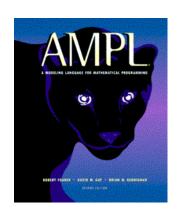
AMPL

A Modeling Language for Mathematical Programming www.ampl.com



Robert Fourer

Department of Industrial Engineering & Management Sciences Northwestern University

David M. Gay

AMPL Optimization LLC

Workshop on Modeling Languages in Mathematical Optimization

Gesellschaft für Operations Research e.V., 23-25 April 2003

The McDonald's Diet Problem

Foods:	Nutrients.

QP Quarter Pounder Prot Protein

FR Fries, small Iron Iron

MD McLean Deluxe VitA Vitamin A

SM Sausage McMuffin Cals Calories

BM Big Mac VitC Vitamin C

1M 1% Lowfat Milk Carb Carbohydrates

FF Filet-O-Fish Calc Calcium

OJ Orange Juice

MC McGrilled Chicken

McDonald's Diet Problem Data

	QP	MD	BM	FF	MC	FR	SM	1 M	OJ	
Cost	1.8	2.2	1.8	1.4	2.3	0.8	1.3	0.6	0.7	Need:
Protein	28	24	25	14	31	3	15	9	1	55
Vitamin A	15	15	6	2	8	0	4	10	2	100
Vitamin C	6	10	2	0	15	15	0	4	120	100
Calcium	30	20	25	15	15	0	20	30	2	100
Iron	20	20	20	10	8	2	15	0	2	100
Calories	510	370	500	370	400	220	345	110	80	2000
Carbo	34	35	42	38	42	26	27	12	20	350

Formulation: Too General

Minimize cx

Subject to Ax = b

 $x \ge 0$

Formulation: Too Specific

Minimize	1.84 x _{QP}	$+ 2.19 x_{MD}$	$+$ 1.84 x_{BM}	+ 1.44 x _{FF} -	+ 2.29 x _{MC}	$+$ 0.77 x_{FR}	$+ 1.29 x_{SM}$	$+$ 0.60 x_{1M}	$+$ 0.72 x_{OJ}	
Subject to	28 x _{QP}	+ 24 x _{MD}	$+25 x_{BM}$	+ 14 x _{FF}	+ 31 x _{MC}	$+3 x_{FR}$	$+ 15 x_{SM}$	$+9 x_{1M}$	$+ 1 x_{OJ}$	≥ 55
	15 x _{QP}	$+15 x_{MD}$	$+6 x_{BM}$	$+2 x_{FF}$	+ 8 x _{MC}	$+0 x_{FR}$	$+4 x_{SM}$	$+ 10 x_{1M}$	$+2 x_{OJ}$	≥ 100
	6 x _{QP}	$+ 10 x_{MD}$	$+2 x_{BM}$	$+0 x_{FF}$	$+ 15 x_{MC}$	$+ 15 x_{FR}$	$+0 x_{SM}$	$+4 x_{1M}$	$+$ 120 x_{OJ}	≥ 100
	$30 x_{QP}$	$+20 x_{MD}$	$+25 x_{BM}$		$+ 15 x_{MC}$		$+20 x_{SM}$	$+30 x_{1M}$	$+2 x_{OJ}$	≥ 100
	20 x _{QP}	$+20 x_{MD}$	$+20 x_{BM}$	$+ 10 x_{FF}$	+ 8 x _{MC}	$+2 x_{FR}$	$+ 15 x_{SM}$	$+0 x_{1M}$	$+2 x_{OJ}$	≥ 100
	510 x _{QP}	$+370 x_{MD}$	$+500 x_{BM}$	$+370 x_{FF}$	+ 400 x _{MC}	$+ 220 x_{FR}$	$+345 x_{SM}$	$+ 110 x_{1M}$	$+80 x_{OJ}$	≥ 2000
	34 x _{QP}	$+35 x_{MD}$	$+42 x_{BM}$	+ 38 x _{FF}	+ 42 x _{MC}	$+26 x_{FR}$	$+27 x_{SM}$	+ 12 x _{1M}	$+20 x_{OJ}$	≥ 350

Algebraic Model

Given \mathcal{F} , a set of foods

 \mathcal{N} , a set of nutrients

and

 $a_{ij} \ge 0$, the units of nutrient i in one serving of food j, for each $i \in \mathcal{N}$ and $j \in \mathcal{F}$

 $b_i > 0$, the units of nutrient *i* required, for each $i \in \mathcal{N}$

 $c_j > 0$, the cost per serving of food j, for each $j \in \mathcal{F}$

Define $x_j \ge 0$, the number of servings of food j to be purchased, for each $j \in \mathcal{F}$

Minimize $\sum_{j \in \mathcal{F}} c_j x_j$

Subject to $\sum_{j \in \mathcal{F}} a_{ij} x_j \geq b_i$, for each $i \in \mathcal{N}$

Algebraic Model in AMPL

```
set NUTR; # nutrients
set FOOD; # foods

param amt {NUTR,FOOD} >= 0; # amount of nutrient in each food
param nutrLow {NUTR} >= 0; # lower bound on nutrients in diet
param cost {FOOD} >= 0; # cost of foods

var Buy {FOOD} >= 0 integer; # amounts of foods to be purchased

minimize TotalCost: sum {j in FOOD} cost[j] * Buy[j];

subject to Need {i in NUTR}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= nutrLow[i];
```

Data for the AMPL Model

```
param: FOOD:
                    cost :=
 "Quarter Pounder"
                    1.84
                            "Fries, small"
                                                .77
                   2.19
  "McLean Deluxe"
                                              1.29
                            "Sausage McMuffin"
                    1.84
 "Big Mac"
                            "1% Lowfat Milk"
                                                .60
 "Filet-O-Fish"
                    1.44
                            "Orange Juice"
                                                .72
 "McGrilled Chicken" 2.29;
param: NUTR: nutrLow :=
  Prot
        55 VitA 100
                     VitC 100
  Calc 100 Iron 100 Cals 2000 Carb 350;
                Cals Carb Prot VitA VitC Calc
param amt (tr):
   :=
  "Quarter Pounder"
                      510
                            34
                                 28
                                       15
                                                 30
                                                       20
                      370
                            35
                                                       20
  "McLean Deluxe"
                                 24
                                       15
                                            10
                                                 20
  "Big Mac"
                      500
                            42
                                 25
                                      6
                                                 25
                                                       20
                      370
                            38
  "Filet-O-Fish"
                                 14
                                             0
                                                 15
                                                       10
  "McGrilled Chicken"
                      400
                            42
                                 31
                                            15
                                                 15
                                                       8
  "Fries, small"
                      220
                            26
                                  3
                                       0
                                            15
                                                  0
  "Sausage McMuffin"
                      345
                            27
                                 15
                                       4
                                             0
                                                 20
                                                       15
  "1% Lowfat Milk"
                      110
                            12
                                       10
                                                 30
                                                       0
  "Orange Juice"
                       80
                            20
                                           120
                                                  2
```

Continuous-Variable Solution

```
ampl: model mcdiet1.mod;
ampl: data mcdiet1.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377
ampl: display Buy;
Buy [*] :=
    1% Lowfat Milk 3.42213
          Big Mac 0
     Filet-O-Fish 0
     Fries, small 6.14754
McGrilled Chicken 0
    McLean Deluxe 0
     Orange Juice
                   4.38525
  Quarter Pounder
  Sausage McMuffin
```

Integer-Variable Solution

```
ampl: option solver cplex;
ampl: solve;
CPLEX 7.0.0: optimal integer solution; objective 15.05
41 MIP simplex iterations
23 branch-and-bound nodes
   ampl: display Buy;
   Buy [*] :=
       1% Lowfat Milk
              Big Mac
         Filet-O-Fish
         Fries, small
    McGrilled Chicken
        McLean Deluxe
         Orange Juice
      Quarter Pounder
     Sausage McMuffin
```

Same for 63 Foods, 12 Nutrients

```
ampl: reset data;
ampl: data mcdiet2.dat;
ampl: option solver minos;
ampl: solve;
MINOS 5.5: ignoring integrality of 63 variables
MINOS 5.5: optimal solution found.
16 iterations, objective -1.786806582e-14
ampl: option omit_zero_rows 1;
ampl: display Buy;
Buy [*] :=
                  Bacon Bits 55
              Barbeque Sauce
                               50
           Hot Mustard Sauce
                               50
```

Essential Modeling Language Features

Sets and indexing

Simple sets

Compound sets

Computed sets

Objectives and constraints

Linear, piecewise-linear

Nonlinear

Integer, network

... and many more features

Express problems the various ways that people do Support varied solvers

Example: Airline Fleet Assignment

```
set FLEETS;
set CITIES;
set TIMES circular;
set FLEET LEGS within
   {f in FLEETS, c1 in CITIES, t1 in TIMES,
                 c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2};
          # (f,c1,t1,c2,t2) represents the availability of fleet f
          # to cover the leg that leaves c1 at t1 and
          # whose arrival time plus turnaround time at c2 is t2
set LEGS := setof \{(f,c1,t1,c2,t2) \text{ in } FLEET\_LEGS\} \{(c1,t1,c2,t2);
          # the set of all legs that can be covered by some fleet
```

Airline Fleet Assignment (cont'd)

```
set SERV_CITIES {f in FLEETS} :=
   union {(f,c1,c2,t1,t2) in FLEET_LEGS} {c1,c2};
         # for each fleet, the set of cities that it serves
set OP_TIMES {f in FLEETS, c in SERV_CITIES[f]} circular by TIMES :=
   setof {(f,c,c2,t1,t2) in FLEET_LEGS} t1 union
   setof {(f,c1,c,t1,t2) in FLEET_LEGS} t2;
         # for each fleet and city served by that fleet,
         # the set of active arrival & departure times at that city,
         # with arrival time adjusted for the turn requirement
param leg cost {FLEET_LEGS} >= 0;
param fleet_size {FLEETS} >= 0;
```

Airline Fleet Assignment (cont'd)

```
minimize Total Cost;
node Balance {f in FLEETS, c in SERV_CITIES[f], OP_TIMES[f,c]};
          # for each fleet and city served by that fleet,
          # a node for each possible time
arc Fly \{(f,c1,t1,c2,t2) \text{ in FLEET_LEGS}\} >= 0, <= 1,
   from Balance[f,c1,t1], to Balance[f,c2,t2],
   obj Total Cost leg cost[f,c1,t1,c2,t2];
          # arcs for fleet/flight assignments
arc Sit {f in FLEETS, c in SERV_CITIES[f], t in OP_TIMES[f,c]} >= 0,
   from Balance[f,c,t], to Balance[f,c,next(t)];
          # arcs for planes on the ground
```

Airline Fleet Assignment (cont'd)

```
subj to Service {(c1,t1,c2,t2) in LEGS}:
    sum {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2] = 1;

    # each leg must be served by some fleet

subj to Capacity {f in FLEETS}:
    sum {(f,c1,t1,c2,t2) in FLEET_LEGS:
        ord(t2,TIMES) < ord(t1,TIMES)} Fly[f,c1,t1,c2,t2] +
    sum {c in SERV_CITIES[f]} Sit[f,c,last(OP_TIMES[f,c])] <= fleet_size[f];

    # number of planes used is the number in the air at the
    # last time (arriving "earlier" than they leave)
    # plus the number on the ground at the last time in each city</pre>
```

Extended and Forthcoming AMPL Features

Programming iterative schemes

Loops over sets, **if-then-else** tests Switching between subproblems Debugging

Recognizing other types of models

Complementarity problems
General combinatorial problems (to come)
Stochastic programs (to come)

Communicating with other systems

Relational database access
Internet optimization services
Suffixes for solver-specific
directives, results & diagnostic information

Iterative Schemes

Flow of control

Looping If-then-else

Named subproblems

Defining subproblems
Switching subproblems

Debugging

Expanding constraints
Single-stepping

Flow of Control

```
model diet.mod;
data diet2a.dat;
set NALOG default {};
param NAobj {NALOG};
param NAdual {NALOG};
for {theta in 52000 .. 70000 by 1000} {
   let n_max["NA"] := theta;
   solve;
   let NALOG := NALOG union {theta};
   let NAobj[theta] := total_cost;
   let NAdual[theta] := diet["NA"].dual;
   if diet["NA"].dual > -.000001 then break;
   }
```

Flow of Control: Sample Output

```
ampl: commands diet.run;
ampl: display NAobj, NAdual;
        NAobj
                    NAdual
                              :=
52000
       113.428
                  -0.0021977
53000
       111.23
                  -0.0021977
54000
       109.42
                  -0.00178981
55000
       107.63
                  -0.00178981
56000
       105.84
                  -0.00178981
57000
       104.05
                  -0.00178981
58000
       102.26
                  -0.00178981
59000
       101.082
                  -0.000155229
       101.013
60000
                   0
```

Subproblems

Cutting-stock optimization with given patterns

```
param roll_width > 0;
set WIDTHS;
param orders {WIDTHS} > 0;
param nPAT integer >= 0;
set PATTERNS := 1..nPAT;
param nbr {WIDTHS,PATTERNS} integer >= 0;
var Cut {PATTERNS} integer >= 0;
minimize Number: sum {j in PATTERNS} Cut[j];
subj to Fill {i in WIDTHS}:
    sum {j in PATTERNS} nbr[i,j] * Cut[j] >= orders[i];
```

New pattern generation

```
param price {WIDTHS};
var Use {WIDTHS} integer >= 0;
minimize Reduced_Cost:
   1 - sum {i in WIDTHS} price[i] * Use[i];
subj to Width_Limit:
   sum {i in WIDTHS} i * Use[i] <= roll_width;</pre>
```

Naming Defined Subproblems

AMPL "script" to set up for Gilmore-Gomory column generation method

```
### DEFINE CUTTING PROBLEM
problem Cutting Opt: Cut, Number, Fill;
option relax integrality 1;
### DEFINE PATTERN-GENERATING PROBLEM
problem Pattern_Gen: Use, Reduced_Cost, Width_Limit;
option relax integrality 0;
### SET UP INITIAL CUTTING PATTERNS
for {i in WIDTHS} {
   let nPAT := nPAT + 1;
   let nbr[i,nPAT] := floor (roll_width/i);
   let {i2 in WIDTHS: i2 <> i} nbr[i2,nPAT] := 0;
   };
```

... each problem has its own option environment

Switching Subproblems

AMPL "script" for main loop of Gilmore-Gomory column generation

```
repeat {
   solve Cutting Opt;
   display Cut;
   let {i in WIDTHS} price[i] := Fill[i].dual;
   solve Pattern Gen;
   display price, Use;
   if Reduced Cost >= -0.00001 then break;
   else {
      let nPAT := nPAT + 1;
      let {i in WIDTHS} nbr[i,nPAT] := Use[i];
      };
   };
option Cutting_Opt.relax_integrality 0;
solve Cutting Opt;
```

Debugging

Single-stepping through the cutting-stock script

```
ampl: model cut.mod; data cut.dat;
ampl: option single_step 1;
ampl: commands cut.run;
cut.run:10(172)
                      for ...
<2>ampl: next
cut.run:16(318) option ...
<2>ampl: display nbr;
nbr [*,*]

    20
    5
    0
    0
    0
    0

    45
    0
    2
    0
    0
    0

50 0 0 2 0 0
55 0 0 0 2 0
75
<2>ampl: step
cut.run:19(365)
                     repeat ...
<2>ampl: step
cut.run:23(454) solve ...
```

Debugging (cont'd)

Expanding the cutting-stock constraints

```
ampl: display nbr;
: 1 2 3 4 5 6 7 8 :=
20 5 0 0 0 0 1 1 3
45 0 2 0 0 0 2 0 0
50 0 0 2 0 0 0 0 1
55 0 0 0 2 0 0 0 0 0
75 0 0 0 1 0 1 0;
ampl: expand Fill;
s.t. Fill[20]:
           5*Cut[1] + Cut[6] + Cut[7] + 3*Cut[8] >= 48;
s.t. Fill[45]:
           2*Cut[2] + 2*Cut[6] >= 35;
s.t. Fill[50]:
           2*Cut[3] + Cut[8] >= 24;
s.t. Fill[55]:
           2*Cut[4] >= 10;
s.t. Fill[75]:
          Cut[5] + Cut[7] >= 8;
```

... can also view after reduction by "presolve" routines

Complementarity Problems

Definition

Collections of complementarity conditions:

Two inequalities must hold, at least one of them with equality

Applications

Equilibrium problems in economics and engineering

Optimality conditions for nonlinear programs, bi-level linear programs, bimatrix games, . . .

Classical Linear Complementarity

Economic equilibrium

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product
param io {PROD,ACT} >= 0; # units of each product from
                           # 1 unit of each activity
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
   Price[i] >= 0 complements
      sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
   Level[j] >= 0 complements
      sum {i in PROD} Price[i] * io[i,j] <= cost[j];</pre>
```

... complementary slackness conditions for an equivalent linear program

Mixed Linear Complementarity

Economic equilibrium with bounded variables

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0;  # cost per unit
param demand {PROD} >= 0;  # units of demand
param io {PROD,ACT} >= 0; # units of product per unit of activity
param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
   Price[i] >= 0 complements
      sum {j in ACT} io[i,j] * Level[j] >= demand[i];
subject to Lev_Compl {j in ACT}:
   level_min[j] <= Level[j] <= level_max[j] complements</pre>
      cost[j] - sum {i in PROD} Price[i] * io[i,j];
```

... complementarity conditions for optimality of an equivalent bounded linear program

Nonlinear Complementarity

Economic equilibrium with price-dependent demands

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0;  # cost per unit
param demand {PROD} >= 0;  # units of demand
param io {PROD,ACT} >= 0; # units of product per unit of activity
param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price
var Price {i in PROD};
var Level {j in ACT};
subject to Pri_Compl {i in PROD}:
   Price[i] >= 0 complements
      sum {j in ACT} io[i,j] * Level[j]
         >= demzero[i] + demrate[i] * Price[i];
subject to Lev_Compl {j in ACT}:
   Level[j] >= 0 complements
      sum {i in PROD} Price[i] * io[i,j] <= cost[j];</pre>
```

... not equivalent to a linear program

Operands to complements: always 2 inequalities

Two single inequalities

```
single-ineq1 complements single-ineq2

Both inequalities must hold, at least one at equality
```

One double inequality

```
double-ineq complements expr expr complements double-ineq

The double-inequality must hold, and if at lower limit then expr \ge 0, if at upper limit then expr \le 0, if between limits then expr = 0
```

One equality

```
equality complements expr
expr complements equality
```

The equality must hold (included for completeness)

Complementarity

Solvers

"Square" systems

```
# of variables =
    # of complementarity constraints +
    # of equality constraints
```

Transformation to a simpler canonical form required

MPECs

Mathematical programs with equilibrium constraints

No restriction on numbers of variables & constraints

Objective functions permitted

... solvers beginning to emerge

General Combinatorial Problems

Formulations

More natural for modelers than integer programs

Independent of solvers

Compatible with existing modeling languages

Solution methods

Theoretically optimal

Based on tree search (like branch & bound)

Sensitive to details of search strategy

Combinatorial

Example: Job Sequencing with Setups

Given

A set of jobs, with production times, due times and earliness penalties

One machine that processes one job at a time

Setup costs and times between jobs

Precedence relations between certain jobs

Choose

A sequence for the jobs

Minimizing

Setup costs plus earliness penalties

C. Jordan & A. Drexl, A Comparison of Constraint and Mixed Integer Programming Solvers for Batch Sequencing with Sequence Dependent Setups.

ORSA Journal on Computing 7 (1995) 160–165.

Example: Variables and Costs

Either way

```
ComplTime[j] is the completion time of job j
Earliness penalty is the sum over jobs j of
   duePen[j] * (dueTime[j] - ComplTime[j])
```

Integer programming formulation

```
Seq[i,j] = 1 iff i immediately precedes j
Setup cost is the sum over job pairs (i,j) of
setupCost[i,j] * Seq[i,j]
```

More natural formulation

```
JobForSlot[k] is the job in the kth slot in sequence
Setup cost is the sum over slots k of
setupCost[JobForSlot[k],JobForSlot[k+1]]
```

Example: Production Constraints

Integer programming formulation

```
For each job i, ComplTime[i] ≤ dueTime[i]
For each job pair (i,j),
    ComplTime[i] + setupTime[i,j] + procTime[j] ≤
    ComplTime[j] + BIG * (1 - Seq[i,j])
```

More natural formulation

```
For each slot k,
    ComplTime[JobForSlot[k]] = min (
    dueTime[JobForSlot[k]],
    ComplTime[JobForSlot[k+1]]
    - procTime[JobForSlot[k+1]]
    - setupTime[JobForSlot[k],JobForSlot[k+1]] )
```

Example: Sequencing Constraints

Integer programming formulation

```
For each job i,
    sum {j in JOBS} Seq[i,j] = 1
For each job i,
    sum {j in JOBS} Seq[j,i] = 1
```

More natural formulation

```
all_different {k in SLOTS} JobForSlot[k]
```

Combinatorial

Representing "Range" Constraints

•General format

 $lower-bound \leq linear-expr + nonlinear-expr \leq upper-bound$

Arrays of *lower-bound* and *upper-bound* values

Coefficient lists for *linear-expr*

Expression tree for *nonlinear-expr*

•Expression tree nodes

Variables, constants

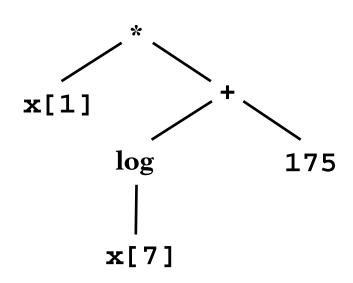
Binary, unary operators

Iterated summation, min, max

Piecewise-linear terms

If-then-else terms

... single array of variables



"Walking the Tree"

Example: AMPL interface to ILOG Concert

Definition of variables

```
IloNumVarArray Var(env, n_var);
for (j = 0; j < n_var - n_var_int; j++)
    Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOFLOAT);
for (j = n_var - n_var_int; j < n_var; j++)
    Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOINT);</pre>
```

Top-level processing of constraints

```
IloRangeArray Con(env, n_con);
for (i = 0; i < n_con; i++) {
    IloExpr conExpr(env);
    if (i < nlc)
        conExpr += build_expr (con_de[i].e);
    for (cg = Cgrad[i]; cg; cg = cg->next)
        conExpr += (cg -> coef) * Var[cg -> varno];
    Con[i] = (loConBnd[i] <= conExpr <= upConBnd[i]);
}</pre>
```

Tree-walk function for expressions

```
IloExpr build_expr (expr *e)
   expr **ep;
   IloInt opnum;
   IloExpr partSum;
   opnum = (int) e->op;
   switch(opnum) {
      case PLUS_opno: ...
      case MINUS_opno: ...
```

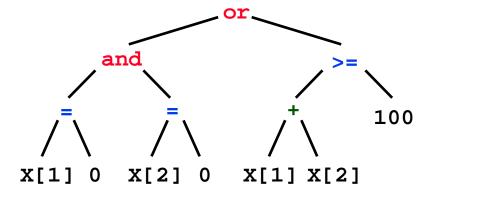
Tree-walk cases for expression nodes

```
switch(opnum) {
case PLUS opno:
    return build expr (e->L.e) + build expr (e->R.e);
case SUMLIST opno:
   partSum = IloExpr(env);
    for (ep = e->L.ep; ep < e->R.ep; *ep++)
       partSum += build expr (*ep);
    return partSum;
case LOG_opno:
    return IloLog (build expr (e->L.e));
case CONST opno:
    return IloExpr (env, ((expr n*)e)->v);
case VAR opno:
    return Var[e->a];
```

Logical Constraints

Simple forms

constraint and constraint constraint or constraint not constraint



$$(X[1] = 0 \text{ and } X[2] = 0) \text{ or } X[1] + X[2] >= 100$$

Representation

Expression tree for entire constraint

Constraint nodes whose children are constraint nodes

Constraint nodes whose children are expression nodes

Tree-walk function for constraints

```
IloConstraint build_constr (expr *e)
{
    expr **ep;
    IloInt opnum;
    opnum = (int) e->op;
    switch(opnum) {
        ......
    }
}
```

Tree-walk cases for constraint nodes

```
switch(opnum) {
  case OR_opno:
    return build_constr (e->L.e) || build_constr (e->R.e);
  case AND_opno:
    return build_constr (e->L.e) && build_constr (e->R.e);
  case GE_opno:
    return build_expr (e->L.e) >= build_expr (e->R.e);
  case EQ_opno:
    return build_expr (e->L.e) == build_expr (e->R.e);
  ......
}
```

Combinatorial

Further Tree-Walk Cases

Constraint types

Counting expressions and constraints

Structure (global) constraints

Variables in subscripts

Solver inputs

C++ types and operators (ILOG Concert)

Unindexed algebraic input format (BARON)

Codelist of 4-tuples (GlobSol)

Compact, flexible NOP format (GLOPT)

Extensions within AMPL

Allow random distributions for some problem data

Make distributions available to solvers

Extensions using AMPL

Add special expressions and conventions for stages & scenario trees

Compile to standard AMPL

Generate problem descriptions for various solvers

... various schemes being independently developed

Random Entities

Distributions set in the model

```
param avail_mean >= 0;
param avail_var >= 0;
param avail {1..T} random
   := Normal (avail_mean, avail_var);
```

Distributions assigned as data

```
param mktbas {PROD} >= 0;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;
var Market {PROD,1..T} random;
.....
let {p in PROD} Market[p,1] := mktbas[p];
let {p in PROD, t in 2..T} Market[p,t] :=
   else Market[p,t-1] + Uniform (grow_min[p], grow_max[p]);
```

Parameters or Variables?

Modeled like "random" parameters

Specify distributions in place of fixed data values

Instantiate the same model with different distributions

Processed like "defined" variables

Save a symbolic definition rather than a specific sample

Record in expression tree passed to solver driver

Evaluate (sample) as directed by solver

New Expression Types

Discrete distributions

```
Discrete (1/3, 20, 1/3, 50, 1/3, 175)
Discrete ( {s in SCEN} (prob[s],demand[s]) )
```

Stochastic objectives

Default: expected value of objective

Explicit: using functions Expected_Value and Variance

Further Concerns

Modeling

Recourse variables indicated by user-defined .stage suffix

Chance constraints defined by new function **Probability** (logical-expression)

Processing

For **Discrete**, **Uniform**, and other (half-) bounded distributions, AMPL's presolve phase may eliminate constraints.

Jacobian entries indicate which constraints involve which random entities

Relational Database Access

Principles

Model stays strictly independent of data

New table statement links model to relational tables

New read table, write table statements control data transfer

Open interface supports adding new links

Extensions

Reading and writing the same table

Indexed collections of tables or columns

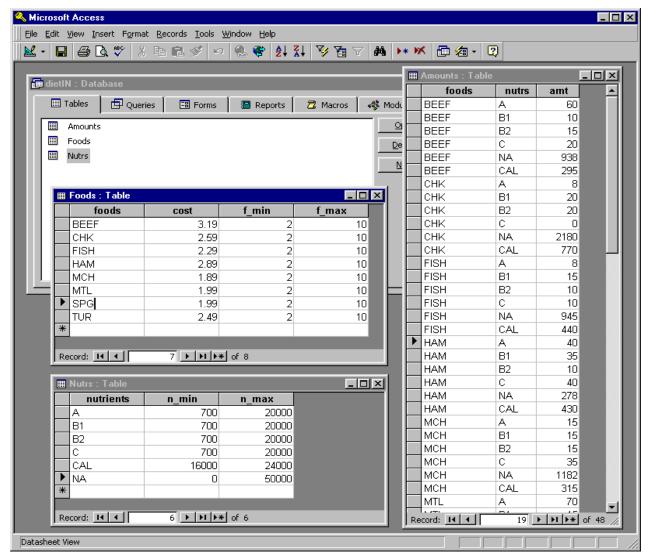
Reading from SQL queries

Example: Diet Model

```
set FOOD;
param cost {FOOD} > 0;
param f_min {FOOD} >= 0;
param f max {j in FOOD} >= f min[j];
set NUTR;
param n_min {NUTR} >= 0;
param n_max {i in NUTR} >= n_min[i];
param amt {NUTR,FOOD} >= 0;
var Buy {j in FOOD} >= f_min[j], <= f_max[j];</pre>
minimize Total_Cost:
   sum {j in FOOD} cost[j] * Buy[j];
subject to Diet {i in NUTR}:
   n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i];</pre>
```

Database

Example: Diet Data (in MS Access)

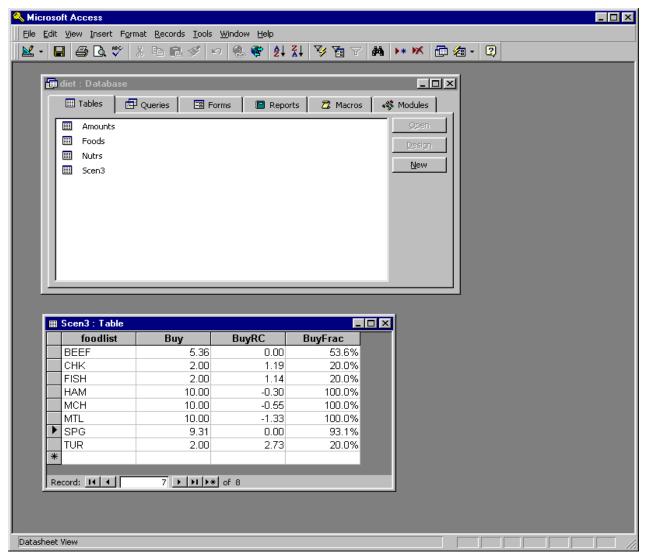


Example: Diet Script (in AMPL)

```
model diet.mod;
table dietFoods IN "ODBC" "diet.mdb" "Foods":
   FOOD <- [foods], cost, f min, f max;
table dietNutrs IN "ODBC" "diet.mdb" "Nutrs":
   NUTR <- [nutrients], n min, n max;</pre>
table dietAmts IN "ODBC" "diet.mdb" "Amounts":
   [nutrs, foods], amt;
read table dietFoods;
read table dietNutrs;
read table dietAmts;
solve;
table dietResults OUT "ODBC" "diet.mdb" "Scen3": [foodlist],
   Buy, Buy.rc ~ BuyRC, {j in FOOD} Buy[j]/f_max[j] ~ BuyFrac;
write table dietResults:
```

Database

Example: Diet Results (in MS Access)



Internet Optimization Services

Optimization Modeling-Language Servers

Single-language servers

General server projects related to optimization

NEOS Server

Client-Server Alternatives

General-purpose and special-purpose clients

Callable NEOS

Kestrel / AMPL

GAMS / AMPL via Kestrel

Metacomputing clients

MW, iMW, Condor / AMPL

Kestrel / AMPL for "parallel" submissions

The NEOS Server

www-neos.mcs.anl.gov/neos/

Over three dozen solvers, for

Linear programming

Linear network optimization

Linear integer programming

Nonlinear programming

Nonlinear integer programming

Nondifferentiable & global optimization

Stochastic linear programming

Complementarity problems

Semidefinite programming

NEOS Server Design

Flexible architecture

Central controller and scheduler machine

Distributed solver sites

Numerous formats

Low-level formats: MPS, SIF, SDPA

Programming languages: C/ADOL-C, Fortran/ADIFOR

High-level modeling languages: AMPL, GAMS, MP-MODEL

Varied submission options

E-mail

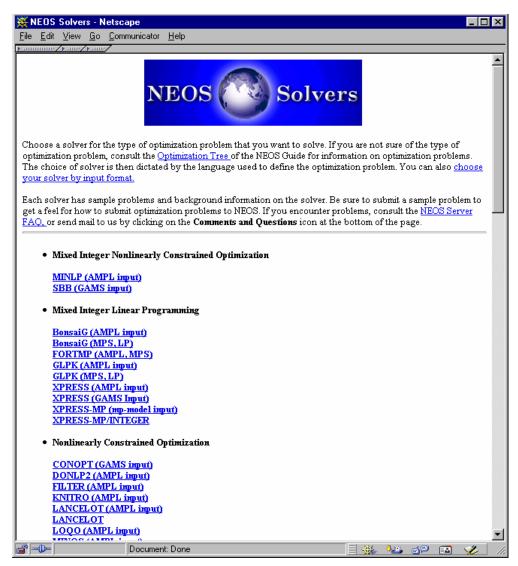
Web forms

TCP/IP socket-based submission tool: Java or tcl/tk

... handled 3195 submissions last week

... can accept submissions of new solvers, too

NEOS Solver Listing



Callable NEOS

General mechanism

CORBA-based connection between local program and NEOS Server

API under development to support varied specialized applications

Kestrel: a callable NEOS "solver" for AMPL (& GAMS)

www-neos.mcs.anl.gov/neos/kestrel.html

www.ampl.com/ampl/REMOTE/

www.gams.com/contrib/kestrel.htm

Installs like a solver but provides a NEOS gateway

Combines convenient local modeling environment with access to remote solvers

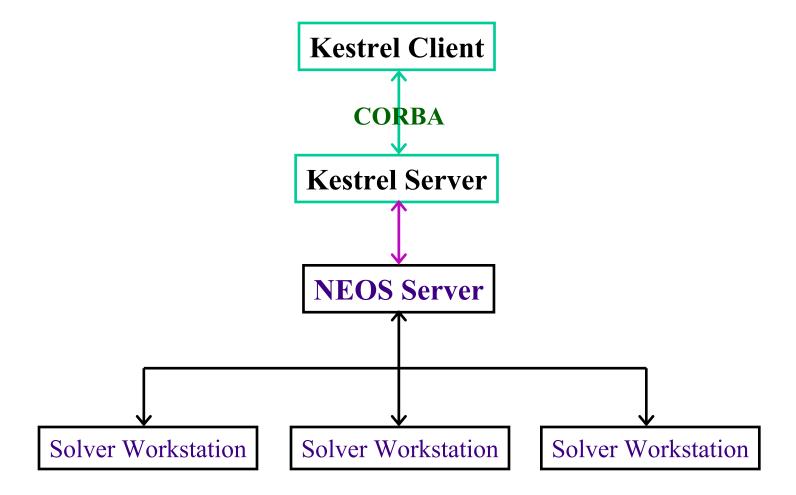
Kestrel Example

```
sw: running ampl
                                                                                          File Edit Help
sw: ampl -v
AMPL Version 20000516 (MS UC++ 6.0)
ampl: model gs2000b.mod;
ampl: data gs2000b.dat;
ampl: option solver kestrel;
ampl: option kestrel_options 'solver=logo';
ampl: option logo_options 'minlocfil outlev=1';
ampl: option show_stats 1;
ampl: solve;
Presolve eliminates 100 constraints.
Adjusted problem:
4290 variables:
        4260 binary variables
        30 linear variables
733 constraints, all linear; 36340 nonzeros
1 linear objective; 30 nonzeros.
Job has been submitted to Kestrel
Kestrel/NEOS Job number
                           : 115406
Kestrel/NEOS Job password : GKkIXgUu
Check the following URL for progress report:
     http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi?job=115406&pass=GKkIXgUu
In case of problems, e-mail :
     neos-comments@mcs.anl.gov
```

Kestrel Example (cont'd)

```
📑 sw: running ampl
 File Edit Help
Check the following URL for progress report :
     http://www-neos.mcs.anl.gov/neos/neos-cgi/check-status.cgi?job=115406&pass=GKkIXgUu
In case of problems, e-mail :
     neos-comments@mcs.anl.gov
Intermediate Solver Output:
Checking the AMPL files
Executing algorithm...
LOQO 6.00: minlocfil
out lev=1
It's a QP.
ignoring integrality of 4260 variables
       0.000000e+00
                       2.1e+02
                                   -4.263593e+05
                                                    1.7e+03
  1
       2.839512e+03
                       1.1e+01
                                   -4.206438e+05
                                                    8.8e+01
       2.803962e+03
                       5.8e-01
                                   -3.084425e+05
                                                    3.7e+00
  4
5
                       7.0e-02
                                                    1.4e-13
                                                                       DF
       1.804909e+03
                                   -2.965997e+04
                                                                       DF
       3.154594e+02
                       1.1e-02
                                   -3.913235e+03
                                                    1.7e-13
  6
       3.771029e+01
                       1.2e-03
                                   -2.201994e+02
                                                    4.6e-14
                                                                       DF
  7
                       6.4e-04
                                                    3.6e-14
                                                                       DF
       2.235023e+01
                                   -1.072541e+01
  8
       1.700808e+01
                       3.1e-04
                                    2.429905e+00
                                                    2.9e-14
                                                                       DF
  9
       1.536949e+01
                       1.4e-04
                                    9.410120e+00
                                                    4.6e-14
                                                                       DF
                       4.4e-05
                                    1.271394e+01
                                                    3.8e-14
                                                                       DF
 10
       1.446494e+01
 11
       1.405838e+01
                       2.4e-06
                                    1.326864e+01
                                                    3.0e-14
                                                                       DF
 12
       1.400320e+01
                       1.4e-07
                                    1.396308e+01
                                                    3.5e-14
                                                                    PF DF
                                                                    ΡF
 13
                                                                       DF
       1.400016e+01
                       7.3e-09
                                    1.399815e+01
                                                    3.9e-14
                                                                    PF DF
 14
       1.400001e+01
                       3.6e-10
                                    1.399991e+01
                                                    3.5e-14
 15
       1.400000e+01
                       1.8e-11
                                    1.400000e+01
                                                    4.1e-14
                                                                    PF DF
       1.400000e+01
                       9.1e-13
                                    1.400000e+01
                                                    3.5e-14
                                                                    PF DF
Finished call
LOQO 6.00: optimal solution (16 QP iterations, 31 evaluations)
primal objective 14.00000002
  dual objective 13.99999977
ampl: display MinNotDom, MaxNotDom;
                 MinNotDom MaxNotDom
                                         :=
Office Americas
amp1:
```

Outline of Kestrel Operations



Other Kestrel Enhancements

Connections to results

Web connection to intermediate results

Kestrel client access to recent results after connection to Kestrel server has been broken

... job number and password required

Flexibility

NEOS Server now accepts binary data from any input source Jobs on many solver workstations may be killed by user

Kestrel "Parallel" Processing

Invoke Kestrel within a loop

kestrelsub submits multiple solve requests

NEOS Server distributes requests to multiple workstations (queueing some if necessary)

kestrelret retrieves requests in the order they were sent

Example from a decomposition script

```
for {p in PROD} {
    problem SubI[p];
    commands kestrelsub;
};

for {p in PROD} {
    problem SubI[p];
    commands kestrelret;
    display Artif_Reduced_Cost[p];
    ...
};
```

Solver-Specific Directives & Results

System-defined "dot suffixes" (original)

Built into AMPL: Trans.ub, Balance.slack, etc.

User-defined suffixes

Define your own suffixes for use in AMPL scripts

Define solver-specific suffixes to send directives relating to individual variables, constraints, objectives

Solver-defined suffixes

Define new suffixes to return additional, solver-specific values

... support post-solution analyses

User-Defined

```
ampl: model multmip1.mod;
ampl: data multmip1.dat;
ampl: solve;
CPLEX 5.0: optimal integer solution;
  objective 229850
470 simplex iterations
112 branch-and-bound nodes
```

```
ampl: model multmip1.mod;
ampl: data multmip1.dat;
ampl: suffix priority integer, > 0, < 5000;
ampl: let {i in ORIG, j in DEST}
ampl? Use[i,j].priority := sum {p in PROD} demand[j,p];
ampl: solve;
CPLEX 5.0: optimal integer solution;
  objective 229850
253 simplex iterations
49 branch-and-bound nodes</pre>
```

Definition Command

type-phrase, restriction-phrase

Similar to param declarations

inout-phrase

```
Specifies treatment of suffix when a solver is invoked (by solve) . . .
```

Suffixes

Input-Output Options

Pass values Read values to solver from solver when invoked? on termination? OUT yes no IN no yes INOUT yes yes LOCAL no no

Examples

OUT: integer variable priorities, time periods

IN: sensitivity, infeasibility information

INOUT (default): simplex basis statuses

LOCAL: values special to your application

```
ampl: model diet.mod;
ampl: data diet2.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 5.0: infeasible problem
7 iterations (7 in phase I)
ampl: option cplex_options 'iisfind=1';
ampl: solve;
CPLEX 5.0: iisfind=1
CPLEX 5.0: infeasible problem
0 iterations
Returning iis of 7 variables and 2 constraints.
suffix iis symbolic OUT;
option iis_table '\
               not in the iis\
0
        non
1
       low at lower bound\
       fix
               fixed\
               at upper bound\
       upp
                                                     (continued)
٠,
```

Solver-Defined Key Tables

Infeasibility analysis (cont'd)

suffix suff symbolic induces AMPL option suff_table

Solver returns integers, but strings from table are used and displayed

```
ampl: option iis table;
option iis_table '\
       non not in the iis\
0
       low at lower bound\
      fix fixed\
      upp
               at upper bound\
ampl: display {i in 1.._ncons: _con[i].iis <> "non"}
         (_conname[i],_con[i].iis);
ampl?
   _conname[i] _con[i].iis :=
   "diet['B2']"
                  low
   "diet['NA']"
                  upp
```

Example: Sensitivity ranges

```
ampl: model net3.mod;
ampl: data net3.dat;
ampl: option solver cplex;
ampl: option cplex options 'sensitivity';
ampl: solve;
CPLEX 5.0: optimal solution; objective 1819
3 iterations (2 in phase I)
suffix up OUT;
suffix down OUT;
suffix current OUT;
ampl: display varname, var.down, var.current, var.up;
            _var.down _var.current _var.up :=
: _varname
1 "PD_Ship['NE']" -1e+20 2.5
2 "PD_Ship['SE']" 3 3.5 1e+20
3 "DW_Ship['NE','BOS']" -1e+20 1.7 1e+20
4 "DW_Ship['NE','EWR']" -1e+20 0.7 1.8
5 "DW_Ship['NE','BWI']" 0.2 1.3
                                         1.8
```

Example: Ray of unboundedness

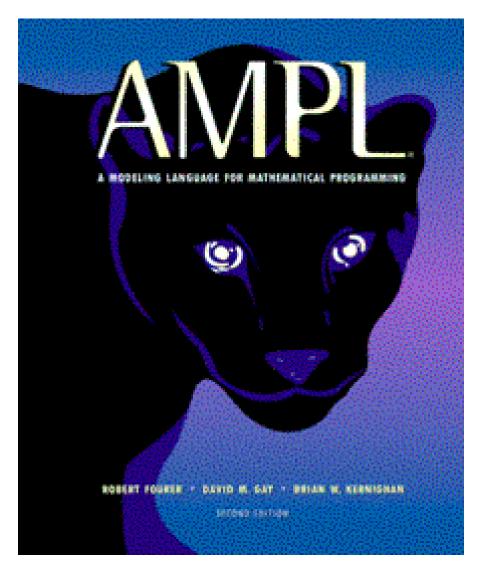
From Benders decomposition of a location-transportation problem

```
problem Master: Build, Max_Ship_Cost, Total_Cost, Cut_Defn;
problem Sub: Supply Price, Demand Price, Dual Ship Cost, Dual Ship;
suffix unbdd OUT;
let nCUT := 0;
let Max Ship Cost := 0;
let {i in ORIG} build[i] := 1;
param GAP default Infinity;
repeat {
   solve Sub;
   if Dual_Ship_Cost <= Max_Ship_Cost + 0.00001</pre>
      then break;
   if Sub.result = "unbounded" then { ...
                                                            (continued)
```

Example: Ray of unboundedness (cont'd)

```
if Sub.result = "unbounded" then {
    let nCUT := nCUT + 1;
    let cut_type[nCUT] := "ray";
    let {i in ORIG} supply_price[i,nCUT] := Supply_Price[i].unbdd;
    let {j in DEST} demand_price[j,nCUT] := Demand_Price[j].unbdd;
    }
    else { ...
    }
    solve Master;
    let {i in ORIG} build[i] := Build[i];
};
```

AMPL Book 2nd Edition Now Available



2nd Edition Features

New chapters

Database access Command scripts

Modeling commands Interactions with solvers

Display commands Complementarity problems

... all extensions previously only described roughly at web site

Updates and improvements

Existing chapters extensively revised

Updated reference manual provided as appendix

... and at half the recent price of the 1st edition!

... see www.ampl.com/BOOK/