Approximation of Non-linear Functions in Mixed Integer Programming

Alexander Martin TU Darmstadt

Workshop on *Integer Programming and Continuous Optimization*Chemnitz, November 7-9, 2004

Joint work with Markus Möller and Susanne Moritz

1. Non-linear Functions in MIPs

- design of sheet metal
- gas optimization
- traffic flows

2. Modelling Non-linear Functions

- with binary variables
- with SOS constraints

3. Polyhedral Analysis

4. Computational Results

1. Non-linear Functions in MIPs

- design of sheet metal
- gas optimization
- traffic flows

2. Modelling Non-linear Functions

- with binary variables
- with SOS constraints
- 3. Polyhedral Analysis
- 4. Computational Results

Design of Transport Channels

Goal

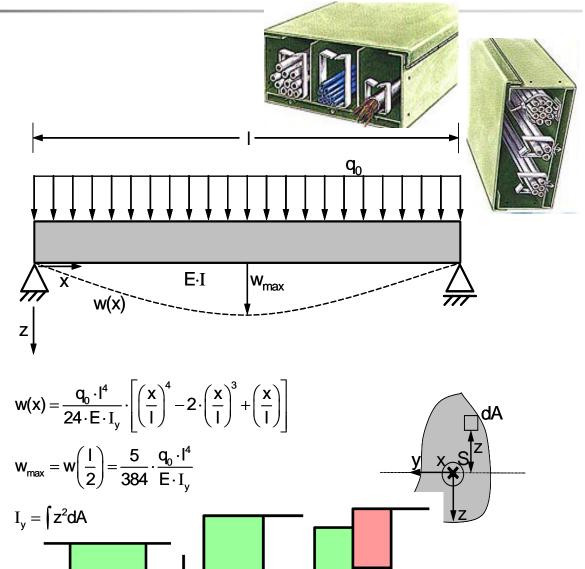
Maximize stiffness

Subject To

- Bounds on the perimeters
- Bounds on the area(s)
- Bounds on the centre of gravity

Variables

- topology
- material



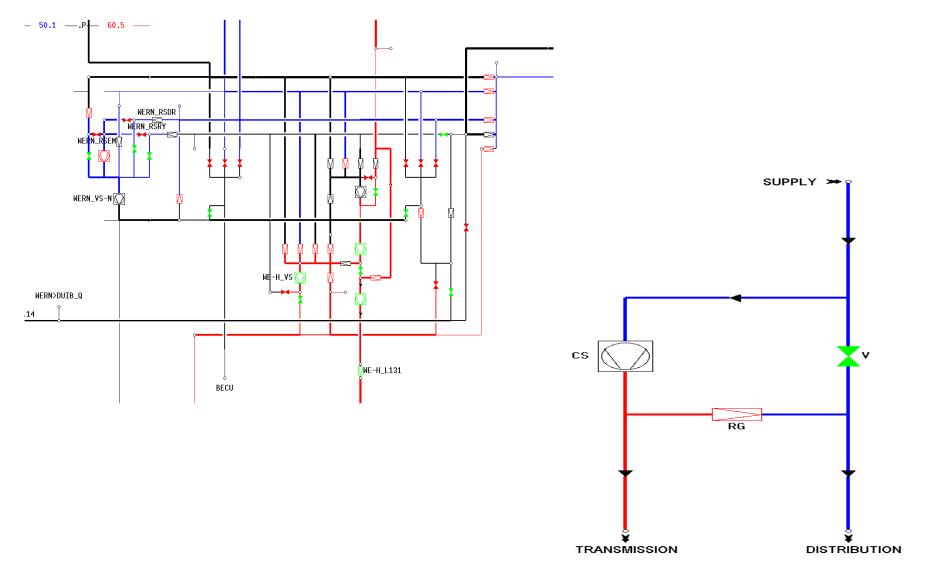
Optimization of Gas Networks

Goal Minimize fuel gas consumption

Subject To

- contracts
- physical constraints

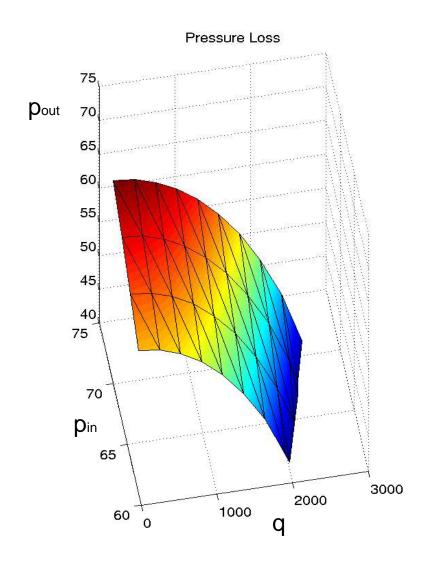
Gas Network in Detail



Gas Networks: Nature of the Problem

- Non-linear
 - fuel gas consumption of compressors
 - pipe hydraulics
 - blending, contracts
- Discrete
 - valves
 - status of compressors
 - contracts

Pressure Loss in Gas Networks



$$\partial_x p + \frac{\lambda \rho_o p_o T}{2DA^2 z_o T_o} \frac{|q|qz}{p} + \frac{\rho_o p_o T}{A^2 z_o T_o} \partial_x (\frac{q^2 z}{p}) + \frac{\rho_o}{A} \partial_t q + \frac{g \rho_o z_o T_o}{p_o T} \partial_x (\frac{hp}{z}) = 0$$

$$p_{out}^2 = p_{in}^2 - \mathrm{ff} \; |q|q$$

1. Non-linear Functions in MIPs

- design of sheet metal
- gas optimization
- traffic flows

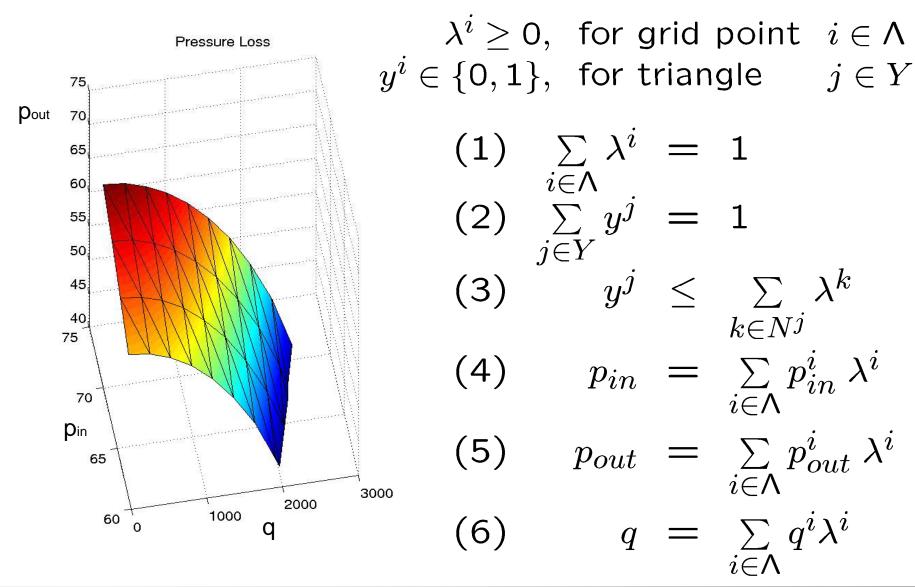
2. Modelling Non-linear Functions

- with binary variables
- with SOS constraints

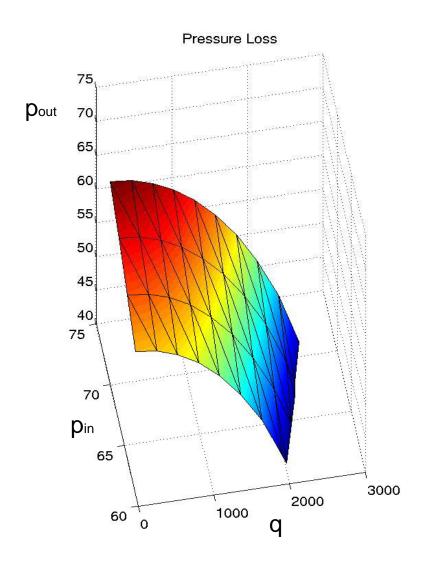
3. Polyhedral Analysis

4. Computational Results

Approximation of Pressure Loss: Binary Approach



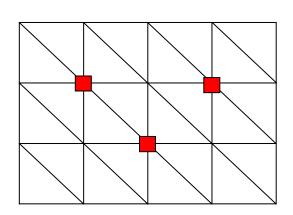
Approximation of Pressure Loss: SOS Approach



$$p_{in} = \sum_{i \in \Lambda} p_{in}^i \lambda^i$$
 $q = \sum_{i \in \Lambda} q^i \lambda^i$
 $p_{out} = \sum_{i \in \Lambda} p_{out}^i \lambda^i$
 $\sum_{i \in \Lambda} \lambda^i = 1 \quad (*)$
 $\lambda^i \geq 0$

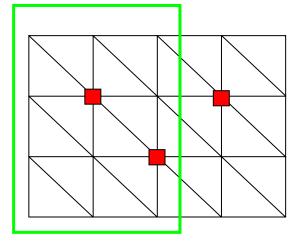
(*) must meet the triangle condition

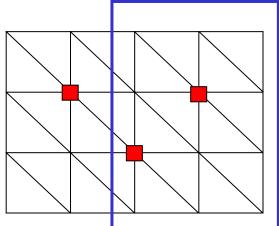
Branching on SOS Constraints



$$\sum \lambda_i = 1$$

$$\sum \lambda_i = 1$$





1. Non-linear Functions in MIPs

- design of sheet metal
- gas optimization
- traffic flows

2. Modelling Non-linear Functions

- with binary variables
- with SOS constraints
- 3. Polyhedral Analysis
- 4. Computational Results

The SOS Constraints: General Definition

Given

- grid points $\Lambda = \{1, \dots, n\}$ and
- a set of subsets $Y = \{N^1, \dots, N^d\}, N^i \subset \Lambda$.

A vector λ satisfies the **set condition** for Y and

$$\sum_{i \in \Lambda} \lambda^i = 1 \tag{*}$$

if $\{i \in \Lambda : \lambda^i > 0\} \subseteq N^r$ for some r.

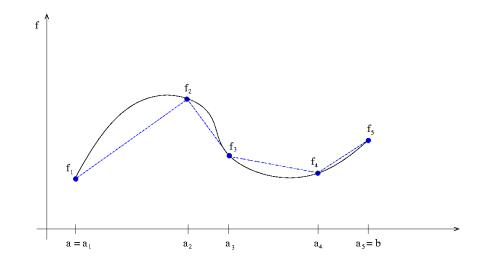
(*) is called **SOS** constraint of Type k, where

$$k = \max_{i} |N^i|.$$

The SOS Constraints: Special Cases

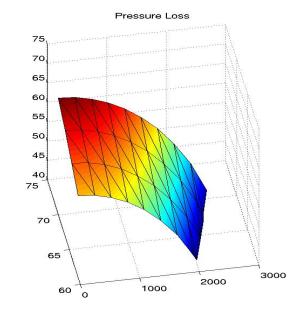
 SOS Type 2 constraints

$$N^i = \{i, i+1\}$$



 SOS Type 3 constraints

$$|N^i| = 3 \quad \forall i$$



The Binary Polytope

Let
$$P_k = \operatorname{conv} \{\lambda \in \mathbb{R}^{\Lambda}_+, y \in \{0, 1\}^Y : \}$$

$$(1)$$
 $\sum_{i=1}^{n} \lambda^{i} = 1$

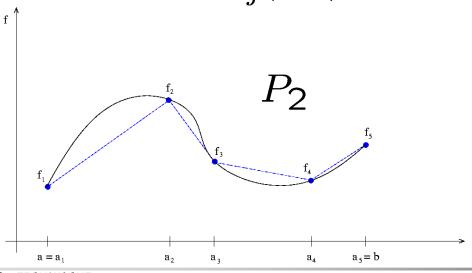
$$(2) \quad \sum_{j \in \mathcal{N}} y^j = 1$$

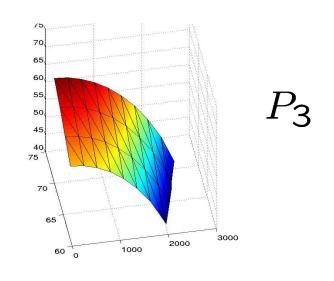
$$(1) \sum_{i \in \Lambda} \lambda^{i} = 1$$

$$(2) \sum_{j \in Y} y^{j} = 1$$

$$(3) y^{j} \leq \sum_{i \in N^{j}} \lambda^{i}$$

with $k = \max_{j} |N^{j}|$

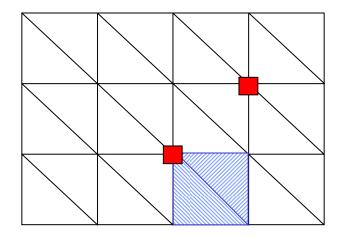




The Binary Polytope: Inequalities

For $\emptyset \neq J \subset Y$ and $I := \bigcup_{j \in J} N^j$ let

$$\sum_{j \in J} y^j \le \sum_{i \in I} \lambda^i \tag{*}$$



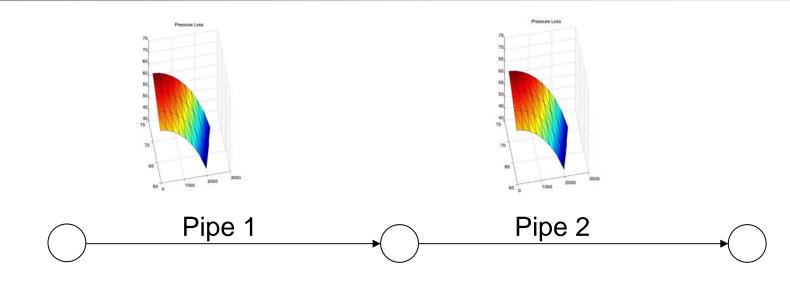
$$\lambda^{i} = \frac{1}{2}$$

$$y^{i} = \frac{1}{2}$$

$$y^i = \frac{1}{2}$$

Theorem. (*) describes P_2 and P_3 completely.

The SOS Polytope



$$P_{\Delta} = \left\{ \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \in \mathbb{R}^{|\Lambda_1| + |\Lambda_2|} \mid \sum_{j \in \Lambda_1} \lambda_1^j = 1 \right.$$

$$\sum_{j \in \Lambda_2} \lambda_j^j = 1$$

$$\sum_{j \in \Lambda_1} p_1^j \lambda_1^j - \sum_{j \in \Lambda_2} p_2^j \lambda_2^j = 0$$

$$\lambda_1^j, \qquad \lambda_2^j \ge 0$$

 λ_1, λ_2 satisfy the set condition for Y_1 and Y_2 \}.

The SOS Polytope: Increasing Complexity

$ \Delta $	Y	Vertices	Facets	Max. Coeff.
8	12	16	18	25
16	18	49	47	42
24	24	73	90	670
32	32	142	10492	50640

The SOS Polytope: Properties

Theorem. There exist only polynomially many vertices v_1, \ldots, v_l with $l \leq 9|Y_1||Y_2|$.

- The vertices can be determined algorithmically
- This yields a polynomial separation algorithm by solving for given λ_1^* and λ_2^*

$$\max \ a^T \binom{\lambda_1^*}{\lambda_2^*} - \alpha$$

s.t.
$$a^T v_i \leq \alpha$$
 for $i = 1, \dots, k$

The SOS Polytope: Generalizations

- Pipe to pipe with respect to pressure and flow
- Several pipes to several pipes
- Pipes to compressors (SOS constraints of Type 4)
- General Mixed Integer Programs:

Consider Ax=b and a set I of SOS constraints of Type k_i for $i \in I$ such that each variable is contained in exactly one SOS constraint. If the rank of A (incl. I) and $\max_i k_i$ are fixed then

```
P = \operatorname{conv} \{x \in \mathbb{R}^n \mid Ax = b \ x \text{ satisfies the set }  condition for i \in I \}
```

has only polynomial many vertices.

Binary versus SOS Approach

Binary

- more (binary) variables
- more constraints
- complex facets
- LP solutions with fractional y variables and correct λ variables

SOS

- + no binary variables
- + triangle condition can be incorporated within branch & bound
- + underlying polyhedra are tractable

1. Non-linear Functions in MIPs

- design of sheet metal
- gas optimization
- traffic flows

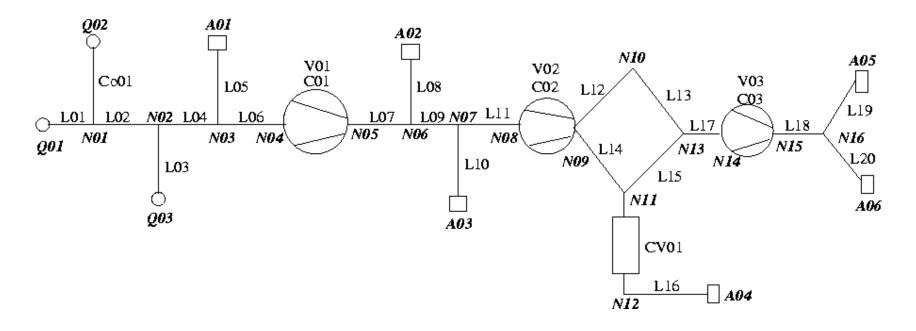
2. Modelling Non-linear Functions

- with binary variables
- with SOS constraints

3. Polyhedral Analysis

4. Computational Results

Computational Results



Nr of Pipes	Nr of Compressors	Total length of pipes	Time $(\epsilon = 0.05)$	Time (ε = 0.01)
11	3	920	1.2 sec	2.0 sec
20	3	1200	1.2 sec	9.9 sec
31	15	2200	11.5 sec	104.4 sec