Modeling with Quadratic Constraints to Improve Exam Timetabling Solutions

Siqun Wang and Monique Guignard DEPT. of OPIM, Wharton School Univ. of Pennsylvania Michael R. Bussieck GAMS Development Corp.

INFORMS Miami, Nov. 2001

Agenda

- **Overall Idea of our approach**
- **Research incentive: The Exam Timetabling Project**
- **\Literature** in Exam Timetabling
- ***** The Original MILP model
- ***** The new MINLP model with Quadratic Constraints
- **Solution Improvement Approach**
- **Computational Results**
- **Summary and Conclusion**

Overall Idea: Variable Redefinition and Reformulation in Quadratic Constraints

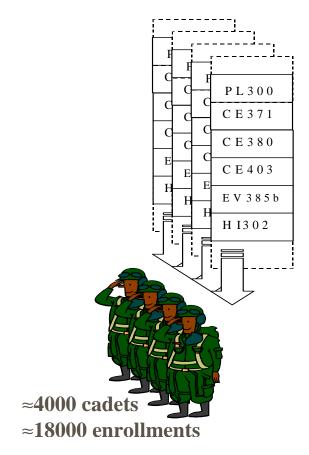
Different with the traditional linearization idea in integer program!

Research incentive: The Exam Timetabling Project and its features

Exam Timetabling Problem at USMA –West Point

2 1 6 CE371 CH101 EV203 CH384 CS408 PH203 Morning CS383 EE301 PL300 session HI366 EN302 LR204 CE404 LF382 CE403 afternoon LG484 SE388 CS380 session LS362 SS388 SS201 MS350

Term End Exam Schedule (≈250 exams)



Basic Requirements

- Assignment
- No resource conflict (Clash free)
- Specifying part of the solution (Fixing)
- Excluding part of the solution space (Prohibited periods)

Special USMA requirements

- Consecutive (back to back) exam limit
- Inclusive/Exclusive groups (Courses that have to be scheduled together/apart)
- ■Plebe (Firsties) constraint
 - One exam a day for Plebes
 - Exam period is over by period X for Firsties

Infeasibility And Makeup For Exams

Difficulty at USMA Term End Exam Scheduling

- The exam timetabling problem at USMA is a NP-complete problem
- Infeasibility with some of the requirements: consecutive, exclusive, fixed...
- High conflict density
- Small number of available periods

Literature in Exam Timetabling

Techniques

- Clustering
- Sequencing
- Graph coloring
- Local search (GA, Tabu, simulated annealing,
- **CSP** and logic programming

Research field related

- Operations research/mathematical programming
- Artificial intelligence (AI)
- Human-machine interaction (some scheduling strategies have relied on interactive human aid)

The Original MILP model

(W) Min z =
$$y(r,p) - |R|$$
 minimizing makeup subject to
$$x(c,r,p) = 1 \quad \forall (c,r) \in CR \subseteq (C \times R)$$
 (1)- cadet assignment
$$x(c,r,p) \leq 1 \quad \forall c \in C, p \in P$$
 (2)- no-conflict

+ other requirement constraints

(3)- course opening
(4) – primary enrollment
(5) – one primary
(6)- exclusive (r₁,r₂)
(7)- inclusive (r₁,r₂)
(8)- consecutive constraint
(9)- no makeup constraint
(10)- Plebe
(11) - fixed
(12) -prohibit
(13) – completion

The New Quadratic Constraint Model – Variable Redefinition

Original model:

```
X(c,r,p) = 1 if cadet c \in C is scheduled in exam r \in R at period p \in P

Y(r,p) = 1 if exam r \in R is scheduled in period p \in P
```

New model

$$\overline{x}(c,r,m) = 1$$
 if cadet $c \in C$ is scheduled to take exam $r \in R$ in session $m \in M$
 $\overline{y}(r,m,p) = 1$ if session $m \in M$ of exam $r \in R$ is scheduled in period $p \in P$.

Relationship:

$$x(c,r,p) = \overline{x}(c,r,m)\overline{y}(r,m,p)$$
and
$$y(r,p) = \max_{m \in M} \overline{y}(r,m,p)$$

Old vs. New Model

(w) Min z =
$$y(r, p)$$
 - |R|

s.t.
$$x(c, r, p) = 1$$

 $r \in R(c)$ $m \in M$

$$x(c,r,p) = 1$$
 $\forall (c,r) \in CR \subseteq (C \times R)$ (1)- cadet assignment

$$\underset{r \in R(c)}{x(c,r,p)} \leq 1 \qquad \forall c \in C, p \in P$$

$$\forall c \in C, p \in P$$

(2)- no-conflict

+ other requirement constraints

$$(\overline{W})$$
 Min z = $y(r, p) - |R|$

s.t.
$$\bar{x}(c,r,m)\bar{y}(r,m,p)_{=1} \quad \forall (c,r) \in CR \subseteq (C \times R)$$
 (1)- cadet assignment

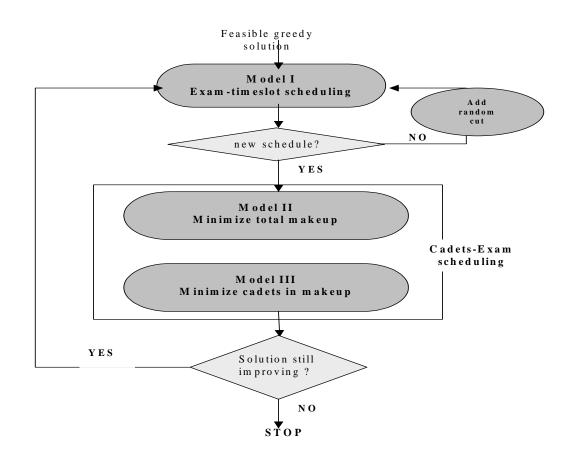
$$\forall (c,r) \in \mathit{CR} \subseteq (C \times R)$$

$$\overline{x}(c,r,m)\overline{y}(r,m,p) \le 1$$
 $\forall c \in C, p \in P$ (2)- no-conflict

$$\forall c \in C, p \in P$$

+ other requirement constraints

The Decomposition Approach And Iterative Algorithm

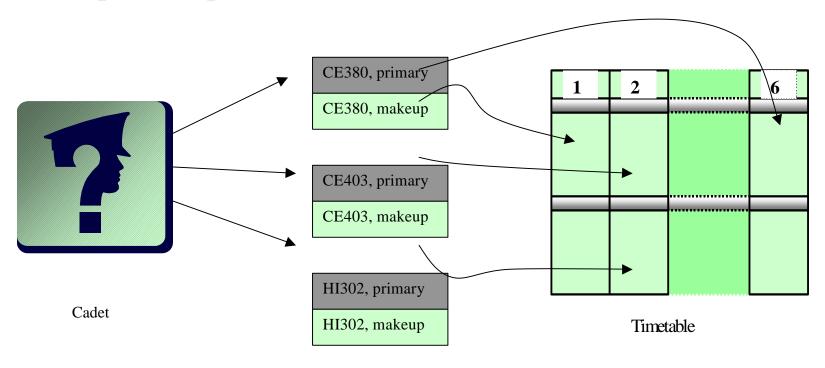


Intuition of the Solution Improvement Approach

Given a feasible solution

- Assignment of exam courses (primary and makeup) to periods
- Assignment of cadets to periods

Decompose the problem:



course

Computational Result(1)

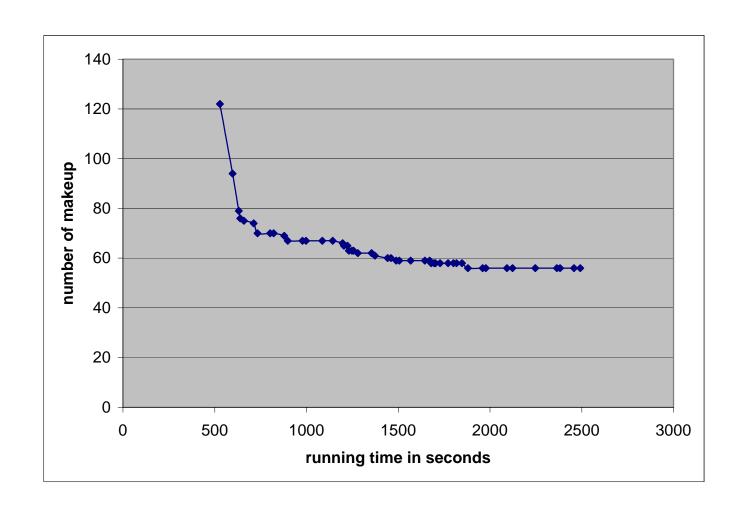
TEE Schedule for AY2001/1

- ■Chuck + Legacy system
 - ■Partial schedule, approx. 90 makeups (4 Weeks)
- **■Chuck + GAMS TEE scheduler**
 - ■Complete schedule, no conflicts, 60 makeups (10 minutes)
 - ■The improver module produced schedule with 40 makeups

Computational Result(2)

	initial solution		improved solution		
instance	time	makeups	time	makeups	%
1_0	634	104	632	63	39.42
1_1	508	122	622	67	45.08
1_2	485	130	620	61	53.08
1_2 1_3	651	131	619	58	55.73
1_4	556	128	626	61	52.34
1_5	521	124	605	65	47.58
2_0	223	60	472	49	18.33
2_1	190	69	303	31	55.07
2_2	165	61	399	45	26.23
2_3	122	65	218	47	27.69
2_4	119	65	360	48	26.15
2_5	179	57	302	46	19.30
3_0	276	57	327	38	33.33
3_1	359	78	621	36	53.85
3_2	238	55	418	34	38.18
2_0 2_1 2_2 2_3 2_4 2_5 3_0 3_1 3_2 3_3 3_4	238	55	606	33	40.00
3_4	198	49	478	32	34.69
3_5	170	68	420	31	54.41

Computational Result(2)



Summary and Conclusion

We expect that this approach can be used for other difficult scheduling tasks, where a hierarchy of decisions may lead to similar Quadratic/bilinear remodeling and separation of the problem into individually and sequentially solvable subproblems

The End