

INTERNATIONAL CONFERENCE ON

SEPTEMBER 2-5, 2014

Design Principles that Make the Difference

Franz Nelissen: FNelissen@gams.com

Roots: World Bank, 1976

GAMS Development Corporation (Washington)

Tool Provider: **G**eneral **A**lgebraic Modeling System

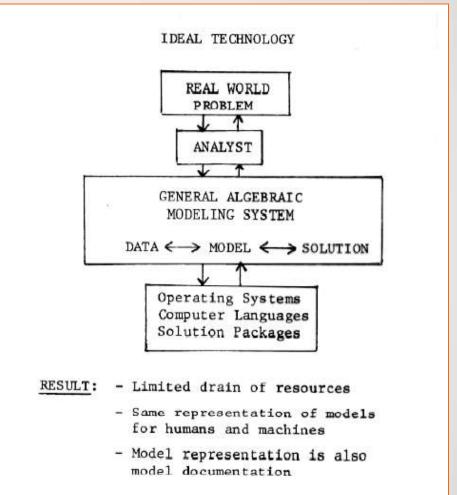
Went commercial in 1987

GAMS Software GmbH (Cologne, Braunschweig) 1996

Agenda

Algebraic Modeling Languages – A Success Story

GAMS – Highlights and Design Principles


Model Deployment

1976 - A World Bank Slide

Algebraic Modeling Languages (AML)

- 1
- High-level computer programming languages
 - Formulation of mathematical optimization problems
 - Notation similar to algebraic notation

2


• **Do not solve problems directly**, but offer links to state-of-the-art algorithms ("solver-links")

Impact of Algebraic Modeling Languages

Important vehicle to make mathematical optimization available to a broader audience

2012 INFORMS Impact Prize

36 Years later

Originators of Algebraic Modeling Languages

Agenda

Algebraic Modeling Languages – A Success Story

GAMS – Highlights and Design Principles

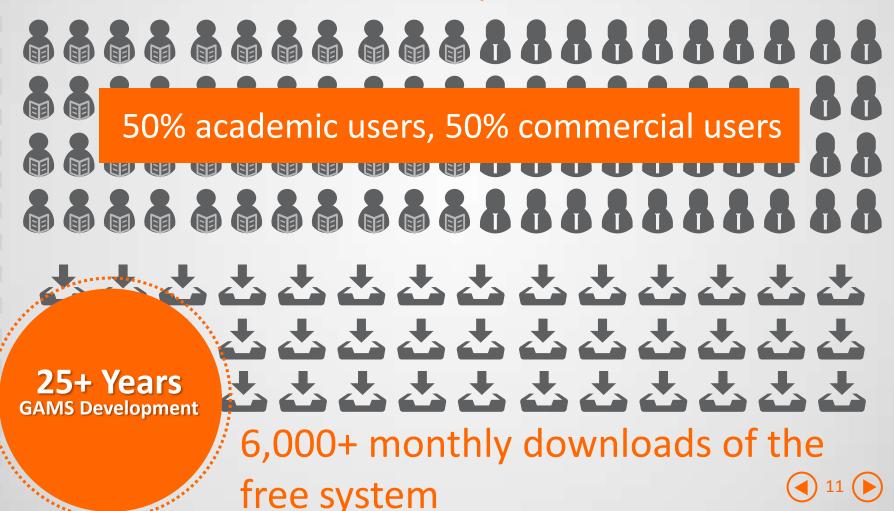
Model Deployment

What does he have to think about?

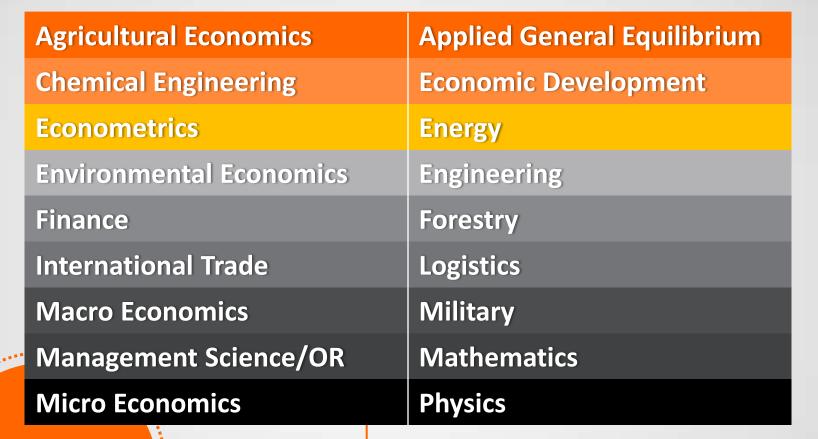
- 1. Problem
- 2. Mathematics
- 3. Programming
- 4. Performance
- 5. Scalability
- 6. Connectivity
- 7. Deployment
- 8. Maintenance (Life Cycle)
- 9. ...

> Why use an AML like GAMS?

GAMS used in more than 120 countries


25+ Years
GAMS Development

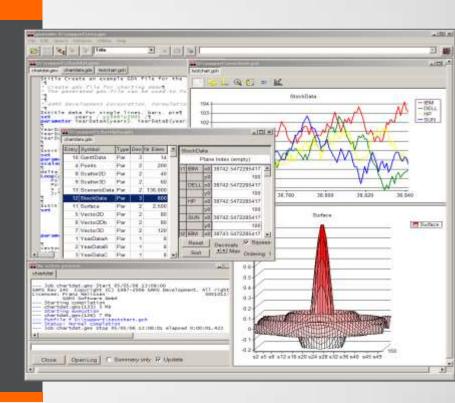
Broad User Community and Network



More than 10,000 licenses

Broad Range of Application Areas

25+ Years
GAMS Development



Strong Development Environment

GAMS IDE

- Project management
- Editor / Syntax coloring / Spell checks
- Listing file / Tree view / Syntax-error navigation
- Model Debugging / Profiling
- Solver selection / Option selection
- Data viewer
 - Export
 - Charting
- GAMS Process Control
- Model Libraries -1250 Models included

→ Everything for rapid model development

Design Principles

• Simple modeling language with a balanced mix of declarative and procedural elements

Open architecture and interfaces to other systems

• Independent layers

Simple Declarative Language

- Language similar to mathematical notation
- Few basic language elements: sets, parameters, variables, equations, models -> Easy to learn
 - Lot's of code optimization under the hood

Example

```
C:\Users\Franz\Documents\gamsdir\projdir\trnsport.gms
                                                                                   data.inc trnsport.gms trnsport.lst
              canning plants
   Parameters a(i)
                      capacity of plant i in cases
                      demand at market j in cases
               d(i,j) distance in thousands of miles
                      freight in dollars per case per thousand miles
               c(i,j) transport cost in thousands of dollars per case ;
   Variables x(i,j) shipment quantities in cases
                       total transportation costs in thousands of dollars ;
   Positive Variable x ;
   Equations cost
                          define objective function
              supply(i) observe supply limit at plant i
                          satisfy demand at market j ;
                  z = e = sum((i,j), c(i,j)*x(i,j));
   supply(i) .. sum(j, x(i,j)) = l = a(i);
   demand(j) .. sum(i, x(i,j)) = q = b(j);
   Model transport /all/;
```


Mix of Declarative and Procedural Elements

Procedural elements like loops, for, if, macros and functions

Allow to build complex problem algorithms within GAMS

Interaction with other systems:

- Job control
- Data exchange

Combine models inside the language

Independence of Model and Operating System

Platforms supported by GAMS:

Models can be moved between platforms with ease!

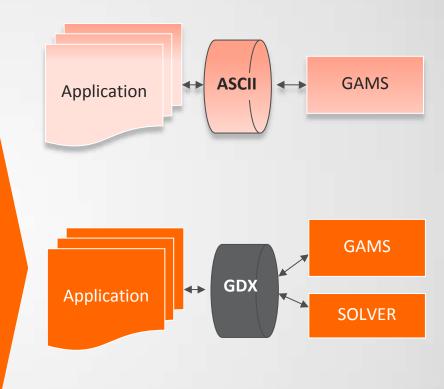
Independence of Model and Solver

One environment for a wide range of model types and solvers

All major commercial LP/MIP solver

Open Source Solver (COIN)

Also solver for NLP, MINLP, global, and stochastic optimization


Switching between solvers with one line of code!

Independence of Model and Data

- Declarative Modeling: x(j), $j \in \{1,...\}$
 - ASCII: Initial model development
 - GDX: Binary Data layer ("contract") between GAMS and applications
 - Platform independent
 - Direct GDX interfaces and general API

Independence of Model and User Interface

1

Open architecture and interfaces to other systems
 → No preference for a particular user interface

2

- Application Programming Interfaces
 - Low Level
 - Object Oriented: .Net, Java, Python, ...

3

- Smart Links to popular environments
 - Excel, MATLAB, R, ...

Agenda

Algebraic Modeling Languages – A Success Story

GAMS – Highlights and Design Principles

Model Deployment

Is Optimization special?

Observation:

Optimization models

- are expensive to develop
- may have long a lifespan

Modeling Systems & Applications have to be adjusted

- New computer paradigms
- New solver technology and solution methods
- New graphical user interfaces and deployment environments

P Assisted	2111 75	
EJMBEA,X	4,784	-1,00000
X, ASSHE 1		0,98400
	0	0,13500
X.ABGHC 1	**************************************	1.00000
X.ASGHC 3	8,45,463	-1.00000
X,485H23	A.THA	0,20000
I,ASSHAS	D SHAR	
E,ASSMAN		1,00000
I ASSHAB	A. TRE AS	-1.00000
1,455H91		6,98400
E. 455H51	0	0,15000
1,A85H81	B. 45. 51	1,00000
1,455451	A.THA	-1,00000
1,455MCN	B SHC4	
A.ASSMCH	8,45,.C4	1,00000
X.ASGHCN	4,784	-1,00000
I JENSA, K	0	4,48400
X.ASKECT	RMSC1	0,26000
*,ASKSCI		1,00000
1,484851	4,194	-1,00000
X, ABKSCZ	0,,,45,4	0,31000
X.45K5C2	88502	1,00000
\$38X8E2	9,45,.02	-1,00000
ASKSCZ	A, THA	
1.48X5C1		0,55500
F,45K8C3	D MS.W	1,00000
1,450503	8 44 63	-1,00000
E, # SK5C S	8,45,.C3 4,784	7,56000
F, 45K549	D 55.W	0,20000
1,458540	F 5345	1,00000
F. ASKSAS	8,45,.45	-1,00000
£45×545	1,781	7,54000
E.A5K351	0,.,48,0	0,15000
C. #3H331	44351	1,00000
. 49K531	8,45,431	-1,00000
C. 45K551	A.THA	7,50000
	F 35 N	1,00000
*. 45×5¢N	B,43.,69	*1,00000
11-0-054		*1.00000

Computation

Users:

→ Left out

Model

Users:

→ Involved

Application

Users:

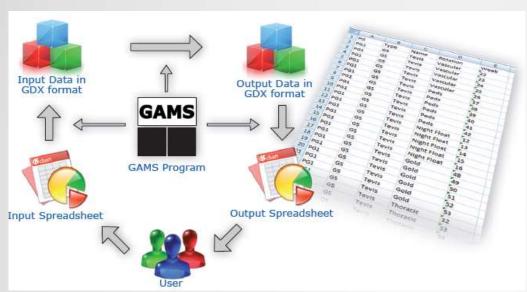
→Not aware of model

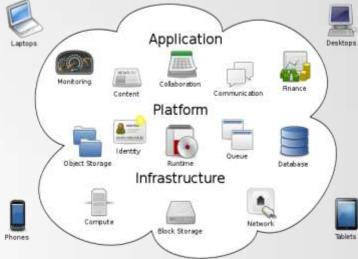
Change in Focus: Now

```
CAlbert franch Discurrents gamed (graph expressing gree
  posq(kml) = 0: iter=0: infeas=0: start=jnow:
     rhs(kml) = sms(grid(kml,g)5(numg(g)=posg(kml)), gridrhs(kml,g));
     solve mod epamethod maximizing a objival using mip:
     if mod epsmethod.modelstatc>4ModelStat.Optimal4 and
         mod epsmethod.modelstatc>%ModelStat.Integer Solution%,
       infeaswinfeasels // not optimal is in this case infeasible
       put iteritio, ' infeasible' /:
       lastZero = 0; loop(km15(posg(km1))=0 and lastZero=0), lastZero=nusk(km1));
      posq(kml)$(mank(kml)cvlastlero) = manq(kml); // skip all salves for more desanding values a
      put spep:S:0:
       loop (k, put s.1(k):13:2);
       turns (lead) +1.
       find the first off may ruby function that hasn't reach the final grid print
       If this sty. Fur is a then excipe your for the L., 4-th objective functions
       The time is calculated for the innerment objective function (April)
       jump (Rm1) 4 (mank (Rm1) +1) +1 + floor (a1.1 (Rm1) / atep (Rm1) ) ;
       loop (exif()ump(Nexi()); put ' jump');
       put /:
     Proceed forward in the grad
     firstOffites = 0:
     loop (kml@ |poeg (kml) cmssg (kml) and firstOffMax=0).
        poeq(kmi)=min((poeq(kmi)+)ump(kmi)), maxq(kmi)); firstOffMax=numk(kmi));
     posp(kmi) & (nunk(kmi) <firstOffHax) = 0;
   motil som (kmil (posq (kmi) -mang (kmi)), i) - card (kmi) and firstOffNax-0)
   finish*jnow; elepsed time*(finish-start)*60*60*24;
```


Computation
Users:
→ Left out

Model
Users:
→ Involved


ApplicationUsers:
→Not aware of model



Change in Focus: Now / Future

Cloud Computing

Computation

Users:

→ Left out

Model

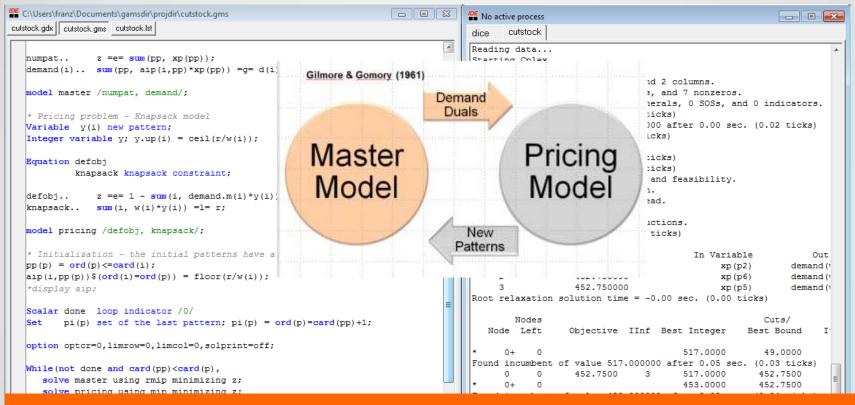
Users:

→ Involved

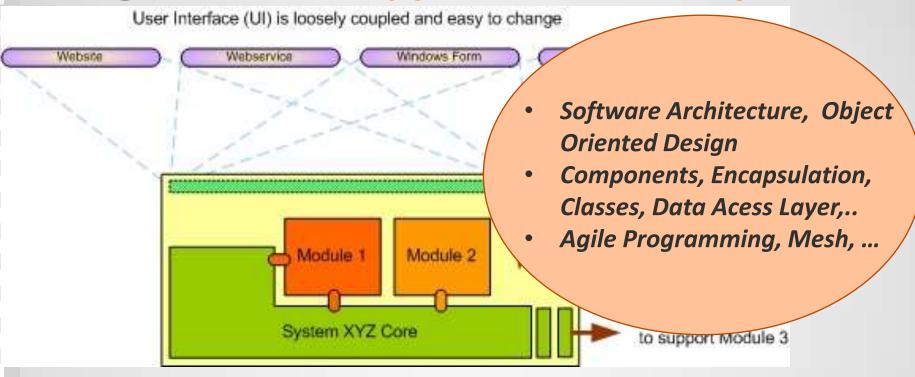
Application

Users:

→Not aware of model



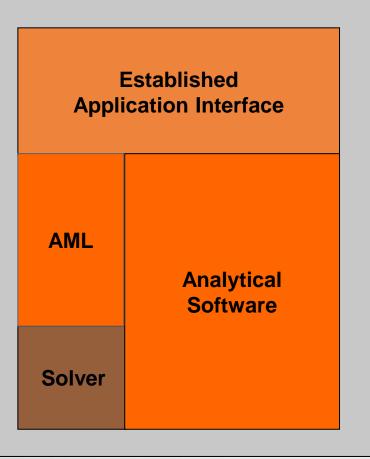
Change in Focus: Modeler...

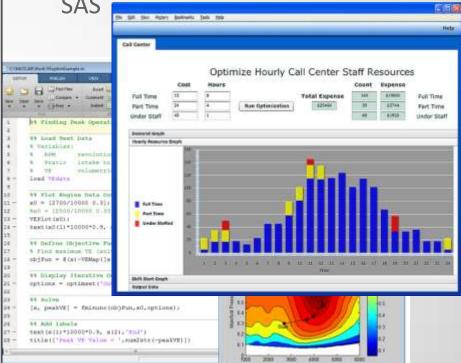


Small Community: 2010 ~ 64,000 OR Analytic Professionals in the US

Change in Focus: Application Developer

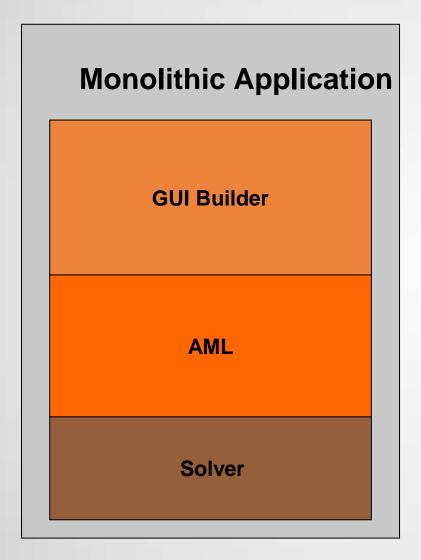
- Huge Community: 2006 ~ 3.3 Mill. IT Professionals in the US (2006)
- Rapidly changing IT environments

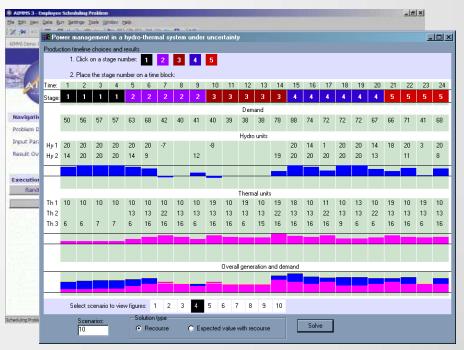




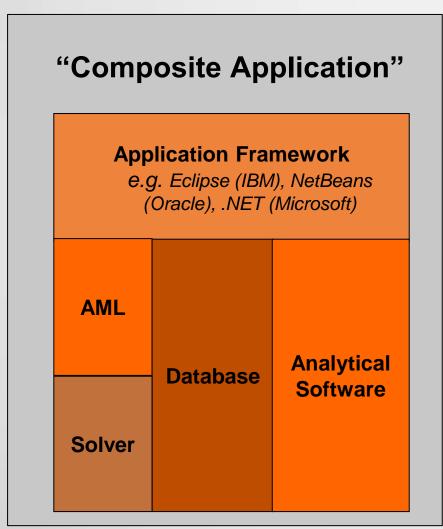
Monolithic Application

Add "AML" to existing analytical software system

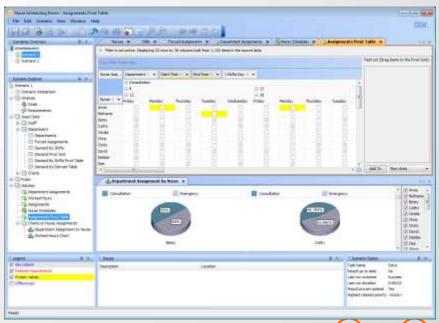

 "large" user base, e.g. MATLAB, or SAS



Example – All in One – Bottom Up

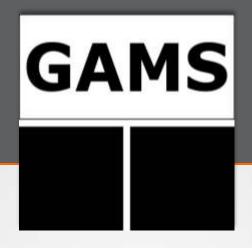


- Integrate GUI-builder into AML
- "small" user base, e.g. AIMMS (Pro) or FICO Xpress-Insight



- "Construction Kit" with different connected elements
- Use (open source) existing framework to build applications, e.g. IBM ODME

Summary



Design Principles

- Simple, but powerful language
- Open interfaces
- Different layers

Model Deployment

- Is optimization special?
- Provide cutting edge technology
- Don't lock developers and users into a certain environment

Thank You

USA

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007

USA

Phone: +1 202 342 0180

+1 202 342 0181 Fax:

sales@gams.com

Europe

GAMS Software GmbH

P.O. Box 40 59

50216 Frechen, Germany

Phone: +49 221 949 9170

Fax: +49 221 949 9171

info@gams.de