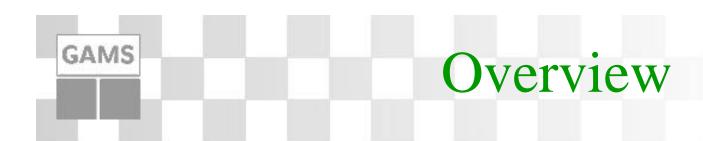


# PATHNLP: Solving NLPs as complementarity problems

Steven Dirkse

GAMS Development Corporation

Washington DC



- PATH the solver for MCP
- Difficult NLPs, computational failures
- KKT conditions of NLP == MCP
- PATHNLP
- Implementation & computational results



# MCP and Normal Equations

MCP:

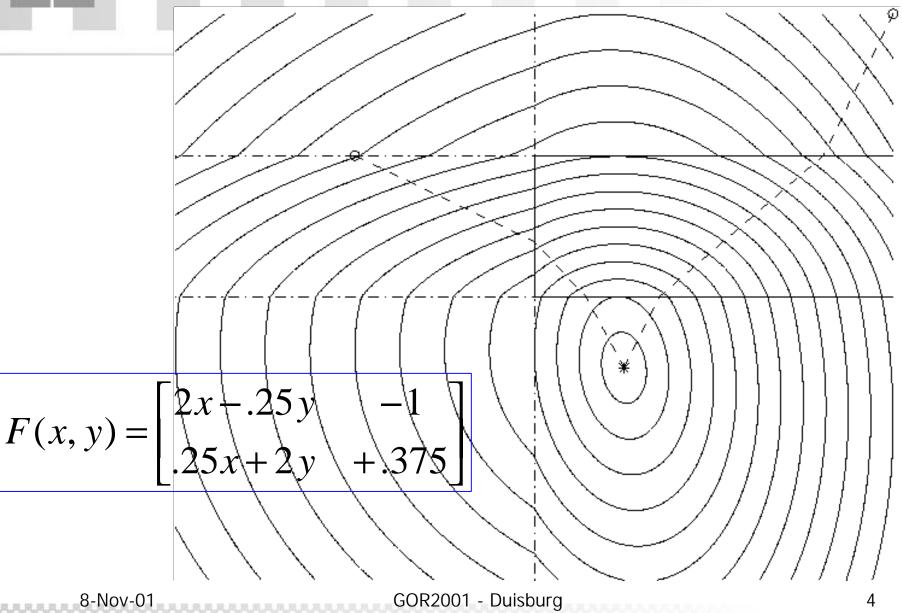
$$F(z)$$
  $\perp$   $z \in [L, U]$ 

Normal Equations:

$$F(p(x)) + x - p(x) = 0,$$
  
where  $p(x)$  = projection onto  $[L, U]$ 



# A Normal Map





# Basis Crashing in PATH

- Poor initial basis implies expensive path computation with many pivots
- Crash technique:
  - Compute direction from current point
  - Take full step, then project onto bounds
  - Damp with Armijo linesearch



- Proof of quadratic convergence requires
  - uniformity, invertibility of linearization
  - usual Newton condition on the linearization error
- In practice, quadratic convergence is usually observed
- Near the solution, PATH behaves as a smooth Newton solver



# Gambling Model

- $\bullet \max S_i c_i^* \log(f(x_i, y))$
- s.t.  $y = S_i x_i$ ,  $y \le W$
- size of model parameterized by N:

N 6 7 8 9 10 11 14

n 98 509 1261 3186 4151 8885 27328



# Off-the-shelf computation

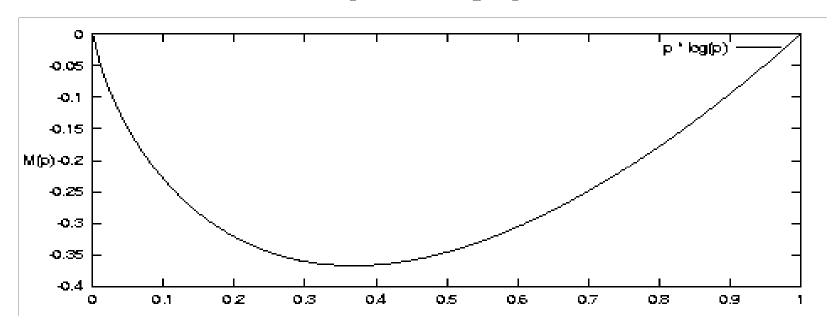
GAMS NLP codes (gambling model)

| N      | 6  | 7   | 8    | 9     | 10   | 11   | 12    |
|--------|----|-----|------|-------|------|------|-------|
| n      | 98 | 509 | 1261 | 3186  | 4151 | 8885 | 16671 |
| CONOPT | 0  | 18  | 152  | time  |      |      |       |
| MINOS  | 0  | 2   | 9    | 66    | 93   | 309  | 5506  |
| SNOPT  | 0  | 37  | 980  | 20521 |      |      |       |



# **Entropy Maximization Models**

- Maximize entropy M or cross-entropy CE
  - $M(p) = -S p_i * log(p_i)$
  - $CE(p) = -S p_i * log(p_i/q_i)$





## Example: Data Reconciliation

#### • Given:

- Sets of households H, labor segments S
- A(H,S) participation in labor force
- w(H) statistical weights of households
- y(S) observed structure of labor force
- Problem: Aw != y
- Normalize w to get prior distribution q
- Max CE(p) s.t.  $Ap = y_n$



# Example: Data Reconciliation

- MaxEnt model from Denmark (DIAFE)
- Model is quite large
  - 277,017 variables
  - 6805 constraints
  - 3,587,265 nonzeros
- Client asks, "What machine must I buy to solve this model?"



#### First-Order Conditions for NLP

NLP:

min 
$$f(x)$$
  
s.t.  $g(x) \ge 0$ ,  $x \in [L, U]$ 

First-Order Conditions (KKT):

$$\nabla f(x) - \nabla g(x) \cdot u \quad \perp \quad x \in [L, U]$$
$$g(x) \ge 0 \qquad \qquad \perp \quad u \in [0, \infty]$$



- GAMS source translation tool
- Result is source of MCP model (symmetric)
- Preserves GAMS structure as much as possible (adding asymmetry possible)
- Not completely robust wrt. GAMS syntax
- Used by several economists to solve large MaxEnt models via MCP



# PATHNLP Algorithm

- Internally reformulate NLP via KKT conditions
  - Requires 1st derivatives
- Solve KKT conditions via PATH
  - Requires 2nd derivatives
  - Convexity required for convergence proof
- Extract NLP solution from KKT solution



- G2DLIB = 2nd deriv capability, & more
- Current capability
  - 1st derivative (backwards & forwards)
  - 2nd derivative (forwards)
  - interval analysis for functions, derivatives
- Current/future work
  - gradient-vector, Hessian-vector products
  - forward-reverse mode Hessian
  - Preprocessing, evaluation reordering



# Performance (gambling)

| N       | 7   | 8    | 9     | 10   | 11   | 12    | 13    | 14    |
|---------|-----|------|-------|------|------|-------|-------|-------|
| n       | 509 | 1261 | 3186  | 4151 | 8885 | 16671 | 21856 | 27328 |
| CONOPT  | 18  | 152  | time  |      |      |       |       |       |
| MINOS   | 2   | 9    | 66    | 93   | 309  | 5506  |       |       |
| SNOPT   | 37  | 980  | 20521 | )    |      |       |       |       |
| PATHNLP | 1   | 4    | 34    | 77   | 579  | 558   | 1089  | 1689  |

gambling model, on jfk.gams.com



# Solution times (MaxEnt)

| Solver /<br>model | CONOPT2 | MINOS | SNOPT | PATHNLP |
|-------------------|---------|-------|-------|---------|
| y1996             | 179     | 698   | 10800 | 18      |
| y1997             | 154     | 677   | 10800 | 15      |
| y1998             | 214     | 340   | 10800 | 16      |
| y1999             | 275     | 482   | 10800 | 16      |

y1999 model, on jfk.gams.com



## Performance (2nd deriv)

- How costly is obtaining Hessian information?
  - MaxEnt models: computed quickly
  - Not the case for gambling model

% time in Hessian eval

| N | 9   | 10  | 11 | 12  | 13  | 14  |
|---|-----|-----|----|-----|-----|-----|
| % | 15% | 11% | 7% | 64% | 66% | 65% |



## Performance (modlib)

- GAMS modlib: 99 NLP solves
  - 96 successes
  - 2 failures (poor memory estimate)
  - 1 failure (non-convex QP)
- COPS models in modlib
  - Mixed success
  - Lack of objective guidance apparent
  - Feast or famine



## PATHNLP: Pros & Cons

#### Pros:

- Excellent "warm/hot start" capability
- No superbasics limit
- Quadratic convergence

#### Cons:

- Potential lack of robustness
- Diagnosis of infeasible or unbounded models



#### Infeasible Models

• Introduce Phase I NLP:

min 
$$\langle s, s \rangle$$
  
s.t.  $g(x) + s \ge 0$ ,  $x \in [L, U]$ 

- Solution determines (local) infeasibility
- Feasibility not necessarily maintained in subsequent solve of the original MCP
- Issue: run Phase I first, or only on failure of original model?



# Improving robustness

- PATH may fail to solve KTT conditions, or find a KKT point for a maximizer.
- Phase I determines (local) infeasibility
- If feasible, we can resolve KKT starting from Phase I solution
- Composite merit function (Krung & Ferris)
  - Makes use of NLP objective
  - Favors minimizers over maximizers



### SBB: PATH vs. CONOPT

#### Objective & Speed Improvements

| speed objective | slower | same | better |     |
|-----------------|--------|------|--------|-----|
| poorer          | 61     | 7    | 2      | 70  |
| same            | 19     | 18   | 4      | 41  |
| better          | 4      | 4    | 4      | 12  |
|                 | 84     | 29   | 10     | 123 |



### SBB: PATH vs. CONOPT

#### Objective & Speed Improvements

| speed objective | slower | same | better |    |
|-----------------|--------|------|--------|----|
| poorer          | 3      | 1    | 1      | 5  |
| same            | 18     | 18   | 3      | 39 |
| better          | 4      | 3    |        | 7  |
|                 | 25     | 22   | 4      | 51 |



#### Conclusions

- Using 2nd order information is important and now available in GAMS
- Important classes of NLP models now solvable (option NLP=PATHNLP)
- SBB robustness improved by addition of PATHNLP
- Open research: improvements in efficiency, robustness