

Conic Programming in GAMS

Armin Pruessner, Michael Bussieck, Steven Dirkse, Alex Meeraus

GAMS Development Corporation

INFORMS 2003, Atlanta October 19-22

Direction

- What this talk is about
 - Overview: the class of conic programs
 - Conic constraints and examples using GAMS
 - Solvers in GAMS and numerical results
 - CONE World a forum for conic programming
- What this talk is not about:
 - Conic programming algorithms
 - Detailed applications

Overview

What are conic programs?

- Generalized linear programs with the addition of nonlinear convex cones
- Class includes, for example,
 - Linear program (LP)
 - (Convex) Quadratic program (QP)
 - (Convex) Quadratically constrained QP (QCQP)
- Recently much activity in this area!

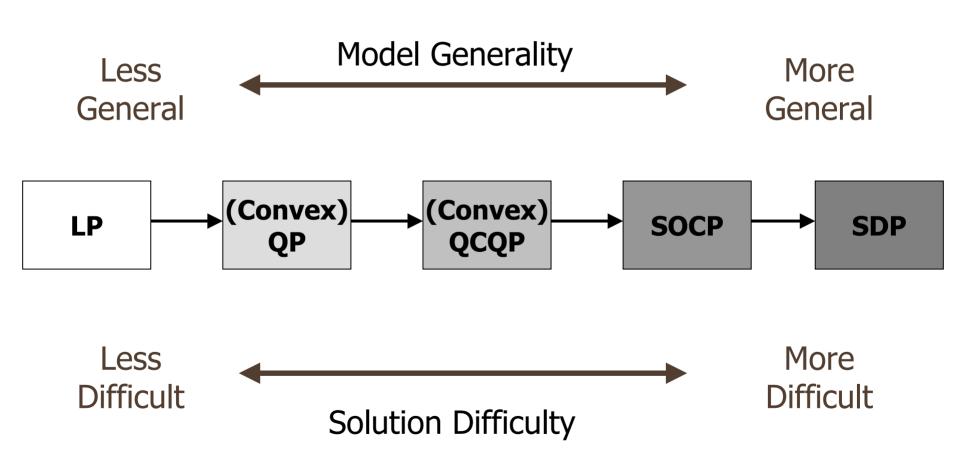
Areas and Applications

Conic programming used for:

- Engineering
 - Truss topology design
 - FIR filter design
- Finance
 - Portfolio optimization
- Statistics and Numerical Linear Algebra
 - Robust linear programming
 - Norm minimization problems

7th DIMACS Implementation Challenge on SDP and Second Order Cone Programming (SOCP)

Modeling and Solving



Cone Programs

General form of conic program

min
$$f^T x$$

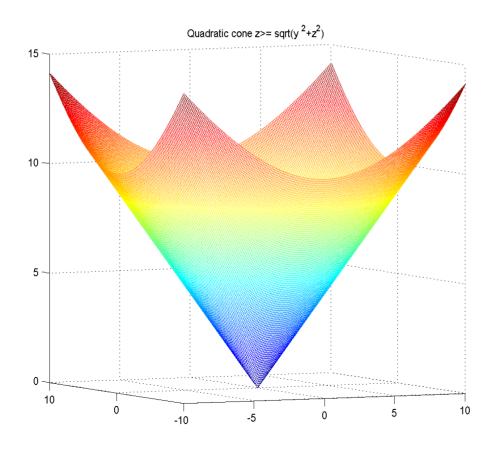
s.t. $Ax \le b$
 $x \in C$, $x \in [l^x, u^x]$

where C is a second order cone (dim=k):

$$C_{k} = \left\{ \begin{bmatrix} x_{1:(k-1)} \\ x_{k} \end{bmatrix} : \|x_{1:(k-1)}\|_{2} \le x_{k} \right\}$$

Example (quadratic cone)

Quadractic cone *C* sometimes also called Lorentz cone (or ice cream cone)



Trivial Quadratic Cone:

$$z \ge \sqrt{x^2 + y^2}$$

Second Order Cone Programs

 $\min \quad f^T x$

s.t.
$$||C_i x + d_i|| \le a_i^T x + b_i$$
, $i = 1,..., N$

$$x \in \mathbb{R}^n$$
 $f, a_i \in \mathbb{R}^n$ $C_i \in \mathbb{R}^{(k_i-1)\times n}$ $d_i \in \mathbb{R}^{k_i-1}$ $b_i \in \mathbb{R}$

Equivalent to conic program

- Linear constraints: cone dimension k=1
- Cone constraints: change of variables

(vector)
$$y = C_i x + d_i$$
, $z = a_i^T x + b_i$

Types of Cones

Quadratic Cone

$$x_{i} \geq \sqrt{\sum_{j \neq i} x_{i}^{2}}$$

Rotated Quadratic Cone

$$2x_{i}x_{j} \geq \sum_{k \neq i, k \neq j} x_{k}^{2}$$

Sometimes preferable for modeling quadratic inequalities

Rotated Quadratic Cone

Show equivalence to quadratic cone:

$$2xy \ge ||z||_2^2$$

$$xy \ge \sum_i z_i^2 - xy$$
Rotated quadration in the content of the

$$(x+y) \ge \begin{bmatrix} z \\ (x-y) \end{bmatrix}$$

Rotated quadratic cone

$$+x^2+y^2$$

Quadratic cone

General Transformation

• If $x \in C^r \Leftrightarrow Ax \in C^q$ where

- C^r rotated quadratic cone
- Cq quadratic cone

$$A = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}$$

Conic Constraints in GAMS

In the GAMS modeling language:

- Conic constraints denoted by =C=
- Conic programs result in "linear programs" in GAMS

Quadratic Cone in GAMS

```
Set s /s1,s2,...,sn/;
Set t(s) / s2,...,sn/;
Variable x(s);
```

Conic "LP" formulation

```
x('s1') = C = sum(t(s), x(s));
```

Equivalent NLP formulation

```
x('s1') = G = sqrt[sum(t(s), sqr(x(s)))];
```

→ Note: Summation on right hand side

Rotated Quadratic Cone

```
Set s /s1,s2,s3,...,sn/;
Set t(s) / s3,...,sn/;
Variable x(s);
```

Conic "LP" formulation

```
x('s1')+x('s2') = C = sum(t(s), x(s));
```

Equivalent NLP formulation

```
2*x('s1')*x('s2')=G= sum[t(s), sqr(x(s))];
```

→ Note: Summation on right hand side

Example: Complex L1 Norm

Complex L1 Norm Minimization

- Minimize ||Ax-b||₁ where A,x,b are complex valued
- We can write this as

$$\min \begin{bmatrix} \operatorname{Re}(A) & -\operatorname{Im}(A) \\ \operatorname{Im}(A) & \operatorname{Re}(A) \end{bmatrix} \begin{pmatrix} \operatorname{Re}(x) \\ \operatorname{Im}(x) \end{pmatrix} - \begin{pmatrix} \operatorname{Re}(b) \\ \operatorname{Im}(b) \end{pmatrix} \Big|_{2}$$

Example (Continued)

Complex L1 Norm Minimization

min
$$\sum_{i} t(i)$$

s.t. $\begin{pmatrix} z_{re}(i) \\ z_{im}(i) \end{pmatrix} = \begin{bmatrix} \operatorname{Re}(A) & -\operatorname{Im}(A) \\ \operatorname{Im}(A) & \operatorname{Re}(A) \end{bmatrix} \begin{bmatrix} \operatorname{Re}(x) \\ \operatorname{Im}(x) \end{pmatrix} - \begin{bmatrix} \operatorname{Re}(b) \\ \operatorname{Im}(b) \end{bmatrix}$
 $t(i) \geq \sqrt{z_{re}^{2}(i) + z_{im}^{2}(i)}$ (quadratic cone)

GAMS Model (Quadratic Cone)

```
Objective.. obj
                 =E= sum(i, t(i));
reseq re(i).. res re(i) =E= sum(j, A re(i,j)*x re(j))
                          - sum(j,A im(i,j)*x_im(j))
                          - b re(i);
reseq im(i).. res im(i) =E= ...
coneeq(i)... t(i) =C= res re(i) + res im(i);
Model conemodel /objective, reseq re, reseq im, coneeq/;
Solve conemodel using lp minimizing obj;
```


Portfolio Optimization

$$min \quad \sum_{j,j'} x_j \sigma_{j,j'} x_{j'} = \alpha ||Dx||_2^2$$

$$s.t. \quad \sum_{j} x_j = 1, \qquad x_i \ge 0$$

$$\sum_{j} p_j x_j \ge r_{\min}$$

Objective is to minimize variance (risk), subject to an expected return

 $\sigma_{i,i'}$ = covariance

 $\mathfrak{S}=1$ / (numdays-1)

 $x_j = \%$ of investment in stock j

 p_j = price change (return) for stock j

 r_{min} = minimum expected return

 $D_{j,d}$ = Deviation per day d of stock j wrt to mean return

Portfolio Optimization (Cont.)

Can rewrite: $\min \alpha \|Dx\|_2^2$

By introducing intermediate variables p,q, and w.

minimize
$$\alpha 2r$$

subject to $w(d) = \sum_{j} D(j,d)x(j)$
 $q = 1$
 $2qr \ge \sum_{d} w(d)^{2}$

GAMS Model (Rotated Cone)

```
Objective.. obj =E= a*(2*r);
Budget.. sum(j, x(j)) = E = 1;
             Sum(j, p(j)*x(j)) = G = rmin;
Return..
Wcone(days).. w(d) = sum(j, D(j,d)*x(j);
cone eq1.. q = E = 1;
cone_eq2.. q + r = C = sum(d, w(d));
Model conemodel / all /;
Solve conemodel using lp minimizing obj;
```


GAMS/MOSEK

Solving Conic Models in GAMS:

- Newest addition is MOSEK
 - LP (simplex or interior point)
 - MIP (branch and bound)
 - Conic Programs (conic interior point):
 - Convex NLP

Solver CONOPT also accepts conic constraints

Numerical Examples

DIMACS Challenge Models (SDP and SOCP)

- Chose subset of models from DIMACS (only SOCP models)
- SOCP models:
 - Sum of norms
 - Antenna array weight design
 - Scheduling problems
- → MOSEK solves all SOCP models and is the most efficient

Numerical Examples

DIMACS Benchmarks by Hans Mittelmann

 Solvers: MOSEK 2.5.1 (ext MPS), LOQO 6.03, SDPT3 3.01, SeDuMi 1.05R4

- 18 SOCP problems
 - In SeDuMi (MATLAB) format
 - MOSEK: extended QPS format (based on MPS)

DIMACS Results (H. Mittelmann)

Problem	LOQO	MOSEK	SDPT3	SeDuMi
Nb	11	3	11	9
Nb_L1	9	3	20	11
Nb_L2	16	8	18	24
Nb_L2_Bessel	7	2	11	12
Nql30	11	2	4	4
Nql60	151	9	14	9
Nql180	ММ	182	232	459
Qssp30	15	2	6	3
Qssp60	221	9	29	18
Qssp180	ММ	355	504	780
Sched_50_50_orig	5	1	6	6
Sched_100_50_orig	22	2	17	13
Sched_100_100_orig	94	4	28	29
Sched_200_100_orig	409	10	95	138
Sched_50_50_orig	7	1	6	5
Sched_100_50_orig	28	2	13	9
Sched_100_100_orig	107	5	22	32
Sched_200_100_orig	445	10	68	75

MM: memory problems

DIMACS Results (Cont.)

Use Performance Profiles (Dolan and Moré, 2002) to visualize results:

- Cumulative distribution function for a performance metric
- Performance metric: ratio τ of current solver time over best time of all solvers for "success"

 Intuitively: probability of success if given τ times fastest time (τ=ratio)

Profiles (Data: H. Mittelmann)

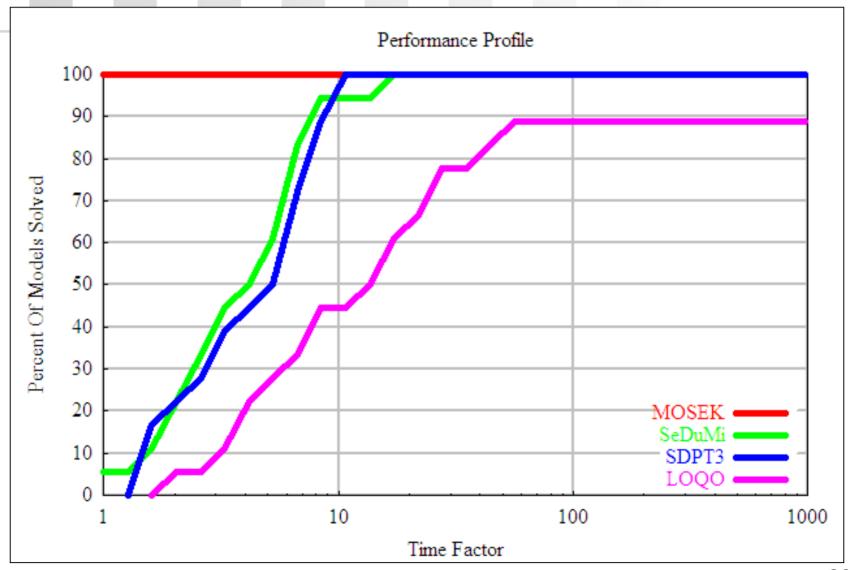
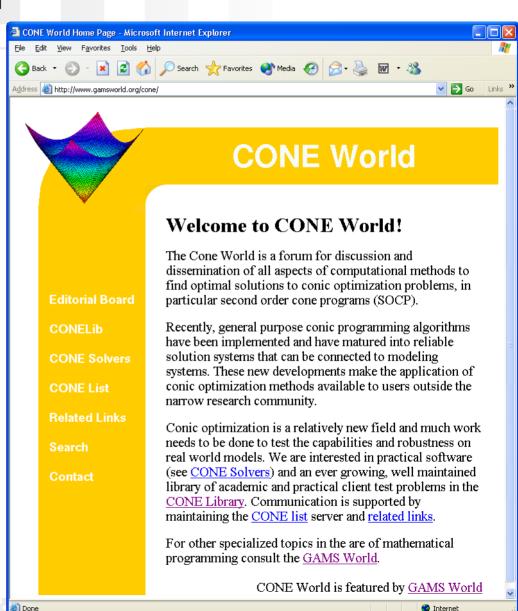


Figure 1

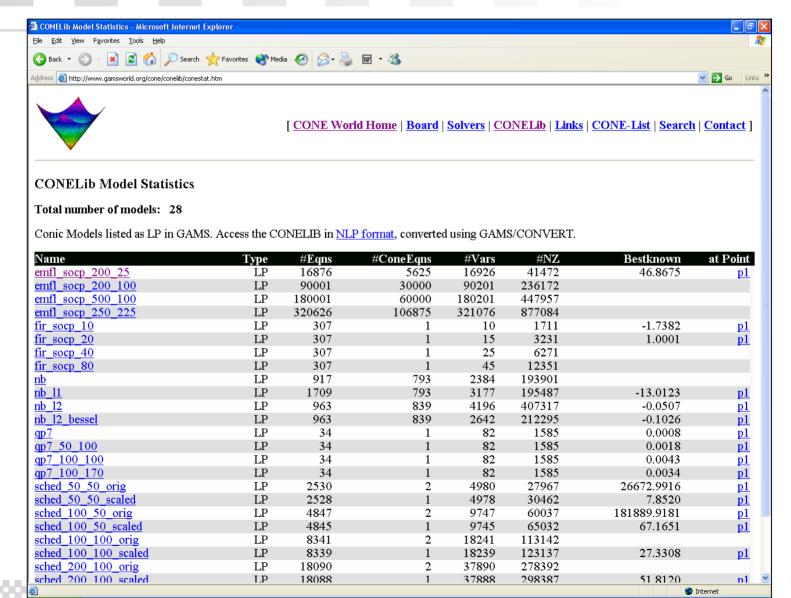
26

CONE World

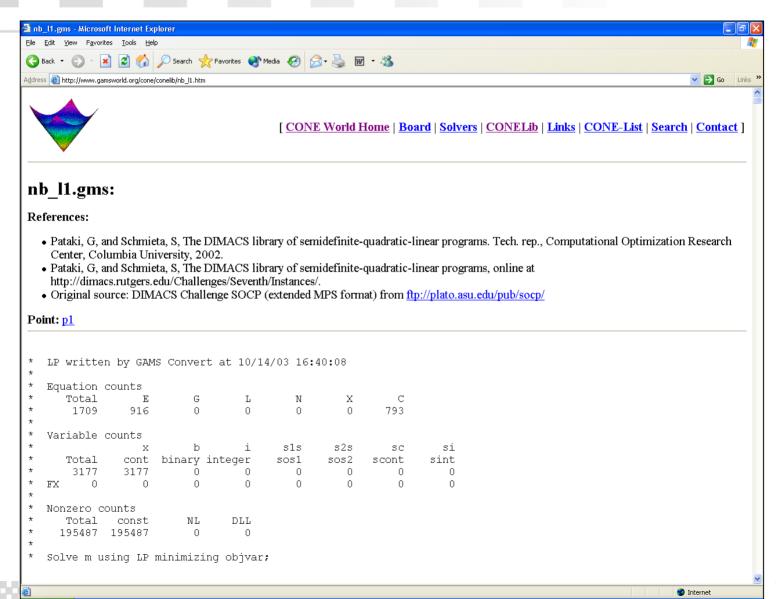
- An online forum for discussion and information on cone programming
- CONELib library of models
 - GAMS cone format
 - NLP formulation
- Conic programming solvers
- Links and lists



ConeLib - Conic Models in GAMS



ConeLib - Conic Models in GAMS



Cone Versus NLP Formulation

- Modeling conic constraints can be tedious
 - NLP form of quadratic cone is more natural
 - Rotated quadratic cone for QP is cumbersome

BUT

- Potentially significant computational advantages
- Compare cone vs. NLP formulation on CONELib (currently 28 models)
 - NLP formulation: substitute into conic constraint (converted using CONVERT utility in GAMS)
 - In practice "smarter" NLP formulations may exist depending on model

Cone Vs. NLP (Efficiency)

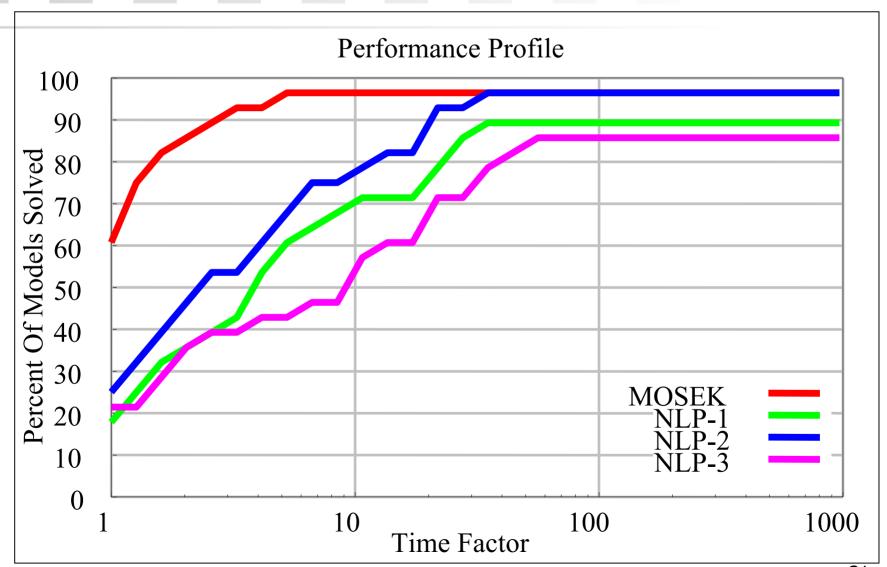


Figure 2

Reproducibility of Results

- Reproducibility of results is key to validity in scientific disciplines (but sometimes neglected)
 - Open data source (models, solvers, solver options)
 - Should be easily reproducible
- As part of the GAMS World, we provide downloadable scripts to reproduce results
- Currently only for NLP/Cone models (Global World)
 - See www.gamsworld.org/global/reproduce

Reproducibility of Results

GLOBAL Reproducibility of Results

Key to validity of scientific results is the reproducibility of numerical experiments. In this section we show how numerical results of papers can be reproduced, giving step-by-step instructions on reproducibility of results on local machines. We provide links to the models used, as well as scripts to run the actual experiments.

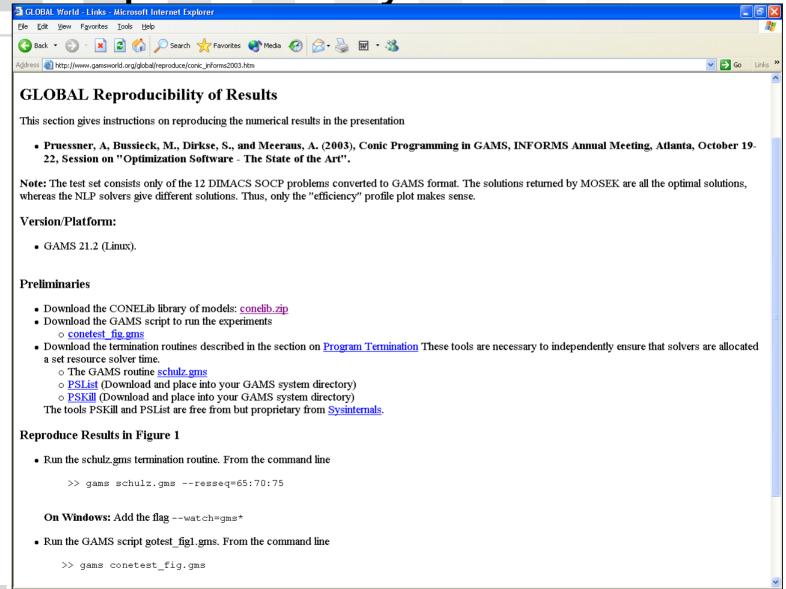
Papers and Presentations With Reproducible Numerical Results

- Pinter, J (2003), GAMS/LGO Nonlinear Solver Suite: Key Features, Usage, and Numerical Results. Submitted.
 - o Instructions to reproduce the results
 - o Results: Figure 1 (see the performance profile plot)
 - o Results: Figure 2 (see the performance profile plot)
- Pruessner, A, Bussieck, M., Dirkse, S., and Meeraus, A. (2003), Conic Programming in GAMS, INFORMS Annual Meeting, Atlanta, October 19-22, Session on "Optimization Software The State of the Art".

Internet

- o Instructions to reproduce the results
- o Results: Figure 2 (see the performance profile plot)

Reproducibility of Results



Internet

Conclusions

- Addition of conic programming capability within GAMS
- MOSEK as state-of-the-art conic programming solver
- Although modeling still cumbersome, significant computational advantages using cones
- CONELib: growing collection of conic programming models
- Presentation will be available under

References

- Lobo, M.S., Vandenberghe, L., Boyd, S. and Lebret, H. *Applications of Second Order Cone Programming*, Linear Algebra and its Applications, 284:193-228, November 1998.
- MOSEK Optimization Tools Help Desk, Version 2, online at www.mosek.com/documentation, 2003.
- H.D. Mittelmann, *An independent benchmarking of SDP and SOCP solvers*, Math Program., Series B, 2002 (appeared electronically).
- E. D. Dolan and J. J. More, *Benchmarking optimization* software with performance profiles, Math. Programming, 91 (2), 201-213, 2002.

36