
1
1

OR 2006
Karlsruhe, Germany, September 6-8, 2006

Solving Difficult
MIP Problems using
GAMS and Condor
Michael R. Bussieck
MBussieck@gams.com

GAMS Software GmbH
http://www.gams.de

Michael C. Ferris
Ferris@cs.wisc.edu

University of Wisconsin-Madison
http://www.cs.wisc.edu/~ferris/

2
2

GAMS Development / GAMS Software

• Roots: Research project
World Bank 1976

• Pioneer in Algebraic
Modeling Systems
used for economic modeling

• Went commercial in 1987
• Offices in Washington, D.C

and Cologne
• Professional software tool

provider
• Operating in a segmented

niche market
• Broad academic &

commercial user base
and network

3
3

GAMS at a Glance
General Algebraic Modeling System:

Algebraic Modeling Language,
Integrated Solver, Model
Libraries, Connectivity- &
Productivity Tools

Design Principles:
• Balanced mix of declarative and

procedural elements
• Open architecture and interfaces

to other systems
• Different layers with separation of:

– model and data
– model and solution methods
– model and operating system
– model and interface

4
4

What’s New???
• Improvements on all frontiers

– Connectivity Tools
• Databases
• Spreadsheets
• Specialized Visualization Tools (e.g. VEDA)

– Productivity Tools
• IDE Improvements
• Charting Engine

– Interfaces
• Using GAMS from Application Environments

– Solver Interfacing
• Branch-and-Cut-and-Heuristic (BCH) Facility
• Grid Computing

5
5

What is Grid Computing?

A pool of connected computers managed and
available as a common computing resource

• Effective sharing of CPU power

• Massive parallel task execution

• Scheduler handles management tasks

• E.g. Condor, Sun N6 Grid Engine, Globus

• Can be rented or owned in common

• Licensing & security issues

6
6

Typical Application for GAMS

mymodel.solvelinkmymodel.solvelink=3;=3;
loop(scenarioloop(scenario,,
demand=demand=sdemand(scenariosdemand(scenario); cost=); cost=scost(scenarioscost(scenario););
solve solve mymodelmymodel min min objobj using using minlpminlp;;
h(scenarioh(scenario)=)=mymodel.handlemymodel.handle););

RepeatRepeat
loop(scenario$h(scenarioloop(scenario$h(scenario),),
if(handlestatus(h(scenarioif(handlestatus(h(scenario))=2,))=2,
mymodel.handlemymodel.handle==h(scenarioh(scenario);); h(scenarioh(scenario)=0;)=0;
execute_loadhandleexecute_loadhandle mymodelmymodel;;
report(scenarioreport(scenario)=)=var.lvar.l););

if(card(hif(card(h), execute 'sleep 1');), execute 'sleep 1');
until until card(hcard(h)=0 or)=0 or timeelapsedtimeelapsed > 100;> 100;

report(scenarioreport(scenario) =) = var.lvar.l););report = report = var.lvar.l;;

demand=42; cost=14;demand=42; cost=14;

& Grid

7
7

Massively Parallel MIP
• MIP/B&C Algorithm ideal to parallelize

– Master/Worker Paradigm (process nodes in parallel)
• Software: FATCOP/Condor, BCP/PVM, PICO/MPI

– A-priori subdivision into n independent problems
• Seymour problem solved that way

– Open Pit Mining (openpit in GAMS Model library)
– Partitioning integer variables to subdivide model into

into 4096 sub-problems
– Experiments (Ferris) at UW using Condor Pool

8
8

Condor

9
9

Results for 4096 MIPS on Condor Grid
• Submission started Jan 11,16:00
• All jobs submitted by Jan 11, 23:00
• All jobs returned by Jan 12, 12:40

– 20 hours wall time, 5000 CPU hours
– Peak number of CPU’s: 500

10
10

Testing MIPLIB2003 Instances

11
11

Tool and expertise combined
• Initial schemes take over 1 year of computation and

go nowhere – even with fastest commercial solver
like CPLEX/XPRESS

• Extensions of approach that incorporate both
computational strategies and optimization expertise
– Adaptive refinement strategy
– Sophisticated problem domain branching and

cuts
– Use of resources beyond local file system
– Dedicated resources

12
12

Nodes Best Cuts/Nodes Best Cuts/
Node Left Objective Node Left Objective IInfIInf Integer Best Node Integer Best Node ItCntItCnt GapGap

0 0 29.6862 64 29.6862 1650 0 29.6862 64 29.6862 165
100 37 17.0000 14 25.0000 2230100 37 17.0000 14 25.0000 2230
200 70 21.8429 22 24.0000 4022200 70 21.8429 22 24.0000 4022

Problems with a-priori Partitioning
• 99% of sub-problems very easy to solve
• 1% (almost) as difficult as the original problem

• How can we find n sub-problems with similar (but reduced)
level of difficulty?
– B&C Code keeps a list of open/unexplored nodes
– Problem-bounds of these open nodes represent

partitioning of the original problem

• GAMS/CPLEX Option dumptreedumptree nn creates n bound files

13
13

How difficult is a sub-problem?
• What is a good estimate for how difficult a sub-problem is?

– Look at the LP value of a sub-problem
• The smaller the LP value (assuming minimization)

the more difficult the sub-problem

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 500 1000 1500 2000 2500

Series1
Series2

• Cplex Default

• Cplex Strong
Branching

• Spend more
time in sub-
problem
generation

14
14

Putting it all together
Generate Generate nn subsub--problems using GAMS/CPLEX with problems using GAMS/CPLEX with dumpoptdumpopt n;n;

loop(loop(nn,,
load load nnth bound file;th bound file;
generate and submit generate and submit nnth subth sub--problemproblem

););

RepeatRepeat
loop(loop(nn$(not$(not collected),collected),

if (if (n n finished, finished,
load load nnthth--solution and mark solution and mark nn as collected));as collected));

sleep some time;sleep some time;
Until all collected;Until all collected;

15
15

Communication & Strategy
• An incumbent solution allows to prune nodes with larger LP

solution value in all sub-problems.
• Hence communicate a newly found incumbent to all sub-

problems
– Sub-problems not started: Start with a cutoffcutoff
– Running sub-problems: Update the cutoff cutoff with a

GAMS/CPLEX option file that is read while running

• Strategy:
– Have one machine working on good solutions (e.g.

CPLEX mipemphasismipemphasis 1 1 or 44) using original problem
– Sub-problems emphasize on best-bound (e.g. CPLEX

mipemphasismipemphasis 33)

16
16

Some results

Over nightOver nightOver nightOver nightOver nightOver nightWall timeWall time

360h360h248h248h0.5h0.5hCPU time CPU time
wastedwasted

2384h2384h3432h3432h50h50hCPU time usedCPU time used

17,092,21517,092,2151,921,7361,921,736400,034400,034##CplexCplex B&B B&B
nodesnodes

1.10656e+061.10656e+0611768.211768.21289012890objectiveobjective

3320332010891089986986#sub#sub--problemsproblems

TIMTAB2*TIMTAB2*
* Added problem cuts* Added problem cuts

A1C1S1A1C1S1ROLL3000ROLL3000

17
17

Other Results
• Problem SWATH (TSP type problem)

Sub-problems: 2598 (578 still outstanding)
Objective: 467.407
CPU time used: 6590h
CPU time wasted: 4995h
Nodes explored: 38,012,523

• Second Level Partitioning (subdivide one of the 578 outstanding
problems [a difficult one]):

Sub-problems: 702 (264 still outstanding)
CPU time used: 30600h (3.5 years!)
CPU time wasted: 46344h (5 years!)
Nodes explored: 752,713,119

18
18

A word of caution
• Go back to original SWATH paper!
• Understand underlying (20 city) TSP with

“supernodes”
• 5 rounds of subtour elimination cuts, 32 extra

constraints in all
• Problem solved in less than 20 minutes on a

single machine using CoinCbc!

19
19

Summary
• GAMS/CPLEX dumpoptdumpopt n n to find a-priori problem partition

of a MIP
• Using GAMS Grid Facilities, Condor, and GAMS/CPLEX to

generate, submit, and solve n sub-problems
• Communication of updated incumbent is essential
• Solved two previously unsolved problems (ROLL3000,

A1C1S1) from MIPLIB2003 over night (with few hundred
machines available)

• Brute force has it’s limits, but with some additional problem
specific knowledge (turned into problem specific cuts) one
more problem (TIMTAB2) could be solved over night.

• Work on the model level rather than the matrix level
• Some problem in MIPLIB3 will remain unsolved (for a while)

