

Quality Assurance and Global Optimization

M. R. Bussieck, S. P. Dirkse, A. Meeraus, and A. Pruessner GAMS Development Corporation

INFORMS Annual Meeting San Jose November 17-20, 2002

Introduction

- Background and Motivation
- Global Optimization with GAMS
 - Available solvers
 - Issues specific to global optimization codes
- Framework for reliability and performance testing
- Example application

GAMS Overview

- Started as a Research Project at the World Bank 1976
- GAMS went commercial in 1987
- Opened European Office in Cologne, Germany 1996
- 10,000s of users in over 100 countries
- Unique position between the academic and commercial world

Basic Principles

- Separation of model and solution methods
- Model types
 - LP, MIP, NLP, MINLP, MCP, MPEC
 - Stochastic Programming, MPSGE
- Multiple solvers
- Computing platform independence

Supported Solvers

BDMLP	LP solver that comes with any GAMS system	L
-------	---	---

CONOPT Large scale NLP solver from ARKI Consulting and Development

CPLEX High-performance LP/MIP solver from Ilog

DECIS Large scale stochastic programming solver from Stanford University

DICOPT Framework for solving MINLP models. Needs both an NLP solver and a MIP solver. From Carnegie M.

MILES MCP solver from University of Colorado at Boulder that comes with any GAMS system

MINOS NLP solver from Stanford University

MPSGE Modeling Environment for CGE models from University of Colorado at Boulder

OSL High performance LP/MIP solver from IBM

OSLSE OSL Stochastic Extension for solving stochastic models

PATH Large scale MCP solver from University of Wisconsin at Madison

SBB Branch-and-Bound algorithm from ARKI Consulting and Development for solving MINLP models, requi

SNOPT Large scale SQP based NLP solver from Stanford University

XA Large scale LP/MIP system from Sunset Software

XPRESS High performance LP/MIP solver from Dash

Beta Solvers

Beta Solvers

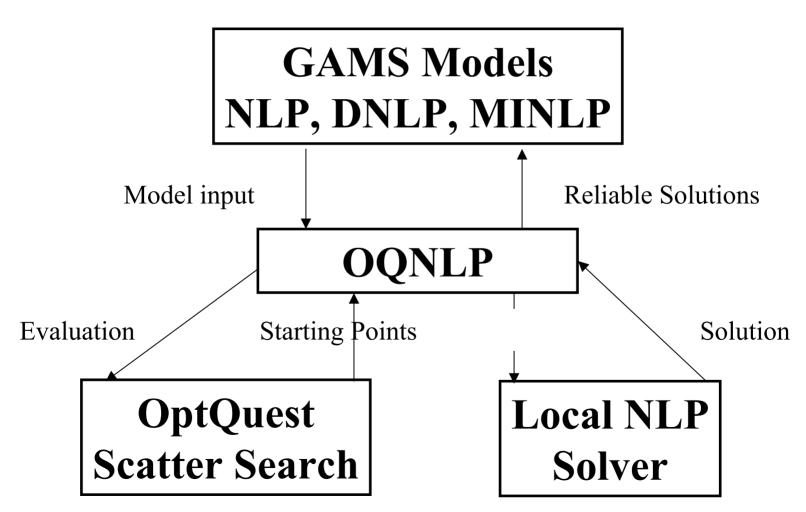
BARON	Branch-And-Reduce Optimization Navigator for proven global solutions from The Optimization Firm
CONVERT	Frame work for translating models into scalar models of other languages
LGO	Lipschitz global optimizer from Pinter Consulting Services
MOSEK	Large scale LP/MIP plus conic and convex non-linear programming system from EKA Consulting
NLPEC	MPEC to NLP translator that uses other GAMS NLP solvers
OQNLP	Multi-start method for global optimization from Optimal Methods Inc.
PATHNLP	Large scale NLP solver for convex problems from University of Wisconsin at Madison

Contributed Plug&Play Solvers

AMPLwrap	Framework for using AMPL solver for GAMS models
<u>DEA</u>	Large scale Data Envelop Analysis Solver from University of Wisconsin at Madison
<u>Kestrel</u>	Framework for using remote NEOS solvers with a local GAMS system
QPwrap	Quadratic programming in GAMS

Supported Platforms

	Solver/Pl	atform av	ailability - 20.7	June 14, 20	02		
	Intel		Sun Sparc	HP 9000	DEC Alpha	IBM RS-6000	SGI
	Windows 95/98/Me/NT/2000/XP	Linux	Solaris	HP-UX 10	Digital Unix 4.0	AIX 4.3	IRIX
BDMLP	✓	1	✓	✓	✓	V	1
CONOPT	✓	V	✓	✓	✓	V	~
CPLEX 7.5	✓	V	✓	✓	✓	V	~
DECIS	✓	V	✓		✓		1
DICOPT	✓	V	✓	✓	✓	V	~
MILES	✓	V	V	v	v	V	~
MINOS	✓	V	✓	✓	✓	✓	1
MPSGE	✓	V	✓	v	v	V	~
OSL V3	✓	V	✓	✓		V	1
PATH	✓	V	✓	✓	v	V	~
SBB	✓	V	✓	✓	v	V	~
SNOPT	✓	V	V	V	V	V	1
XA	✓	~	V	V	V	V	
XPRESS 13.02	✓	V	V	13.01			


GAMS/GLOBAL Solvers

The solvers differ in the methods they use, in whether they find globally optimal solution with proven optimality, and in the size of models they can handle, and in the format of models they accept.

- **BARON**. Branch-and-Reduce algorithm from N.Sahinidis, University of Illinois Urbana-Champaign
- LGO. Lipschitz Global Optimization from Pinter Consulting Services, Canada
- **OQNLP**. OptQuest/NLP algorithms by OptTek Systems and Optimal Methods

GAMS/OQNLP

Local Optimization Today

- Nonlinear modeling available in GAMS from the very beginning
- Variety of local solvers
 - NLP: MINOS, CONOPT, SNOPT, LSGRG, PATHNLP
 - MINLP: DICOPT, SBB
 - implementing different methods (SLP, SQP, GRG, B&B, outer approximation...) improve reliability of nonlinear modeling
- Initial point is crucial for success

Global Codes and GAMS

- Global codes provide
 - Independence of starting point
 - Global/improved solutions
 - Bounds for solution quality
- (Almost) seamless exchange of local solvers with global solvers: Option nlp=oqnlp;
- Minimize risk of new technology for customers
 - Multiple Global Codes
 - Fallback to Local Solvers

Open Issues for Global Codes

- Termination criteria
 - When to stop a multi-start method?
- Problem modification
 - Global solvers require bounding box
- Limited algebra
 - E.g. External functions (black box)
- Solution quality metrics

Research v.Commercial Codes

- Run in "expert mode" tuned by the developer for a particular problem
- User wants to solve his business problem and wants to treat the solver as a black box
- Solver has to work decently in all cases
- Even if the algorithm fails, the solver has to be "fail-safe"

QA Tests for Reducing Risk

- Replication of quality assurance results critical factor for establishing a new solver technology in the commercial world
- Non-reproducible tests damage the reputation of a solver
- Requirement: low cost replication of such results by an independent auditor

Effective Testing

- Test cases
 - Widely available collection of standardized test instances
- Solution Verification GAMS/Examiner
- Data collection tools
 - Automatic collection of solution and statistics
 - Capture test environment setting (hardware, software)
- Data analysis tools
 - Standard quality and performance measurements

Test Cases

Classification

- Toy models
- Academic Application Models
- Commercial Application Models (difficult to collect)

Growing GAMS Model Collections

- GAMS Model library http://www.gams.com/modlib/modlib.htm, with about 250 models from over 18 application areas
- GLOBALLib http://www.gamsworld.org/global/globallib.htm, with about 250 scalar NLP models
- MINLPLib http://www.gamsworld.org/minlp/minlplib.htm, with about 180 scalar MINLP models
- MPECLib http://www.gamsworld.org/mpec/mpeclib.htm, which produces over 10,000 NLP models

GAMS World Home Page

GAMS World

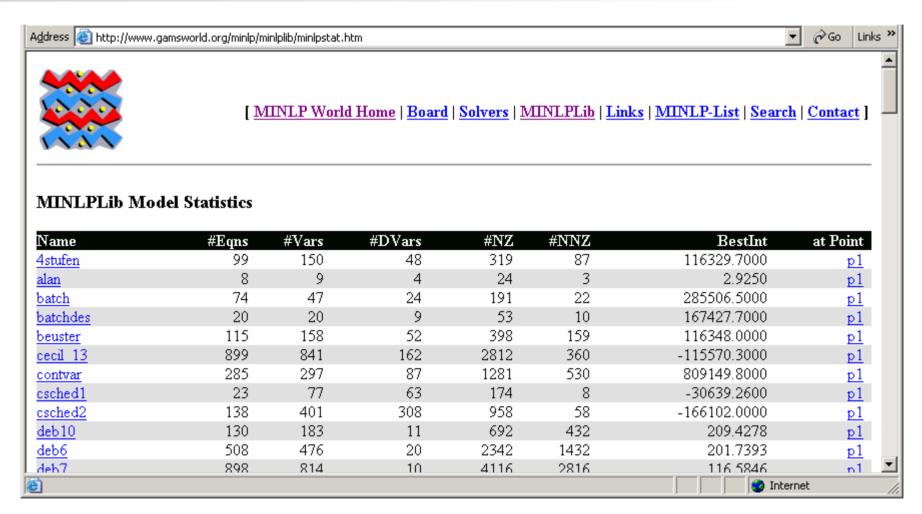
The Worlds
GLOBAL
MINLP
MPEC
MPSGE
Performance
Translation

Search

Contact

Welcome to the GAMS World

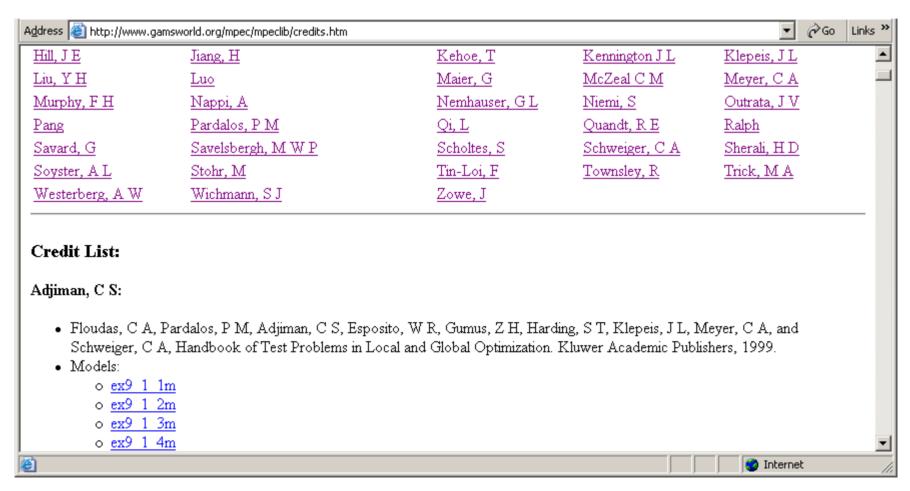
This is the home page of the GAMS World, a web site aiming to bridge the gap between academia and industry by providing highly focused forums and dissemination services in specialized areas of mathematical programming.


Substantial progress was made in the 1980s and 1990s with the development of algebra based modeling systems, algorithms, and computer codes to solve large and complex mathematical programs. The application of these tools, however, was less than expected. The abstraction, expression, and translation of real world problems into reliable and effective operational systems requires highly specialized and domains specific knowledge. The process of acquisition and dissemination of this knowledge is complex and poorly understood and the number of "good modelers" is much less than we all hoped for. Similarly, the process of transforming a new algorithm into a reliable and effective solution system is a slow and expensive process and there are few "good implementers". This web site hopes to address some of these problems by helping with the collection and dissemination of domain specific information and knowledge that is outside the established channels because of its content or form.

For example, model structures and results get published in commercial and academic papers but it is virtually impossible to reproduce any of those results or lift model components and data from one study to be used in some other study. Algorithm implementers face a similar dilemma when trying to get their hands on real world data models and data to test and refine their systems. This web site offers a few, well focused and maintained services to help with the dissemination of problems and solutions.

GAMS World is featured by GAMS Development Corp. and GAMS Software GmbH

MINLP Lib



Global Lib

MPEC Lib

Data Collection Tools

- Status/performance/exception information
- GAMS Trace facility automatically collects
 - Model statistics
 - Non-default input options
 - Solver and solution statistics
 - Execution environment information
 - Version control of solvers

Data Analysis Tools

- Integral part of the quality assurance process at GAMS
- Processing of trace results
 - Build-in tools for status information
 - Custom GAMS programs
 - Performance World Tools
 - Performance measurements
 - Graphical/tabular representations

Performance World

Performance World

Editorial Board

PerformanceLib

Performance Tools

Performance List

Related Links

Search

Contact

Welcome to the Performance World!

Performance World is a forum for discussion and dissemination of information and tools about all aspects of performance testing of mathematical programming problems. This world has been established in response to user demands for independent and reproducible performance results.

Overall performance highly depends on problem formulation, solver, and tuning parameters. Our performance tools are designed to serve the different needs of our user community. One user may be interested in finding the most reliable way to solve a proprietary or classified model. On the other hand, an academic researcher may be interested in testing a new algorithm against a set of existing test problems and competing approaches. The main features are:

- . Uniform access to a comprehensive set of established and new test problems
- · Automation tools for collecting performance measurements
- · Tools for analyzing and visualizing test results

What's New:

- Try our online PAVER Server for automated performance analysis and batch file creation
- · New tools for analyzing non-convex or discrete models
- MINLP type models from the MINLP World have been added to the PerformanceLib A tutorial (August, 2002)

Open Testing Architecture

Test models

- Open source GAMS models
- Automatic translation into different formats, e.g. AMPL
- Web/Email interface for this translation service

Trace facility API

- import/export of trace files (solution info, CSV format)
- Analysis tools
 - open source GAMS programs
 - Web interface for PAVER (Performance Analysis and Visualization for Effortless Reproducibility)

Translation Services

[GAMS World Home | GMS2XX Translator | Search | Contact]

Instructions

In order to use the GMS2XX translation service which is based on the "solver" GAMS/CONVERT you have to attach your model to an email and send it to our translation server at gms2xx@gamsworld.org. You specify the language in the subject line, for example

Subject: GAMS

At the moment we support the following languages:

- AMPL
- BARON
- CplexLP
- CplexMPS
- GAMS
- LGO
- LINGO
- MINOPT
- ALL (this creates scalar versions of all supported languages, listed above)

Performance Tools

Download Performance tools:

Download the Performance Tools and sample data.

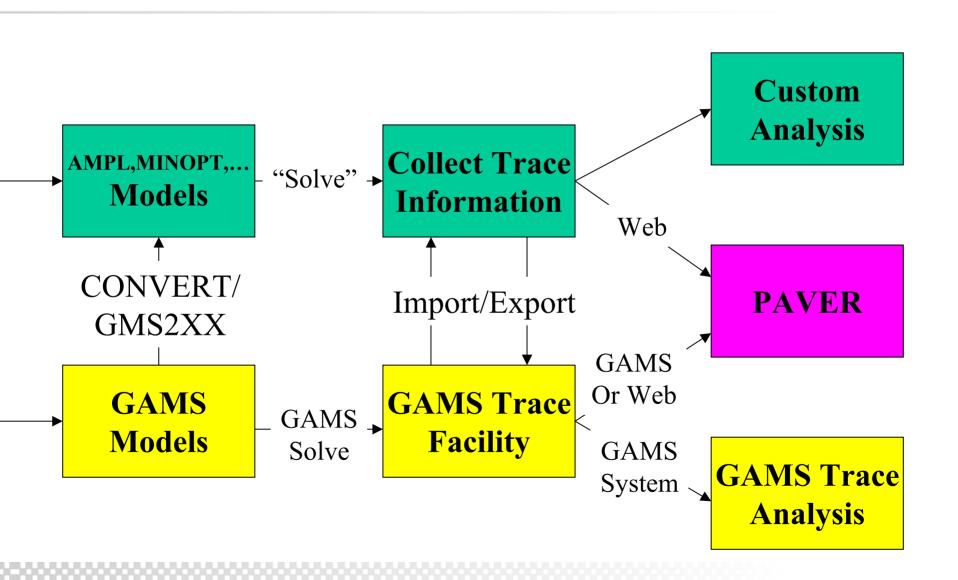
Ptools.zip

Includes the following tools:

- pprocess.gms performs all performance tools on a given set of trace files and combines output in a summary HTML page.
- pprofile.gms performance profile routine for solver comparisons
- plotprof.gms performance profile plotting routine using Gnuplotxy (Windows only)
- · restime.gms Resource time comparison utility
- schulz.gms termination routine to ensure solvers terminate at resource time limit
- <u>square.gms</u> solver outcome comparison utility

Also includes the following sample data files, where solvers have been renamed to generic A, B, C to hide proprietary data:

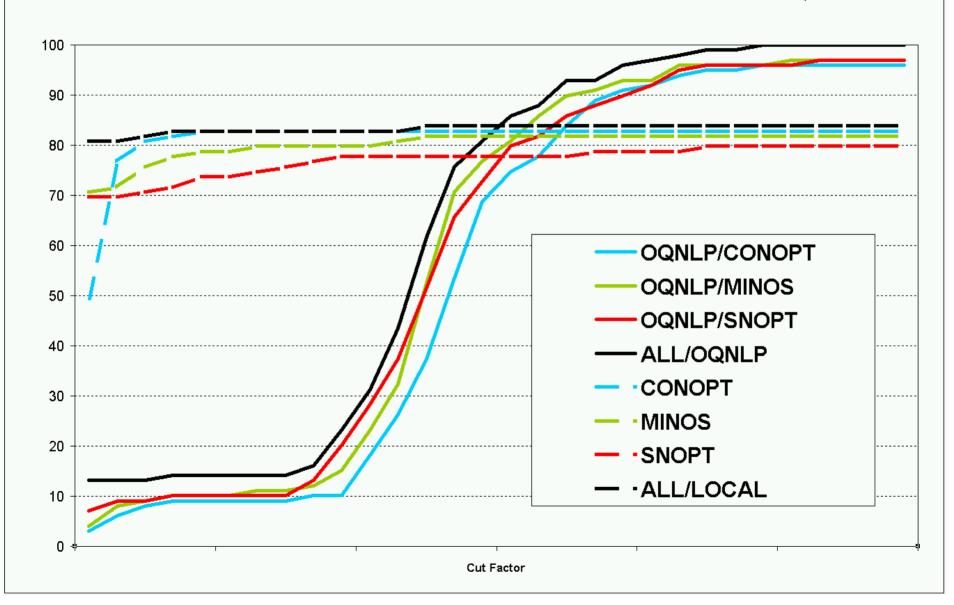
PAVER Web Submission


[Performance World Home | Board | Tools | PerformanceLib | Links | Performance-List | Search | Contact]

PAVER - Performance Analysis Web Submission Tool

Email Address (required):	SDirkse@gams.com		
	Submit trace file:		Rename solver
Trace 1 (required)	CONOPT.TXT	Browse	
Trace 2 (required)	MINOS.TXT	Browse	
Trace 3	SNOPT.TXT	Browse	
Trace 4	OQNLPCONOPT.TXT	Browse	OQNLP/CONOPT
Trace 5	OQNLPMINOS.TXT	Browse	OQNLP/MINOS
Trace 6	OQNLPSNOPT.TXT	Browse	OQNLP/SNOPT
Trace 7		Browse	
Trace 8		Browse	
Submit Trace Files C	lear Form		

Open Testing Architecture



Example

- 99 instances of NLP models from Floudas, C A, Pardalos, P M, Adjiman, C S, Esposito, W R, Gumus, Z H, Harding, S T, Klepeis, J L, Meyer, C A, and Schweiger, C A, Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, 1999
- Run all GAMS local NLP solvers and OQNLP in default mode.
- Compare Performance using PAVER.

Performance Profile - Local Solvers with and without OQNLP

Conclusions

- Framework for reliability and performance testing of (global) optimization codes.
- Open architecture for using this framework with models, modeling languages and solvers that are not necessarily connected with GAMS.
- Commitment to quality assurance in the optimization world (critical for success in the commercial environment).
- Presentation with all examples (will be) available at http://www.gams.com/presentations