

# Solving Difficult MIP Problems using GAMS and Condor

Michael R. Bussieck MBussieck@gams.com

GAMS Software GmbH http://www.gams.de

Michael C. Ferris Ferris@cs.wisc.edu

University of Wisconsin-Madison http://www.cs.wisc.edu/~ferris/

OR 2006 Karlsruhe, Germany, September 6-8, 2006



#### **GAMS Development / GAMS Software**

| <ul> <li>Roots: Research project<br/>World Bank 1976</li> <li>Pioneer in Algebraic<br/>Modeling Systems<br/>used for economic modeling</li> </ul> |                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Went commercial in 1987</li> <li>Offices in Washington, D.C and Cologne</li> </ul>                                                       | <ul> <li>Professional software tool provider</li> <li>Operating in a segmented niche market</li> <li>Broad academic &amp; commercial user base and network</li> </ul> |



#### **GAMS** at a Glance



General Algebraic Modeling System: Algebraic Modeling Language, Integrated Solver, Model Libraries, Connectivity- & Productivity Tools Design Principles:

- Balanced mix of declarative and procedural elements
- Open architecture and interfaces to other systems
- Different layers with separation of:
  - model and data
  - model and solution methods
  - model and operating system
  - model and interface



### What's New???

- Improvements on all frontiers
  - Connectivity Tools
    - Databases
    - Spreadsheets
    - Specialized Visualization Tools (e.g. VEDA)
  - Productivity Tools
    - IDE Improvements
    - Charting Engine
  - Interfaces
    - Using GAMS from Application Environments
  - Solver Interfacing
    - Branch-and-Cut-and-Heuristic (BCH) Facility
    - Grid Computing



#### What is Grid Computing?



## A pool of connected computers managed and available as a common computing resource

- Effective sharing of CPU power
- Massive parallel task execution
- Scheduler handles management tasks
- E.g. Condor, Sun N6 Grid Engine, Globus
- Can be rented or owned in common
- Licensing & security issues



#### **Typical Application for GAMS & Grid**

```
mymodel.solvelink=3;
loop(scenario,
    demand=42@moodt=t4pario); cost=scost(scenario);
    solve mymodel min obj using minlp;
    report(scenario) = var.l);;;
Repeat
    loop(scenario$h(scenario),
    if(handlestatus(h(scenario))=2,
       mymodel.handle=h(scenario); h(scenario)=0;
       execute_loadhandle mymodel;
       report(scenario)=var.l);
```

```
if(card(h), execute 'sleep 1');
until card(h)=0 or timeelapsed > 100;
```



### **Massively Parallel MIP**

- MIP/B&C Algorithm ideal to parallelize
  - Master/Worker Paradigm (process nodes in parallel)
    - Software: FATCOP/Condor, BCP/PVM, PICO/MPI
  - A-priori subdivision into n independent problems
    - Seymour problem solved that way
  - Open Pit Mining (openpit in GAMS Model library)
    - Partitioning integer variables to subdivide model into into 4096 sub-problems
    - Experiments (Ferris) at UW using Condor Pool



#### Condor

| Condor Project Homepage - Microsoft Internet Explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Eile Edit View Favorites Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 🥂 |
| 🚱 Back 🔹 🕑 🔹 📓 🏠 🔎 Search 🤺 Favorites 🤣 😥 🗣 🌺 🔯 🔹 📃 🎇 🦓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
| Address 🚳 http://www.cs.wisc.edu/condor/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *   |
| High Throughput Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| The goal of the Condor <sup>®</sup> Project is to develop, implement, deploy, and evaluate mechanisms and policies that support <u>High Throughput Computing (HTC)</u> on large collections of distributively owned computing resources. Guided by both the technological and sociological challenges of such a computing environment, the <u>Condor Team</u> has been building software tools that enable scientists and engineers to increase their computing throughput.<br>If you find Condor as interesting as we do, consider joining our team of talented and enthusiastic developers. | 1e  |
| Condor Week Meetings<br><u>European Condor Week 2006</u> is scheduled for June 26-29, 2006, in Milan, Italy. Please consider joining us for this informative meeting!<br><u>Condor Week 2007</u> will be April 30-May 3, 2007. More details available in 2007.<br><u>Information on past Condor Week meetings</u>                                                                                                                                                                                                                                                                             |     |
| Current Releases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Stable series: <u>Condor Version 6.6.11</u> released March 28nd, 2006<br>Development series: <u>Condor Version 6.7.20</u> released June 22th, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |



#### **Results for 4096 MIPS on Condor Grid**

- Submission started Jan 11,16:00
- All jobs submitted by Jan 11, 23:00
- All jobs returned by Jan 12, 12:40
  - 20 hours wall time, 5000 CPU hours
  - Peak number of CPU's: 500





#### **Testing MIPLIB2003 Instances**

10

| MIPLIB 2003 - Table of contents - Microsoft Internet Explorer                                                                               |                                                                                |                            |                                                         |                                                             |                                                                 |                   |                                                                 |                                          |                                                                               |                            |               |   |                 |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------|-----------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------|----------------------------|---------------|---|-----------------|---|---|
| Eile Eo                                                                                                                                     | dit <u>V</u> iew Fa                                                            | <u>a</u> vorite            | es <u>T</u> ools                                        | <u>H</u> elp                                                |                                                                 |                   |                                                                 |                                          |                                                                               |                            |               |   |                 |   | - |
| Ġ Bad                                                                                                                                       | ck • 🌍 -                                                                       | ×                          | 2 🏠                                                     | 🔎 Sea                                                       | rch ☆ Fa                                                        | vorites           | 0                                                               | -                                        | o · 📙 🕷                                                                       | 1                          | 8             |   |                 |   |   |
| Address 🚳 http://miplib.zib.de/miplib2003.php                                                                                               |                                                                                |                            |                                                         |                                                             |                                                                 |                   |                                                                 |                                          | *                                                                             |                            |               |   |                 |   |   |
| • instance can be solved within an hour with a commercial solver<br>• instance has been solved<br>• optimal solution to instance is unknown |                                                                                |                            |                                                         |                                                             |                                                                 |                   |                                                                 |                                          |                                                                               |                            |               |   |                 |   |   |
|                                                                                                                                             | -                                                                              |                            |                                                         |                                                             |                                                                 |                   |                                                                 |                                          |                                                                               |                            |               |   |                 |   |   |
| Status                                                                                                                                      | Name                                                                           | С                          | Rows                                                    | Cols                                                        | NZ                                                              | Int               | Bin                                                             | Con                                      | Objective                                                                     | 1                          | 2             | 3 | 4               | 5 | 6 |
| Status                                                                                                                                      | Name                                                                           | <b>с</b><br>М              | <b>Rows</b> 230                                         | <b>Cols</b> 2025                                            | <b>NZ</b><br>12150                                              | Int               | <b>Bin</b><br>1800                                              | <b>Con</b><br>225                        | Objective<br>924                                                              | 1<br>×                     | 2<br>×        | 3 | 4               | 5 | 6 |
| Status<br>•                                                                                                                                 | Name<br>10teams<br>a1c1s1                                                      | <b>с</b><br>М              | <b>Rows</b><br>230<br>3312                              | <b>Cols</b><br>2025<br>3648                                 | NZ<br>12150<br>10178                                            | Int               | <b>Bin</b><br>1800<br>192                                       | <b>Con</b><br>225<br>3456                | Objective<br>924<br>?                                                         | <b>1</b><br>×              | <b>2</b><br>× | 3 | 4               | 5 | 6 |
| Status<br>e<br>e                                                                                                                            | Name<br>10teams<br>a1c1s1<br>aflow30a                                          | <b>с</b><br>М<br>М         | <b>Rows</b><br>230<br>3312<br>479                       | <b>Cols</b><br>2025<br>3648<br>842                          | NZ<br>12150<br>10178<br>2091                                    | Int               | <b>Bin</b><br>1800<br>192<br>421                                | <b>Con</b><br>225<br>3456<br>421         | <b>Objective</b><br>924<br>?<br>1158                                          | 1<br>×<br>×                | <b>2</b><br>× | 3 | <b>4</b>        | 5 | 6 |
| Status<br>e<br>e<br>e                                                                                                                       | Name<br>10teams<br>a1c1s1<br>aflow30a<br>aflow40b                              | C<br>M<br>M<br>M           | <b>Rows</b><br>230<br>3312<br>479<br>1442               | Cols<br>2025<br>3648<br>842<br>2728                         | NZ<br>12150<br>10178<br>2091<br>6783                            | Int               | <b>Bin</b><br>1800<br>192<br>421<br>1364                        | Con<br>225<br>3456<br>421<br>1364        | <b>Objective</b><br>924<br>?<br>1158<br>1168                                  | 1<br>×<br>×<br>×           | <b>2</b><br>× | 3 | <b>4</b><br>× × | 5 | 6 |
| Status                                                                                                                                      | Name<br>10teams<br>a1c1s1<br>aflow30a<br>aflow40b<br>air04                     | C<br>M<br>M<br>M<br>B      | <b>Rows</b><br>230<br>3312<br>479<br>1442<br>823        | Cols<br>2025<br>3648<br>842<br>2728<br>8904                 | NZ<br>12150<br>10178<br>2091<br>6783<br>72965                   | Int               | <b>Bin</b><br>1800<br>192<br>421<br>1364<br>8904                | <b>Con</b><br>225<br>3456<br>421<br>1364 | <b>Objective</b><br>924<br>?<br>1158<br>1168<br>56137                         | 1<br>×<br>×<br>×<br>×      | <b>2</b><br>× | 3 | <b>4</b><br>× × | 5 | 6 |
| Status                                                                                                                                      | Name<br>10teams<br>a1c1s1<br>aflow30a<br>aflow40b<br>air04<br>air05            | C<br>M<br>M<br>M<br>B<br>B | <b>Rows</b><br>230<br>3312<br>479<br>1442<br>823<br>426 | Cols<br>2025<br>3648<br>842<br>2728<br>8904<br>7195         | NZ<br>12150<br>10178<br>2091<br>6783<br>72965<br>52121          | Int               | <b>Bin</b><br>1800<br>192<br>421<br>1364<br>8904<br>7195        | <b>Con</b><br>225<br>3456<br>421<br>1364 | <b>Objective</b><br>924<br>?<br>1158<br>1168<br>56137<br>26374                | 1<br>×<br>×<br>×<br>×<br>× | <b>2</b><br>× | 3 | <b>4</b><br>× × | 5 | 6 |
| Status                                                                                                                                      | Name<br>10teams<br>a1c1s1<br>aflow30a<br>aflow40b<br>air04<br>air05<br>arki001 | C<br>M<br>M<br>B<br>B<br>M | <b>Rows</b> 230 3312 479 1442 823 426 1048              | Cols<br>2025<br>3648<br>842<br>2728<br>8904<br>7195<br>1388 | NZ<br>12150<br>10178<br>2091<br>6783<br>72965<br>52121<br>20439 | <b>Int</b><br>123 | <b>Bin</b><br>1800<br>192<br>421<br>1364<br>8904<br>7195<br>415 | Con<br>225<br>3456<br>421<br>1364<br>850 | <b>Objective</b><br>924<br>?<br>1158<br>1168<br>56137<br>26374<br>7.58081e+06 | 1<br>×<br>×<br>×<br>×<br>× | <b>2</b> × ×  | 3 | <b>4</b><br>× × | 5 | 6 |



### **Tool and expertise combined**

- Initial schemes take over 1 year of computation and go nowhere – even with fastest commercial solver like CPLEX/XPRESS
- Extensions of approach that incorporate both computational strategies and optimization expertise
  - Adaptive refinement strategy
  - Sophisticated problem domain branching and cuts
  - Use of resources beyond local file system
  - Dedicated resources



#### **Problems with a-priori Partitioning**

- 99% of sub-problems very easy to solve
- 1% (almost) as difficult as the original problem
- How can we find n sub-problems with similar (but reduced) level of difficulty?
  - B&C Code keeps a list of open/unexplored nodes
  - Problem-bounds of these open nodes represent partitioning of the original problem

|      | Nodes |           |      | Best    | Cut  | cs/   |       |     |
|------|-------|-----------|------|---------|------|-------|-------|-----|
| Node | Left  | Objective | IInf | Integer | Best | Node  | ItCnt | Gap |
| 0    | 0     | 29.6862   | 64   |         | 29   | 6862  | 165   |     |
| 100  | 37    | 17.0000   | 14   |         | 25   | .0000 | 2230  |     |
| 200  | 70    | 21.8429   | 22   |         | 24   | .0000 | 4022  |     |

• GAMS/CPLEX Option dumptree n creates n bound files



#### How difficult is a sub-problem?

- What is a good estimate for how difficult a sub-problem is?
  - Look at the LP value of a sub-problem
    - The smaller the LP value (assuming minimization) the more difficult the sub-problem



- Cplex Default
- Cplex Strong
   Branching
- Spend more time in subproblem generation



#### Putting it all together

```
Generate n sub-problems using GAMS/CPLEX with dumpopt n;
loop(n,
  load nth bound file;
  generate and submit nth sub-problem
);
Repeat
  loop(n$(not collected),
    if (n finished,
      load nth-solution and mark n as collected));
  sleep some time;
Until all collected;
```



## **Communication & Strategy**

- An incumbent solution allows to prune nodes with larger LP solution value in all sub-problems.
- Hence communicate a newly found incumbent to all subproblems
  - Sub-problems not started: Start with a cutoff
  - Running sub-problems: Update the cutoff with a GAMS/CPLEX option file that is read while running
- Strategy:
  - Have one machine working on good solutions (e.g.
     CPLEX mipemphasis 1 or 4) using original problem
  - Sub-problems emphasize on best-bound (e.g. CPLEX mipemphasis 3)



#### **Some results**

16

|                     | ROLL3000   | A1C1S1     | <b>TIMTAB2*</b><br>* Added problem cuts |
|---------------------|------------|------------|-----------------------------------------|
| #sub-problems       | 986        | 1089       | 3320                                    |
| objective           | 12890      | 11768.2    | 1.10656e+06                             |
| #Cplex B&B<br>nodes | 400,034    | 1,921,736  | 17,092,215                              |
| CPU time used       | 50h        | 3432h      | 2384h                                   |
| CPU time<br>wasted  | 0.5h       | 248h       | 360h                                    |
| Wall time           | Over night | Over night | Over night                              |



#### **Other Results**

• Problem SWATH (TSP type problem)

Sub-problems:2598 (578 still outstanding)Objective:467.407CPU time used:6590hCPU time wasted:4995hNodes explored:38,012,523

• Second Level Partitioning (subdivide **one** of the 578 outstanding problems [a *difficult* one]):

Sub-problems: CPU time used: CPU time wasted: Nodes explored: 702 (264 still outstanding) 30600h (3.5 years!) 46344h (5 years!) 752,713,119



#### A word of caution

- Go back to original SWATH paper!
- Understand underlying (20 city) TSP with "supernodes"
- 5 rounds of subtour elimination cuts, 32 extra constraints in all
- Problem solved in less than 20 minutes on a single machine using CoinCbc!



## Summary

- GAMS/CPLEX dumpopt n to find a-priori problem partition of a MIP
- Using GAMS Grid Facilities, Condor, and GAMS/CPLEX to generate, submit, and solve n sub-problems
- Communication of updated incumbent is essential
- Solved two previously unsolved problems (ROLL3000, A1C1S1) from MIPLIB2003 over night (with few hundred machines available)
- Brute force has it's limits, but with some additional problem specific knowledge (turned into problem specific cuts) one more problem (TIMTAB2) could be solved over night.
- Work on the model level rather than the matrix level
- Some problem in MIPLIB3 will remain unsolved (for a while)