

Stochastic Programming using Algebraic Modeling Languages

Timo Lohmann, Ronny Hansmann, TU Braunschweig Michael Bussieck, GAMS Software GmbH

1. September 2010

- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

Introduction

Starting with a deterministic problem:

min
$$g_0(x)$$

s.t. $g_i(x) \le 0, i = 1, \dots, m$
 $x \in X \subset \mathbb{R}^n$

- Problem can be linear, nonlinear (convex, nonconvex) depending on the functions g_i and the set X.
- Adding uncertainty:

min
$$g_0(x, \xi)$$

s.t. $g_i(x, \xi) \le 0, i = 1, \dots, m$

$$x \in X \subset \mathbb{R}^n$$

where $oldsymbol{\xi}$ is a random vector varying over the set $\Xi \subset \mathbb{R}^k$

Multi-stage decision making

A stage is characterized by new information becoming known at the beginning of the stage and making recourse decisions / adjustments at the end of the stage (stage 1 is an exception):



- When making decisions only outcomes of the current stage and previous stages are available. For future stages only expectations exist.
 - -> Non-anticipativity of the stochastic process

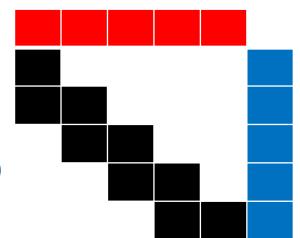
Multi-stage model

It is often assumed that the decision in the current stage only depends on the previous stage. The multi-stage model then reads:

$$\min c_1 x_1 + E[\min c_2 \xi^2 x_2 \xi^2 + \dots + E[\min c_T(\xi^T) x_T(\xi^T)] \dots]$$

s.t.
$$W_1 x_1 = h_1$$

 $T_1(\xi^2) x_1 + W_2(\xi^2) x_2(\xi^2) = h_2(\xi^2)$
 \vdots
 $T_{T-1}(\xi^T) x_{T-1}(\xi^{T-1}) + W_T(\xi^T) x_T(\xi^T) = h_T(\xi^T)$
 $x_1 \ge 0, \ x_t(\xi^t) \ge 0, \ t = 2, ..., T.$

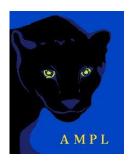


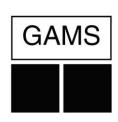
- This assumption benefits decomposition algorithms because they can exploit the structure of the coeffecients matrix.
- Another common assumption is that the recourse matrices W are fixed (fixed recourse) or have a structure which eliminates the possibility of infeasibility (complete recourse).

- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

Algebraic modeling languages

■ Tested modeling languages:





What algebraic modeling languages offer

- Features for stochastic programming:
 - Separation of deterministic core model and stochastic information
 - Ways of describing stochastic information:
 - Scenarios, either explicit provided by the user or constructed by the software (sampling techniques)
 - Continuous and discrete distributions (with intra- and interstage correlations)
 - Support for multi-stage and two-stage modeling, e.g. automatic assignment of variables and equations to stages
 - Scenario tree construction support, e.g. visualization and reduction methods
 - Decomposition algorithms, e.g. stochastic version of Benders' decomposition
 - Solution reports featuring
 - Solutions for each scenario
 - Value of the stochastic solution, expected value of perfect information
 - Reading from and writing into other formats, such as SMPS

The most important features

- Features for stochastic programming:
 - Separation of deterministic core model and stochastic information
 - Ways of describing stochastic information:
 - Scenarios, either explicitly provided by the user or constructed by the software (sampling techniques)
 - Continuous and discrete distributions (with intra- and interstage correlations)
 - Support for multi-stage and two-stage modeling, e.g. automatic assignment of variables and equations to stages
 - Scenario tree construction support, e.g. visualization and reduction methods
 - Decomposition algorithms, e.g. stochastic version of Benders' decomposition
 - Solution reports featuring
 - Solutions for each scenario
 - Value of the stochastic solution, expected value of perfect information
 - Reading from and writing into other formats, such as SMPS

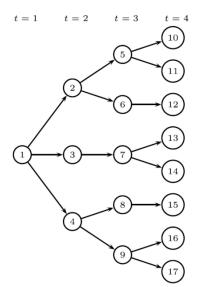
- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

Basic idea

Reconsider the multi-stage problem:

min
$$c_1 x_1 + E[\min c_2 \xi^2 x_2 \xi^2 + \dots + E[\min c_T(\xi^T) x_T(\xi^T)] \dots]$$

s.t. $W_1 x_1 = h_1$
 $T_1(\xi^2) x_1 + W_2(\xi^2) x_2(\xi^2) = h_2(\xi^2)$
 \vdots
 $T_{T-1}(\xi^T) x_{T-1}(\xi^{T-1}) + W_T(\xi^T) x_T(\xi^T) = h_T(\xi^T)$
 $x_1 \ge 0, \ x_t(\xi^t) \ge 0, \ t = 2, ..., T.$



- With more stages and more scenarios the size explodes and the DE problem cannot be solved in a reasonable amount of time.
- Idea: Only look at the current stage and aggregate the future stages into a function depending on the current stage decision.
 - -> The Future Cost Function

One-stage subproblems

Define one-stage dispatch subproblems:

$$\min c_t x_t + \hat{\alpha}_{t+1}(x_t)$$

s.t.
$$W_t x_t \ge h_t - T_{t-1} x_{t-1}^*$$
.

- Note that variables x_{t-1}^* are fixed. Instead of solving the large multi-stage problem we solve a sequence of one-stage problems.
- Question: How to construct the future cost function(s) $\hat{\alpha}_{t+1}(x_t)$?
- Possible approaches:
 - SDP (Stochastic Dynamic Programming): A state-space approach using a recursion scheme and interpolations between obtained solution points
 - SDDP (Stochastic Dual Dynamic Programming) / Benders': Construct a piecewise linear function using supporting hyperplanes (cuts) through recursion.

Construction of cuts (DDP)

Solve the last stage subproblem (t=T):

$$\min c_t x_t + \hat{\alpha}_{t+1}(x_t)$$

s.t.
$$W_t x_t \ge h_t - T_{t-1} x_{t-1}^*$$
.

• Calculate marginals π_T^1 of the constraints and use them as dual multipliers for stage T-1:

 $\hat{\alpha}_T > \pi_T^1(h_T - T_{T-1}x_{T-1}).$

$$\hat{\alpha}_{T-1}(x_{T-2}^*) = \min c_{T-1}x_{T-1} + \hat{\alpha}_T$$

s.t. $W_{T-1}x_{T-1} \ge h_{T-1} - T_{T-2}x_{T-2}^*$

• When calculating marginals for earlier stages the marginals for the cuts have to be accounted for as well (e.g. stage T-2):

$$\hat{\alpha}_{T-1} \ge \pi_{T-1}^1 (h_{T-1} - T_{T-2} x_{T-2}) + \lambda_{T-1}^1 \pi_{T-1}^1 h_T.$$

Construction of cuts (DDP)

The complete one-stage subproblem with cuts reads:

$$\hat{\alpha}_{t}(x_{t-1}^{*}) = \min c_{t}^{T} x_{t} + \hat{\alpha}_{t+1}$$
s.t. $W_{t} x_{t} \ge h_{t} - T_{t-1} x_{t-1}^{*}$ (1a)
$$\hat{\alpha}_{t+1} + \pi_{t+1}^{j} T_{t} x_{t} \ge \delta_{t}^{j}, \ j = 1, ..., J, \quad \text{(1b)}$$

$$\delta_{t}^{j} = \begin{cases} \pi_{t+1}^{j} h_{t+1}, & t = T - 1 \\ \pi_{t+1}^{j} h_{t+1} + \sum_{i=1}^{j} \lambda_{i,t+1}^{j} \delta_{t+1}^{i}, & t = 1, ..., T - 2, \end{cases}$$

Construction of cuts (SDDP)

Initialize:

Let T be the planning horizon, initialize $\hat{\alpha}_{t+1}(x_t) = 0$ for t = 1, ..., T; iteration count J=0; Define a set of trial solutions $\{x_{tn}^*, n = 1, ..., N, t = 1, ..., T\}$.

Carry out a Backward Recursion:

Backward recursion. Repeat for t = T, ..., 2:

Repeat for each trial decision $x_{t,n}^*$, n = 1, ..., N:

Repeat for each realization $h_{t,m}$, m = 1,...M:

Solve problem (1) using trial decision $x_{t-1,n}^*$. Let $\pi_{t,m}^j$ and $\lambda_{i,t,m}^j$ be the multipliers associated to the constraints (1a) and (1b), respectively.

Calculate the expected vertex value $\overline{\pi}_{t,n}^j = \sum_{m=1}^M p_{t,m} \pi_{t,m}^j$ and $\overline{\delta}_{t-1,n}^j = \sum_{m=1}^M p_{t,m} \delta_{t-1,m}^j$, and construct one supporting hyperplane of the approximate expected future cost function for stage t-1, $\overline{\alpha}_t(x_{t-1})$.

• Solve the first-stage problem (1) for t=1, update $x_{1,n}^* := x_1^*$

Building a new solution and check for convergence (SDDP)

Carry out a forward simulation:

```
Forward Simulation. Repeat for t = 2, ..., T:

Repeat for n = 1, ..., N:

Sample a vector h_{tn} from the set \{h_{tm}, m = 1, ..., M\}.

Solve the two-stage subproblem (1) using trial decision x_{t-1,n}^*. Use the optimal solution to update x_{tn}^*.
```

- Check for convergence:
 - Update the upper bound: $\overline{z} = c_1 x_1^* + \frac{1}{N} \sum_{n=1}^N z_n$
 - Update the lower bound: $\underline{z} = c_1 x_1^* + \overline{\alpha}_2(x_1)$.
 - If the difference between the upper confidence bound $\overline{z}+z_{q/2}\sigma_z/\sqrt{M}$ and the lower bound $\underline{\mathcal{Z}}$ is less than prescribed accuracy level: STOP

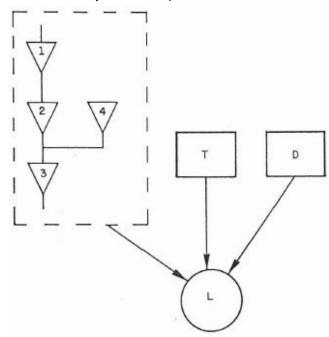
Source: Pereira and Pinto (1991)

Source: Shapiro (2009)

- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

The hydro power example

- 4 stages, right-hand side random (inflow), discrete distribution (64 scenarios)
- 4 reservoirs for hydro power generation
- Thermal power generation possible but expensive
- Demand L for power has to be satisfied (violation even more expensive)
- Water can be used in successive reservoirs.
- Decisions to make:
 - How much water should be stored and how much water should be used for power generation at each reservoir in each stage?



Source: Pereira and Pinto (1985)

Source: Velasquez, Restrepo, and Campo (1999)

The model formulation

$$\min \sum_{t=1}^{4} (c \cdot GT_t + f \cdot D_t)$$

s.t.
$$GT_t + \sum_{i=1}^{4} r_i Q_{i,t} + D_t = L$$
 $\forall t$

$$V_{i,t-1} + a_{i,t} + \sum_{j \in J_i} Q_{j,t} = V_{i,t} + Q_{i,t} \ \forall i, t$$

$$Q_{i,t} \leq \overline{Q}$$
 $\forall i, t$

$$GT_t \leq \overline{GT}$$
 $\forall t$

$$GT_t$$
, D_t , $Q_{i,t}$, $V_{i,t} \ge 0 \ \forall i, t$.

 GT_t Thermal power generation

 D_t Unsatisfied demand

 $Q_{i,t}$ Water release for hydro power generation

 $V_{i,t}$ Water volume stored in reservoir i at the end of stage t

- Short SP Introduction
- What Algebraic Modeling Languages offer
- Solving SPs: Decomposition Algorithms
- An Example
- Rapid Algorithm Development in GAMS

SDDP in GAMS

- Equations can be used in multiple Model statements
 - Core model: Model hydro /obj,cont,maxflow,therm,dem/;
 - Submodels: Model hydrosp / hydro, obj approx, cuts /;
- Equation generation controlled by subsets:

```
\begin{split} \text{cont}(\texttt{i},\texttt{tt}(\texttt{t})) \dots & \forall (\texttt{i},\texttt{t-1}) + \forall 0(\texttt{i}) \$ \texttt{sameas}(\texttt{'t1'},\texttt{t}) + \& (\texttt{i},\texttt{t}) - \& (\texttt{i},\texttt{t}) \\ & + & \texttt{sum}(\texttt{M}(\texttt{i},\texttt{ii}), \& (\texttt{Q}(\texttt{ii},\texttt{t})) = \texttt{e=} & \forall (\texttt{i},\texttt{t}); \\ \texttt{cuts}(\texttt{jj},\texttt{n},\texttt{tt}(\texttt{t})) \$ \texttt{docuts}.. \\ & \& \texttt{ALPHA}(\texttt{t+1}) - & \texttt{sum}(\texttt{i}, & \texttt{cont_m}(\texttt{jj},\texttt{n},\texttt{i},\texttt{t+1}) * \forall (\texttt{i},\texttt{t})) = \texttt{g=} & \texttt{delta}(\texttt{jj},\texttt{n},\texttt{t}); \end{split}
```

Loops over sets:

- loop(s, // for all realizations
- Change parameters of a model A(i,tloop)=Astoch(s,i,tloop);
- Access of model stats for calculations:

```
delta(j,nloop,tloop-1) =
    1/card(s)*[sum(i,-cont.m(i,tloop)*A(i,tloop)
    + maxflow.m(i,tloop)*Qcap(i))
    + therm.m(tloop)*GTcap + dem.m(tloop)*L
    + docuts*sum((jj,n), cuts.m(jj,n,tloop)*delta(jj,n,tloop))]
    + delta(j,nloop,tloop-1);
```


Solver integration

- Running the SDDP algorithm with default GAMS settings is slow because "communicating" with the solver for the small one-stage dispatch models takes up most of the time.
- "Communicating" here means:
 - Model generation in GAMS
 - Writing the model to the hard drive (GAMS vacates memory)
 - Starting the solver
 - Restart GAMS; swap of GAMS database
- By using hydrosp.solvelink = %solvelink.LoadLibrary% the solver DLL is used in the GAMS process which means
 - GAMS stays in memory, no swap of GAMS database
 - Fast memory based model communication

Scenario solver and comparison

• Another speed improvement is possible by using the GAMS scenario solver (beta state). Advantage: GAMS generates the model once and the scenario solver replaces the parameters accordingly for each solve.

Solve hydrosp min ACOST using LP scenario dict;

Setting	Solve time (secs)
Solvelink=0 (default)	40.297
Solvelink=%Solvelink.LoadLibrary%	03.625
Scenario Solver	00.797

(GAMS 23.5, lp=cplexd, Intel Core2 @ 2.0 GHz, 2GB)

Using the scenario solver has to be done via the "Scenario Dict"

