

Lutz Westermann
Clemens Westphal

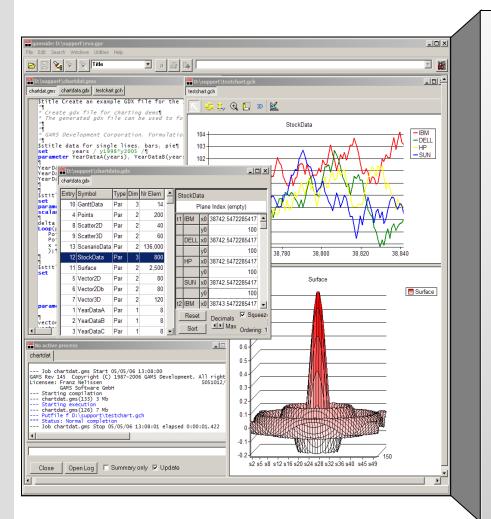
LWestermann@gams.com
CWestphal@gams.com

GAMS Software GmbH
GAMS Development Corporation

www.gams.com

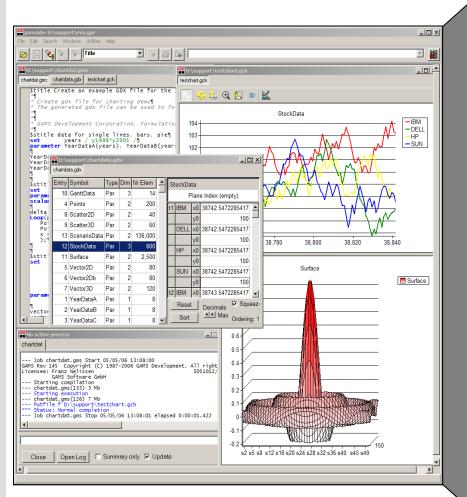
Rotterdam, September 3, 2013

Outline


- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

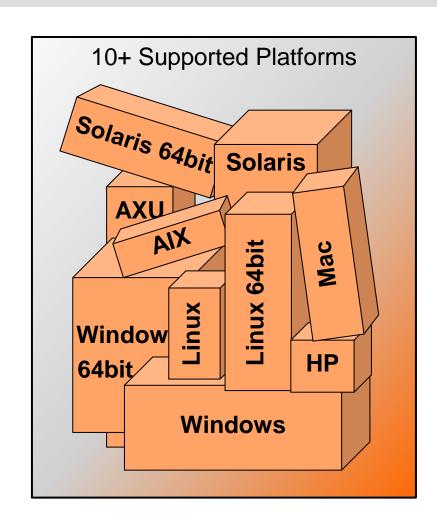
Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

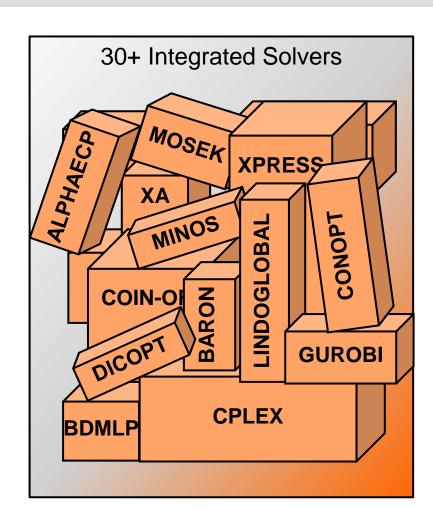


Algebraic Modeling System

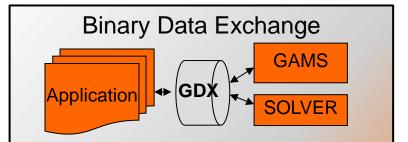
- Facilitates to formulate mathematical optimization problems similar to algebraic notation
 - → Simplified model building
- Provides links to appropriate stateof-the-art external algorithms
 - → Efficient solution process


General Algebraic Modeling System

- Roots: World Bank, 1976
- Went commercial in 1987
- GAMS Development Corp.
- GAMS Software GmbH
- Broad academic & commercial user community and network



- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements



- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

- Fast exchange of data
- Syntactical check on data before model starts
- Data Exchange at any stage (Compile and Run-time)
- Platform Independent
- Direct GDX interfaces and general API
- Scenario Management Support
- Full Support of Batch Runs

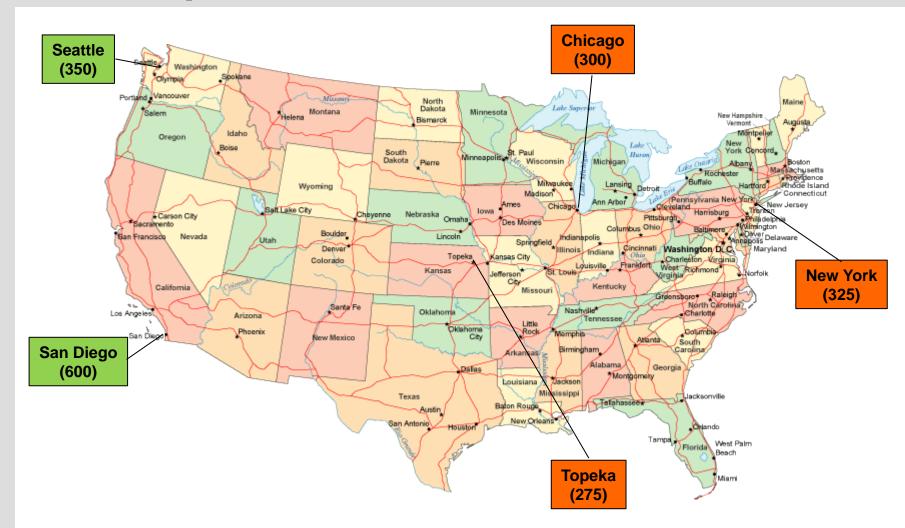
- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

Declaration of...

- Sets
- Parameters
- Variables
- Equations
- Models
- ...

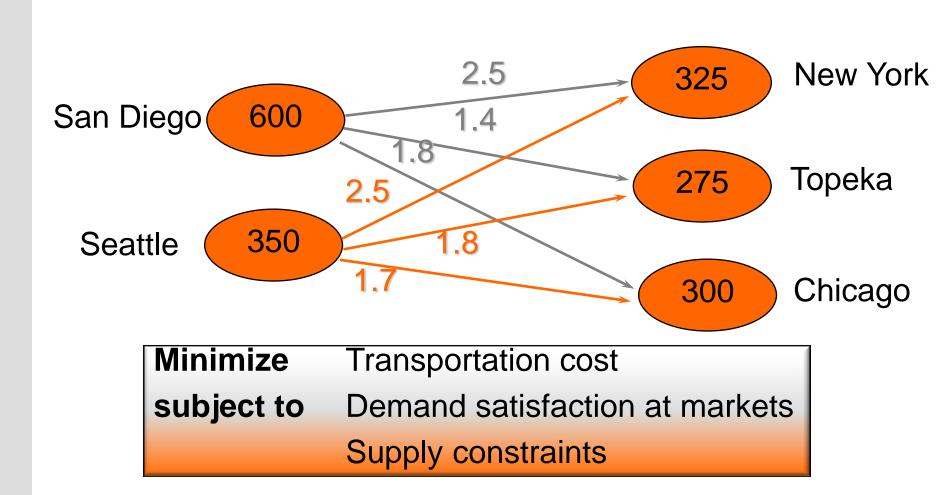
Procedural Elements like...

- loops
- if-then-else
- ...



Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools



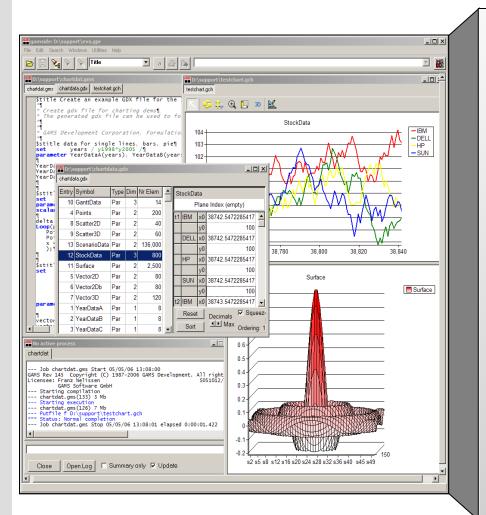
A Transportation Model

A Transportation Model

Model Formulation

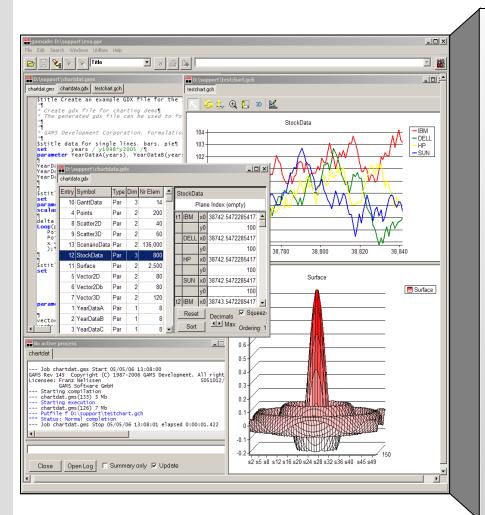
```
Indices: i
                               (Canning plants)
                               (Markets)
Decision variables: x_{ij} (Number of cases to ship)
Parameter: c_{ii}
                               (Transport cost per case)
min \sum_{i} \sum_{j} c_{ij} \cdot x_{ij}
                               (Minimize total transportation cost)
subject to
\sum_{i} x_{ij} \leq sup_i \quad \forall i (Shipments from each plant \leq supply capacity)
\sum_{i} x_{ij} \ge dem_i \quad \forall j
                               (Shipments to each market \geq demand)
x_{ij} \geq 0
                     \forall i, j
i, j \in \mathbb{N}
```


GAMS Algebra


```
🖺 gamside: C:\Documents and Settings\bussieck\My Documents\gamsdir\project.gpr - [c:\documents an... 🖃 🗖
🏪 File Edit Search Windows Utilities Help
                                                                              _ & X
🗁 📳 🍇 🔖 🗞 call
                            💌 (a) 🎒 📭
trnsport.gms
    Variables
          x(i,j) shipment quantities in cases
                   total transportation costs in thousands of dollars ;
    Positive Variable x :
    Equations
          cost
                       define objective function
          supply(i) observe supply limit at plant i
                       satisfy demand at market j :
          demand(†)
    cost ..
             z = e = sum((i,j), c(i,j)*x(i,j));
    supply(i) .. sum(j, x(i,j)) = l = a(i);
    demand(\dot{j}) .. sum(\dot{i}, x(\dot{i},\dot{j})) =g= b(\dot{j});
    Model transport /all/ ;
       1: 1
                    Insert
```


Outline

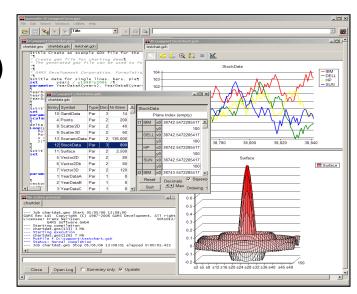
- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

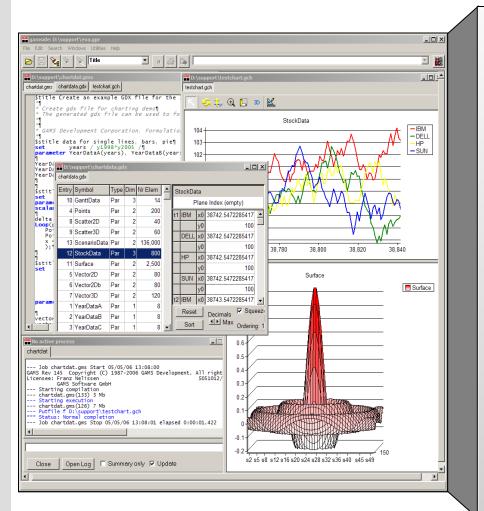


The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links

The GAMS/BASE Module


- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links


Integrated Development Environment

- Project management
- Editor / Syntax coloring / Spell checking
- Launching and monitoring of (multiple) GAMS processes
- Listing file / Tree view / Syntax-error navigation
- Solver selection / Option selection
- GDX viewer
 - Data cube
 - Data export (e.g. to MS Excel)
 - Charting facilities
- Model libraries
- Documentation
- Diff for GDX and Text

The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links

Documentation

Distributed Documentation

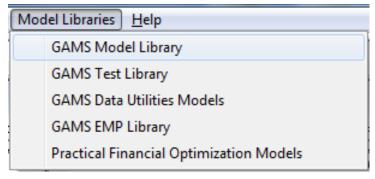
- GAMS Users Guide
- Expanded GAMS Users Guide (McCarl)
- Solver Manuals
- GAMS Utility Manuals

Wikis

- Support Wiki http://support.gams-software.com
- Interfaces Wiki http://interfaces.gams-software.com

Documentation

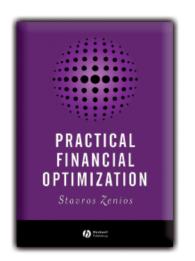
- Groups
 - User Group http://www.gams.com/maillist/gams_l.htm
 - Google Group http://groups.google.de/group/gamsworld
- Newsletter
 - McCarl's Newshttp://www.gams.com/maillist/newsletter.htm
 - Release List
- Search all GAMS Websites
 http://www.gams.com/search.htm


Distributed Model Libraries

GAMS Model Library

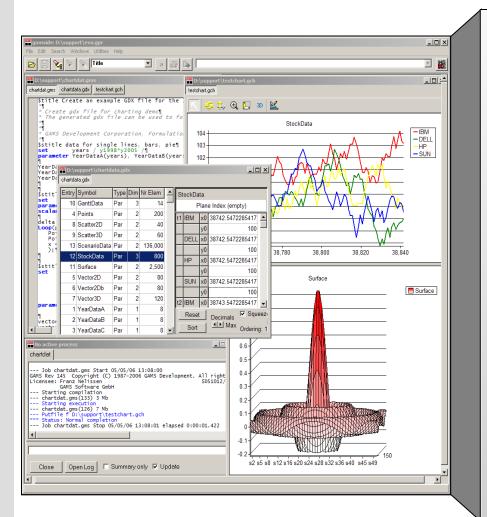
- Example and user-contributed models
- Very often used as templates
- Tests for
 - Solver robustness and correctness
 - Backward compatibility

GAMS Test Library


- Transparent and reproducible Quality Assurance Tests
- Tests for
 - Solver correctness
 - Special functions
 - GAMS utilities

Distributed Model Libraries

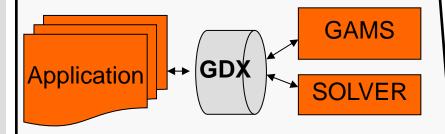
- GAMS Data Utilities Library
 - Demonstration of the various utilities interfacing GAMS with other applications
 - E.g. gdxxrw, mdb2gms, sql2gms
- GAMS EMP Library
 - Examples for the use of Extended Mathematical Programming



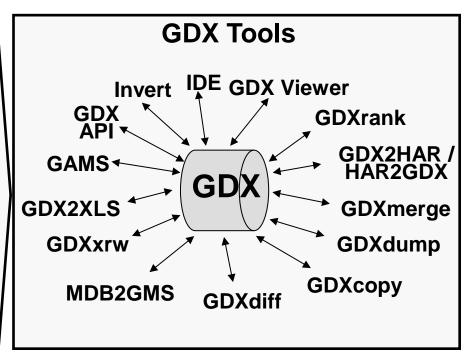
Practical Financial Optimization Models
 Models of the book

"PRACTICAL FINANCIAL OPTIMIZATION – A Library of GAMS Models"

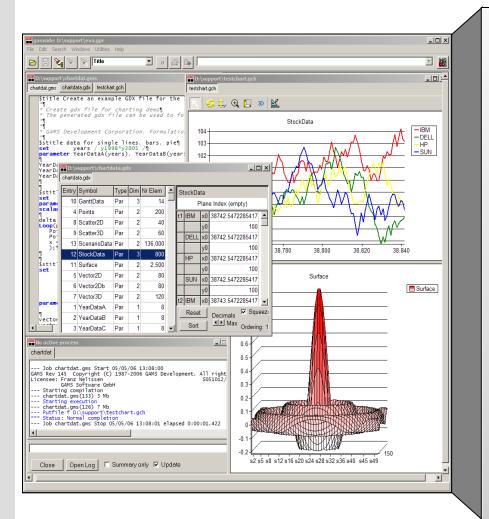
by Consiglio, Nielsen and Zenios


The GAMS/BASE Module

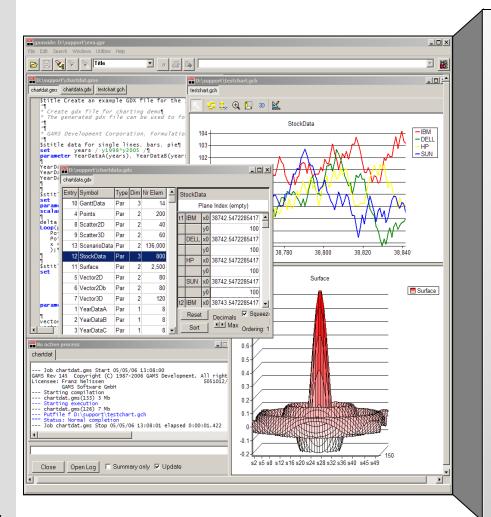
- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links



Gams Data eXchange


Binary Data Exchange

- Fast exchange of data
- Syntactical check on data before model starts
- Data Exchange at any stage (Compile and Run-time)
- Platform Independent
- Direct GDX interfaces and general API
- Scenario Management Support
- Full Support of Batch Runs



The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links

The GAMS/BASE Module

Free Solvers:

- Convert
- EMP/JAMS, DE, NLPEC
- BENCH, EXAMINER, GAMSCHK
- BDMLP, LS, and MILES
- KESTREL (Remote Solver Execution on NEOS Servers)
- COIN-OR:
 Cbc, IpOpt, BonMin, Couenne, ...
- Soplex, Scip (academic only)
- All other solvers in limited versions

GAMS/Kestrel

- Remote Solver Execution on NEOS Servers
- From within your usual GAMS modeling environment
- Receiving results that can be processed as with any local solver

```
Model transport /all/;
Option lp=kestrel;
transport.optfile=1;

$onecho > kestrel.opt
kestrel_solver xpress
neos_server www.neos-server.org
socket_timeout 10
$offecho

Solve transport using lp minimizing z;
```

```
--- Executing KESTREL: elapsed 0:00:00.005
Connecting to: http://www.neos-server.org:3332

NEOS job#=956988, pass=LXBsrGJe
Check the following URL for progress report:
http://www.neos-server.org/neos/cgi-bin/nph-neos-solver.cgi?admin=results&jobnumber=956988&pass=LXBsrGJe

FICO-Xpress 24.1.2 r40979 Released Jun 16, 2013 LEG x86_64/Linux

Xpress Optimizer 24.01
Xpress Optimizer 64-bit v24.01.04 (Hyper capacity)
```


Coin-OR

An initiative to spur the development of open-source software for the OR community

http://www.coin-or.org/

- A repository of currently ~50 open-source projects
 - Solvers
 - Interfaces
 - Tools
- An active OR community
 - Mailing lists
 - Wikis

The Coin-OR / GAMSLinks Project

https://projects.coin-or.org/GAMSlinks

Goals

- Easy access to COIN-OR solvers via GAMS
- Broadening the audience of COIN-OR
- Broadening the audience of GAMS
- Help developers to connect their solvers to GAMS
- Provide access to GAMS benchmarking and quality assurance tools

The Coin-OR / GAMSLinks Project

GAMS interfaces to open-source Solvers

- COIN-OR Linear Programming (CLP) and Branch and Cut (CBC)
 - LP and MIP solver from J. Forrest

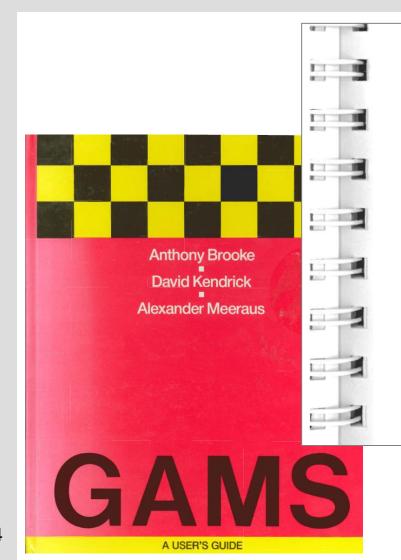
- COIN-OR Open Solver Interface (OSI)
 - Bare bone LP/MIP solver links to Cplex, Gurobi, Mosek, Soplex and Xpress
- Interior Point Optimizer (IPOPT)
 - Large scale NLP solver from A. Wächter

The Coin-OR / GAMSLinks Project

GAMS interfaces to open-source Solvers

- Solving Constraint Integer Programs (SCIP)
 - MIP/MINLP solver developed at Zuse Institute
 Berlin, TU Darmstadt and FAU Erlangen/Nürnberg

- Basic Open-source Nonlinear Mixed Integer programming (BONMIN)
 - Branch and Cut based MINLP solver from P. Bonami et.al.
- Convex Over and Under Envelopes for Nonlinear Estimation (COUENNE)
 - Branch and Bound MINLP solver from P. Belotti



Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

Then ...

In Table 17.1 we list sizes and attributes of representative models that are "large" in the sense that they are near the limit of what is practical on a personal computer, along with the model generation time (GAMS) and solution time (solver), both in minutes. These examples were run on an 8 MHz AT with an 80287 coprocessor and 640K of RAM. The times shown are to give you a rough idea of what is possible: these are not precisely controlled benchmarks, and we have a host of performance improvements in mind for the near future.

Table 17.1: Problem Characteristics

Name	Number of Rows	Number of Columns	Number of Nonzeroes	Generation Time ^a	Solution Time ^a	Iterations	Solver
DINAMICO	318	425	4156	3.0	30.1	628	MINOS
SARF	532	542	3949	37.7	115.8	2775	MINOS
$FERTD^b$	458	2968	7252	11.4	28.3	1368	ZOOM
$CAMCGE^{c}$	243	280	1356	0.8	7.0	189	MINOS
$GANGES^d$	274	357	1405	1.8	7.3	187	MINOS
YEMCEM	168	258	953	0.9	7.6	600	ZOOM
\mathtt{EGYPT}^f	281	618	3168	4.0	25.3	1551	ZOOM

^aMeasured in minutes.

^bThe problem is too big for MINOS. ZOOM was used instead.

^cA nonlinear problem. 63% of the non-zeroes are nonlinear.

^dA nonlinear problem. 58% of the non-zeroes are nonlinear.

^eA mixed binary problem, with 55 binary variables (solved with a relative termination criterion of 10%).

^fA linear problem, solved using XMP which is contained within ZOOM.

... and now

	Туре	s in 1988	s in 2013	Improvement Factor
camcge	NLP	468	0.031	15097
dinamico	LP	1986	0.125	15888
egypt*	LP	1758	0.015	117200
fertd*	MIP	2382	0.062	38419
ganges	NLP	546	0.109	5009
sarf	LP	9210	0.139	66259
yemcem*	MIP	510	0.140	3643

^{* 1988} solver ZOOM, 2008 solver CPLEX 11.0.1

Improvements on all Frontiers

Solver Technology

- Updates for existing solver
- New solvers

Productivity Tools

- Databases, spreadsheets
- Specialized visualization tools
- IDE improvements
- Grid computing

Interfaces

- Gams Data eXchange
- Using GAMS from other applications

Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

Basic Set Declaration

```
Set i / i1, i2, i3
                               /;
Set j / j1 * j3
                               /;
Set k / k3 * k1
                               /;
Set l(i,j) / i1.j1, i1.j2, i1.j3
            i2.j1, i2.j2, i2.j3
            i3.j1, i3.j2, i3.j3 /;
Set m(i,j) / (i1*i3).(j1*j3) /;
Set n(i,j) / #i.#j
                               /;
```


Matching Operator

```
Set i / t1.s3,t2.s4,t3.s5 /; (Product Operator)
  can be written as
Set i / t1*t6:s3*s5 /; (Matching Operator)
```

Example "Count Tuples":

```
Sets h /h1*h24/, d /d1*d365/, t /t1*t8760/dh(d,h) /#d.#h/
tdh(t,d,h) /#t:#dh/;
```

→ t1.d1.h1, t2.d1.h2, ..., t25.d2.h1, t26.d2.h2, ...

Hands-On

Matching Operator in Option Statements

```
Set i /i1*i2/, j /j3*j5/
   k / k1*k5/, cnt /c1*c100/
   ijk(i,j,k), x(I,j,k,cnt);
Option ijk(i:j,k), x(ijk:cnt);
→ ijk: i1.j3.k1, i1.j3.k2, ...,
         i2.j4.k1, i2.j4.k2, ...,
         i2.j4.k5
→ x:
         i1.j3.k1.c1, i1.j3.k2.c2, ...,
         i2.j4.k1.c5, i2.j4.k2.c6, ...,
         i2.j4.k5.c10
```


Enhanced Data Statements

- Allow initial values for equations and variables
- Follow the syntax for list and table data statement for parameters by adding an additional dimension to specify the specific data attribute

```
Variable table x(i,j) initial values
```

```
seattle. new-york 50
seattle. Chicago 300
seattle. topeka 0.36
san-diego.new-york 275
san-diego.Topeka 275
san-diego.chicago 0.009
```


The GAMS Macro Facility

- Basic Definition
 - \$macro name macro body
 - \$macro name(arg1,...) macro body with tokens arg1,...
- Multi-Argument Example

```
$macro ratio(a,b) a/b
z = ratio(x1,x2);
\Rightarrow z = x1/x2;
```

Macros within Macros

```
$macro product(a,b) a*b
$macro addup(i,x,z) sum(i,product(x(i),z))
z = addup(j,a1,x1);

z = sum(j,a1(j)*x1);
```


The GAMS Macro Facility (contd.)

Careful expansion (&)

```
$macro f(i) sum(j, x(i,j))
$macro equ(q) equation equ_&q; equ_&q.. q =e= 0;
equ(f(i))

→ equation equ_f(i); equ_f(i).. sum(j, x(i,j)) =e= 0;
```

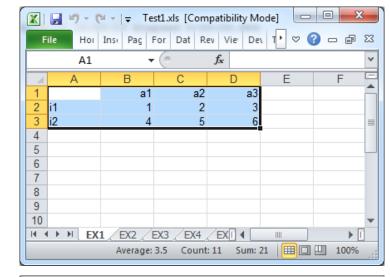
Removing outer set of quotes (&&)

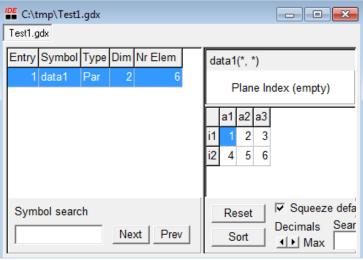
```
$macro d(q) display &&q;
d('"here it is", i, k')

display "here it is", i, k;

$macro dd(q) &&q)
z=dd('sum(j,al(j)');

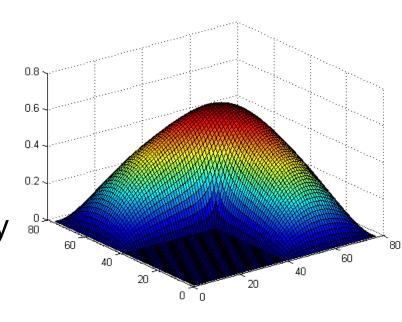
z=sum(j,al(j));
```



Outline


- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

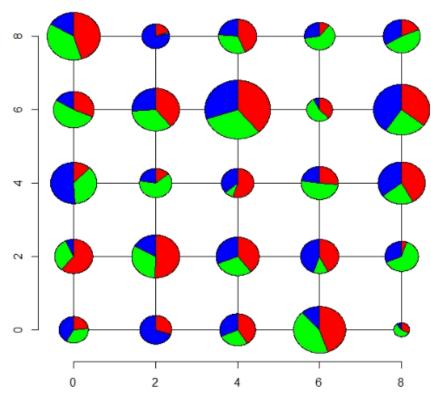
GDXXRW

- Read and write Excel spreadsheet data
- Can read multiple ranges in a spreadsheet and write the data to a GDX file
- Can read from a GDX file and write the data to different ranges in a spreadsheet
- Examples in the GAMS Data Library
 Hands-On



GDXMRW

- Import/export data between GAMS and MATLAB
- Call GAMS models from MATLAB
- Get results back in MATLAB
- Gives MATLAB users the ability to use all the optimization capabilities of GAMS


- Allows visualization of GAMS models directly within MATLAB
- More Information:

http://support.gams.com/doku.php?id=matlab_and_gams:interfacing_optimization_and_visualization_software_via_the_gdxmrw_utilities

GDXRRW

- GDXRRW bridges the gap between R and GAMS (import/export data between GAMS and R)
- Fits into the ecosystem of existing GDX utilities
- Presents data in a natural form for R users

Source: http://blog.modelworks.ch

More information:
 http://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r

Load from GDX

Compile Time:

Hands-On

Execution Time:

```
execute_load 'transSol.gdx' a;
put_utility 'gdxin' / 'transSol.gdx';
execute_load b;
```


Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

Solvelink Option

- ChainScript [0]: Solver process, GAMS vacates memory
 - + Maximum memory available to solver
 - + protection against solver failure (hostile link)
 - swap to disk

Solvelink Option – cont.

- Call{Script [1]/Module [2]}: Solver process, GAMS stays live
 - + protection against solver failure (hostile link)
 - + no swap of GAMS database
 - file based model communication

- LoadLibrary [5]: Solver DLL in GAMS process
 - + fast memory based model communication
 - + update of model object inside the solver (hot start)
 - not supported by all solvers

Hands-On

Solving Scenarios

```
trnsport.gms (LP) solved 500 times with CPLEX:
Loop(s,
    d(i,j) = dd(s,i,j);
    f = ff(s);
    solve transport using lp minimizing z;
    rep(s) = transport.objval;
);
```

Setting	Solve time (secs)
Solvelink=%Solvelink.ChainScript%	52.221
Solvelink=%Solvelink.CallModule%	37.366
Solvelink=%Solvelink.LoadLibrary%	03.252

Gather-Update-Solve-Scatter (GUSS)

Setting	Solve time (secs)
Solvelink=%Solvelink.ChainScript%	52.221
Solvelink=%Solvelink.CallModule%	37.366
Solvelink=%Solvelink.LoadLibrary%	03.252
GUSS	01.046

- Update model data instead of matrix coefficients/rhs
- Hot start (keep the model hot inside the solver and use solver's best update mechanism)
- Save model generation and solver setup time
- Model rim unchanged from scenario to scenario
- Apriori knowledge of all scenario data

Hands-On

GUSS

Dynamic model – rolling horizon

- Example:
 - Combined Heat and Power Planning with Heat
 Storage. All data known apriori but heat storage level
 - Can't use GUSS
 - Implement GUSS in programming language
 - Identify some parameters as "modifiable" parameters
 - Implement rolling horizon in programming language

Tracing Solve Process

Solver Options (e.g. Cplex, Gurobi, Xpress):

• MipTrace

 Writes a file that records the best integer and best bound values every miptracenode nodes and at miptracetime-second intervals

• MipTraceNode

 Specifies the node interval between entries to the MipTrace file [Default: 100]

• MipTraceTime

Specifies the time interval, in seconds, between entries to the MipTrace file [Default: 5]

Tracing Solve Process – cont.

Generates a Trace file during solve:

```
* miptrace file gurobi.trc: ID = Gurobi

* fields are lineNum, seriesID, node, seconds, bestFound, bestBound

1, S, 0, 0, -0, 30

2, N, 100, 0.113, 21, 27

3, N, 200, 0.169, 21, 27

4, N, 300, 0.212, 21, 27

5, N, 400, 0.255, 21, 26

6, N, 500, 0.31, 21, 26

7, E, 683, 0.668, 21, 23

* miptrace file gurobi.trc closed

* miptrace file gurobi.trc closed
```

- Common format among all solvers that support this option
- Available with: ANTIGONE, BONMIN, CBC, CPLEX, COUENNE, GloMIQO, Gurobi, SBB, SCIP, Sulum, Xpress (Partly using different option names)

Solution Pool

- Several solver links can write out alternative solutions to GDX: AlphaECP, ANTIGONE, BARON, CBC, CPLEX, GloMIQO, Gurobi, SCIP, Xpress
- BARON, CPLEX, and Xpress also offer functionality to explicitly search for alternative solutions
- See GAMS Model Library model solnpool

	142 PARAMETER	xcostX	cost structure	by solution
	totcost	tcost	fcost	
file1	499.000	219.000	280.000	
file2	512.000	212.000	300.000	
file3	985.000	355.000	630.000	

Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools

Function Libraries

- Allows users to import functions from an external library into a GAMS model
- Imported functions can be used in the same way as intrinsic GAMS functions
- Some function libraries are included in the GAMS distribution
- Users can create their own libraries using an open programming interface (simple examples written in C, Delphi and Fortran come with every GAMS system)
- To make a library available call

```
$FuncLibIn <IntLibName> <ExtLibName>
```

• Declare functions similar to sets, parameters, ..., :

Function <IntFuncName> /<IntLibName>.<FuncName>/;

Function Libraries – Included Examples

- FITfclib
 - FITPACK from P. Dierckx
 - One and two dimensional spline interpolation
- LSAdclib
 - Use sampling routines from Lindo inside GAMS
 - Requires GAMS/Lindo license (or runs in limited demo mode)
- PWPcclib
 - Piecewise polynomial function evaluation
- STOdclib
 - Random deviates, probability density functions, cumulative density functions and inverse cumulative density functions
 - E.g., ChiSquare, Gumbel, Logistic, Rayleigh, ...
- TRIcclib, TRIdclib, TRIfclib
 - Simple examples compiled and as source code written in C,
 Delphi and Fortran respectively

Function Libraries – Interface

```
• int LibInit(
     abcRec t *abc, // in handle
     const int version, // in library version
     char *msq) // out message
• int <FUNCTIONNAME>(
     abcRec t *abc, // in handle
     const int DR, // in derivative request
     const int args, // in number of arguments
     const double x[], // in arguments
     double *f, // out function value
     double g[], // out gradient
     double h[], // out hessian
     void *cb, // in error callback
     void *usermem) // in user memory for error callback
```

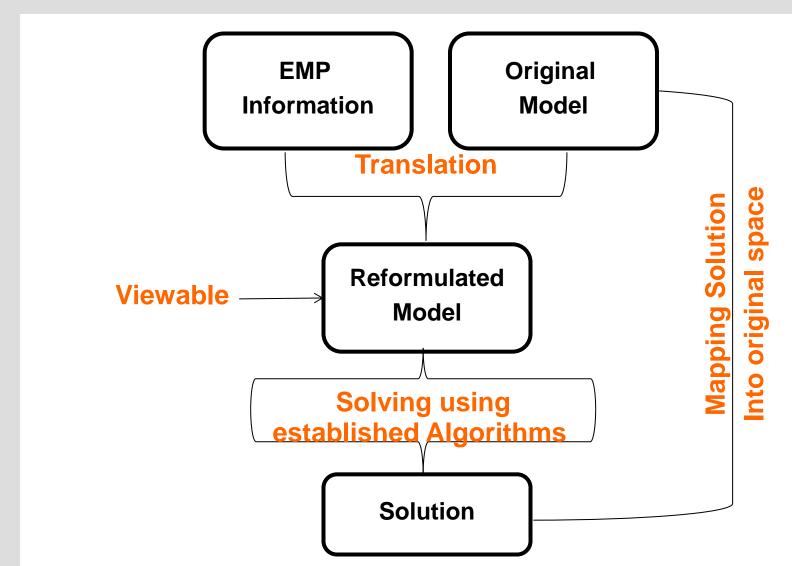

Stochastic Programming in GAMS

- The Extended Mathematical Programming (EMP)
 framework is used to replace parameters in the model by
 random variables
- Support for Multi-stage recourse problems and chance constraint models
- Easy to add uncertainty to existing deterministic models, to either use specialized algorithms or create
 Deterministic Equivalent (new free solver DE)

Excursus: EMP, what?

With new modeling and solution concepts do not:

- overload existing GAMS notation right away!
- attempt to build new solvers right away!


But:

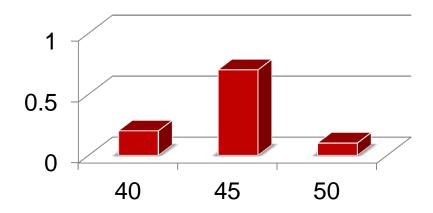
- Use existing language features to specify additional model features, structure, and semantics
- Express extended model in symbolic (source) form and apply existing modeling/solution technology
- Package new tools with the production system

→ Extended Mathematical Programming (EMP)

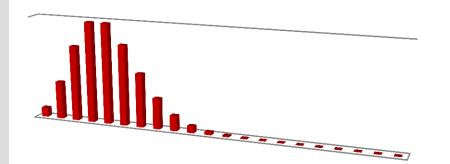
JAMS: a GAMS EMP Solver

Simple Example: Newsboy (NB) Problem

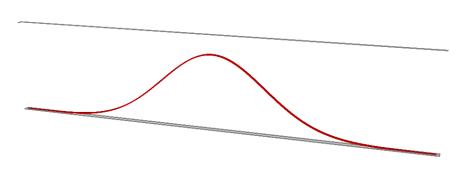
- A newsboy faces an uncertain demand for newspapers
- He can buy newspapers for fixed costs per unit
- He can sell newspapers for a fixed price
- For hold units he has to pay a disposal fee
- He has to satisfy his customers demand or has to pay a penalty


- How much newspaper should he buy "here and now" (without knowing the outcome of the uncertain demand)?
 - → First-stage decision
- How many customers are lost after the outcome becomes known?
 - → Second-stage or recourse decision
- Recourse decisions can be seen as
 - penalties for bad first-stage decisions
 - variables to keep the problem feasible

Hands-On


→ nbsimple.gms

Random Variables


Discrete Distribution

Poisson Distribution

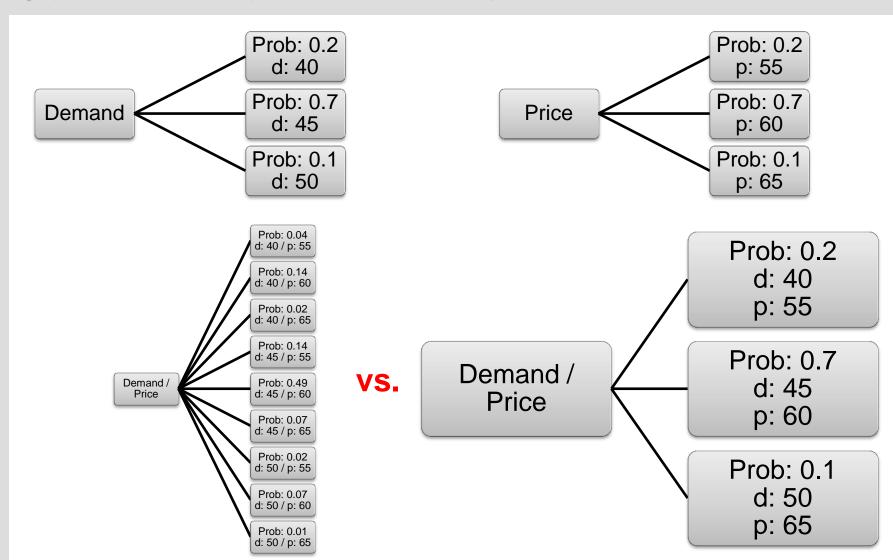
Normal Distribution

Exponential Distribution

Random Variables (RV) [randVar]

Defines both discrete and parametric random variables:

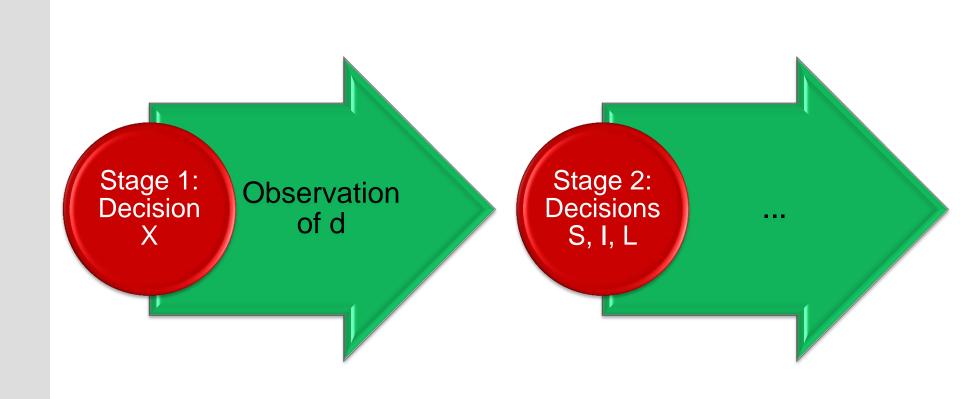
```
randVar rv discrete prob val {prob val}
```


 The distribution of discrete random variables is defined by pairs of the probability prob of an outcome and the corresponding realization val

```
randVar rv distr par {par}
```

 The name of the parametric distribution is defined by distr, par defines a parameter of the distribution

Joint Random Variables


Joint RVs [jRandVar]

Defines discrete random variables and their joint distribution:

- At least two discrete random variables rv are defined and the outcome of those is coupled
- The probability of the outcomes is defined by prob and the corresponding realization for each random variable by val

Stages

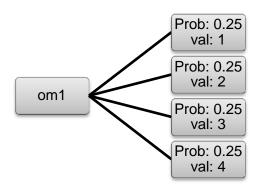
Stages [stage]

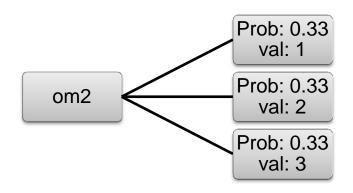
 Defines the stage of random variables (rv), equations (equ) and variables (var):

```
stage stageNo rv | equ | var {rv | equ | var}
```

- StageNo defines the stage number
- The default StageNo for the objective variable and objective equation is the highest stage mentioned
- The default StageNo for all the other random variables, equations and variables not mentioned is 1

Chance Constraints


```
OBJ.. Z =e= X1 + X2;


E1.. om1*X1 + X2 =g= 7;

E2.. om2*X1 + 3*X2 =g= 12;

Model sc / all /;

solve sc min z use lp;
```


chance E1 0.6 chance E2 0.6

Chance Constraints

Chance Constraints [chance]

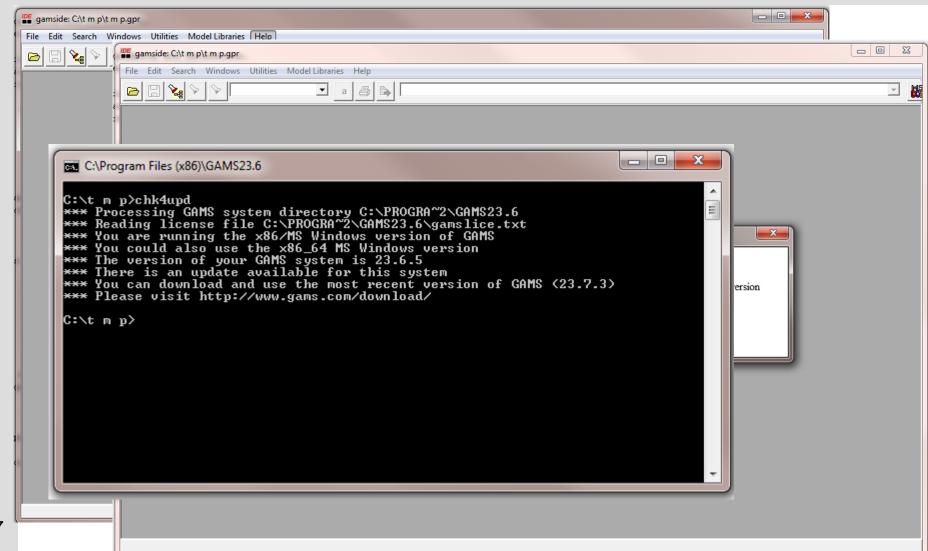
Defines individual or joint chance constraints (CC):

```
chance equ {equ} [holds] minRatio [weight|varName]
```

- Individual CC: A single constraint equ has to hold for a certain ratio (0 ≤ minRatio ≤ 1) of the possible outcomes
- Joint CC: A set of constraints equ has to hold for a certain ratio (0 ≤ minRatio ≤ 1) of the possible outcomes
- If weight is defined, the violation of a CC gets penalized in the objective (weight violationRatio)
- If varName is defined the violation get multiplied by this existing variable

Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
- Features you might not know about
 - Syntax
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
 - Other Tools



Matrix Utilities

- INVERT
 - Calculates the inverse of a matrix
- CHOLESKY
 - Computes the Cholesky factors of a symmetric positive-definite matrix
- EIGENVALUE
 - Computes the eigenvalues of a symmetric matrix
- EIGENVECTOR
 - Computes the eigenvalues and eigenvectors of a symmetric matrix

Check for GAMS Updates

