

GAMS:

A High Performance Modeling System for Large-Scale Modeling Applications

Armin Pruessner Alexander Meeraus

GAMS Development Corporation Washington, DC

INFORMS - Denver October 24, 2004

Agenda

- Overview of Modeling Systems
 - Why use Modeling Systems? (Past and Present)
 - Language Syntax
 - GAMS Features?
 - Solvers and Other Features
- Illustrative Examples
 - Solving Models and Quick Modifications
 - Interfacing with Office Applications
 - Full Web Integration Example
- Conclusions

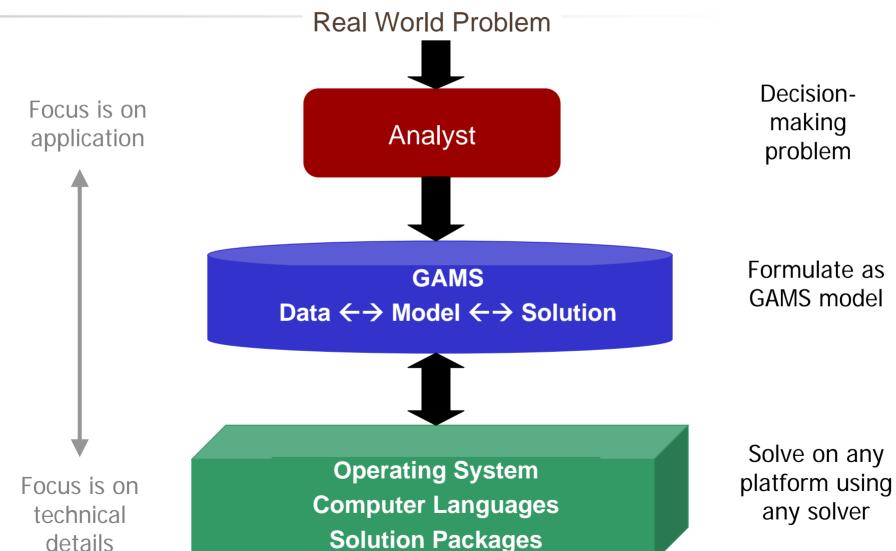
Modeling Systems

Software systems for decision making:

- Optimization problems (max profit/min cost)
- Simplify the model building and solution process
- Create maintainable models
- Adapt models quickly to new situations

Modeling: Past

In the early years: Implementation (software) was cumbersome:

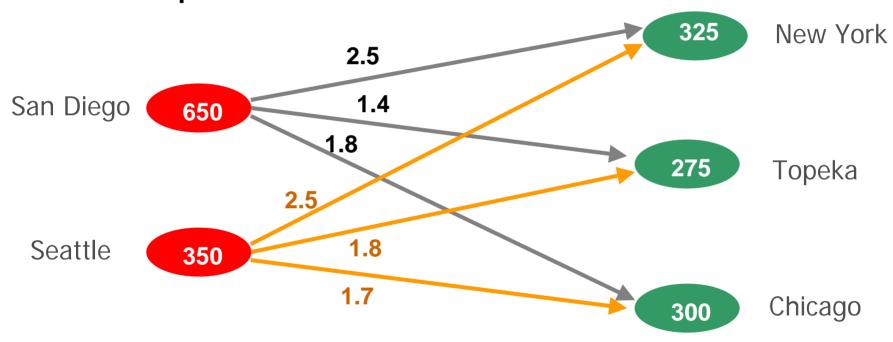

- Problem-specific
- Platform-specific
- Required high technical skills
- Models not easily maintainable or adaptable

Today: modeling languages are (roughly)

 a means of describing problems to a computer system in the same way that people describe those problems to each other.

Modeling Systems: Present

Basic Technical Principles

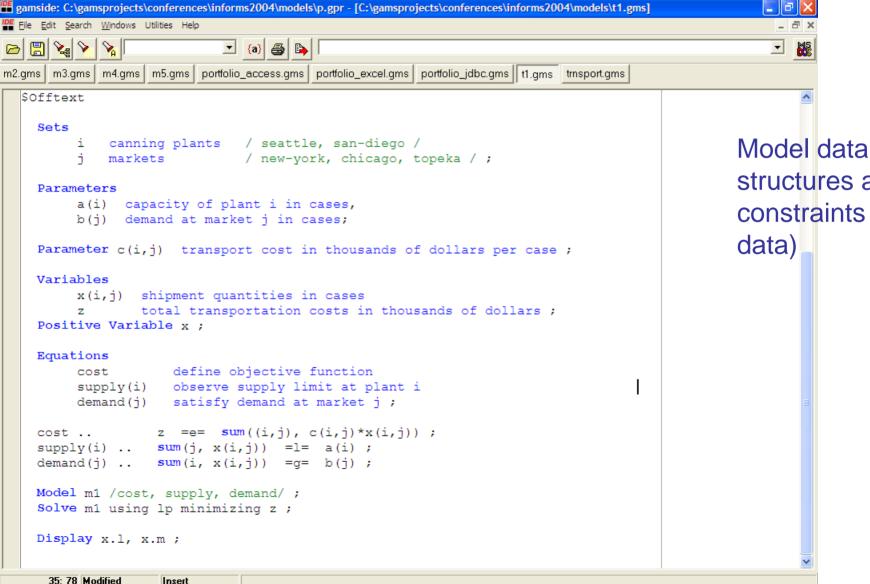

GAMS principles:

- Separation of model and solution methods
- Computing platform independence
- Multiple model types, solvers, platforms
- Balanced mix of declarative and procedural approaches
- Model is a data base operator and/or object

GAMS Language Example

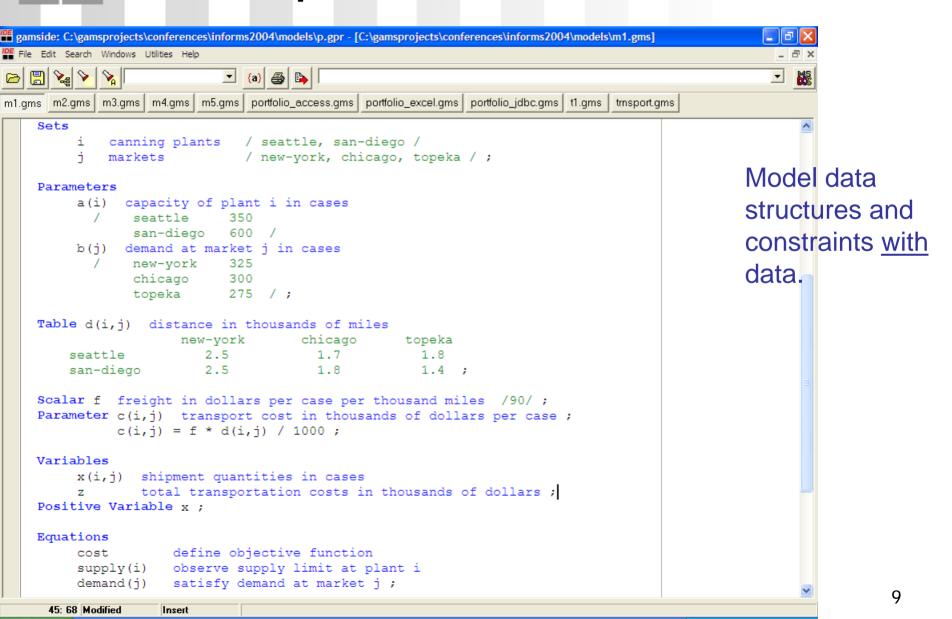
Transport:

Minimize: Transportation cost (distance & units)


Subject to: Demand satisfaction at markets

Supply constraints

Insert


Transport Model (IDE)

structures and constraints (no

Transport Model With Data

Features

GAMS:

- Offers single point of support
- Large number of model types
- Multiple platforms
- State of the art solvers
- Large user base (10,000 of customers in over 100 countries)
- Large model library and public models
- GAMS User List

Multiple Model Types

Includes:

- LP Linear Programming
- MIP Mixed Integer Programming
- QCP Quadratically Constrained Programming
- NLP Nonlinear Programming
- CNS Constrained Nonlinear Systems
- MINLP Mixed Integer Nonlinear Programming
- MPEC NLP with Complementarity Constraints
- MPSGE General Equilibrium Models
- Stochastic Optimization

Supported Platforms

Solver/Platform availability - 21.4 September 6, 2004									
	Intel	Sun Sparc	HP 9000	DEC Alpha	IBM RS-6000	SGI			
	Windows 95/98/Me/NT/2000/XP	Linux	Solaris	HP-UX 11	Digital Unix 4.0	AIX 4.3	IRIX		
BARON 7.2	✓	~				~			
BDMLP	✓	~	V	~	✓	✓	-		
CONOPT 3	~	~	~	~	✓	✓	~		
CONVERT	✓	~	~	~	~	✓	~		
CPLEX 9.0	✓	~	~	~	8.1	✓	~		
DECIS	✓	~	~	~	~	✓	~		
DICOPT	✓	~	~	~	~	✓	~		
LGO	✓	~	~	~	~		~		
MILES	✓	~	~	~	~	✓	~		
MINOS	✓	~	~	~	~	✓	~		
MOSEK 3.0	✓	~	~	~					
MPSGE	~	~	~	~	~	✓	~		
MSNLP	✓	~							
NLPEC	✓	~	~	~	~	✓	~		
OQNLP	✓	~							
OSL V3	✓	~	V	V2		~	V2		
PATH	✓	~	V	~	~	~	~		
PATHNLP	~	~	✓	~	✓	✓	~		
SBB	✓	~	~	~	~	~	~		
SNOPT	✓	~	~	~	~	✓	~		
XA	✓	~	~	~	~	~			
XPRESS 2004	✓	~	V			~			
For backward con	npatibility we maintain older	versions	of operating s	ystems and so	olvers. Please cal	1.			

Supported Solvers

BARON	Branch-And-Reduce Optimization Navigator for proven global solutions from The Optimization Firm				
BDMLP	LP solver that comes with any GAMS system				
COIN	Link to the solvers in the COIN-OR project (Computational Infrastructure - Operations Research).				
CONOPT	Large scale NLP solver from ARKI Consulting and Development				
CONVERT	Frame work for translating models into scalar models of other languages				
CPLEX	High-performance LP/MIP solver from Ilog				
DECIS	Large scale stochastic programming solver from Stanford University				
DICOPT	Framework for solving MINLP models. From Carnegie Mellon University				
EXAMINER	A tool for examining solution points and assessing their merit				
GAMSBAS	A Program for Saving an Advanced Basis for GAMS				
<u>GAMSCHK</u>	A System for Examining the Structure and Solution Properties of Linear Programming Problems Solved using GAMS				
<u>LGO</u>	Lipschitz global optimizer from Pinter Consulting Services				
MILES	MCP solver from University of Colorado at Boulder that comes with any GAMS system				
MINOS	NLP solver from Stanford University				
MOSEK	Large scale LP/MIP plus conic and convex non-linear programming system from EKA Consulting				
MPSGE	Modeling Environment for CGE models from University of Colorado at Boulder				
MPSWRITE	MPS file generator that comes with any GAMS System				
MSNLP	Multi-start method for global optimization from Optimal Methods Inc.				
NLPEC	MPEC to NLP translator that uses other GAMS NLP solvers				
<u>OQNLP</u>	Multi-start method for global optimization from Optimal Methods Inc.				
OSL	High performance LP/MIP solver from IBM				
OSLSE	OSL Stochastic Extensions for solving stochastic models				
<u>PATH</u>	Large scale MCP solver from University of Wisconsin at Madison				
<u>PATHNLP</u>	Large scale NLP solver for convex problems from University of Wisconsin at Madison				
SBB	Branch-and-Bound algorithm from ARKI for solving MINLP models				
SCENRED	A tool for the reduction of scenarios modeling the random data processes				
SNOPT	Large scale SQP based NLP solver from Stanford University				
<u>XA</u>	Large scale LP/MIP system from Sunset Software				
XPRESS	High performance LP/MIP solver from Dash				

29 supported solvers (including global solvers) plus several contributed plug and play solvers

[Live Software Demo]

- Using the GAMS IDE
- Modifying models to handle new situations

Model trnsport.gms - LP

```
Sets
        canning plants
                      / seattle, san-diego /
    i
        markets
               / new-york, chicago, topeka / ;
Parameters
    a(i) capacity of plant i in cases
           seattle
                      350
                                                  Solve using "s=m1" option
           san-diego 600 /
    b(j) demand at market j in cases
                                                      (to save model info)
          new-york
                      325
           chicago
                     300
           topeka 275 / ;
Table d(i,j) distance in thousands of miles
                              chicago
                new-york
                                          topeka
                   2.5
                                           1.8
   seattle
                                1.7
   san-diego
                   2.5
                                1.8
                                            1.4;
Scalar f freight in dollars per case per thousand miles /90/;
Parameter c(i,j) transport cost in thousands of dollars per case ;
```

c(i,j) = f * d(i,j) / 1000 ;

Min/Max Shipments – MIP

Add additional constraints: (m2.gms)

```
Min/max shipments
Scalars
          xmin / 100 /,
               / 275 /;
          xmax
Binary variables
                    ship(i, j)
                                         decision variable to ship
Equations
                    minship(i,j)
                                         minimum shipments
                    maxship(i,j)
                                         maximum shipments ;
Minship(i,j)...
                    x(i,j) = q = xmin*ship(i,j);
Maxship(i,j)...
                    x(i,j) = l = xmax*ship(i,j);
Model m2 / cost, supply, demand, minship, maxship /;
Solve m2 using mip minimizing z;
```

Restart using "r=m1" option

Nonlinear Cost - NLP

Change objective function: (m3.gms)

```
Scalar beta;

Equations nlcost) Nonlinear cost function;

Nlcost... z =e= sum((i,j), c(I,j)*x(i,j)**beta);

Model m3 / nlcost, supply, demand /;

Beta = 1.5;
Solve m3 using nlp minimizing z;

Beta = 0.6;
Solve m3 using nlp minimizing z;
```

Restart using "r=m1" option

Min/max and NL Cost - MINLP

Add both the nonlinear function nlcost and the max/min shipment constraints: (m4.gms)

```
Model m4 / nlcost, supply, demand, minship, maxship /;
Option minlp = baron;
Solve m4 using minlp minimizing z;
Option minlp = sbb; Option nlp=snopt;
Option optcr=0;
Solve m4 using minlp minimizing z;
```

Restart using "r=m1" option

[Done With Demo]

Other Language Features

- For and while loops
- If else constructs
- Unix-like data manipulation utilities for Windows (grep, awk, sed, etc.)
- Statistical functions (distributions)

Change in Focus (Future)

ComputationPast

- Algorithm limits applications
- Problem representation is low priority
- Large costly projects
- Long development times
- Centralized expert groups
- High computational cost, mainframes

Users left out

Model Present

- Modeling skill limits applications
- Algebraic model representation
- Smaller projects
- Rapid development
- Decentralized modeling teams
- Low computational cost, workstations
- Machine independence

Application Present/Future

- Domain expertise limits application
- Off-the-shelf graphical user interfaces
- Links to other types of models
- Models embedded in business applications
- New computing environments
- Internet/web

Users involved

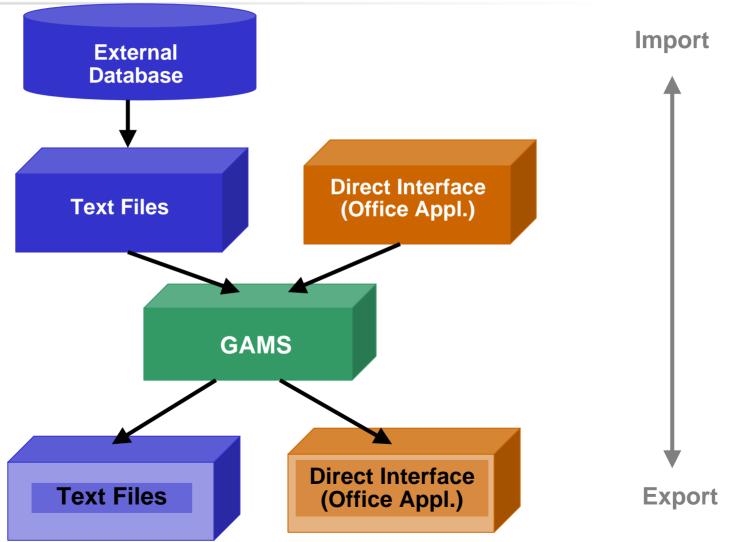
User hardly aware of model

New Challenges

Model only *small component* of a complex application:

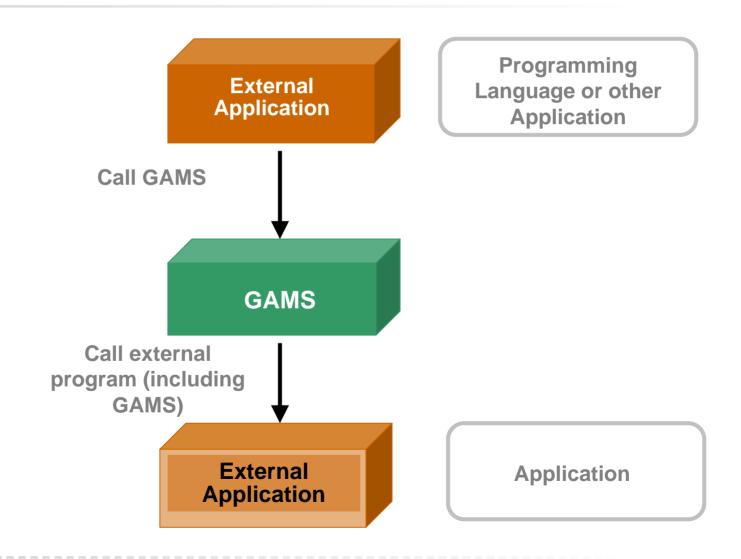
Particular emphasis on

- Need to interface with databases
- Interface with other analytic/visualization engines
- Embed in web-based applications

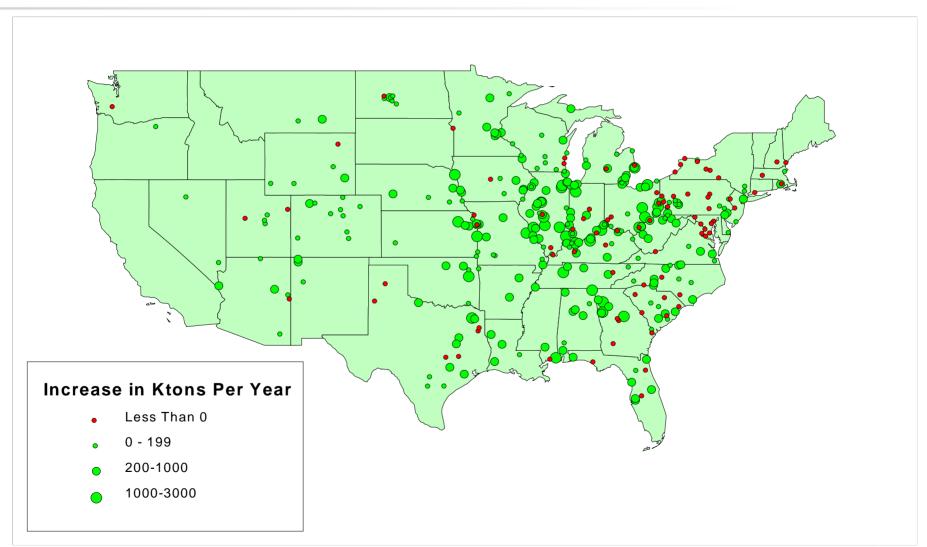

Interfacing

GAMS offers full range of interfacing capabilities:

- Data Import/Export from Standard Applications
 - MS Office, Databases, Text Files,...
- Execute programs from within GAMS (including another GAMS job itself)
- Call GAMS from complex applications
- Visualization tools

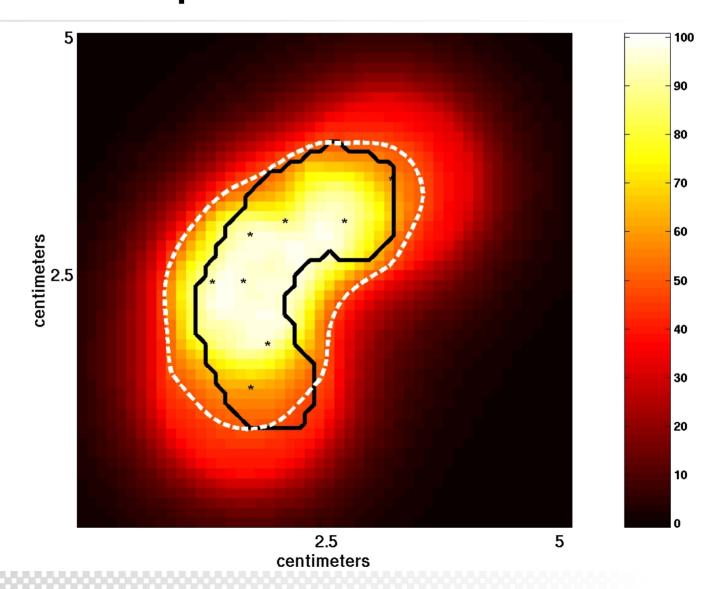


Scenario: Import/Export Data



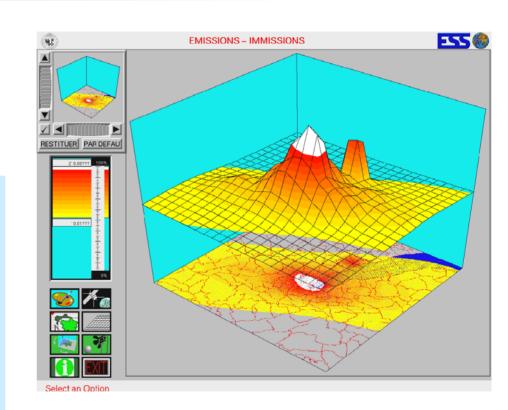
Embedding

Examples - MapInfo



Examples - GnuPlot

Examples – GAMS/MATLAB

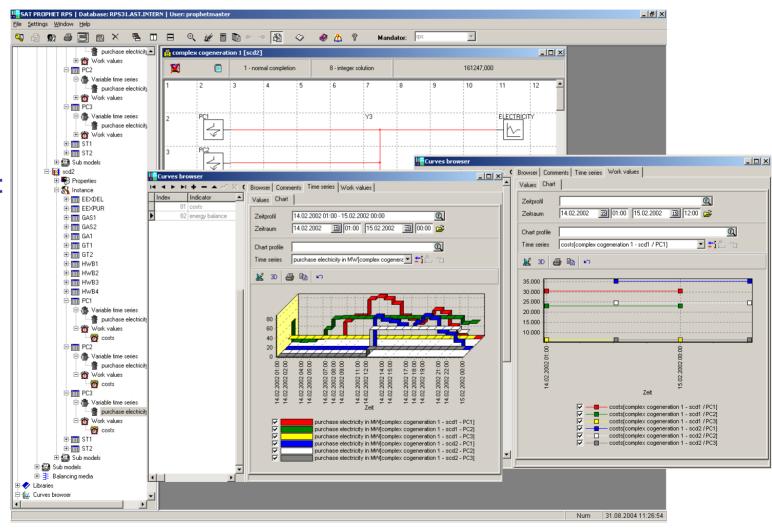


Examples – GIS Mapping

Total average yearly NO_x immission

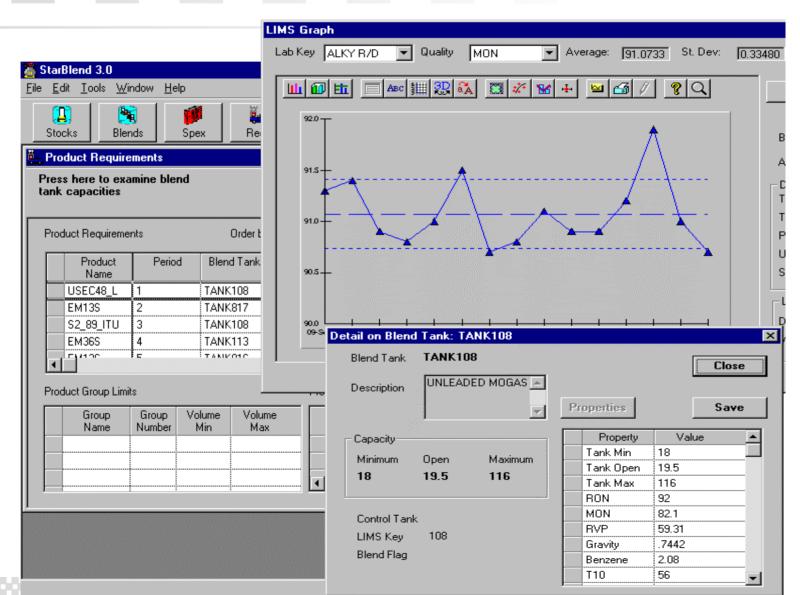
Coupling GIS databases with models permits efficient data handling, preparation of scenarios, displays of results, animations.

GIS computations permit the evaluation of spatially related costs or technical coefficients.

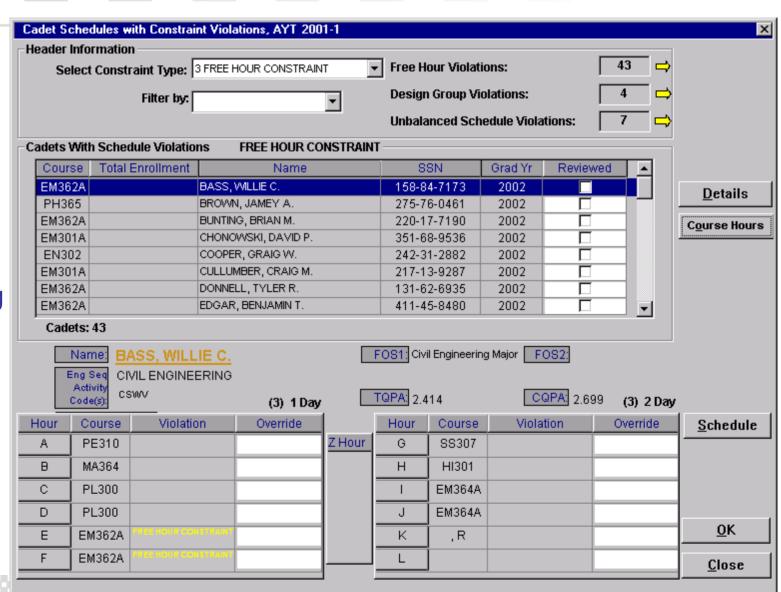


scale: $10 \, \mu g/m^3 - 200 \, \mu g/m^3$

Various Front Ends


Client Model: Electricity Market

Various Front Ends


Client Model: Gasoline Blending

Various Front Ends

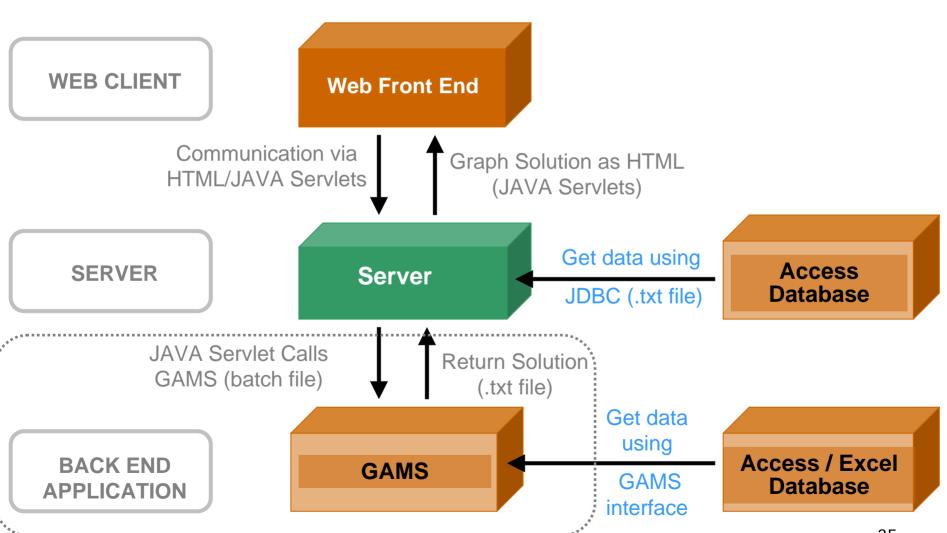
Client
Model:
Course
Scheduling
at West
Point

Illustrative Examples

- Writing to Excel
- Reading from Access
- Embedding in another application

Real-world scenario

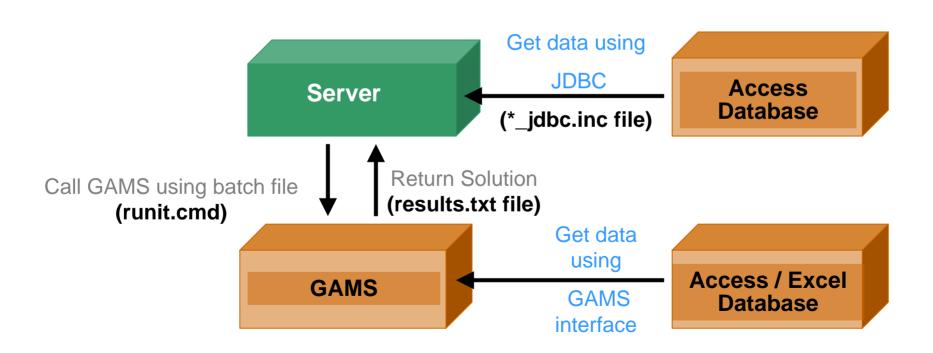
 Likely will involve the model being only a small component of the application



Excel Example

M	Microsoft Excel - results.xls											
	File Edit View Insert Format Tools Data Window Help Adobe PDF											
<u>ן</u> ב		👺 🐰 🗈 🖺 🍼	₩ + □ +	$\Sigma f_{\infty} \stackrel{\triangle}{\underset{\sim}{\longrightarrow}} \stackrel{Z}{\underset{\sim}{\downarrow}} \stackrel{Z}{\underset{\sim}{\downarrow}} $	🗓 🚜 100% 🔻 🏹 💂	Arial	▼ 16 ▼ B I	<u>n</u> ≣ ≣ "				
	17 🔻	=		5								
	А	В	lp c	mip	pln convov	pln noncon	minlp	H				
1			ър 50	· ·	nlp-convex 142.38408	nlp-noncon	· ·					
2	seattle	new-york		150		000	132.5577					
3	seattle	chicago	300	200		300						
4	seattle	topeka			76.685987		100					
5	san-diego	new-york	275	175	182.61592	325	192.4423					
6	san-diego	chicago		100	169.07006		182.5577					
7	san-diego	topeka	275	275	198.31401	275	175					
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
Ready NUM SCRL												

Fully Embedded Application



35

Communication via .txt files

Comma-delimited format most common for large scale applications:

Sample File Formats

runit.cmd (Server executes GAMS)

```
cd C:\gamsprojects\conferences\informs2004\models\
C:\gams\21.4\gams portfolio_%1.gms lo=3 pf=pf.inc

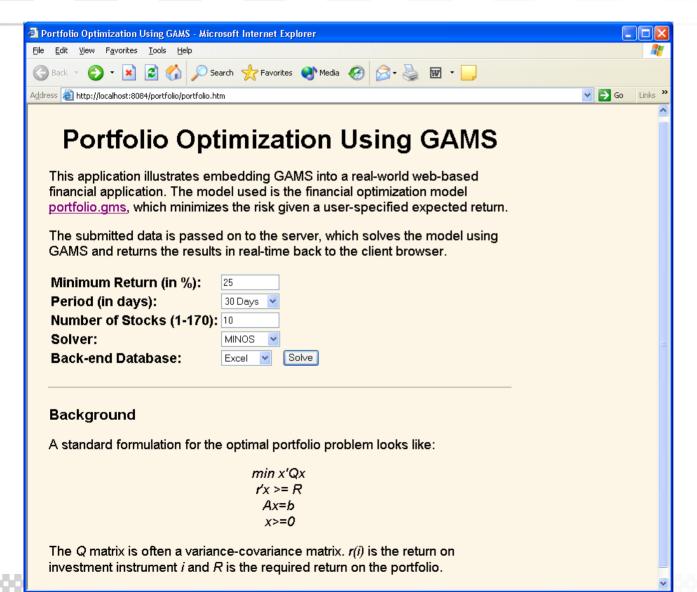
REM in case of problems send zip file to administrator
C:\gams\21.4\gmszip log.zip portfolio_%1.gms portfolio_%1.lst *.log *.inc
```

value_jdbc.inc (Database sample input to GAMS)

```
GAB,951127,9.25
GAB,951128,9.25
GAB,951129,9.25
GAB,951130,9.5
```

results.txt (GAMS solution input to server)

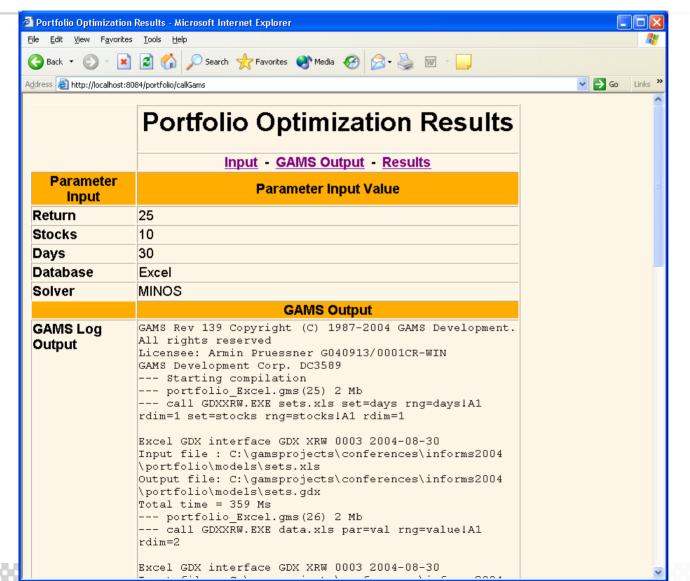
```
MODELSTATUS, 2.00
SOLVERSTATUS, 1.00
GAB, 28.05
GAP, 0.00
GDW, 0.00
GE, 0.00
```



[Live Software Demo]

- Writing to Excel (m5.gms)
- Reading from Access (portfolio_access.gms)
- Web application (portfolio.htm using a local server)

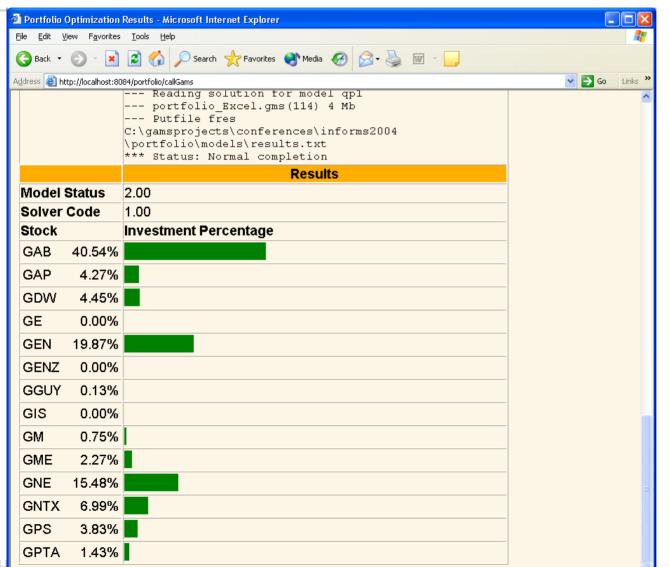
Web Front End



User may specify:

- Expected Return
- Investment Period (Days)
- Number of Stocks
- Solver
- Database (Excel or Access using GAMS interface or Access using JAVA JDBC)

Output



Output:

- User input parameters
- Real-time GAMS output of model solve

Output (continued)

Output:

- GAMS Return Codes
- Investment distribution
- •Graphical output

[Done With Demo]

Download GAMS

Free fully functional demo available for download

www.gams.com/download

Contains all available GAMS solvers.

Contacting GAMS

In the US:

GAMS Development Corporation

1217 Potomac Street NW

Washington, DC 20007

Phone: (202) 342-0180

General Information and Sales: sales@gams.com

Technical Support: support@gams.com

In Europe:

GAMS Software GmbH

Eupener Str. 135-137

50933 Cologne

Germany

Phone +49 (221) 949-9170

Information/Sales/ Technical Support: info@gams.de