

Grid Computing in Finance using an Algebraic Modeling System

Franz Nelißen FNelissen@gams.com

GAMS Software GmbH www.gams.de

OR 2007 Saarbrücken, Germany, September 5-7, 2007

Agenda

Mathematical Optimization in Finance

Grid Computing

Sun's Network.com

GAMS Development / GAMS Software

- Roots: Research project World Bank 1976
- Pioneer in Algebraic
 Modeling Systems
 used for economic modeling
- Went **commercial** in 1987
- Offices in Washington, D.C and Cologne
- Professional software tool provider, not a consulting company
- Operating in a segmented niche market
- Broad academic & commercial user base and network

General Algebraic Modeling System

Agenda

Mathematical Optimization in Finance

- Grid Computing
- Sun's Network.com

Mathematical Optimization in Finance

Very active research field with significant contributions and important practical applications

Some of the reasons:

- Continual stream of challenging problems with obvious impact of uncertainty
- High availability of data
- Validation potential benchmarking
- Very competitive and liquid markets

Many instruments, tools and strategies

Portfolio Optimization Models

- Seminal Developments: Mean-Variance Portfolio Optimization
- Scenario Optimization
- Stochastic Programming

The Mean-Variance Model

Markowitz (1952), Nobel prize 1990

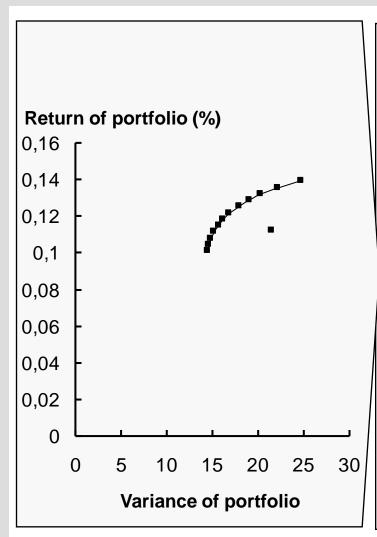
Given

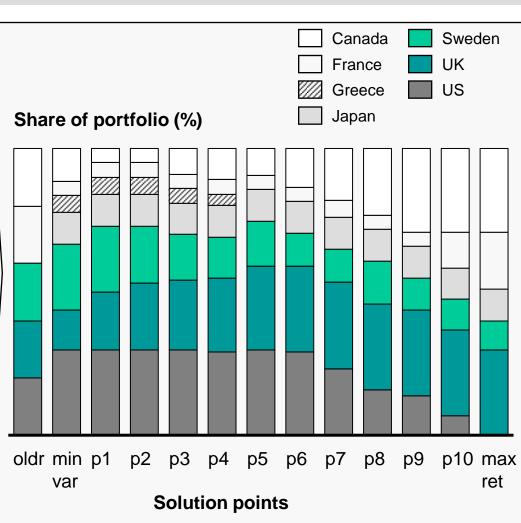
Goal

Some investments x_i with historical data

- Rewards = Expected returns of investments: μ_i
 (Mean of historical returns)
- Risk: Variance of investments Q_{i,i}

Balance risk r of portfolio against expected returns of portfolio


Algebra


Variance of Portfolio	$Min \sum_{i=1}^{I} \sum_{j=1}^{J} x_i Q_{i,j} x_j$
Target return	$s.t. \sum_{i=1}^{I} \mu_i x_i \ge r$
Budget constraint	$\sum_{i=1}^{I} x_i = 1$
No short sales	$x_i \ge 0$

Minimize variance *v* of portfolio for a given target return *r*

Efficient Frontier and Portfolios

Business Rules

- Institutional or legal requirements: Describe the way the institution is operating
- Additional constraints, which have to be satisfied
- Not defined by modeling experts
- Independent of risk model
- Basel II

Simple Business Rules

Do not change the model type:

- Short selling
- Risk free borrowing
- Upper or lower bounds on certain instruments

More Complex Business Rules

Require introduction of integer (binary) variables:

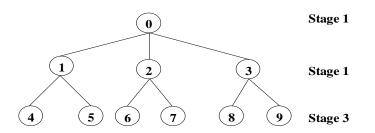
- Cardinality Constraint: Restrict number of investments y_i in portfolio
- **Threshold Constraint**: Investments x_i can only be purchased at certain minimum $I_{l,i}$ or maximum $I_{u,l}$
- more trading restrictions ...

Scenario Optimization Models

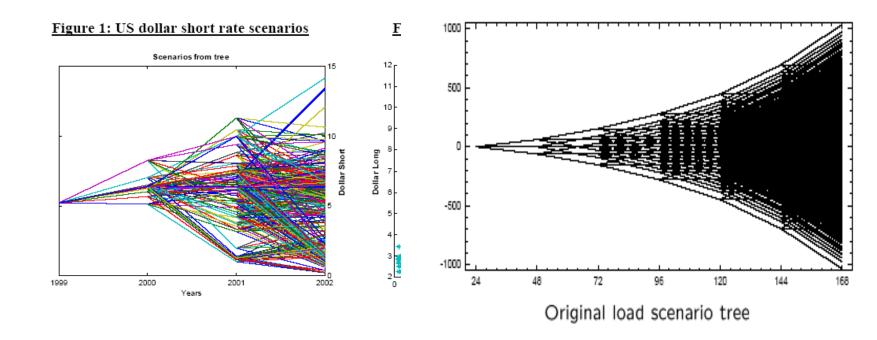
Scenarios capture complex interactions between multiple risk factors

- Different methods for risk measurement:
 - Mean Absolute Deviation Models
 - Index Tracking Models
 - Expected Utility Models
 - VAR Models (linear Version: CVAR)
- Models are solved over all scenarios

Modeling Issues:


- Linear Models, but business rules may introduce binary variables
- Lots of independent model runs, which can be handled in parallel

Stochastic Programming (SP)


Stochastic Programming models allow **Sequence of Decisions**:

- Scenarios: Complete set of possible discrete realizations of the uncertain parameters with probabilities
- Stages: Decisions points. First stage decisions now, second stage decision (depending of the outcome of the first stage decision) after a certain period and so on
- Recourse: Decision variables can adept to the different out comes of the random parameters at each stage

More Complex Scenario Trees

Challenges

Deterministic equivalent: Includes all scenarios and stages

- → Size of model explodes
 - Generation difficult
 - Solution may not be possible
 - Interpretation and validation of results
- → Less applications than one may expect

But: Number of uncertain parameters is small:

- Efficient representation of the uncertain data within the Algebraic Modeling System?
- Scenarios may only differ slightly
- Problems are structured → Specialized Algorithmen available (Decomposition)?

Agenda

- Mathematical Optimization in Finance
- **Grid Computing**
- Sun's Network.com

What is Grid Computing?

A pool of connected computers managed and available as a common computing resource

- Effective sharing of CPU power
- Massive parallel task execution
- Scheduler handles management tasks
- E.g. Condor, Sun Grid Engine, Globus
- Can be rented or owned in common
- Licensing & security issues

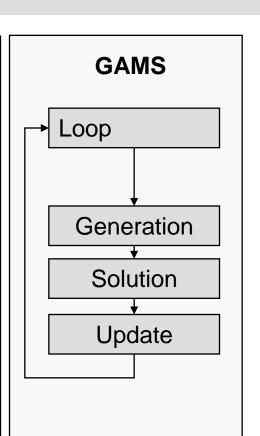
Advantages of Grid Computing

- Solve a certain number of scenarios faster, e.g.
 - sequential: 50 hours
 - parallel (200 CPUs): ~15 minutes
 - Get better results by running more scenarios*:

#SIM VaR error		CVaR error
1000	5.42%	6.74%
20,000	1.21%	1.49%

^{*} http://www.tc.cornell.edu/NR/shared/Presentations/24Feb04.Garp.pdf

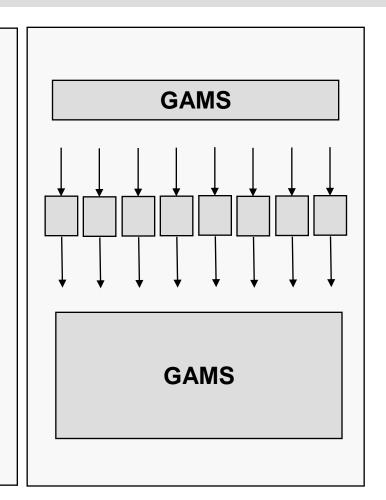
GAMS & Grid Computing


- Scalable:
 - support of massive grids, but also
 - multi-cpu / multiple cores desktop machines
 - "1 CPU Grid"
- Platform independent
- Only minor changes to model required
- Separation of model and solution method
 - → Model stays maintainable

Simple Serial Solve Loop

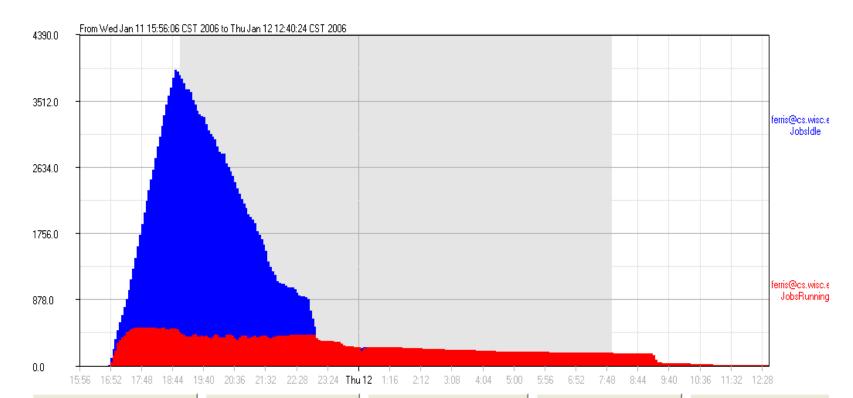
```
Loop(p(pp),
    ret.fx = rmin + (rmax-rmin)
        /(card(pp)+1)*ord(pp);

Solve minvar min var using miqcp;
    xres(i,p) = x.l(i);
    report(p,i,'inc') = xi.l(i);
    report(p,i,'dec') = xd.l(i)
);
```



How do we get to parallel and distributed computing?

GRID Specific Enhancements


- Submission of jobs
- 2. "Grid Middleware"
 - Distribution of jobs
 - Job execution
- 3. Collection of solutions
- 4. Processing of results

Results for 4096 MIPS on Condor Grid

- Submission started Jan 11,16:00
- All jobs submitted by Jan 11, 23:00
- All jobs returned by Jan 12, 12:40
 - 20 hours wall time, 5000 CPU hours
 - Peak number of CPU's: 500

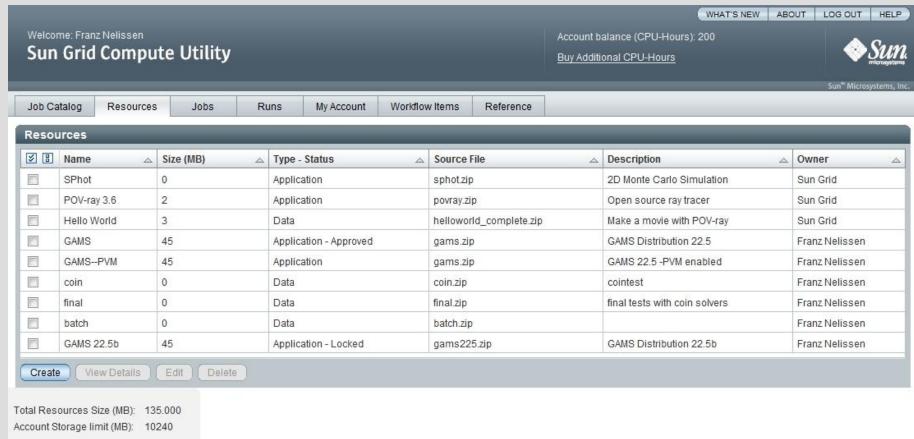
Agenda

- Mathematical Optimization in Finance
- Grid Computing
 - **Sun's Network.com**

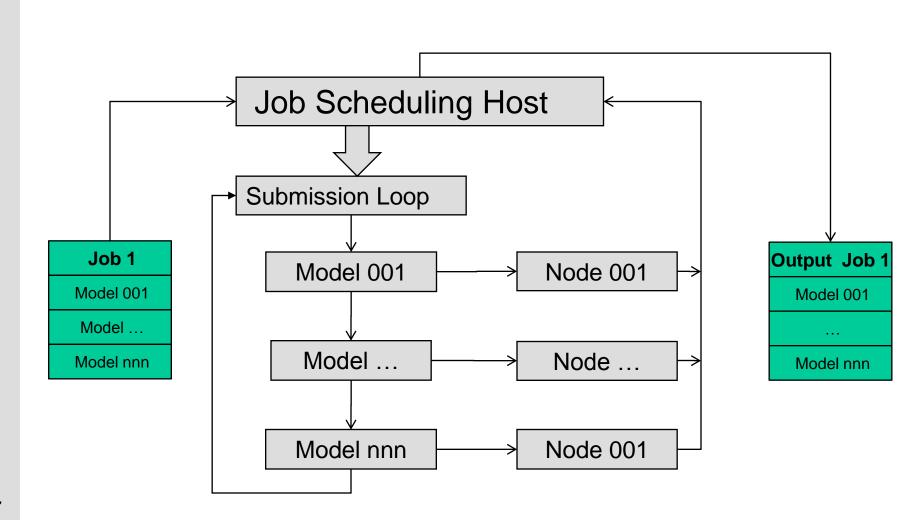
Network.com

Network.com operated by Sun:

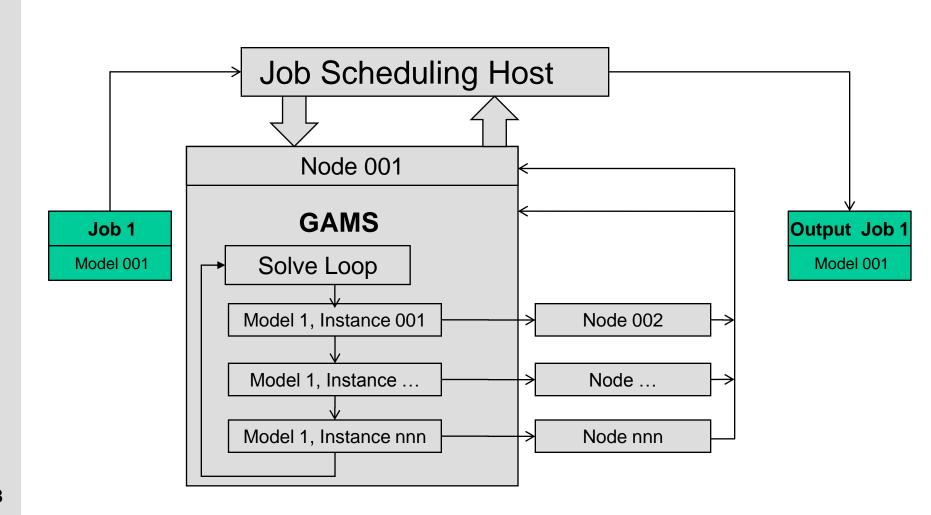
- On-demand grid computing service
- Pay as you go utility: All-inclusive price of 1 USD per CPU-hour (Hardware)
- A few hundred CPU's (AMD Opteron, 2 CPU SMP, 2 *4 GB RAM) running Solaris 10
- Similar Services:
 - Amazon: "Elastic Compute Cloud (EC2)"
 - ZeroC: IceGrid



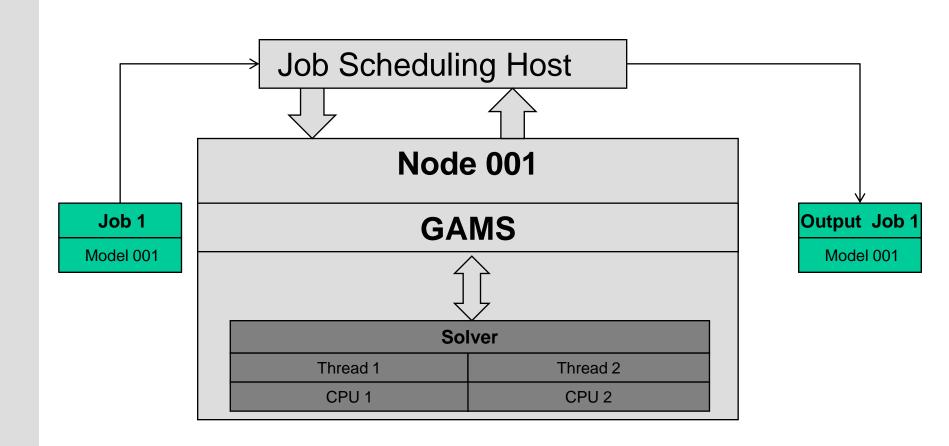
Using Network.com


Using Network.com

→ More Information at: http://www.gams.com/sungrid/



Parallel Execution of Job Arrays



Using the GAMS GRID Facilities

Parallel Solver Threads (SMP)

- Restricted to two parallel Threads
- Not available with all Solvers

Further Developments

- Better Interfaces to different Grid Architectures
- Parallel Submission of Jobs from within GAMS
- Better Job Control
- ...

Conclusions and Summary

- Finance is a success story for OR applications
- Rich set of different risk models available
- Incorporating business rules essential
- Stochastic programming still challenging
- Grid Computing offers lots of promising developments
- Algebraic Modeling Languages fully support parallel environments
- Sun's Network.com interesting commercial approach Currently 250 free CPU hours and free access to GAMS (COIN) at network.com: http://www.gams.com/sungrid

The End

Thank you! ... Questions?

More Theory and Templates

Theory

- Practical Financial Optimization (forthcoming) by S. Zenios
- A Library of Financial Optimization Models (forthcoming) by A. Consiglio, S. Nielsen, H. Vladimirou and S. Zenios
- Financial Optimization by S. Zenios (ed.)

Templates available online

- GAMS Model Library: http://www.gams.com/modlib/libhtml/subindx.htm
- Course Notes "Financial Optimization": http://www.gams.com/docs/contributed/financial/

Contacting GAMS

Europe:

GAMS Software GmbH Eupener Str. 135-137 50933 Cologne Germany

Phone: +49 221 949 9170

Fax: +49 221 949 9171

http://www.gams.de

USA:

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA

Phone: +1 202 342 0180 Fax: +1 202 342 0181

http://www.gams.com