Slice Models in GAMS

Michael C. Ferris Meta M. Voelker

Outline

- Define slice models
- Example: Breast Cancer Diagnosis
 - Cross-Validation
 - Linear Classification (LP)
 - Support Vector Machine (QP)
- Introduce slice interface (GAMS/DEA)
- Train and test models
- Show results on WDBC database

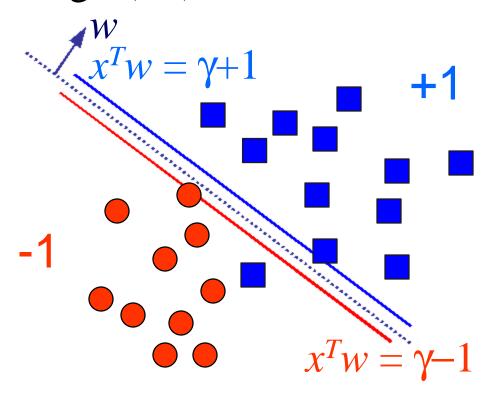
Slice Models

Slice model = group of mathematical programs with the same model but different data

$$\min_{x} f^{k}(x) \longrightarrow \text{objective slice}$$
 $\text{subject to } A^{k}x = b^{k} \longrightarrow \text{slice constraints}$
 $x \in X \longrightarrow \text{core constraints}$

Benefits of Slice Modeling

- Reuse program structure and core data
 - Memory and I/O savings
- Use previous solution as starting point for next solve
 - cold/warm/hot starts
- Efficiency in solution allows for larger and more complex problems to be processed


DEA Models as Slice Models

Applying slicing to Data Envelopment Analysis problems:

k	GAMS/CPLEX	GAMS/DEA	
	Time	Time	
60	4.63 sec	0.43 sec	
104	7.02 sec	0.51 sec	
4888	16 hours	717.01 sec	

Example: Breast Cancer Diagnosis

Classify patients' tumors as malignant (-1)
 or benign (+1)

Example, continued

- Train on data for which outcome is known
- Use cross-validation to test classifier
- Model with a linear classifier and a support vector machine

k-fold Cross-Validation

- Divide data into k subsets of approximately equal size
- Train k times, leaving out one subset each time
- Use the omitted subset as testing data to estimate error

Support Vector Machine Model (Quadratic Program)

Look for a classifier with the widest margin between classes (2/||w||) and which minimizes misclassification (z):

min_{w,\gamma,z}
$$\frac{1}{2} ||w||^2 + Ce^T z$$

subject to $\frac{D^k(A^k w - \gamma) + z \ge 1}{z \ge 0}$

Linear Classification

Replace Euclidean norm measurement with sup-norm measurement:

$$\min_{w,\gamma, z} ||w||_1 + Ce^T z$$
subject to
$$D^k (A^k w - \gamma) + z \ge 1$$

$$z \ge 0$$

Linear Classification as Linear Program

Convert to linear program by adding new variables *y*:

min_{$$w,\gamma,z,y$$} $e^{T}y + Ce^{T}z$
subject to $D^{k}(A^{k}w - \gamma) + z \ge 1$
 $y \ge w \ge -y$
 $z \ge 0$

Slice Models in GAMS

```
loop(k,
    slice(k) = yes;
    solve model;
    slice(k) = no);
```

- Solve each problem independently
- Regenerate model
- Repeat core data
- No restarting capability

GAMS/DEA Interface

- Remove loop from model; identify slice constraints by key word slice
- Pass all data to interface at once
- Interface defines individual problems automatically
- CPLEX is underlying solver

Deletion Slice Model

Cross-validation models can be formulated as *deletion* slice models:

- Define specific problems by what gets deleted
- Slice set is the fold set
- Only specify testing sets for each fold
- Declare equations over testing sets

GAMS/DEA Equations (Linear Model)

```
alias(k,slice);
equations obj_def, sep_def(p,slice);
obj_def..
obj =e= sum(f,y(f)) + C*sum(p, z(p));
sep_def(p,k)$test(p,k)..
D(p)*(sum(f, A(p,f)*w(f)) - gamma) + z(p) = g = 1;
```

GAMS/DEA Equations (Linear Model)

```
alias(k,slice);
equations sep_def(p,slice);
sep_def(p,k)$test(p,k)..
D(p)*(sum(f, A(p,f)*w(f)) - gamma) + z(p) =g= 1;
```

GAMS/DEA Solve (Linear Model)

```
option lp = dea; train.optfile = 1;
*Generate testing sets
loop(k,
$batinclude gentestset "p,k"
);
solve train using lp minimizing obj;
```


- Extend GAMS/QPWRAP to slice models
- Formulate QP model with
 - linear GAMS model
 - Q matrix specified in text file
- GAMS/QPWRAP passes Q matrix to solver
- Q must be part of core data

Testing Models

- Only one call to the solver → only last solution available to GAMS
- Solutions for all problems written to dea.sol
- Testing independent of training
- Write out solutions (w, gamma) to dea.sol for later testing

Results on WDBC Database

Perform all-but-one testing:

Model	GAMS	GAMS/DEA	Testing
	training time	training time	accuracy
LP	541.71 sec	269.03 sec	95.08%
QP-CPLEX	7403.03 sec	7221.74 sec	
QP-CONOPT	519.3 sec	343.18 sec	95.42%
QP-PATH	691.9 sec	245.45 sec	

Conclusions and Future Work

- Model distinct from solver: can easily change problem type
- Model easy to modify
- Use state-of-the-art solvers
- Extend slice techniques to other domains
 - Change solvers without rewriting model
 - Test other formulations and algorithms