
- Integrated in GAMS system
- No extra cost

Tree Generation: ScenRed2

2070

Construct a true scenario tree from independent scenarios:



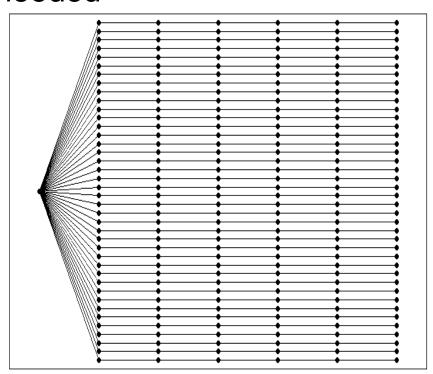


Reconstruct underlying distribution from a set of scenarios

2-Stage Stochastic Programs

2010

- SP Solver DECIS (Gerd Infanger, Stanford, USA)
 - Stores only one instance of the problem and generates scenario sub-problems as needed
 - Solution Strategies
 - Deterministic Equivalent (all scenarios)
 - Sampling: Crude Monte Carlo/ Importance sampling

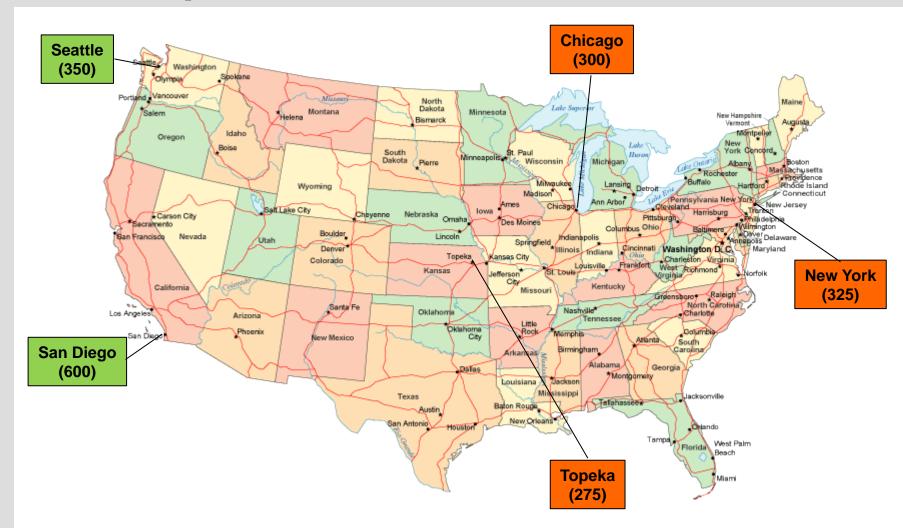


AML and Stochastic Programming (SP)

- Algebraic Modeling Languages/Systems good way to represent optimization problems
 - Algebra is a universal language
 - Hassle free use of optimization solvers
 - Simple connection to data sources (DB, Spreadsheets, ...) and analytic engines (GIS, Charting, ...)
- Large number of (deterministic) models in production
 - Opportunity for seamless introduction of new technology like Global Optimization, Stochastic Programming, ...
 - AML potential framework for SP

Simple Example

A Transportation Model



Simple Example: Transportation Model

- Data:
 - Certain capacity at plants

```
a(i) / seattle 350, san-diego 600
```

Certain demand at markets

```
b(j) / new-york 325, chicago 300, topeka 275 /
```

Given transportation cost

```
      c(i,j)
      new-york
      chicago
      topeka

      seattle
      0.225
      0.153
      0.162

      san-diego
      0.225
      0.162
      0.126
```

X(i,j)

U(j)

Units can also be bought at markets directly for a fixed price
 p

- Decisions:
 - How many units to ship:
 - How many units to buy:
 - ... in order to minimize total cost

Transportation Model – GAMS Formulation

```
Costs to mimimize
             \mathbf{Z} = \mathbf{e} = \mathbf{sum}((i,j), c(i,j)*\mathbf{X}(i,j))
cost..
                    + sum( j, p *U(j));
*
             Supply limitation
supply(i).. sum(j, X(i,j)) = l = a(i);
*
             Demand requirement
demand(j).. sum(i, X(i,j)) = g = b(j) - U(j);
Model transport / all /;
Solve transport using lp minimizing Z;
```


Transportation Problem – Add Uncertainty

Uncertain demand factor bf
 bf
 Prob: 0.3 Val: 0.95
 Prob: 0.5 Val: 1.00
 Prob: 0.2 Val: 1.05

- How many units should he shipped "here and now" (without knowing the outcome of the uncertain demand)?
 - → First-stage decision
- How many units need to be bought after the outcome becomes known?
 - → Second-stage or recourse decision
- Recourse decisions can be seen as
 - penalties for bad first-stage decisions
 - variables to keep the problem feasible

Stochastic NB Problem – GAMS Extension

* Define non-default stages stage 2 bf u demand

New GAMS (EMP) Keywords

Excursus: EMP, what?

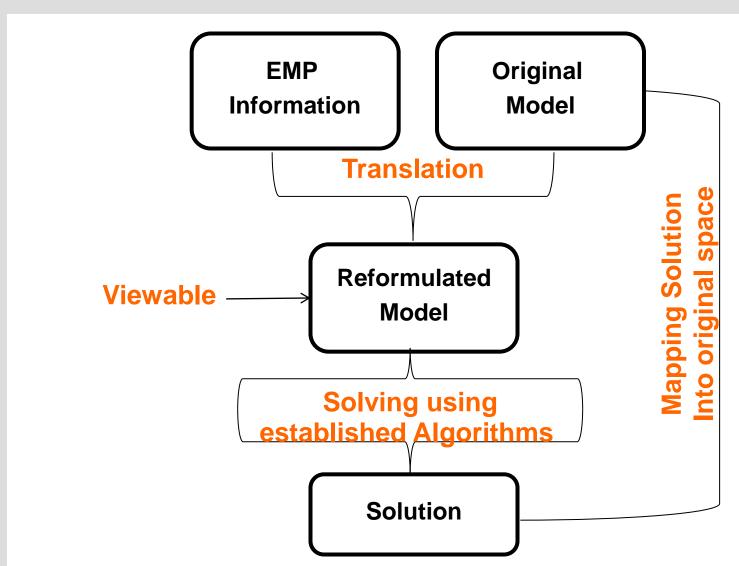
With new modeling and solution concepts do not:

- overload existing GAMS notation right away!
- · attempt to build new solvers right away!

But:

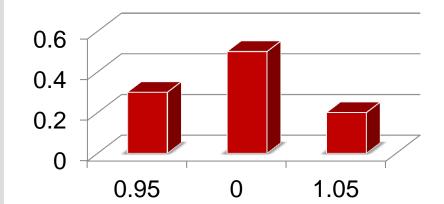
- Use existing language features to specify additional model features, structure, and semantics
- Express extended model in symbolic (source) form and apply existing modeling/solution technology
- Package new tools with the production system
 - → Extended Mathematical Programming (EMP)

JAMS: a GAMS EMP Solver

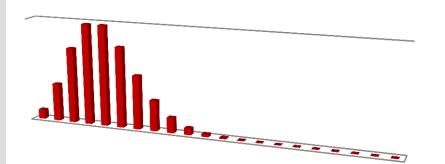


Random Variables

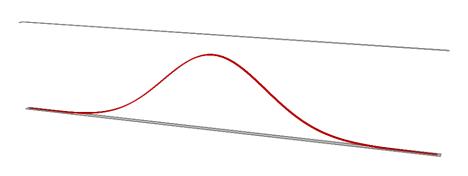
Discrete Distribution



Poisson Distribution



Normal Distribution



Exponential Distribution

Random Variables (RV) [randVar]

Defines both discrete and parametric random variables:

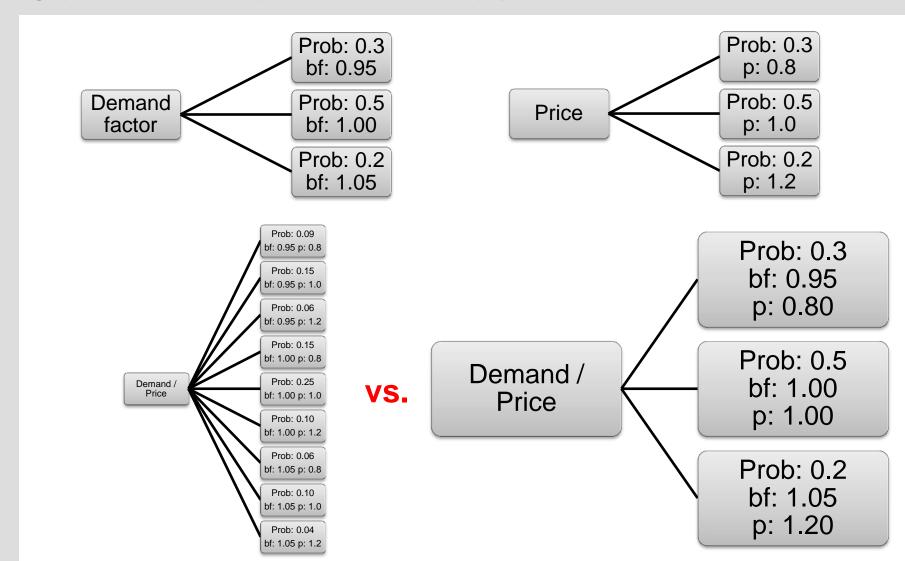
```
randVar rv discrete prob val {prob val}
```

 The distribution of discrete random variables is defined by pairs of the probability prob of an outcome and the corresponding realization val

```
randVar rv distr par {par}
```

• The name of the parametric distribution is defined by distr, par defines a parameter of the distribution

Joint Random Variables

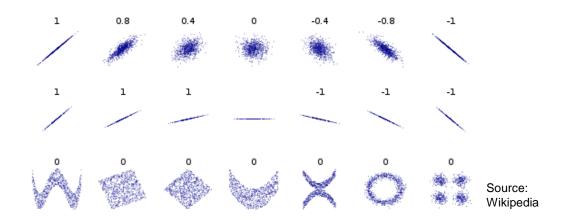


Joint RVs [jRandVar]

Defines discrete random variables and their joint distribution:

- At least two discrete random variables rv are defined and the outcome of those is coupled
- The probability of the outcomes is defined by prob and the corresponding realization for each random variable by val

Correlation between RVs [correlation]

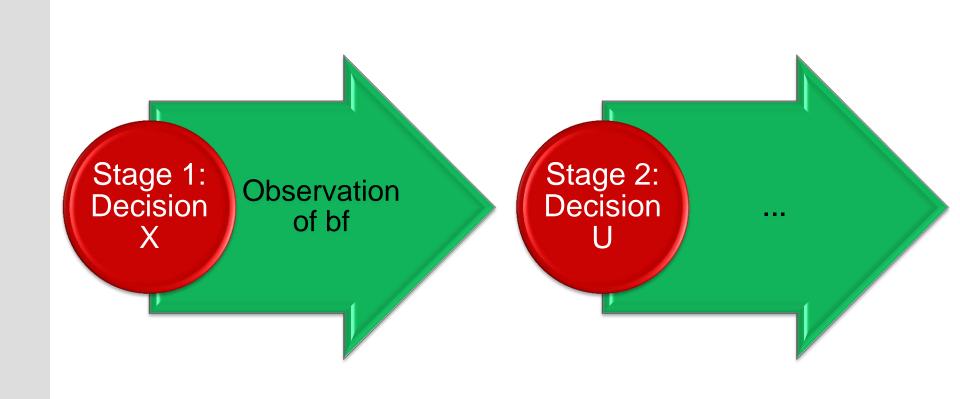


Defines a correlation between a pair of random variables:

correlation rv rv val

 rv is a random variable which needs to be specified using the randvar keyword and val defines the desired correlation (-1 ≤ val ≤ 1)

Stages



Stages [stage]

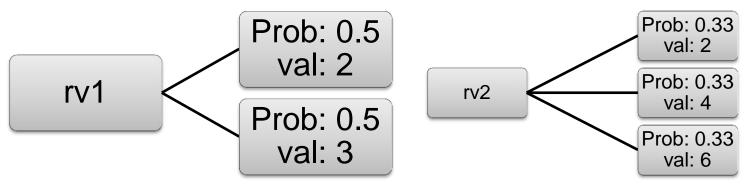
• Defines the stage of random variables (rv), equations (equ) and variables (var):

```
stage stageNo rv | equ | var {rv | equ | var}
```

- StageNo defines the stage number
- The default StageNo for the objective variable and objective equation is the highest stage mentioned
- The default StageNo for all the other random variables, equations and variables not mentioned is 1

Chance Constraints

```
OBJ.. Z =e= X1 + X2;
E1.. rv1*X1 + 2*X2 =g= 5;
E2.. rv2*X1 + 6*X2 =g= 10;
Model sc / all /;
solve sc min z use lp;
```



chance E1 0.5 chance E2 0.5

Chance Constraints

Just in case: X1 = 1 and X2 = 1 are optimal.

Chance Constraints [chance]

Defines individual or joint chance constraints (CC):

```
chance equ {equ} [holds] minRatio [weight|varName]
```

- Individual CC: A single constraint equ has to hold for a certain ratio (0 ≤ minRatio ≤ 1) of the possible outcomes
- Joint CC: A set of constraints equ has to hold for a certain ratio (0 ≤ minRatio ≤ 1) of the possible outcomes
- If weight is defined, the violation of a CC gets penalized in the objective (weight violationRatio)
- If varName is defined the violation get multiplied by this existing variable

Expected Value [ExpectedValue]

This is the default objective:

```
ExpectedValue [x EV_x]
```

- If only ExpectedValue is defined, the expect value of the GAMS objective variable will be optimized (same as if it would be omitted at all)
- If the variable pair $x \in V_x$ is defined, GAMS will replace its objective variable by EV_x , which will become the expected value of x

Conditional Value at Risk [cVaR]

 As an alternative to the expected value, the conditional value at risk (cVaR) can be optimized:

```
cVaR [x cVaR x] theta
```

- If only cVaR theta is defined, the cVaR of the GAMS objective variable to the quantile level theta will be optimized
- If the variable pair $x \text{ cVaR}_x$ is defined, GAMS will replace its objective variable by cVaR_x , which will become the cVaR of x to the quantile level theta

Combining EV and cVaR

It is also possible optimize a combination of the expected value and the conditional value at risk like this:

```
defobj..
  obj =e= lambda*EV_r + (1-lambda)*CVaR_r;

ExpectedValue r EV_r
cvarlo r CVaR_r 0.1
```


Output Extraction

- The expected value of the solution can be accessed via the regular . ⊥ and . M fields
- In addition, the following information can be stored in a parameter by scenario:

```
    level: Levels of variables or equations
```

- marginal: Marginals of variables or equations
- randvar: Realization of a random variable
- opt: Probability of each scenario
- This needs to be stored in a separate dictionary:

```
Set dict / scen .scenario.''
    bf .randvar .s_bf
    '' .opt .srep
    x .level .s x/;
```


Adding Uncertainty to Transport

```
demand(j).. sum(i, x(i,j)) =q= bf*b(j) - U(j);
file emp / '%emp.info%' /; put emp '* problem %gams.i%'/;
$onput
randvar bf discrete 0.3 0.95
                   0.5 1.00
                   0.2 1.05
stage 2 bf u demand
$offput
putclose emp;
Set scen scenarios / s1*s3 /;
Parameter
   s bf(scen, j) demand factor realization by scenario
   s x(scen,i,j) shipment per scenario
   s s(scen);
Set dict / scen .scenario.''
          bf .randvar .s bf
          x .level .s x/;
Solve transport using emp minimizing z scenario dict;
```


Summary

Available GAMS SP Solvers

	\mathbf{DE}	DECIS	LINDO
chance			
correlation			\checkmark
cVaR			
expectedValue			$\sqrt{}$
jrandVar		$\sqrt{}$	\checkmark
randVar (discrete)		\checkmark	$\sqrt{}$
randVar (parametric)			$\sqrt{}$

Conclusion

- Deterministic examples from all kind of application areas exist already (e.g. ~400 in the GAMS Model Library)
- Easy to add uncertainty to existing deterministic models, to
 - ... either use specialized algorithms (DECIS, LINDO)
 - ... or create Deterministic Equivalent and select from wide range of existing GAMS solver links (DE, free)
- New SP examples in the GAMS EMP Library
- More work to be done:
 - Scenario tree support
 - Sampling
 - **–** ...

Contacting GAMS

<u>Europe</u>

GAMS Software GmbH P.O. Box 40 59 50216 Frechen, Germany

Phone: +49 221 949 9170 Fax: +49 221 949 9171

info@gams.de

<u>USA</u>

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA

Phone: +1 202 342 0180 Fax: +1 202 342 0181

sales@gams.com support@gams.com

http://www.gams.com