

GAMS

Solving Scenarios in the Cloud

Franz Nelißen – FNelissen@gams.com

GAMS - History

- Roots: World Bank, 1976
- Alex Meeraus founded GAMS Development Corp. (USA) in 1987 and GAMS Software GmbH (Germany) in 1995
- New management team in 2016

GAMS - Product

General Algebraic Modeling System

- Pioneered Algebraic Modeling Languages: Model is executable algebraic description of optimization problem
 - Made mathematical optimization available to broader audience (domain experts)
 - Increased productivity tremendously
 - 2012 INFORMS Impact Prize
- Evolution through more than 25 years of R&D and user feedback
- Maturity through experience and rigorous testing

Agenda

GAMS – Basic Concepts

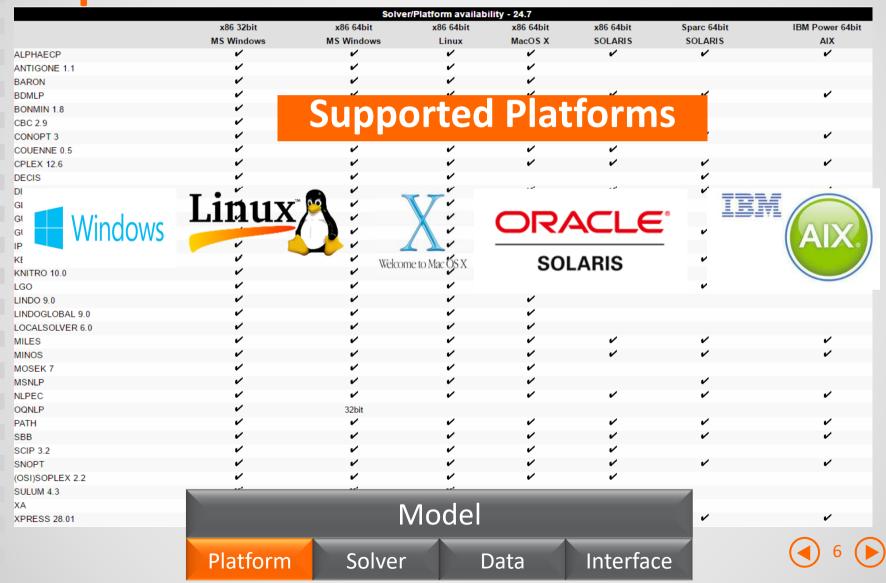
Application: Solving Scenarios in the Cloud

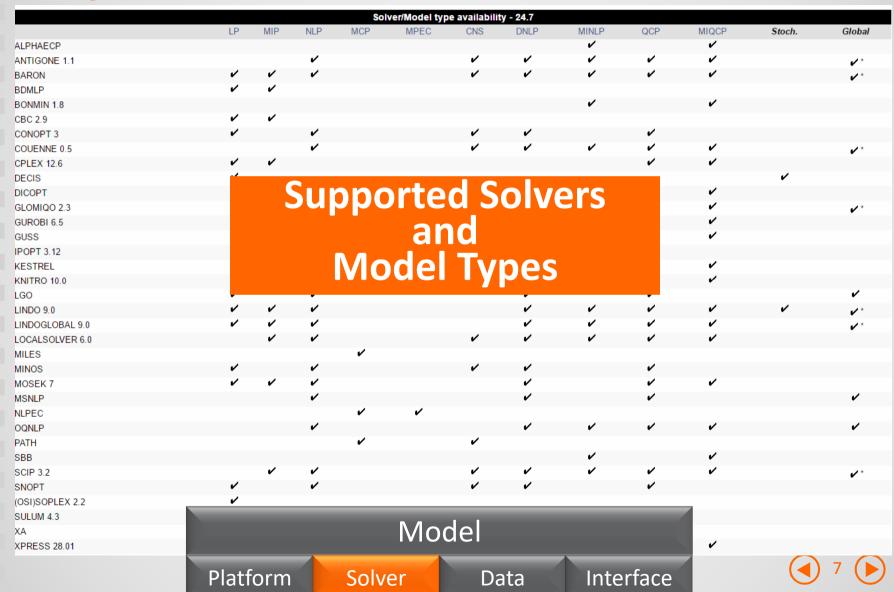
GAMS at a Glance

Powerful algebraic modeling language with open architecture and uniform interface to all major commercial and academic solvers (30+ integrated)

Robust, scalable state-of-the-art modeling technology for complex, large-scale modeling applications

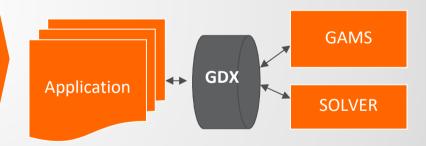
Different layers





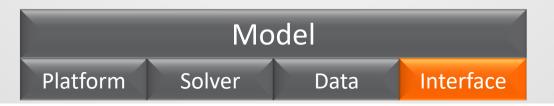
Separation of Model and Platform

Separation of Model and Solver



Separation of Model and Data

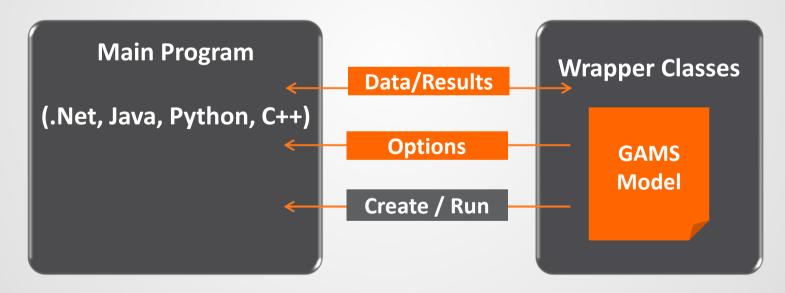
- Declarative Modeling: x(j), $j \in \{1,...\}$
 - ASCII: Initial model development
 - GDX: Binary Data layer ("contract") between GAMS and applications
 - Platform independent
 - Direct GDX interfaces and general API



Separation of Model and User Interface

- Open architecture and interfaces to other systems
 - → No preference for a particular user interface

- Smart Links to popular environments: Excel, MATLAB, R, ...
- Object Oriented Application Programming Interfaces
 - .Net, Java, Python, C++,...
 - Wrapper classes that encapsulates a GAMS model
 - No modeling capability: Model is written in GAMS



Encapsulation of a GAMS Model

Simple Interface to interact with GAMS

- Classes to communicate input data and results
- Classes to change options like the solver to use
- Classes to create and run model instance(s)

Agenda

GAMS – Basic Concepts

Application: Solving Scenarios in the Cloud

Solving "many" independent Scenarios

Small Ratio of MP solution time/GAMS overhead
 → GUSS/Scenario Solver

Simple Serial Solve Loop - Basics

Both declarative and imperative Elements

```
Set s /s*s10/;
                                                      Loop
Parameter
 A_s(s,i,j) "scenario data",
 xlo_s(s,i,j) "scenario lower bound for x.1",
                                                     Generation
 em_s(s,i) "scenario solution for e.m;
Loop(s,
                                                     Solution
     A(i,j) = A_s(s,i,j);
     x.lo(j)=xlo_s(s,j);
                                                      Update
     solver mymodel min z using lp;
     xl_s(s,j) = x.l(j);
     em_s(s,i) = e.m(i);
    );
```


Simple Solve Loop - Performance

Different options to call the solver from GAMS

 trnsport.gms (LP) solved 500 times (CPLEX) Loop **Setting** Solve time (secs) Generation Solvelink=%Solvelink.ChainScript% 52.221 Solution **Update** Solvelink=%Solvelink.CallModule% 37.366 Solvelink=%Solvelink.LoadLibrary% 03.252

Generation

Solution

Scenario Solver - Basics

- Generates model once and updates the algebraic model keeping the model "hot" inside the solver
- Platform independent, works with all solvers
- Performance close to native solver API

```
Set s /s*s10/;

Parameter

A_s(s,i,j) "scenario data",

xlo_s(s,i,j) "scenario lower bound for x.1",

em_s(s,i) "scenario solution for e.m;

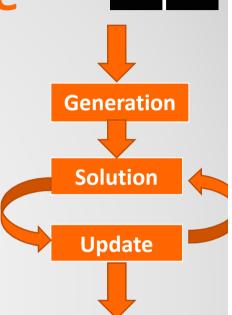
Set dict / s. scenario. ´´,

A. param. A_s,

x. lower. xlo_s,

x. level. xl_s,

e. marginal. em_s /;

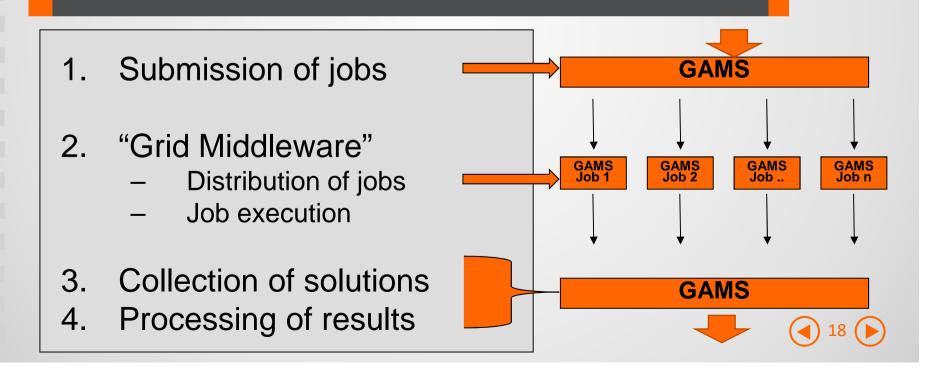

solve mymodel min z using lp scenario dict;
```


Scenario Solver - Performance

Stochastic model: 66,320 (linear) instances

Setting	Solve time
	(secs)
Loop: Solvelink=%Solvelink.Chainscript	7,204
(def.)	
Loop: Solvelink=%Solvelink.LoadLibrary%	2,481
GAMS Scenario Solver	392
CPLEX Concert Technology	210

Solving "many" independent Scenarios


- Small Ratio of MP solution time/GAMS overhead
 → GUSS/Scenario Solver
- 2. Large ratio i.e. only MP time is relevant (pre/post processing not critical)
 - → Grid Facility, NEOS, Gurobi/Cplex Server

Grid Computing Facility

- Scalable: supports large grids, but also works on local machine
- Platform independent, works with all solvers/model types
- > Only minor changes to model required

GAMS/Kestrel

- Remote Solver Execution on NEOS Servers
- > Stay in your GAMS environment
- Results are being processed as with any local solver

Local Machine

Model transport /all/; Option lp=kestrel; transport.optfile=1; \$onecho > kestrel.opt kestrel_solver xpress \$offecho Solve transport using lp minimizing z;

Remote Cluster (NEOS)

Solving "many" independent Scenarios

- Small Ratio of MP solution time/GAMS overhead
 → GUSS/Scenario Solver
- 2. Large ratio i.e. only MP time is relevant (pre/post processing not critical)
 - → Grid Facility, NEOS, Gurobi/Cplex Server
- 3. If entire model run including pre processing/MP solve/post processing is costly
 - → Parallel/asynchronous execution of entire model in the cloud

Application – Cloud Computing

xyz Energy Company

Challenge

 Scenario Analysis: Solve 1,000+ scenarios (MIPs, one hour) every week overnight

Issues:

- Automation
- Security
- Licensing

Application – Cloud Computing

xyz – Energy Company

Implementation:

- Amazon Cloud: 1,000+ parallel machines
 (instances), Python, GAMS + OO Python API
- Automated setup, including
 - Starting instances
 - Prepare / Submit / Run GAMS jobs
 - Collect results
 - Stop instances

Application – Cloud Computing Protecting IP and Sensitive Data

Options to hide sensitive information:

- Extrinsic function libraries / External Equations
- Encrypted source files / secure work files
- Obfuscated work files: change all the names and other documentation related to a specific model run

Application – Cloud Computing

Obfuscated Files – An Example

Normal Solver Log

```
Reduced LP has 5 rows, 6 columns, and 12 nonzeros.
Presolve time = 0.00 sec. (0.00 ticks)
              Dual Objective
Iteration
                                        In Variable
                                                              Out Variable
                   73.125000
                                x(seattle.new-york) demand(new-york) slack
                  119.025000
                                 x(seattle.chicago) demand(chicago) slack
                  153.675000
                                x(san-diego.topeka) demand(topeka) slack
                  153.675000 x(san-diego.new-york) supply(seattle) slack
LP status(1): optimal
```

Obfuscated Solver Log

```
Reduced LP has 5 rows, 6 columns, and 12 nonzeros.
Presolve time = 0.00 sec. (0.00 ticks)
                                       In Variable
              Dual Objective
Iteration
                                                              Out Variable
                   73.125000H('"!!!!!!'.'"!!!!!!')A00002('"!!!!!!!' slack
                  119.025000 H('"!!!!!!'.'#!!!!!!')A00002('#!!!!!!') slack
                  153.675000H('"!!!!!!!'.'"!!!!!') A00002('"!!!!!!') slack
                  153.675000H('"!!!!!!!'.'"!!!!!!A00001('"!!!!!!') slack
LP status(1): optimal
```


Application – Cloud Computing

Obfuscated Files – An Example

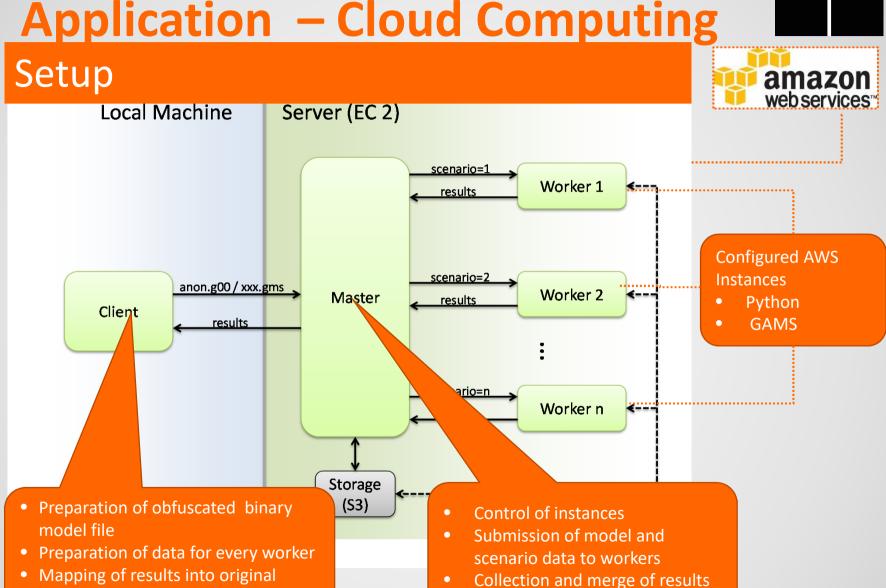
12	demand	Equ	1	3
6	f	Par	0	1
1	i	Set	1	2
2	j	Set	1	3
11	supply	Equ	1	2
8	x	Var	2	6
9	z	Var	0	1

		Level	Marginal
seattle	new-york	50	
	chicago	300	
	topeka		0.036
san-diego	new-york	275	
	chicago		0.00900000000000001
	topeka	275	

Obfuscated gdx file

3	С	Par	1	2
4	D	Par	1	3
5	E	Par	2	6
6	F	Par	0	1
7	G	Par	2	6
8	Н	Var	2	6
9	I	Var	0	1

		Level	Marginal	
"!!!!!!	"!!!!!!!	50		
	#!!!!!!	300		1
	"!!!!!		0.036	1
"!!!!!!!!		275		1
	#!!!!!!!		0.00900000000000001	1
	"!!!!!	275		



namespace

Application – Cloud Computing

Application – Cloud Computing

Commercial Aspects

"Hardware" Amazon Cloud (1,000 instances):
Hardware Costs / run: **\$70!**(1,000 instances/run * \$0.07 instance / hour)

Software Licensing:

- Gurobi and IBM offer per-usage license
- Client with strong preference for annual license fee, not a per-usage license

Application – Cloud Computing

45 Provided Model Instances

- Statistics:
 - 163,608 1,959,550 rows
 - 84,930 983,587 var. (32,240-258,796 dis.)
 - 447,537 6,068,729 NZ
- CPLEX, SCIP, and CBC
- 60 minutes, gap max. 1%
- Manual option tuning for SCIP (thanks to Gerald Gamrath & Ambros Gleisner)

Application – Cloud Computing

Results

- CPLEX: All instances solved to optimality
- SCIP:
 - Could solve all 45 instances
 - But: After 60 min. 2 instances with gap > 20%
- CBC:
 - Did also well
 - But: After 60 min. no solution for some instances (< 10%)

Application – Cloud Computing

Proposed Strategy

- Run all instances simultanuesly with SCIP and CBC
 - → "hardware" costs: \$0,07 per instance hour
- After 60 minutes take the best solution
- If necessary solve "difficult" instances with CPLEX (outside the cloud)

Thank You

Europe

GAMS Software GmbH P.O. Box 40 59

50216 Frechen, Germany

Phone: +49 221 949 9170 +49 221 949 9171

info@gams.de

USA

GAMS Development Corp.

1217 Potomac Street, NW

Washington, DC 20007, USA

Phone: +1 202 342 0180

Fax: +1 202 342 0181

sales@gams.com