

Automated Performance Analysis in the Evaluation of Nonlinear Programming Solvers

Armin Pruessner
GAMS Development Corporation

Hans Mittelmann Arizona State University

> ISMP - Copenhagen August 18-22, 2003

Agenda

- PAVER Server (for Analysis of Benchmark Data)
 - Performance World, Motivation and Goals
 - Quality Assurance Framework
 - Description of Server
 - Performance Tools and Metrics
- Illustrative Examples
 - COPS NLP models
 - Benchmark Results
- Conclusions

Performance World

Performance World

Editorial Board

PerformanceLib

Performance Tools

Performance List

Related Links

Search

Contact

Welcome to the Performance World!

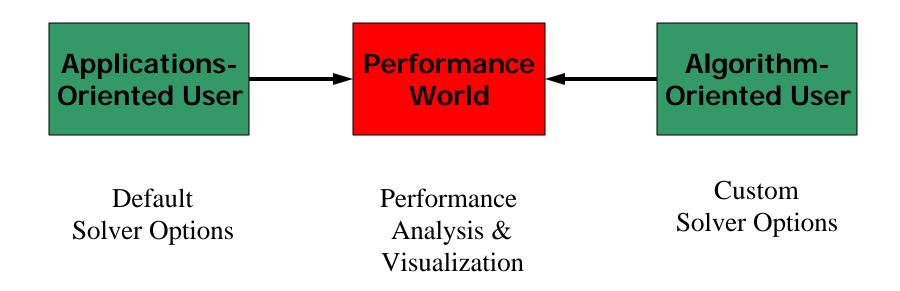
Performance World is a forum for discussion and dissemination of information and tools about all aspects of performance testing of solvers for mathematical programming problems. This world has been established in response to user demands for independent and reproducible performance results.

Overall performance highly depends on problem formulation, solver, and tuning parameters. Our performance tools are designed to serve the different needs of our user community. One user may be interested in finding the most reliable way to solve a proprietary or classified model. On the other hand, an academic researcher may be interested in testing a new algorithm against a set of existing test problems and competing approaches. The main features are:

- Uniform access to a comprehensive set of established and new test problems
- Automation tools for collecting performance measurements
- Tools for analyzing and visualizing test results

What's New:

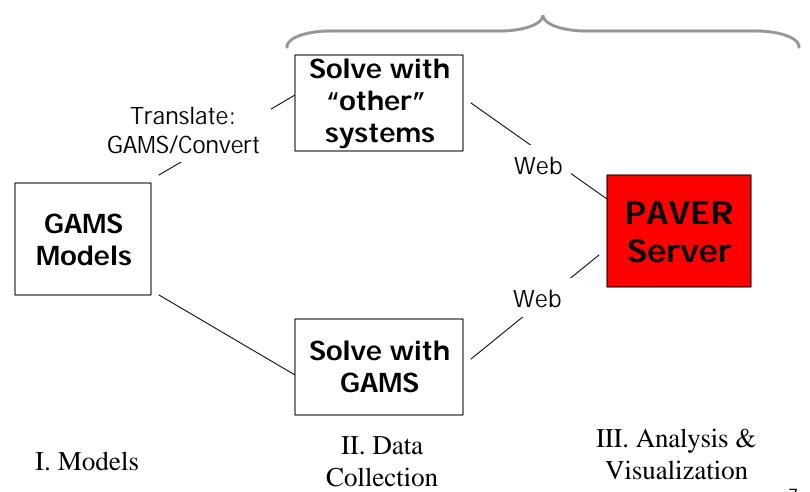
- Try our online <u>PAVER Server</u> for automated performance analysis and visualization, batch file creation and model translation
- New tools for analyzing non-convex or discrete models
- MINLP type models from the MINLP World have been added to the PerformanceLib


Motivation for Tools

Performance Tools driven by user needs:

- Finding the most reliable way to solve a proprietary model
- Testing a new algorithm against a set of existing test problems and competing approaches
- Reproducibility of performance results

Performance World


Tools: Performance Analysis

- Different objectives:
 - Solver robustness and correctness
 - Solver efficiency
 - Quality of solution (nonconvex and discrete models)
- Tools are GAMS independent
- Results in HTML format: platform independent

Quality Assurance Framework

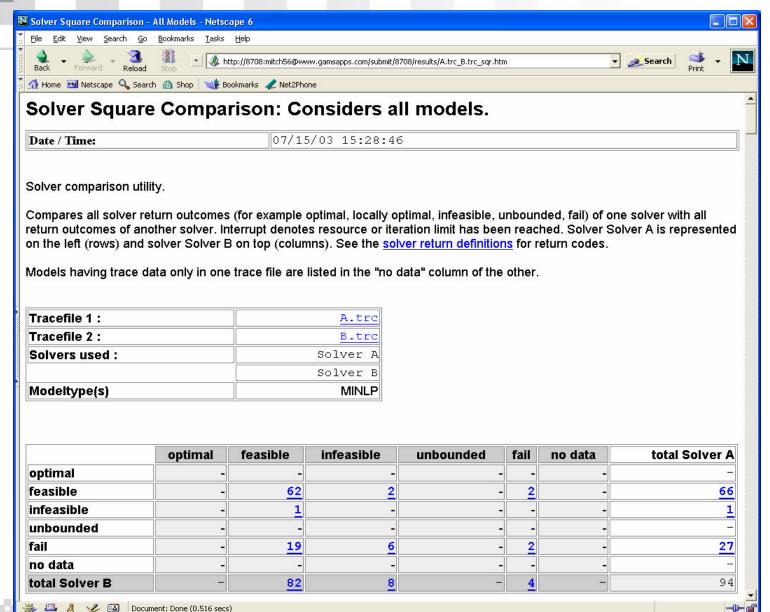
Can use Performance World tools

PAVER Server

• PAVER Server (Performance Analysis and Visualization for Effortless Reproducibility)

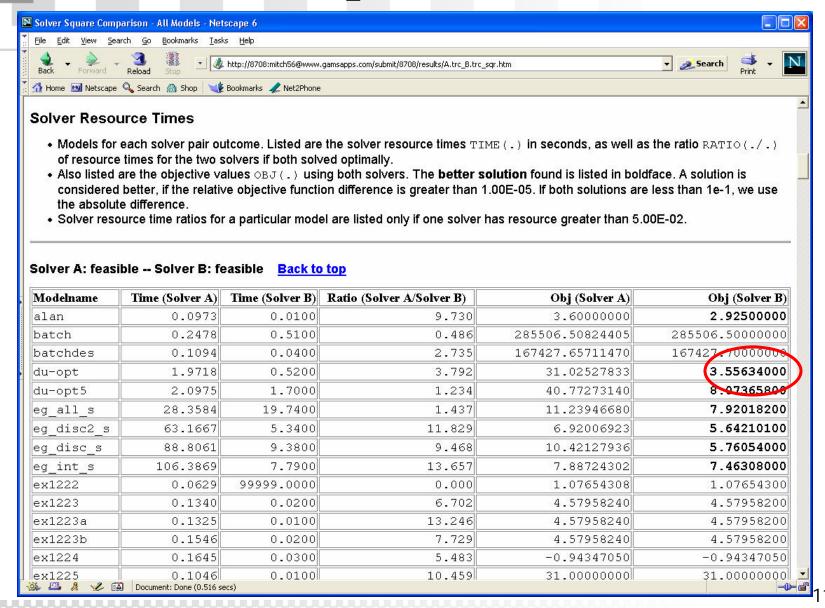
www.gamsworld.org/performance/paver

- Online server to facilitate performance analysis/visualization of data
- Results sent via e-mail in HTML format
- Rely on 3 tools: solver square, resource time, performance profiles


Tools: Robustness

Solver Square Utility:

- Cross comparison of solver outcomes of two solvers:
 - Optimal, feasible, unbounded, infeasible, fail
- Compact tabular form for results
- Shows resource time and objective value information
- → Can use online using PAVER


GAMS

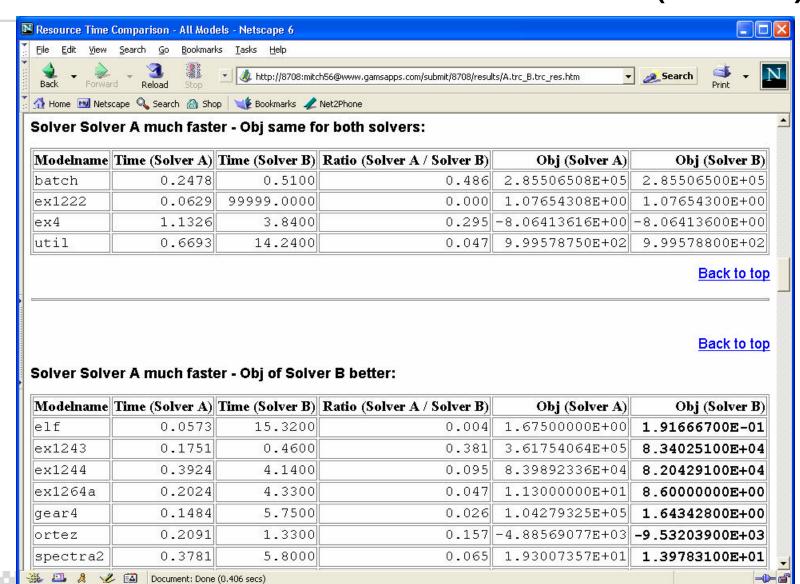
PAVER: Solver Square

PAVER: Square (cont.)

Tools: Efficiency

Resource Time Utility:

- Cross comparison of solver resource times of two solvers
- Further disaggregation by objective function
- Ratios of resource times
- → Can use online using PAVER



PAVER: Solver Resource Time

National Resource Time Comparison - All Models	s - Netscap	e 6				[
<u>File Edit View Search Go Bookmarks</u>	<u>T</u> asks <u>H</u> e	elp							
Back Forward Reload Stop Mttp://8708:mitch56@www.gamsapps.com/submit/8708/results/A.trc_B.trc_res.htm 🔻 🌌 Search Print									
. ⚠ Home Metscape 🔍 Search 🙆 Shop 😻 Bookmarks 🖋 Net2Phone									
							_		
Tracefile 1 :			A.trc						
Tracefile 2 :			B.trc						
Solvers used :									
Modeltype(s)				MINLP					
	Total	Obj Solver A bette		Obj Solver B better					
Solver Solver A infinitely faster :	4	4	1						
Solver Solver A much faster :	13		<u>4</u>	8					
Solver Solver A faster :	<u>1</u>	8	<u>1</u>	-					
Solvers perform the same :	10		<u> 7</u>	3					
Solver Solver B faster :	31	0	_ 24	<u>7</u>					
Solver Solver B much faster :	12	7	<u>4</u>	8					
Solver Solver B infinitely faster :	20		-	20					
Both solvers failed to solve optimally :	8		- 8	-					
Total models: :	99	5	48	46					
₩ ₩ A	406 secs)						<u>▼</u>		

PAVER: Resource Time (cont.)

Tools: Visualization

Performance Profiles (Dolan and Moré, 2002):

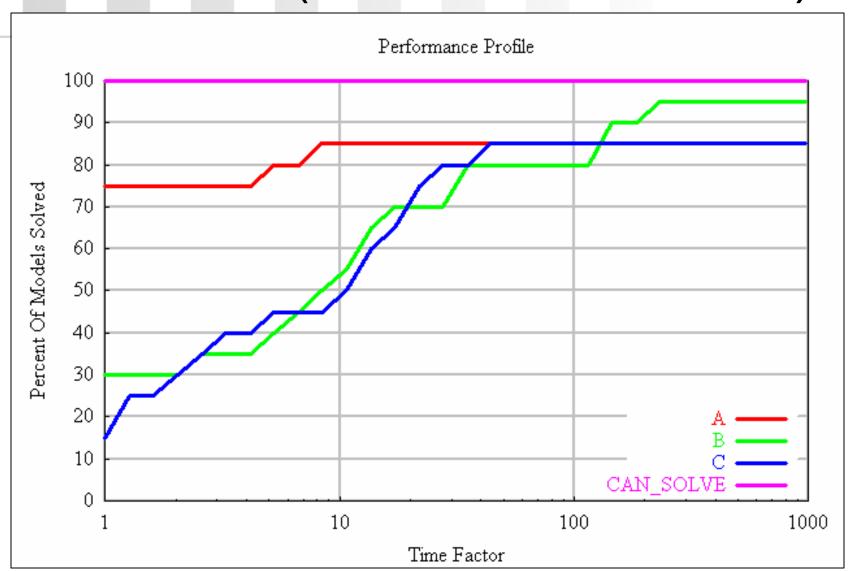
- Cumulative distribution function for a performance metric
- Performance metric: ratio of current solver time over best time of all solvers for "success"

• Intuitively: probability of success if given *t* times fastest time (*t*=*ratio*)

Tools: Performance Profiles

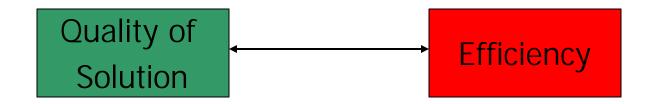
Interpretation (for t=ratio, P=profile):

• Efficiency:
$$P(t)$$
 for $t=1$

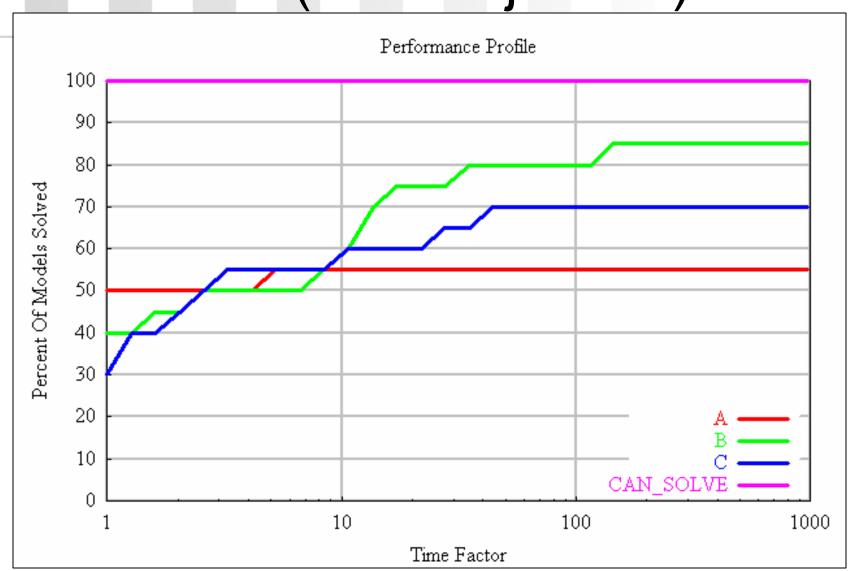

• Probability of success:

$$\lim P(t)$$
 as $t \to \infty$

Compact graphs summarize all information


Profiles (best resource time)

Tools: Visualization


Performance Profiles: considers both

- Further disaggregation by objective function:
- New performance metric: Success only if best solution (over all solvers) found

Profiles (best objective)

Overview of Tools

Primary performance metric employed by each tool:

Metric Tool	Robustness	Efficiency	Solution Quality
Square	X		
Resource Time		X	X
Profiles	X	X	X

Other Uses of PAVER

- Quality assurance
 - Integral part of GAMS quality control
- Fine tuning a new solver version
 - Comparison to previous versions
 - Want new version to be better w.r.t. various performance metrics
- Determining default solver options
 - Run solver using different options and compare

Benchmarking process

Two components:

- Subjective Component
 - Choice of models
 - Choice of solvers
 - Choice of solver options
- Non-subjective component:
 - Obtaining performance data
 - Performance analysis and visualization
 - → reproducible

Illustrative Example: COPS

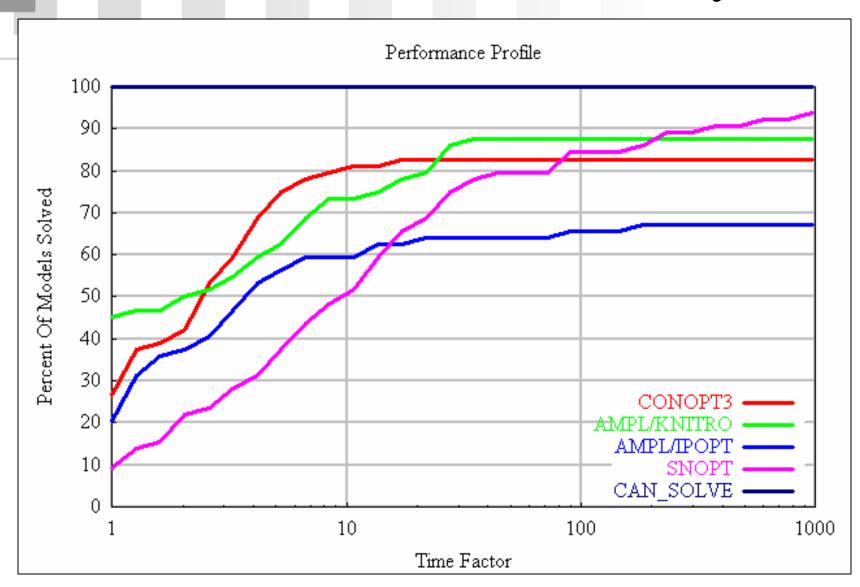
Choose well-known COPS test set for NLP

- Large scale nonlinear optimization test set
- Models come from various application areas (fluid dynamics, population dynamics, optimal design, optimal control)

Instance comes from GLOBALlib

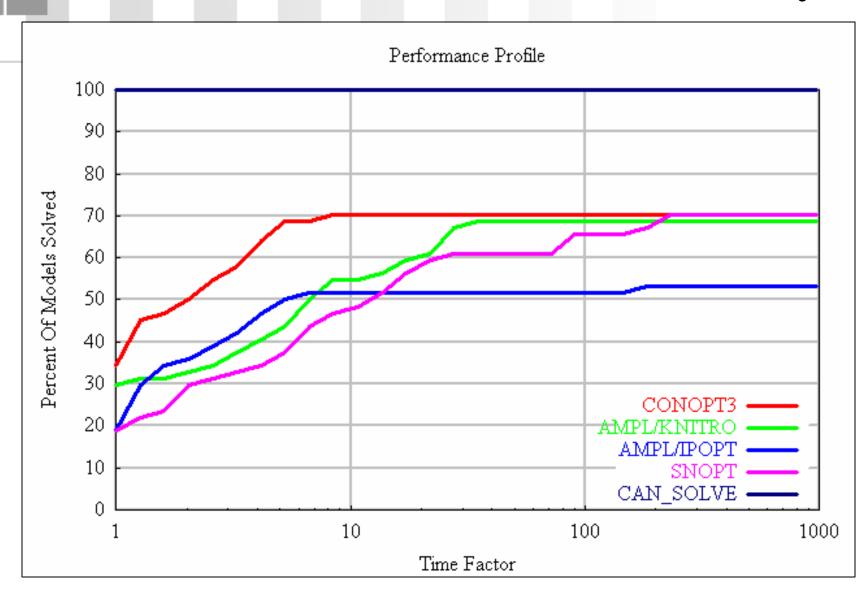
Choose 16 models/4 sizes each → Total of 64 models

Solvers used


- AMPL: KNITRO (version 2.1 08/01/02) IPOPT (version 2.0.1)
- GAMS: CONOPT3 (Library301F) SNOPT (version 5.3-5(2))

• Experimental Conditions:

- Dual processor 450MHz, 2Gb memory, Sun/Solaris 8
- 3600 sec resource time limit (CPU)



Results: Profiles (Efficiency)

Results: Profiles (Solution Quality)

Subjectivity in Benchmarking

Performance Tools:

• Partly takes care of non-subjective component in data analysis phase

- Choices during data collection phase:
 - Models?
 - Solver and solver options?
 - Uniform stopping criteria?

Subjectivity in Model Selection

Choice of models, solvers, options is subjective!

- Models used can skew data
 - several models of same structure may exist with different data
 - can choose subset of models where each solver is superior!
 - use resource time comparison to choose subset where IPOPT is most efficient!

Results: IPOPT Best (Efficiency)

🚰 Resource Time Comparison - All Models - Microsoft Internet Explorer										
<u>File Edit View Favorites Tools Help</u>										
G Back • O • X Search Provinces Media 🚱 🕞 W • 3										
Address C:\gamsprojects\ismp2003\data\results_all\cops_conopt3.trc.trc_cops_jpopt.trc_res.htm										
Tracefile 1 :	cops_conopt3.trc.trc									
Tracefile 2 :	cops_ipopt.trc									
Solvers used :	CONOPT3									
			AMPL/IPOPT							
Modeltype(s)			NLP							
			vi							
Tot	Obj CONOPT3	Obj	Obj AMPL/IPOPT							
	better	same	better							
Solver CONOPT3 infinitely faster :	<u>12</u> <u>12</u>	-								
Solver CONOPT3 much faster :	<u>12</u>	<u>10</u>	-							
Solver CONOPT3 faster :	10 -	<u>10</u>	1 <u>20</u>							
Solvers perform the same :	<u>5</u>	<u>5</u>								
Solver AMPL/IPOPT faster :	<u>6</u> -	<u>6</u>	_							
Solver AMPL/IPOPT much faster :	<u>8</u> <u>4</u>	<u>4</u>	_							
Solver AMPL/IPOPT infinitely faster :	2	-	2							
Both solvers failed to solve optimally :	9 -	<u>9</u>	-							
Total models: :	64 18	44	2							
€ Done										

Choose subset of models where IPOPT is fastest!

Use the resource time comparison table!

Results: IPOPT Best (Efficiency)

Stopping criteria

Comparisons of solutions:

- Independent verification of feasibility and optimality
- Issues:
 - Optimality criterion is measured differently by solvers
 - tweak solvers until tolerance is reached
 - How do we choose the proper solver options to satisfy independent verification tolerances?
 - one solver may work unduly hard to reach tolerance

Solution Verification: Examiner

- Independent check of solution accuracy using GAMS/Examiner
- Check feasibility and optimality
 - Can check a subset of these
 - User can set tolerances used, etc.
- Runs in between GAMS and a solver
 - Acts as a silent observer

Conclusions

- Online tools for analyzing and visualizing test results
 - Solver efficiency, robustness
 - Profiles and profile plots
- Enable users to reproduce performance results
- Automated performance analysis using the PAVER Server:

www.gamsworld.org/performance/paver

References

- E. D. Dolan and J. J. Moré (2000). Benchmarking optimization software with performance profiles, *Math Programming*, **91** (2), 201-213.
- Examiner (2003), *GAMS: The Solver Manuals*. available online at http://www.gams.com/solvers/allsolvers.pdf
- H. D. Mittelmann and A. Pruessner (2003). A server for automated performance analysis of benchmarking data, working paper.
- This presentation is available at http://www.gams.com/presentations