Complementarity at GAMS Development

Steven Dirkse

GAMS Development Corporation

Washington DC

How Important is CP?

- In 1989, no CP possible in GAMS
- In 1999, CP comprises over 10% of solver sales
- Active modeling & application area
- Many different parties involved

Talk Outline

- The MCP model type
 - Modeling syntax
 - Solution algorithms
- MPSGE
- New Directions
 - reformulation tools
 - MPEC models

GAMS

June 1999

Why Use GAMS for CP?

- Benefits for the modeler
 - Powerful set-based indexing, large scale
 - Symbolic differentiation
 - Self-documenting model: portable, flexible, extendable, readable
 - Solver independence
 - Access to model library

Why Use GAMS for CP?

- Benefits for the algorithm developer
 - Readily available test problems: GAMSLIB,
 MCPLIB
 - Immediate access to market, user community
 - Environment allows algorithm comparison, enforces rigor

MCP: Definition

Given
$$F: \Re^n \mapsto \Re^n$$
, $-\infty \le \ell \le u \le +\infty$,

find
$$z \in \Re^n$$
 s.t.

either
$$z_i = \ell_i$$
 and $F_i(z) \ge 0$ or $z_i = u_i$ and $F_i(z) \le 0$ or $\ell_i < z_i < u_i$ and $F_i(z) = 0$.

Extending GAMS for CP

- CP requires:
 - (nonlinear) functions -
 - (bounded) variables -

- complementary pairing ??
- MCP model type introduces pairing F.z
- Allows reuse of functions
- Builds on user expertise in NLP

A Walrasian Equilibrium Example

Find a price $p\in\Re^m$ and an activity level $y\in\Re^n$ such that

$$S(p,y) := b - d(p) + Ay \ge 0, \quad p \ge 0, \quad \perp$$
 $L(p) := -A^{\top}p \ge 0, \quad y \ge 0, \quad \perp$

An equivalent MCP:

$$F(p,y) := \begin{bmatrix} S(p,y) \\ L(p) \end{bmatrix}, \quad B := \Re^m_+ \times \Re^n_+,$$

The GAMS Model

CPLIB (Rutherford)

- An interface layer between GAMS & solver
 - Provides function F and its Jacobian, box B, initial iterate, solution reporting
 - Allows integration of MPSGE
- Fortran code, supports C solvers as well
- Cornerstone of CP solvers at GAMS

GAMS

ICCP-99 Madison

MPSGE: Intro

- A language for GE models
 - Economists say a lot with a few words
 - MPSGE "speaks economics"
- This language foreign to GAMS
 - Preprocessor reads MPSGE code
 - GAMS code and MPSGE code integrated

GAMS

ICCP-99 Madison

MPSGE: Advantages

- Shorthand that reduces errors, tedium
- Efficient constraint representation
- Structures and manages complexity
- Consequence: increased solver demand
 - Forces robustness, speed
 - Drives sales of MCP solvers

GAMS

June 1999 ICCP-99 Madison

Intl. Impact Assessment Model

- 80-country GE model
- Evaluate effects of environmental policy
- User input of key parameters
- Displayed data and graphics allows convenient, rapid comparison b/t policies

MCP Solvers: MILES, PATH

- (Josephy)Newton-based algorithms
 - Local quadratic convergence
 - Require exact Jacobians
 - Line/pathsearch techiques increase robustness
- Use sparse linear algebra (LUSOL)
 - Scale to large problems, efficient pivoting
 - Employ dynamic memory allocation

Why use PATH?

- Crashing
 - Quickly finds near-optimal basis
 - Major speed boost on large models
- Proximal point term to handle rankdeficiency
- Robustness: restarts, pathsearch, merit functions
- Diagnostics

A Simple NLP

Let c_i , i = 1..1000 be in [0, 2], $C = \sum_i c_i$.

minimize
$$\sum_i (c_i - x_i)^2$$

subject to $.4C = \sum_i x_i$
 $x \le .85$

NLP solution: 673 superbasic vars, 1 basic, 326 nonbasic.

First order (KKT) conditions for the above: a simple complementarity problem.

$$2(x-c) + e\lambda \le 0 \perp x \le .85$$

 $.4C - \sum_{i} x_{i} = 0 \perp \lambda \text{ free}$

MCP solution: 674 basic vars, 326 nonbasic

NLP vs. KKT

- Problems with NLP solvers
 - expect "few" superbasics
 - slow convergence: add superbasics singly
 - memory usage quite high
- Advantages of KKT system
 - Uses second order information
 - no superbasics, exact basis identification

NLP2MCP (Ferris, Horn)

- Output KKT conditions for an NLP
 - Requires taking derivatives symbolically
 - Automates error-prone process
- Makes interesting projects possible
 - Integrate optimization and equilibrium concepts
 - Large NLP models may solve better
 - Build large models out of components

MPEC model type

- Superset of NLP and MCP
 - Application may come from either direction
 - Syntax reflects this
- Some models and solver links exist
 - Bundle code
 - SolvOpt
- Better solvers required

MCP2NLP (Drud)

- May want to reformulate CP as NLP
 - Improve robustness of arsenal
 - Diagnostics for unsolvable models
 - Starting point for MPEC models
- Initial results:
 - Can improve robustness, speed
 - Comprehensive test requires more automation

GAMS

ICCP-99 Madison

Summary

- MCP/MPSGE models no longer "exotic"
 - Large base of demanding users
 - System delivers dependable results
- Active work on new applications in CP
 - MPEC model type
 - reformulation tools: NLP2MCP, MCP2NLP

GAMS

ICCP-99 Madison