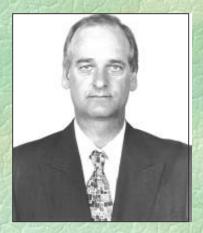
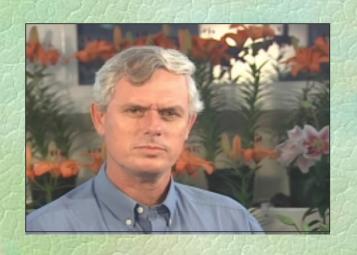
OPTIMIZATION OF THE PRODUCTION PLANNING AND TRADE OF LILY **FLOWERS AT** JAN DE WIT CO.




Prof. Dr. José Vicente Caixeta-Filho University of São Paulo, BRAZIL E-mail: jvcaixet@esalq.usp.br

Jan Maarten van Swaay-Neto Interativa S/C Ltda., BRAZIL E-mail: interati@dglnet.com.br

Antonio de Pádua Wagemaker Wagemaker Consultoria Ltda., BRAZIL E-mail: wagemak@bestway.com.br

Johannes Petrus Wulfram de Wit Jan de Wit Co., BRAZIL General Manager and Owner

Marcelo Moraes

Jan de Wit Co., BRAZIL

Production and Sales Manager

OUTLINE OF THIS PRESENTATION

- introducing Jan de Wit Co.
- understanding the lily business chain
- the main results obtained
- the DSS and the transferability issue
- testimonies: producer and competitors
- concluding remarks

LILY BUSINESS CHAIN

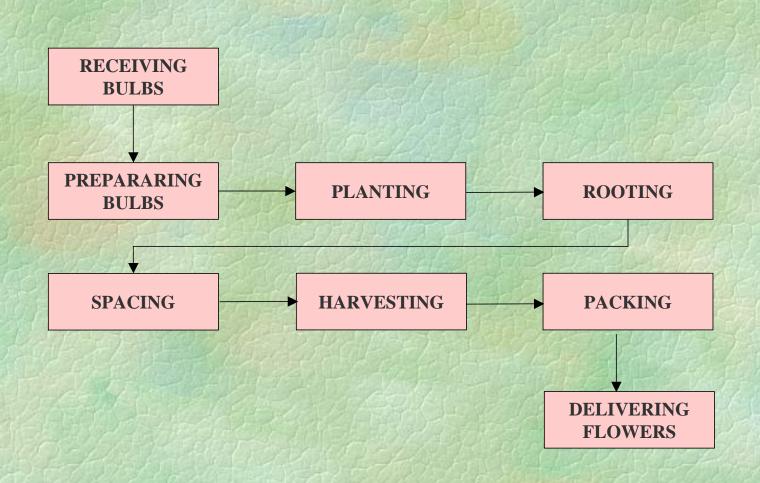
FLOWER RETAILER

FINAL CUSTOMER

FLOWER WHOLESALER

WHOLESALE MARKETPLACE FLOWER PRODUCER

BULB PRODUCER BULB WHOLESALER


VEILING HOLAMBRA

- auction room -

PRODUCTION PROCESS

- from bulbs to flowers -

THE PROBLEM

- exploite market opportunities, respecting operational and technical restrictions;
- manage trade and production cycles: how to plan, do, check and respond;
- purchase the right bulbs: varieties, bulb sizes and quantities per size.

INCREASED FINANCIAL RESULTS

	1999	2000	Δ (%)
Income from operations (R\$)	309,546	495,243	60%
Income from operat. (% of sales)	12.3%	15.5%	26%
Return on owners equity	15.1%	22.5%	50%

INCREASED FINANCIAL RESULTS

	1999	2000	Δ (%)
Pots		SEAN OF	
Quantities (units)	422,208	484,722	14.8%
Revenue (R\$)	1,432,875	1,643,558	14.7%
Unit average price (R\$)	3.39	3.39	0%
Bundles			P. Park
Quantities (units)	220,469	285,088	29.3%
Revenue (R\$)	1,133,925	1,585,984	39.9%
Unit average price (R\$)	5.14	5.56	8.2%
Total Revenue (R\$)	2,566,800	3,229,542	25.8%

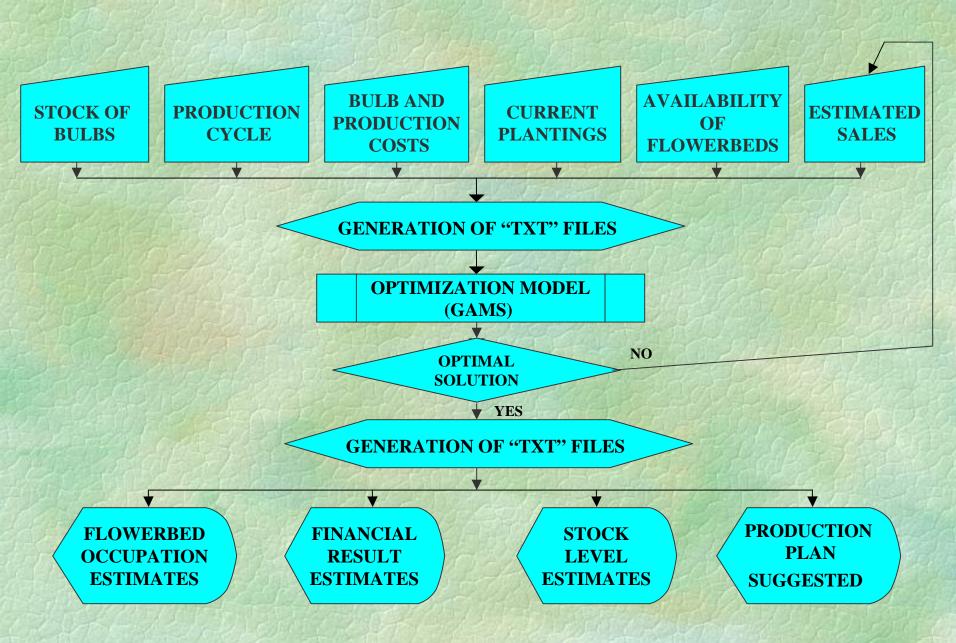
INCREASED FINANCIAL RESULTS

	Δ (2000 / 1999)
Revenue	26%
Variable costs	23%
Contribution margin	32%
Fixed costs	18%
Income from operations	60%

STRUCTURE OF THE LP MODEL

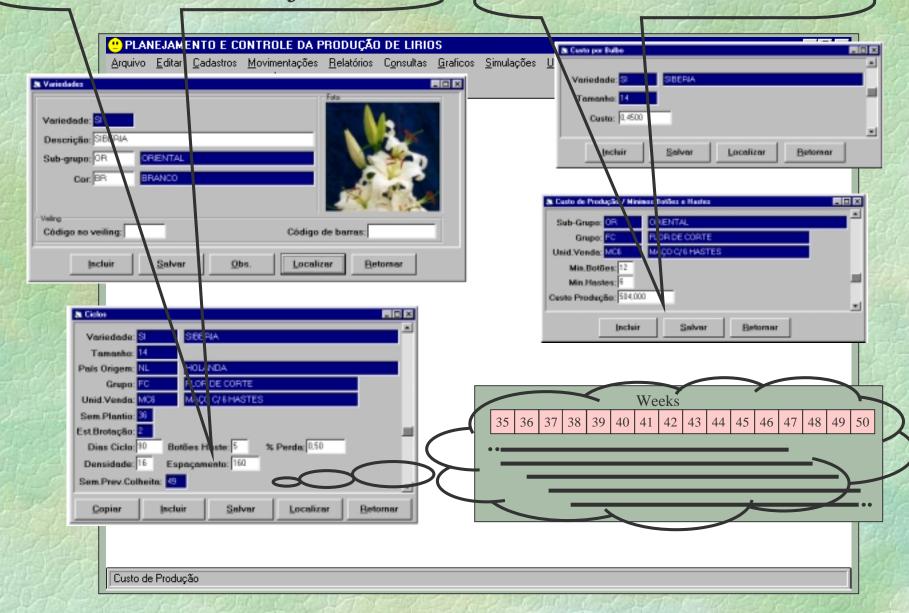
OBJECTIVE:

maximization of the farm's "total contribution margin"

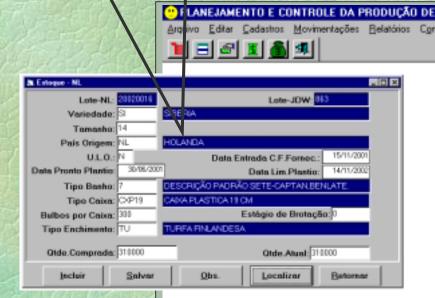

CONSTRAINTS TO BE CONSIDERED:

- bulb inventory
- characteristics of the production cycle's duration
- technical requirements (number of bulbs per pot or box, spacing to be followed)
- usage limitations for each type of greenhouse
- market requirements (selling unit, minimum number of buds and minimum number of stems per bundle or pot)
- upper and lower market-defined sales' limits

MAIN DECISION VARIABLE TO BE CALCULATED

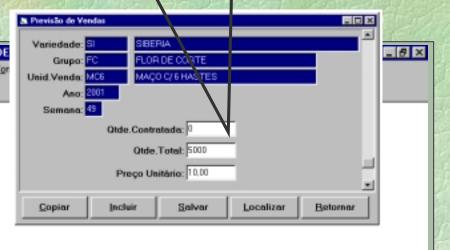

 $NUMCANT_{jvgil}$ = total of flowerbeds, in a specific greenhouse, originated from a specific bulb batch j, from a specific lily variety v, for a specific use g (e.g., potting flower or cutting flower), taking into consideration the pertinent planting week i and the expected harvesting week l.

GENERAL STRUCTURE OF THE DECISION SUPPORT SYSTEM

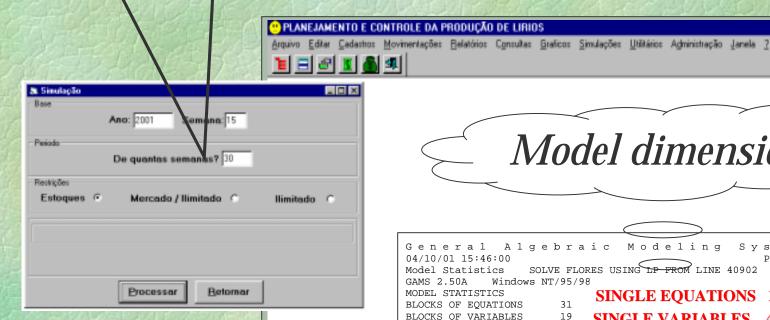


Production cycle

Bulb and production costs

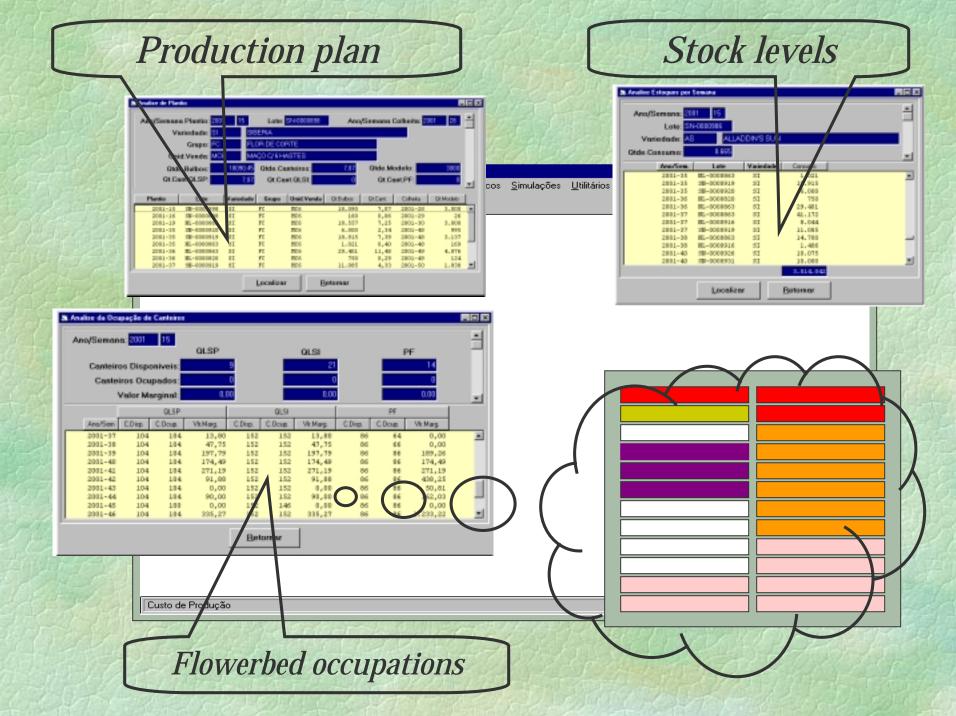


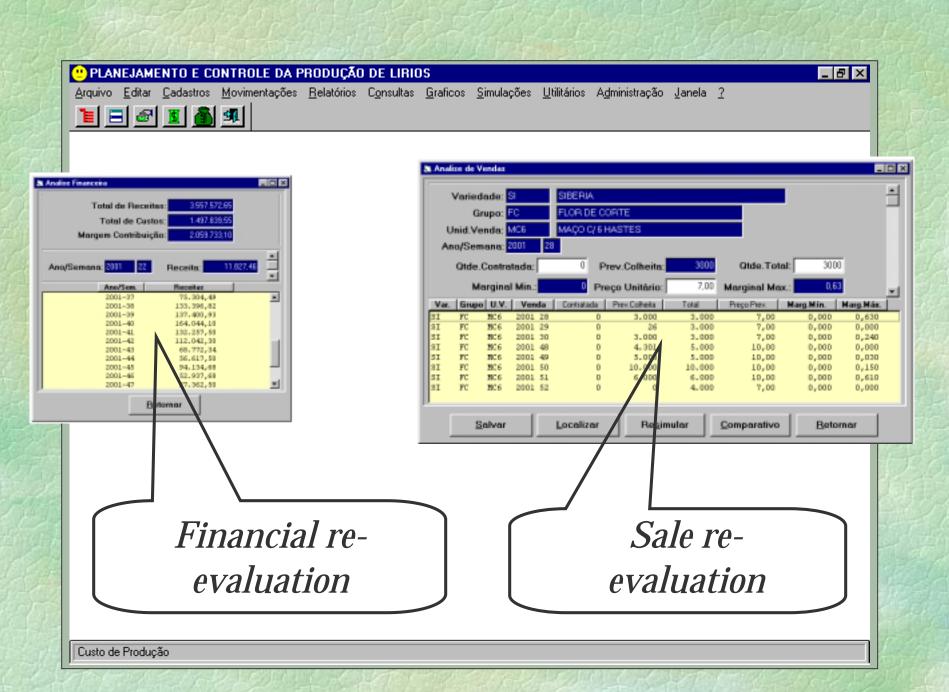
Current plantings and availabilty of flowerbeds


Estimated sales

I	🎎 Plantio		_0>	
ı	Lote: 1795	Variedade: SI SIBERI	A	
ı	Tamanho: 13	Grupo: FC	Unidade de Venda: MDS	
ı	Lote-JDW: 900		Lote-SN: 01002058	
ı	Data Pronto Plantio:	14/03/2001	Data Lim.Plantio: 14/11/2002	
ı	Otde.Prevista: 1000	Dt.Ret.C.F.: 04/	04/2001 Otde.Ret.C.F.: 10555	
I		t Bulbos Plantados: 10656	Qt.Bulbos Descart: 0	
Į	Estágio de			
ı	Prev.Espaçamento	OH SEMINAR		
Į	To Facilities IVEG	TERRA VEGETAL VIDA VER	Prev.hastes: 10.656	
ı	Tp. Cabca: CP19	CAIXA PLASTICA 19 CM	Prev.Maços: 1722	
ı	Tp. Banho: 8	DESCRIÇÃO PADRÃO OITO	-JAN DE WIT 2000; RIDOMIL, CONFIDOR,	
Tipo de Estufa prevista: 0.51 0.5+0.5 INOUNADA				
	Salvar	Obs. Localiza	Espaçam. Betornar	

Custo de Produção


Planning horizon



Model dimensions

General Algebraic Modeling 04/10/01 15:46:00 PAGE SOLVE FLORES USING LP FROM LINE 40902 Model Statistics GAMS 2.50A Windows NT/95/98 MODEL STATISTICS **SINGLE EQUATIONS 114.767** BLOCKS OF EQUATIONS BLOCKS OF VARIABLES 19 SINGLE VARIABLES 416.554 NON ZERO ELEMENTS 1352820 WIN-18-097 GENERATION TIME 90.190 SECONDS 70.1 Mb 70.1 Mb WIN-18-097 EXECUTION TIME = 90.190 SECONDS SOLVE SUMMARY MODEL FLORES OBJECTIVE MC TYPE LP DIRECTION MAXIMIZE SOLVER OSL FROM LINE 40902 **** SOLVER STATUS 1 NORMAL COMPLETION **** MODEL STATUS 1 OPTIMAL **** OBJECTIVE VALUE 2059733.0996 RESOURCE USAGE, LIMIT 2409.578 1000000.000 ITERATION COUNT, LIMIT 6172 1000000 OSL Version 1 Jul 4, 1999 WIN.OS.18.1 055.035.036.WAT OSL Version 1

Custo de Produção

Linear Programming applied to the flower sector: a gladiolus bulb production case study

José Vicente Caixeta Filho
Jan Maarten van Swaay Neto
Ricardo Luis Lopes

OPTIMIZATION OF THE PRODUCTION PLANNING AND TRADE OF CHRYSANTHEMUM **FLOWERS AT** SCHOENMAKER CO.

José Vicente Caixeta-Filho
Jan Maarten van Swaay-Neto
Antonio Wagemaker

CONCLUDING REMARKS

- the still not very traditional environment
- (= Agriculture) for an O.R. application
- the still not very traditional country
- (= BRAZIL) for a well succeded O.R. application
- the size and specific type of business
- the use (and success) of an LP model
- the friendly interfaces of the DSS
- the quantifiable benefits
- the transferability potential
- the complete knowledge cycle
 (classroom → business → Edelman → classroom)