

An Introduction

Frederik Fiand & Tim Johannessen GAMS Software GmbH

GAMS Development Corp. GAMS Software GmbH www.gams.com

Agenda

GAMS at a Glance

GAMS - Hands On Examples

APIs - Application Programming Interfaces to GAMS

Outlook - Some Advanced GAMS Features

GAMS

Company

- Roots: World Bank, 1976
 - Went commercial in 1987

Locations

- GAMS Development Corporation (Washington)
- GAMS Software GmbH (Germany)

Product: The General Algebraic Modeling System

What did this give us?

Simplified model development & maintenance

Increased productivity tremendously

Made mathematical optimization available to a broader audience (domain experts)

2012 INFORMS Impact Prize

Broad User Community and Network

GAMS

11,500+ licenses

Users: 50% academic, 50% commercial

GAMS used in more than 120 countries

Uniform interface to more than 30 solvers

Broad Range of Application Areas

Agricultural Economics	Applied General Equilibrium
Chemical Engineering	Economic Development
Econometrics	Energy
Environmental Economics	Engineering
Finance	Forestry
International Trade	Logistics
Macro Economics	Military
Management Science/OR	Mathematics
Micro Economics	Physics

25+ Years GAMS Development

Foundation of GAMS

Open architecture and interfaces to other systems, independent layers

Powerful Declarative Language

Similar to mathematical notation

Easy to learn - few basic language elements: sets, parameters, variables, equations, models

Model is executable (algebraic) description of the problem

Mix of Declarative and Imperative Elements

Control Flow Statements (e.g. loops, for, if,...), macros and functions

Advantages:

- Build complex problem algorithms within GAMS
- Simplified interaction with other systems:
 - Data exchange
 - GAMS process control

Strong Development Environment

File Edit Sear	ch Windows Utilities	Help											
0 8 8	g 📎 📎 Title			• a	10	3							
	\chartdat.oms	_	_			_	IDE DUAL	oport\to	etchast och				_
chartdat.gms	chartdata.gdx testchar	t.gch					testchart	ach	stenaregen				
Stitle	Create an examp	ale G	DX F	ile for	th	1e				N.Ø.			
Crea	te gdx file for	char	ting	demo¶				84 - 22	⊕ ⊟ 30	<u>ES</u>			
The generated gdx file can be used to fo StockData													
GAMS Development Corporation, Formulatio. 104													
Sstitl	Stille data for single lines, bars, piel 103												
paramet	ter YearDataA(ye	ears)	Ye	ar Dat aB	(ye	ear	102			/	<u>∖/\</u> ∿	\checkmark	<u>, </u>
YearDi	D:\support\chartd	ata.od	<					1	_ [0] ×	a /	\mathcal{M}		
YearDi	chartdata.gdx		_								XXX	M	
	Entry Symbol	Type	Dim	Nr Elem		5	StockData			1 dril	VALUE .	<u>v v</u>	<u> </u>
set	10 GanttData	Par	3	14		Ľ	Plar	e Index	(empty)		V V \/V		Δ
scala	4 Points	Par	2	200		h		29742	6470095447	W 1	v	5.191	V Č
delta Loop(r	8 Scatter2D	Par	2	40		H		50742.0	100				. N
Po	9 Scatter3D	Par	2	60		H	DELL X0	38742.5	5472285417			v 1	N
Š.:	13 ScenarioData	Par	2	136,000		F	v0		100	29 790	28 800	V	20 (
1	12 StockData	Par	3	800		F	HP x0	38742.	5472285417	30,700	38,800	36,620	30,0
Sstit set	11 Surface	Par	2	2,500		F	y0		100				
	5 Vector2D	Par	2	80			SUN x0	38742.5	5472285417		Surface		ļ
	6 Vector2Db	Par	2	120			y0		100	L			_
param	1 YearDataA	Par	2	120		t2	2 IBM ×0	38743.5	5472285417 👻				_
1	2 YearDataR	Par	1	8			Reset	Decim	als 🔽 Squeez		<u>AN</u>		
Vector	3 YearDataC	Par	1	8	-		Sort	I	Max Ordering: 1				_
IDE		1			-			1.1.2		·			-
chartdat	process	_							0.6-				-
					_	_			0.5		M		- 1
GAMS Rev 1	artdat.gms Start (45 Copyright (C)	05/05/ 1987-	2006	3:08:00 GAMS De	vel	opr	ment. All	right	0.4		_///N\\\		-
Licensee: Franz Nelissen S051012/ GAMS Software GmbH					51012/	0.3				_			
Starting compilation chartdat.gms(133) 3 Mb						0.2							
Starting execution chartdat.gms(126) 7 Mb				0.1	STATISTICS OF THE STATE		A CONTRACT	8					
*** Status	: Normal completion	on	c. 90	.08.01 .			4 0.00.01	433		机机用并在		TITULA	g .
1	ar caacigins scop o.	5,05,0	1							STATE OF STATES		HUMBER	_
									-0.1	W			-
1									-0.2		ered There we		150
Close	Open Log 🗖 🗄	Summ	ary o	nly 🔽 U	pda	ate			s2 s5 s	8 s12 s16 s20) s24 s28 s32 s36	s40 s45 s49	
•													

GAMS IDE

- Project management
 Editor / Syntax coloring / Spell checks
 Tree view / Syntax-error navigation
 Model Debugging & Profiling
 Solver selection & setup
 Data viewer

 Export
 Charting
- GAMS Processes Control

GAMS

Independence of Model and Operating System

Platforms supported by GAMS:

Models can be moved between platforms with ease!

Independence of Model and Solver

One environment for a wide range of model types and solvers

Switching between solvers with one line of code!

Independence of Model and Data

- Declarative Modeling
- ASCII: Initial model development
- GDX: Data layer ("contract") between GAMS and applications
 - Platform independent
 - No license required
 - Direct GDX interfaces and general API

Independence of Model and User Interface

API's

- Low Level
- **Object Oriented**: .Net, Java, Python
- No modeling capability: Model is written in GAMS
- Wrapper class that encapsulates a GAMS model

Smart Links to other Applications

- User keeps working in his productive tool environment
- Application accesses all optimization capabilities of GAMS through API

GAMS

Visualization and analysis of model data and results in the application

Smart Links to other Applications

- User keeps working in his productive tool environment
- Application accesses all optimization capabilities of GAMS through API

GAMS

Visualization and analysis of model data and results in the application

GAMS

Smart Links to other Applications

- User keeps working in his productive tool environment
- Application accesses all optimization capabilities of GAMS through API
- Visualization and analysis of model data and results in the application

Striving for Innovation and Compatibility

Models must benefit from:

Advancing hardware / New Platforms

Enhanced / new solver and solution technology

Improved / upcoming interfaces to other systems

New Modeling Concepts

Life time of a model: 15+ years

New maintainer, platform, solver, user interface

Backward Compatibility

Software Quality Assurance

Free Model Libraries

Why GAMS?

- Experience of 25+ years
- Broad user community from different areas
- Lots of model templates
- Strong development interface
- Consistent implemenation of design principles
 - Simple, but powerful modeling language
 - Independent layers
 - Open architecture: Designed to interact with other applications
- Open for new developments
- Protecting investments of users

GAMS at a Glance

GAMS - Hands On Examples

APIs - Application Programming Interfaces to GAMS

Outlook - Some Advanced GAMS Features

A Simple Transportation Problem

Model types in this example

Determine minimum transportation cost.
 Result: city to city shipment volumes.

Allows discrete decisions,
 e.g. if we ship, then we ship at least 100 cases.

 Allows non-linearity,
 e.g. a smooth decrease in unit cost when shipping volumes grows

 Allows uncertainty, e.g. uncertain demand

Markets (demand)

A Simple Transportation Problem

shipments

(Number of cases)

Minimize subject to

Transportation cost Demand satisfaction at markets Supply constraints GAMS

26 (

Mathematical Model Formulation

(Canning plants)

- j(Markets) x_{ij} (Number of cases to ship) c_{ij} (Transport cost per case) a_i (Capacity in cases)
- *b_i* (Demand in cases)

min $\sum_i \sum_j c_{ij} \cdot x_{ij}$ (Minimize total transportation cost) subject to

- $\begin{array}{ll} \sum_{j} x_{ij} \leq a_{i} & \forall \ i \ \ (\text{Shipments from each plant} \leq \text{supply capacity}) \\ \sum_{i} x_{ij} \geq b_{j} & \forall \ j \ \ (\text{Shipments to each market} \geq \text{demand}) \end{array}$
- $x_{ij} \ge 0$ $\forall i, j \text{ (Do not ship from market to plant)}$ $i, j \in \mathbb{N}$

GAMS

GAMS Syntax (LP Model)

📲 gamside: C:\Users\ToniLapTop\Documents\gamsdir\projdir\Transport\tmp.gpr - [C:\Users\ToniLapTop\	- • ×
File Edit Search Windows Utilities Model Libraries Help	_ & ×
[26] Same and Same	- M
trnsport_LP_MIP_MINLP.gms	
	<u>^</u>
Variables	
x(i,j) shipment quantities in cases	
z total transportation costs in thousands of dollars	;
Positive Variable x ;	
Equations	E
cost define objective function	
supply(i) observe supply limit at plant i	
demand(i) satisfy demand at market i :	
cost z =e= sum((i,j), c(i,j)*x(i,j));	
supply(i) $sum(i, x(i, j)) = l = a(i)$:	
demand(j) $sum(i, x(i, j)) = g = b(j);$	
Model modellr /cost, supply, demand/;	
Solve modelLP using 1p minimizing z ;	
	· ·
1:1 Insert	

GAMS

GAMS Syntax (LP Model)

gamside: C:\Users\ToniLapTop	o\Documents\gamsdir\projdir\Transport\tmp.gpr - [C:\Users\ToniLapTop\ 🕒 🛽	
File Edit Search Windo	ws Utilities Model Libraries Help	- 8 ×
🖻 🗒 🗞 💊 🙀 P4	(a) 🚳 🕒	- 👪
trnsport_LP_MIP_MINLP.gms		
		^
Variables		
x(i,j)	shipment quantities in cases	
z	total transportation costs in thousands of dollars ;	
Positive Variable	x ;	
Equations		
cost	define objective function	
supply(i)	observe supply limit at plant i	
demand(j)	satisfy demand at market j ;	
cost	<pre>z =e= sum((i,j), c(i,j)*x(i,j));</pre>	
supply(i)	sum(j, x(i,j)) = l = a(i);	
demand(j)	<pre>sum(i, x(i,j)) =g= b(j);</pre>	
Model modelLP /	cost, supply, demand/ ;	
Solve modelLP usi	ng lp minimizing z ;	
		-
• III		P.
1: 1	Insert	

Hands-On ²⁹ ²⁹

GAMS

GAMS Syntax (Data Input)

gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Pre File Edit Search Windows Utilities Model Libraries Help	conference Workshop\demo\or16.gpr p
🔁 🗒 🍾 🍾 optfile 🔽 (a) 🚝) 🕞
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfere	nce Workshop\demo\data.gms
Sets i canning plants / seattle, s j markets / new-york, Parameters	san-diego / chicago, topeka / ;
<pre>a(i) capacity of plant i in case / seattle 350 san-diego 600 / b(j) demand at market j in cases / new-york 325 chicago 300 topeka 275 /;</pre>	•••
Table d(i,j) distance in thousands of new-york chica	f miles ago topeka 7 1.8 3 1.4 :
<pre>Parameter c(i,j) transport cost in t c(i,j) = f * d(i,j) / 1000 </pre>	2_tmsport_include_data.gms \$include data.gms Variables x(i,j) shipment quantities in cases z total transportation costs in thousa
	Positive Variable x ; Equations cost define objective function supply(i) observe supply limit at plant i demand(j) satisfy demand at market j ;

GAMS

GAMS Syntax (Data Input)

E il	gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr File Edit Search Windows Utilities Model Libraries Help	
2	Control Con	
	<pre></pre>	
	Variables x(i,j) = 1 = u(i,j) / 1000; Variables x(i,j) shipment quantities in cases z total transportation costs in thousands of dollars; Positive Variable x; Equations cost define objective function supply(i) observe supply limit at plant i	
	<pre>demand(j) satisfy demand at market j ; <</pre>	× >

| <

AMS	Syntax (Data Input)	
gamside: C:\Users\F File Edit Search V	red\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr Vindows Utilities Model Libraries Help	
co 🔡 🗞 📎	(a)	
C:\Users\Fred\Doc	cuments\talks\2016-09-OR2016\Preconference Workshop\demo\4_trnsport_gdxxrw.gms	
4_trnsport_gdxxrw.gms		
Sets i j	canning plants markets ;	
Parameter a(i) b(j) d(i, c(i,	<pre>s capacity of plant i in cases demand at market j in cases j) distance in thousands of miles j) transport cost in thousands of dollars per case ;</pre>	
<pre>\$onecho > i: par=d rng=S par=b rng=S par=a rng=S \$offecho \$call gdxxr \$if errorle \$gdxin data \$load i<d.d \$gdxin</d.d </pre>	nstructions.txt heet1!A1 rdim=1 cdim=1 heet1!B6 rdim=0 cdim=1 heet1!G2 rdim=1 cdim=0 w data.xlsx @instructions.txt vel 1 \$abort Error preparing data .gdx im1 j <d.dim2 a="" b<="" d="" td=""><td></td></d.dim2>	
Scalar f c(i,j) = Variables	<pre>freight in dollars per case per thousand miles /90/; f * d(i,j) / 1000; j) shipment quantities in cases</pre>	

Σ

Freight: \$90 case / thousand miles

Total cost: \$153,675

Model types in this example Determine minimum transportation cost. LP Result: city to city shipment volumes. Allows discrete decisions, MIP e.g. if we ship, then we ship at least 100 cases. Allows non-linearity, MINLP e.g. a smooth decrease in unit cost when shipping volumes grows SP Allows uncertainty, e.g. uncertain demand

GAMS

Model types in this example

MIP Model: Minimum Shipment of 100 cases

- Shipment volume: x (continuous variable)
- Discrete decision: ship (binary variable)

add constraints:

 $x_{i,j} \ge 100 \cdot ship_{i,j} \quad \forall i,j$ (if ship=1, then ship at least 100) $x_{i,j} \le bigM \cdot ship_{i,j} \quad \forall i,j$ (if ship=0, then do not ship at all) $ship_{i,j} \in \{0,1\}$

MIP Model: GAMS Syntax gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr File Edit Search Windows Utilities Model Libraries Help 📳 🍇 🔖 🗞 🛛 gdx results ▼ {a} 5 \triangleright C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\5 trnsport MIP.gms 5 trnsport_MIP.gms 5_trnsport_MIP.lst demand(j) .. sum(i, x(i,j)) =g= b(j); model transportLP / all /; Solve transportLP using LP minimizing z ; parameter rep(i,j,*) report parameter; rep(i,j,'LP') = x.l(i,j);* MTP scalar minS minimum shipment / 100 / bigM big M; bigM = min(smax(i,a(i)), smax(j,b(j))); binary variable ship(i,j) '1 if we ship from i to j, otherwise 0'; equation minship(i,j) minimum shipment maxship(i,j) maximum shipment; minship(i,j).. x(i,j) =g= minS * ship(i,j); maxship(i,j).. x(i,j) =l= bigM * ship(i,j); Model transportMIP / transportLP, minship, maxship / ; option optcr = 0; Solve transportMIP using MIP minimizing z ; rep(i,j,'MIP') = x.l(i,j);display rep;

37 🜔

GAMS

MIP Model: GAMS Syntax gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr File Edit Search Windows Utilities Model Libraries Help gdx results 📳 🍇 🔖 🗞 🛛 💌 (a) 🎒 D C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\5 trnsport MIP.gms 5 trnsport_MIP.gms 5_trnsport_MIP.lst demand(j) .. sum(i, x(i,j)) =g= b(j); model transportLP / all /; Solve transportLP using LP minimizing z ; parameter rep(i,j,*) report parameter; rep(i,j,'LP') = x.l(i,j);* MTP scalar minS minimum shipment / 100 / bigM big M; bigM = min(smax(i,a(i)), smax(j,b(j))); binary variable ship(i,j) '1 if we ship from i to j, otherwise 0'; equation minship(i,j) minimum shipment maxship(i,j) maximum shipment; minship(i,j).. x(i,j) =g= minS * ship(i,j); maxship(i,j).. x(i,j) =l= bigM * ship(i,j); Model transportMIP / transportLP, minship, maxship / ; option optcr = 0; Solve transportMIP using MIP minimizing z ; rep(i,j,'MIP') = x.l(i,j);display rep;

Hands-On 38 ()

2000			
~	A	R A	C
		IVI	-
	G	GA	GAM

MIP M	odel: Results
gamside: C:\Users\Fred\Documents\ File Edit Search Windows Utilitie	talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr sModel LibrariesHelp
C:\Users\Fred\Documents\talks\20 5_tmsport_MIP.gms 5_tmsport_MIP.lst	16-09-OR2016\Preconference Workshop\demo\5_trnsport_MIP.lst
C o m p i l a t i o n Include File Summary Equation Listing SOLVE transp	**** REPORT SUMMARY : 0 NONOPT 0 INFEASIBLE INFEASIBLE 0 UNPOUNDED
 ⊕ Equation ⊖ Column Listing SOLVE transp ⊕ Column → Model Statistics SOLVE transp 	GAMS 24.7.3 r58181 Released Jul 11, 2016 W General Algebraic Mode Execution
 → Solution Report SOLVE transp → SolEQU → SolVAR → Equation Listing SOLVE transp 	12 demand Equ 1 12 demand Equ 1 7 f Par 0 11 Plane Index (empty)
 	LP MIP 1 i Set 1 2 18 resurbin From 2 6
 → Solution Report SOLVE transp ↔ SolEQU ↔ SolVAR → Execution 	seattle .new-york 50.000 14 minS Par 0 1 seattle .chicago 300.000 300.000 17 minship Equ 2 6
E⊢ Display └── rep	San-diego.topeka 275.000 275.000 13 rep Par 3 7 16 ship Var 2 6 san-diego new-york 275 325
	EXECUTION TIME = 0.000 SECONDS 11 supply Equ 1 2 8 x Var 2 6 9 z Var 0 1 12
	USER: Frederik Fiand GAMS Software GmbH License for teaching and research at Symbol search Next Prev Sort Squeeze default:
< >	<pre></pre>

GAMS

MIP Model: Solution

GAMS

Model types in this example

Model types in this example

GAMS

Determine minimum transportation cost. LP Result: city to city shipment volumes. Allows discrete decisions, MIP e.g. if we ship, then we ship at least 100 cases. MINLP Allows non-linearity, e.g. a smooth decrease in unit cost when shipping volumes grows SP Allows uncertainty, e.g. uncertain demand

MINLP: Cost Savings

ship = 0 Not possible 0 100 The cost per case decreases with a increasing shipment volume

x (Number of cases)

Replace:

Cost (\$)

min $\sum_i \sum_j c_{ij} \cdot x_{ij}$ (Minimize total transportation cost)With $\sum_i \sum_j c_{ij} \cdot x_{ij}^{beta}$ (Minimize total transportation cost)

MINLP Model: GAMS Syntax

🖁 gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr				
File Edit Search Windows Utilities Model Libraries Help				
Co 🔚 🍇 💊 💊 🔽 (a) 🚳 🕒 gdx results				
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\6_trnsport_MINLP.gms				
	^			
* MINLF				
Scalar beta / 0.95 /				
Equation costnlp define non-linear objective function;				
costnlp z =e= sum((i,j), c(i,j)*x(i,j)**beta);				
Model transportMINLP / transportMIP - cost + costnlp /;				
Solve transportMINLP using MINLP minimizing z ;				
rep(i,j,'MINLP') = x.l(i,j);				
display rep;				
	, v			
μ. · · · · · · · · · · · · · · · · · · ·				

MINLP Model: GAMS Syntax

gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr				
File Edit Search Windows Utilities Model Libraries Help				
Co 🔚 🍇 💊 🔌 🔽 🔹 (a) 🚳 🖕 gdx results				
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\6_trnsport_MINLP.gms				
	^			
* MINLF				
Scalar beta / 0.95 /				
Equation costnlp define non-linear objective function;				
costnlp z =e= sum((i,j), c(i,j)*x(i,j)**beta);				
Model transportMINLP / transportMIP - cost + costnlp /;				
noder eransportninner, eransportning cost i costnip /,				
Solve transportMINLP using MINLP minimizing z ;				
display rep:				
	×			
	>			
	Hands-On			

GAMS

MINLP Model: Results

gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr

File Edit Search Windows Utilities Model Libraries Help

> 🛛 🍡 📎 📎	
C:\Users\Fred\Documents\talks\2016-09-0 6_trnsport_MINLP.gms 6_trnsport_MINLP.lst	R2016\Preconference Workshop\demo\6_trnsport_MINLP.lst
 Column Listing SOLVE transport Column Generation Model Statistics SOLVE transport Solution Report SOLVE transport SoleQU SolVAR Equation Column Listing SOLVE transport Column Listing SOLVE transport Column Listing SOLVE transport SolVAR Equation Column Listing SOLVE transport SolVAR SolVAR SolVAR Solution Report SOLVE transport SolVAR SolVAR SolVAR SolVAR Execution SolVAR Execution SolVAR Equation Listing SOLVE transport SolVAR Equation SolVAR Column Listing SOLVE transport SolVAR Equation SolVAR SolVE transport SolVAR Solve transport Solve transport 	O INFEASIBLE O UNBOUNDED O ERRORS GAMS 24.7.3 r58181 Released Jul 11, 2016 WEX-WEI x86 64bit/MS Windows 08/23/ G e n e r a 1 A 1 g e b r a i c M o d e l i n g S y s t e m E x e c u t i o n 83 FARAMETER rep report parameter LP MIP MINLP seattle .new-york 50.000 seattle .chicago 300.000 300.000 300.000 san-diego.new-york 275.000 325.000 325.000 san-diego.topeka 275.000 275.000 275.000
< results.gdx	
Entry Symbol 1 i 2 j 18 maxship 14 minS 17 minship 13 rep 16 ship Symbol searc	Type Dim Nr Elem rep(i, j, *): report parameter Plane Index (empty) Set 1 3 Equ 2 6 Par 0 1 Equ 2 6 Par 0 1 Equ 2 6 Par 3 10 Var 2 6 Var 2 6 Var 2 6 Next Prev Sort Squeeze defaults Decimals Search Ordering: 12.3 Next Prev Sort Squeeze trailing zeroes Next Prev

Freight: \$90 case / thousand miles

Total cost: \$153,675

Model types in this example

Determine minimum transportation cost. LP Result: city to city shipment volumes. Allows discrete decisions, MIP e.g. if we ship, then we ship at least 100 cases. Allows non-linearity, MINLP e.g. a smooth decrease in unit cost when shipping volumes grows Allows uncertainty, SP e.g. uncertain demand

Model types in this example

Determine minimum transportation cost. LP Result: city to city shipment volumes. Allows discrete decisions, MIP e.g. if we ship, then we ship at least 100 cases. Allows non-linearity, MINLP e.g. a smooth decrease in unit cost when shipping volumes grows Allows uncertainty, SP e.g. uncertain demand

9 🌔

Stochastic Programming in GAMS

EMP/SP

- Simple interface to add uncertainty to existing deterministic models
- (EMP) Keywords to describe uncertainty include: discrete and parametric random variables, stages, chance constraints, Value at Risk, ...
 Available solution methods:
 - Automatic generation of
 <u>D</u>eterministic <u>E</u>quivalent (can be solved with any solver)
 - Specialized commercial algorithms (DECIS, LINDO)

Transport Example - Uncertain Demand

GAMS

Decisions to make

- First-stage decision: How many units should be shipped "here and now" (without knowing the outcome)
- Second-stage (recourse) decision:
 - How can the model react if we do not ship enough?
 - Penalties for "bad" first-stage decisions, e.g. buy additional cases u (j) at the demand location:

```
costsp .. z =e= sum((i,j), c(i,j)*x(i,j))+
sum(j,0.3*u(j));
demandsp(j) .. sum(i, x(i,j)) =g= bf*b(j) - u(j);
```

Uncertain Demand - GAM	S Algebra
gamside: C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\or16.gpr	
Pile Edit Search Windows Othintes Model Libraries Heip	
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo\7_trnsport_SP.gms	
7_trnsport_SP.gms /_trnsport_SP.ist results.gdx	
	^
* Stochastic Program with uncertain demand	
Scalar bf demand factor / 1 /:	
Equation costsp define objective function for SP	
demandsp(j) demand satisfaction in SP;	
costsp $z == sum((i,j), c(i,j)*x(i,j)) + sum(j, 0.3*u(j));$	
demandsp(j) sum(1, $x(1, j)$) =g= $DI*D(j) - u(j)$;	
Model transportSP / costsp. demandsp. supply /:	
File emp / '%emp.info%' /; put emp;	
Şonput	
randvar bf discrete 0.3 0.9	
0.5 1.0	
0.2 1.1	
stage 2 bf u demandsp	
Soliput	
ruceiose emp;	
Set scen scenarios / s1*s4 /;	
Parameter	
<pre>s_bf(scen) demand factor for realization by scenario</pre>	
<pre>s_x(scen,i,j) shipment per scenario</pre>	
<pre>s_u(scen,j) unsatisfied demand per scenario (bought cases);</pre>	
Set dict / scenscenario!!	
bf , randvar , s bf	
x . level . s x	
u . level . s_u/;	
option emp=lindo;	
Solve transportSP min z use emp scenario dict;	
	× (() 52

GAMS

Uncertain Demand - Results

_										_
	}	122 PAR	AMETER s_bf	demand fact	or for real	lization b	y scenar	io		^
	s1 0.	900, s2	1.000, s	3 1.100						
		100 030	AMETED - h							
		122 PAR	AMEIER S_D	demand per s	cenario					
		new-york	chicago	topeka						
				047 500						
	31	292.500	270.000	247.500						
	s2	325.000	300.000	275.000						
	s 3	357.500	330.000	302.500						
		122 PAR	AMETER s_x	shipment per	scenario					
				-1-1-1-1-1	÷ 1					
			new-york	cnicago	topeka					
	s1.se	attle	50.000	300.000						
	s1.sa	n-diego	242.500		275.000					
	s2.se	attle	50.000	300.000						
	s2.sa	n-diego	242.500		275.000					
	s3.se	attle	50.000	300.000						
	s3.sa	n-diego	242.500		275.000					
		122 PAR	AMETER s_u	unsatisfied	demand per	scenario	(bought	cases)		
		new-york	chicago	topeka						
	-2	22 500								
	52	32.500	20.000	27 500						
	33	65.000	30.000	27.500						4
€.									>	

54

Stochastic Program: Solution

Stochastic Programming in GAMS

- The Extended Mathematical Programming (EMP) framework is used to replace parameters in the model by random variables
- Support for Multi-stage recourse problems and chance constraint models
- Easy to add uncertainty to existing deterministic models, to either use specialized algorithms or create Deterministic Equivalent (new free solver DE)
- More information: http://www.gams.com/dd/docs/solvers/empsp.pdf

GAMS at a Glance

GAMS - Hands On Examples

APIs - Application Programming Interfaces to GAMS

Outlook - Some Advanced GAMS Features

Calling GAMS from your Application

Creating Input for GAMS Model

→ Data handling using **GDX** API

Callout to GAMS

→GAMS option settings using **Option** API →Starting GAMS using **GAMS** API

Reading Solution from GAMS Model

→ Data handling using **GDX** API

GAMS

Low level APIs -> Object Oriented API

- Low level APIs
 - GDX, OPT, GAMSX, GMO, ...
 - High performance and flexibility
 - Automatically generated imperative APIs for several languages (C, Delphi, Java, Python, C#, ...)
- Object Oriented GAMS API
 - Additional layer on top of the low level APIs
 - Object Oriented
 - Written by hand to meet the specific requirements of different Object Oriented languages

Transport Application GUI Example

- Scenario solves of the transportation problem
- Features:
 - Preparation of input data
 - Loading data from Access file
 - Solving multiple scenarios of a model
 - Displaying results
- Four implementation steps:
 - 1. Graphical User Interface
 - 2. Preparation of GAMS model
 - 3. Implementation of scenario solving using GAMSJob
 - 4. GAMSModelInstance for performance improvements

GAMS

Transport Application GUI Example

- Scenario solves of the transportation problem
- Features:
 - Preparation of input data
 - Loading data from Access file
 - Solving multiple scenarios of a model
 - Displaying results
- Four implementation steps:
 - 1. Graphical User Interface
 - 2. Preparation of GAMS model
 - 3. Implementation of scenario solving using GAMSJob
 - 4. GAMSModelInstance for performance improvements

GAMS at a Glance

GAMS - Hands On Examples

APIs - Application Programming Interfaces to GAMS

Outlook - Some Advanced GAMS Features

GAMS

Solvelink Option

controls GAMS function when linking to solve

Model transport /all/ ;

Option solvelink = {

%Solvelink.ChainScript%, %Solvelink.CallScript%, %Solvelink.CallModule%, %Solvelink.AsyncGrid%, %Solvelink.AsyncSimulate%, %Solvelink.LoadLibrary%};

solve transport using lp minimizing z;

GAMS

Solvelink Option

controls GAMS function when linking to solve

Model transport /all/ ;

Option solvelink = {

%Solvelink.ChainScript%, %Solvelink.CallScript%, %Solvelink.CallModule%, %Solvelink.AsyncGrid%, %Solvelink.AsyncSimulate%, %Solvelink.LoadLibrary%};

solve transport using lp minimizing z;

• ChainScript [0]: Solver process, GAMS vacates memory

- + Maximum memory available to solver
- + protection against solver failure (hostile link)
- swap to disk

Solvelink Option – cont.

- Call{Script [1]/Module [2]}: Solver process, GAMS stays live
 - + protection against solver failure (hostile link)
 - + no swap of GAMS database
 - file based model communication

Solvelink Option – cont.

- Call{Script [1]/Module [2]}: Solver process, GAMS stays live
 - + protection against solver failure (*hostile* link)
 - + no swap of GAMS database
 - file based model communication

- LoadLibrary [5]: Solver DLL in GAMS process
 - + fast memory based model communication
 - + update of model object inside the solver (hot start)
 - not supported by all solvers

Simple Serial Solve - Performance

trnsport.gms (LP) solved 500 times with CPLEX:

Simple Serial Solve - Performance

trnsport.gms (LP) solved 500 times with CPLEX:

Hands-On

69

Scenario Solver/GUSS - Performance

trnsport.gms (LP) solved 500 times with CPLEX:

Setting	Solve time (secs)
Solvelink=%Solvelink.ChainScript%	54.368
Solvelink=%Solvelink.CallModule%	12.909
Solvelink=%Solvelink.LoadLibrary%	05.039
GUSS	01.947

Scenario Solver/GUSS - Performance

Example: Stochastic model with 66,320 linear problems

Setting	Solve time (secs)	
Loop: Solvelink=%Solvelink.Chainscript (default)	7,204	Factor
Loop: Solvelink=%Solvelink.LoadLibrary%	2,481	- 18.3
GAMS Scenario Solver	392	_
CPLEX Concert Technology	210	1.86

Grid Computing Facility

GAMS jobs in a **distributed** environment

- Scalable: supports large grids, but also works on local machine
- Platform independent, works with all solvers/model types
- > Only minor changes to model required

GAMS

Grid Computing Facility – Example 1

```
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\dem
                                                        GAMS Model Library: trnsgrid
9a trnsgrid.gms 9a trnsgrid.lst
   transport.solvelink = %solvelink.AsyncGrid%; // tur
                      = 0:
   transport.limcol
                                                                                                 License for teaching and research at degree granting i
   transport.limrow
                     = 0:
                                                                                        --- Starting compilation
   transport.solprint = %solprint.Quiet%;
                                                                                        --- 9a trnsgrid.gms(101) 3 Mb
                                                                                        --- Starting execution: elapsed 0:00:00.003
   set s scenarios / 1*5 /;
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
                                                                                        --- Generating LP model transport
   parameter dem(s,j) random demand
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
            h(s) store the instance handle;
                                                                                        --- LOOPS s = 1
                                                                                        --- 6 rows 7 columns 19 non-zeroes
   dem(s,j) = b(j)*uniform(.95,1.15); // create some random demands
                                                                                        --- Submitting model transport with handle grid145000001
                                                                                        --- Executing after solve: elapsed 0:00:00.046
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
   loop(s,
                                                                                        --- Generating LP model transport
     b(j) = dem(s, j)
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
     Solve transport using lp minimizing z;
                                                                                        --- LOOPS s = 2
     h(s) = transport.handle ); // save instance handle
                                                                                        --- 6 rows 7 columns 19 non-zeroes
                                                                                        --- Submitting model transport with handle grid145000002
   parameter repx(s,i,j) solution report
                                                                                        --- Executing after solve: elapsed 0:00:00.066
                        summary report:
             repy
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
                                                                                        --- Generating LP model transport
   repy(s,'solvestat') = na;
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
   repy(s,'modelstat') = na;
                                                                                        --- LOOPS s = 3
                                                                                        --- 6 rows 7 columns 19 non-zeroes
   * we use the handle parameter to indicate that the solution has been collected
                                                                                        --- Submitting model transport with handle grid145000003
   repeat
                                                                                        --- Executing after solve: elapsed 0:00:00.091
     loop(s$handlecollect(h(s)),
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
         repx(s,i,j) = x.l(i,j);
                                                                                        --- Generating LP model transport
         repv(s,'solvestat') = transport.solvestat;
                                                                                       --- 9a trnsgrid.gms(77) 4 Mb
                                                                                       --- LOOPS s = 4
         repv(s,'modelstat') = transport.modelstat;
                                                                                        --- 6 rows 7 columns 19 non-zeroes
         repy(s,'resusd' ) = transport.resusd;
                                                                                        --- Submitting model transport with handle grid145000004
         repv(s.'objval') = transport.objval;
                                                                                        --- Executing after solve: elapsed 0:00:00.121
         display$handledelete(h(s)) 'trouble deleting handles' ;
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
         h(s) = 0 ) ; // indicate that we have loaded the solution
                                                                                        --- Generating LP model transport
      display$sleep(card(h)*0.2) 'was sleeping for some time';
                                                                                       --- 9a trnsgrid.gms(77) 4 Mb
   until card(h) = 0 or timeelapsed > 10; // wait until all models are loaded
   display repx, repy;
   abort$sum(s$(repy(s, 'solvestat')=na),1) 'Some jobs did not return';
                                                                                                            🗆 Summary only 🔽 Update
                                                                                5
                                                                                          Close
                                                                                                   Open Log
```


GAMS

Grid Computing Facility – Example 1

```
C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\dem
                                                        GAMS Model Library: trnsgrid
9a trnsgrid.gms 9a trnsgrid.lst
   transport.solvelink = %solvelink.AsyncGrid%; // tur
                      = 0;
   transport.limcol
                                                                                                 License for teaching and research at degree granting i
   transport.limrow
                     = 0:
                                                                                        --- Starting compilation
   transport.solprint = %solprint.Quiet%;
                                                                                        --- 9a trnsgrid.gms(101) 3 Mb
                                                                                        --- Starting execution: elapsed 0:00:00.003
   set s scenarios / 1*5 /;
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
                                                                                        --- Generating LP model transport
   parameter dem(s,j) random demand
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
            h(s) store the instance handle;
                                                                                        --- LOOPS s = 1
                                                                                        --- 6 rows 7 columns 19 non-zeroes
   dem(s,j) = b(j)*uniform(.95,1.15); // create some random demands
                                                                                        --- Submitting model transport with handle grid145000001
                                                                                        --- Executing after solve: elapsed 0:00:00.046
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
   loop(s,
                                                                                        --- Generating LP model transport
     b(j) = dem(s, j)
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
     Solve transport using lp minimizing z;
                                                                                        --- LOOPS s = 2
     h(s) = transport.handle ); // save instance handle
                                                                                        --- 6 rows 7 columns 19 non-zeroes
                                                                                        --- Submitting model transport with handle grid145000002
   parameter repx(s,i,j) solution report
                                                                                        --- Executing after solve: elapsed 0:00:00.066
                        summary report:
             repy
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
                                                                                        --- Generating LP model transport
   repy(s,'solvestat') = na;
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
   repy(s,'modelstat') = na;
                                                                                        --- LOOPS 8 = 3
                                                                                        --- 6 rows 7 columns 19 non-zeroes
   * we use the handle parameter to indicate that the solution has been collected
                                                                                        --- Submitting model transport with handle grid145000003
   repeat
                                                                                        --- Executing after solve: elapsed 0:00:00.091
     loop(s$handlecollect(h(s)),
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
         repx(s,i,j) = x.l(i,j);
                                                                                        --- Generating LP model transport
         repv(s,'solvestat') = transport.solvestat;
                                                                                        --- 9a trnsgrid.gms(77) 4 Mb
                                                                                        --- LOOPS s = 4
         repv(s,'modelstat') = transport.modelstat;
                                                                                        --- 6 rows 7 columns 19 non-zeroes
         repy(s,'resusd' ) = transport.resusd;
                                                                                        --- Submitting model transport with handle grid145000004
         repy(s,'objval') = transport.objval;
                                                                                        --- Executing after solve: elapsed 0:00:00.121
         display$handledelete(h(s)) 'trouble deleting handles' ;
                                                                                        --- 9a trnsgrid.gms(75) 4 Mb
         h(s) = 0 ) ; // indicate that we have loaded the solution
                                                                                        --- Generating LP model transport
      display$sleep(card(h)*0.2) 'was sleeping for some time';
                                                                                       --- 9a trnsgrid.gms(77) 4 Mb
   until card(h) = 0 or timeelapsed > 10; // wait until all models are loaded
   display repx, repy;
   abort$sum(s$(repy(s,'solvestat')=na),1) 'Some jobs did not return';
                                                                                                            🗆 Summary only 🔽 Update
                                                                                5
                                                                                          Close
                                                                                                   Open Log
```


GAMS

Grid Computing Facility – Example 2

C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo

tgridmix.gms tgridmix.lst

GAMS Model Library: tgridmix

```
dem(s,j)= b(j)*uniform(.95,1.15); // create some random demands
loop(sl.
 tStart = jnow;
 repy(sl,s,'solvestat') = na;
 repy(sl,s,'modelstat') = na;
 actS(s) = no; h(s) = 0; nexS(s) = sameas('1',s);
 transport.solvelink = slnum(sl);
 repeat
    while (card(actS)<maxS and card(nexS),
        loop(nexS(s),
          b(i) = dem(s,i)
          Solve transport using lp minimizing z;
          h(s) = transport.handle;
          actS(s) = yes;
        );
        nexS(s) = nexS(s-1); // advance nexS
    );
    colS(s) = no;
    display$ReadyCollect(h) 'Waiting for next instance to collect';
    loop(actS(s)$handlecollect(h(s)),
        repx(sl,s,i,j) = x.l(i,j);
       repy(sl,s,'solvestat') = transport.solvestat;
        repy(sl,s,'modelstat') = transport.modelstat;
        repy(sl,s,'resusd' ) = transport.resusd;
        repy(sl,s,'objval')
                             = transport.objval;
        display$handledelete(h(s)) 'trouble deleting handles' ;
        colS(s) = yes; h(s) = 0;
    ); actS(colS) = no;
 until (card(nexS)=0 and card(actS) = 0) or timeelapsed > 10; // wait until a
 repv(sl,'time','elapsed') = (jnow - tStart)*3600*24;
 abort$sum(s$(repv(sl,s,'solvestat')=na),1) 'Some jobs did not return';
):
display repx, repy;
```

```
FOR/WHILE = 2
          FOR/WHILE = 1
         * = 8
      6 rows 7 columns 19 non-zeroes
 -- Submitting model transport with handle grid145000018
 -- Executing after solve: elapsed 0:00:00.742
--- taridmix.ams(89) 4 Mb
 --- Generating LP model transport
--- tgridmix.gms(100) 4 Mb
--- LOOPS sl = Grid
          FOR/WHILE = 2
____
          FOR/WHILE = 2
         * = 9
      6 rows 7 columns 19 non-zeroes
--- Submitting model transport with handle grid145000019
 -- Executing after solve: elapsed 0:00:00.759
--- tgridmix.gms(89) 4 Mb
 --- Generating LP model transport
--- tgridmix.gms(100) 4 Mb
--- LOOPS sl = Grid
          FOR/WHILE = 2
          FOR/WHILE = 3
         * = 10
____
      6 rows 7 columns 19 non-zeroes
--- Submitting model transport with handle grid145000020
--- Executing after solve: elapsed 0:00:00.776
--- tgridmix.gms(89) 4 Mb
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
--- Removed handle grid145000018
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
--- Removed handle grid145000019
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
--- Removed handle grid145000020
--- tgridmix.gms(121) 4 Mb
*** Status: Normal completion
--- Job tgridmix.gms Stop 08/25/16 06:27:43 elapsed 0:00:00.849
```

Summary only V Update

Close

Open Log

GAMS

Grid Computing Facility – Example 2

C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconference Workshop\demo

tgridmix.gms tgridmix.lst

GAMS Model Library: tgridmix

```
dem(s,j)= b(j)*uniform(.95,1.15); // create some random demands
loop(sl.
 tStart = jnow;
 repv(sl,s,'solvestat') = na;
 repy(sl,s,'modelstat') = na;
 actS(s) = no; h(s) = 0; nexS(s) = sameas('1',s);
 transport.solvelink = slnum(sl);
 repeat
    while (card(actS)<maxS and card(nexS),
        loop(nexS(s),
          b(i) = dem(s,i)
          Solve transport using lp minimizing z;
          h(s) = transport.handle:
          actS(s) = yes;
        );
        nexS(s) = nexS(s-1); // advance nexS
    );
    colS(s) = no;
    display$ReadyCollect(h) 'Waiting for next instance to collect';
    loop(actS(s)$handlecollect(h(s)),
        repx(sl,s,i,j) = x.l(i,j);
       repy(sl,s,'solvestat') = transport.solvestat;
        repy(sl,s,'modelstat') = transport.modelstat;
        repy(sl,s,'resusd' ) = transport.resusd;
        repy(sl,s,'objval')
                             = transport.objval;
        display$handledelete(h(s)) 'trouble deleting handles' ;
        colS(s) = yes; h(s) = 0;
    ); actS(colS) = no;
 until (card(nexS)=0 and card(actS) = 0) or timeelapsed > 10; // wait until a
 repv(sl,'time','elapsed') = (jnow - tStart)*3600*24;
 abort$sum(s$(repv(sl,s,'solvestat')=na),1) 'Some jobs did not return';
):
display repx, repy;
```

```
FOR/WHILE = 2
          FOR/WHILE = 1
         * = 8
     6 rows 7 columns 19 non-zeroes
 -- Submitting model transport with handle grid145000018
   Executing after solve: elapsed 0:00:00.742
--- taridmix.ams(89) 4 Mb
--- Generating LP model transport
--- tgridmix.gms(100) 4 Mb
--- LOOPS sl = Grid
         FOR/WHILE = 2
____
         FOR/WHILE = 2
         * = 9
     6 rows 7 columns 19 non-zeroes
--- Submitting model transport with handle grid145000019
 -- Executing after solve: elapsed 0:00:00.759
--- tgridmix.gms(89) 4 Mb
 --- Generating LP model transport
--- tgridmix.gms(100) 4 Mb
--- LOOPS sl = Grid
          FOR/WHILE = 2
          FOR/WHILE = 3
         * = 10
____
     6 rows 7 columns 19 non-zeroes
--- Submitting model transport with handle grid145000020
--- Executing after solve: elapsed 0:00:00.776
--- tgridmix.gms(89) 4 Mb
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
   Removed handle grid145000018
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
--- Removed handle grid145000019
--- GDXin=C:\Users\Fred\Documents\talks\2016-09-OR2016\Preconfer
--- Removed handle grid145000020
--- tgridmix.gms(121) 4 Mb
*** Status: Normal completion
--- Job tgridmix.gms Stop 08/25/16 06:27:43 elapsed 0:00:00.849
                     Summary only V Update
  Close
           Open Log
```

Hands-On

Solving "many" Scenarios How to find the right approach?

- Small Ratio of solver time / GAMS time → Scenario Solver
- Large ratio i.e. only solver time is relevant (pre/post processing not critical) → Grid Computing Facility
- Entire model run including pre processing / optimization / post processing is costly → Parallel execution of entire model in the cloud

Application - Scenario Solver

GAMS

Scenario Solver and Parallel Combined

Implementation	Number of MIP models	Solve time	Rest of algorithm	Total time
Traditional GAMS loop	100,000	1068 sec	169 sec	1237 sec
Scenario Solver	100,000	293 sec	166 sec	459 sec

Implementation	Number of MIP models	Worker Threads	Parallel sub- problem time	Rest of algorithm (serial)	Total time
Parallel + Scenario Solver	100,000	4	116 sec	67 sec	183 sec

http://yetanothermathprogrammingconsultant.blogspot.de/2012/04/parallel-gams-jobs-2.html

Where to Find Help?

- Documentation Center: http://gams.com/help/index.jsp
- Support Wiki: http://support.gams.com/
- Mailing List(s): http://gams.com/maillist/index.htm
- YouTube Channel: https://www.youtube.com/user/GAMSLessons
- GAMS support: support@gams.com

Meet us at the GAMS booth!

GAMS

Other GAMS Talks

BEAM-ME: Acceleration Strategies for Energy System Models

Given by: Frederik Fiand When: Thursday (Sep. 01), 09:00-09:30 Where: Hörsaal 3

Abstract: BEAM-ME is a project funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) and addresses the need for new and improved solution approaches for energy system models. The project unites various partners with complementary expertise from the fields of algorithms, computing and application development. The con-sidered problems result in large-scale LPs that are computationally in- tractable for state-of-the-art solvers. Hence, new solution approaches combining decomposition methods, algorithm development and high performance computing are developed. We provide an overview on the large variety of challenges we are facing within this project, present current solutions approaches and provide first results.

Recent Enhancements in GAMS

Given by: Franz Nelissen

When: Thursday (Sep. 01), 11:30-12:00 Where: Seminarraum 105

Abstract: Algebraic Modeling Languages (AML) are one of the success stories in Operations Research. GAMS is one of the prominent AMLs and has evolved continuously in response to user requirements, changes in computing environments and advances in the theory and practice of mathematical programing. In this talk we will begin with some fundamental principles and outline several recent enhancements of GAMS supporting efficient and productive development of optimization based decision support applications.

GAMS

GAMS

Thank You

Europe | USA

GAMS Software GmbH P.O. Box 40 59 50216 Frechen, Germany Phone: +49 221 949 9170 Fax: +49 221 949 9171 info@gams.de

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007, USA Phone: +1 202 342 0180 Fax: +1 202 342 0181 sales@gams.com