Stochastic Programming using GAMS

Steven Dirkse

GAMS Development Corporation

Washington DC

About GAMS

- What is GAMS?
- Why are we doing SP?
 - Existing client applications
 - Potential new applications
- What do we hope to achieve?
 - Efficiency in modeling
 - Efficiency in "problem solution"

Current Collaborations

- DECIS
 - DEComposition (Benders, multistage)
 - Importance Sampling
- IBM Stochastic Solutions
 - General purpose SP tool
 - Contains nested Benders solver
- Structure Exploiting Tool

DECIS: Problem Formulation

- Initial time-staged LP model
 - SMPS: core & time files
 - GAMS: Standard LP
- Augmentation to describe stochastic nature
 - SMPS: stoch file
 - GAMS: auxiliary file
 - Complete Cartesian product

DECIS: Problem Solution

- Eval, universe, expected value
- Monte Carlo pre-sampling, regularization
- Monte Carlo Sampling
 - Estimates recourse costs, cuts, bounds
 - Student-*t* test determines convergence
 - Importance Sampling, control variates modes

SPOSL: Problem Formulation

- Initial time-staged *core* model
- Event tree to represent stochastic structure
 - nodes: system state at each stage
 - directed arcs: movement to subsequent stage
 - each scenario a path (leaf --> root)
 - scenarios specified as branches off existing tree
- Models specified as node sets

GAMS/SPOSL Formulation

- Initial <u>time-staged</u> formulation
- Augmentation to allow uncertainty
 - time T --> time-node pair (T,N)
 - ancestor relationship required
- Generating the uncertainty structure
 - done via dynamic sets
 - multiple trees for one model

SPOSL: Problem Solution

- Extract node-arc structure from DE
 - Full DE model formulated in GAMS
 - Sparse scenario "deltas" passed to SPOSL
- All nodes included in the solution
- Solution via nested Benders code
- Parallel implementation on SP2

Structure Exploiting Tool

- Model structure extracted with SET
- Interior-point decomposition solver
- Implementation on a cluster of Linux PCs
- Computational results:
 - 1,111,112 rows, 2,555,556 vars
 - < 3 hours

The ALM Project

- Ongoing World Bank project
- Strategic Asset Liability Management
 - Addresses fundamental problem
 - Uncertainty in interest & exchange rates, prices
- Lead to development of RAMS
 - Risk Analysis & Management System

Problem Formulation

- Initial <u>time-staged</u> formulation
- Augmentation to allow uncertainty
 - time T --> time-node pair (T,N)
 - ancestor relationship required
- Generating the uncertainty structure
 - accuracy / computability tradeoff
 - requires the use of NLP (least-squares)

Risk Minimization

- Many definitions of risk considered
- PDF of portfolio estimated
 - Measures value likelihood at some fixed time
 - Done via NLP
- Is the PDF acceptable?
 - Use a different risk function
 - Add more scenario

Problem Solution & Reporting

- Solver depends on formulation used
 - linear --> SP/OSL
 - quadratic --> SP/OSL
 - nonlinear --> CONOPT, MINOS
- Reporting
 - estimation of density function
 - output via MATLAB linkage

Conclusions

- Opportunities to employ SP abound
 - Potential user base is quite large
 - Computational power is there
 - Application to other model types
- Formulation is still a hurdle
 - Better educated modelers
 - Better integration of existing tools
 - New developments?

Time-Staged Model

```
sets
                                       / rice, corn /,
             'commodities'
  C
  Т
             'time'
                                       / spring, fall, winter /;
parameters
  price(C,T),
  demand;
positive variables
  stock(C,T),
  x(C,T)
                                       'purchase quantity';
variable
                                       'overall cost';
  \mathbf{Z}
equations
  stockdef(C,T),
  demdef,
  zdef;
             z = e = sum \{(C,T), price(C,T)*x(C,T)\};
zdef..
stockdef(C,T)..
             stock(C,T) = e = stock(C,T-1) + x(C,T);
demdef..
             sum {C, stock(C,'winter')} =g= demand;
model timeonly / zdef, stockdef, demdef /;
solve timeonly using lp minimizing z;
```

Augmented Model

```
sets
  N
           'nodes'
                       /0,1*8/,
  TN(T,N) /
                       spring.0,
                       fall.1,
                       winter.2 /,
  ANC(N,N)
                                   1.0.
                       2.1
                           /;
alias(N,NN);
parameter
  price(C,T,N),
  demand(N)
  prob(N);
positive variables
  stock(C,T,N),
                                   'purchase quantity';
  x(C,T,N)
equations
  stockdef(C,T,N),
  demdef(T,N);
           z = e = sum \{(C,TN(T,N)), price(C,T,N)*prob(N)*x(C,T,N)\};
zdef..
stockdef(C,TN(T,N))..
           stock(C,T,N) = e = sum \{ANC(N,NN), stock(C,T-1,NN)\} + x(C,T,N)\};
sum \{C, stock(C,T,N)\} = g = demand(N);
model stoch / zdef, stockdef, demdef /;
solve stoch using lp minimizing z;
```

Node Generation

```
* cheap fall corn
price('corn','fall','1') = 0.2;
prob('1') = .1;
prob('2') = .1;
demand('2') = 1.3;
* expensive fall corn
TN('fall','3') = YES;
anc('3','0') = YES;
price('corn','fall','3') = 1.2;
prob('3') = .9;
TN('winter', '4') = YES;
anc('4','3') = YES;
prob('4') = .36;
demand('4') = .9;
TN('winter', '5') = YES;
anc('5','3') = YES;
prob('5') = .36;
demand('5') = 1.1;
TN('winter', '6') = YES;
anc('6','3') = YES;
prob('6') = .18;
demand('6') = 1.3;
```