

Deploying GAMS Models with **GAMS MIRO** (Technology Workshop)

Franz Nelissen & Frederik Proske

Agenda

GAMS at a Glance

Model Development and Model Deployment

GAMS MIRO Demo

Algebraic Modeling Languages (AML)

What's that?

- High-level computer programming languages for the formulation of complex mathematical optimization problems
- > Notation similar to algebraic notation: Concise and human readable definition of problems in the domain of optimization
- > Do not solve problems directly, but ready-for-use links to state-of-the-art algorithms (solver)

What did this give us?

Simplified model development & maintenance

Increased productivity tremendously

Made mathematical optimization available to a **broader audience** (domain experts)

One of the success stories of OR!

▶1976: Initial version of an AML

➤ 2012: INFORMS Impact Prize awarded to "Godfathers" of Algebraic Modeling Languages

>Nowadays:

- Established environment to build robust and fail safe systems
- >Commodity in a lot of different flavors

Foundation of GAMS

Powerful algebraic modeling language

Open architecture, independent layers

Evolved and Matured System

Declarative Language

- > Similar to mathematical notation
- Easy to learn, only few basic language elements: sets, parameters, variables, equations, models

```
Indices: i = \text{plants} \\ j = \text{markets} Given Data: a_i = \text{supply of commodity of plant } i \text{ (in cases)} \\ b_j = \text{demand for commodity at market } j \\ c_{ij} = \text{cost per unit shipment between plant } i \text{ and market } j Decision Variables: x_{ij} = \text{amount of commodity to ship from plant } i \text{ to market } j \\ \text{where } x_{ij} \geq 0 \text{, for all } i, j Constraints: \text{Observe supply limit at plant } i : \sum_j x_{ij} \leq a_i \text{ for all } i \text{ (cases)} \\ \text{Satisfy demand at market } j : \sum_i x_{ij} \geq b_j \text{ for all } j \text{ (cases)} \\ \text{Objective Function: Minimize } \sum_i \sum_j c_{ij} x_{ij} \text{ ($\mathsf{SK}$)}
```

```
Sets
    i canning plants / seattle, san-diego /
                        / new-york, chicago, topeka / ;
        markets
Parameters
    a(i) capacity of plant i in cases
    b(j) demand at market j in cases
    c(i,j) transport cost in thousands of dollars per case;
Variables
    x(i,j) shipment quantities in cases
            total transportation costs in thousands of dollars ;
Equations
                define objective function
    cost
    supply(i) observe supply limit at plant i
    demand(j) satisfy demand at market j;
cost .. z = e = sum((i,j), c(i,j)*x(i,j));
supply(i) .. sum(j, x(i,j)) = l = a(i);
demand(j) .. sum(i, x(i,j)) = q = b(j);
Model transport /all/ :
```

Procedural Language Elements

- Control Flow Statements (e.g. loops, for, if, macros, functions, ...)
- Build complex problem algorithms within GAMS
- Simplified interaction with other systems through OO-APIs:
 - > Data exchange
 - > GAMS Control


```
6_trnsport_solvelink_seq.gms 
    6_trnsport_solvelink_seq.lst    7_trnsport_solvelink_async.gms    
    Model transport /all/ ;
66 set s scenarios / s1*s100 /
      sl solvelink / aSyncGrid, aSyncThreads /;
  parameter dd(s,i,j) distance by scenario
                         time for 100 scenarios
             sl val(sl) solvelink value / aSyncGrid
                                             aSyncThreads %solveLink
                         scenario handle;
75 \, dd(s,i,j) = uniform(0.9,1.1)*d(i,j);
76 option limrow=0, limcol=0, solprint=silent, lp=cplexd;
77 * Async SOLVE
78 loop(sl,
    transport.solvelink=sl val(sl);
    loop(s,
      d(i,j) = dd(s,i,j);
      Solve transport using lp minimizing z ;
      h(s) = transport.handle;
                                     // save instance handle
86
    repeat
      display$readycollect(h) 'Waiting for next instance to comp
      loop(s$handlecollect(h(s)),
          display$handledelete(h(s)) 'trouble deleting handles';
                        // indicate that we have loaded the soluti
    until card(h) = 0 or timeelapsed > 180; // wait until all m
    time(s1) = (jnow-tmp)*24*60*60;
96 display time;
```

Open Architecture

Designed to interact with other systems

Model independent of

- Platform
- Solver
- Data
- User-Interface

Platform Independence

- GAMS available on all major computing platforms
- Move your models between platforms with ease

Solver Independence

Uniform interface to all major solvers

- More than 30 academic and commercial solvers connected to GAMS
- > Switch between solvers with one line of code
- Documentation
- Licensing (GAMS as a "license broker")

Platform / Solver Independence

(Parallel) Local and distributed/remote execution

- Solver execution
 - Remote Object Server / Compute Server
 - Distributed MIP (CPLEX, GUROBI)
 - Distributed LP (PIPS-IPM)
- Model execution
 - Grid Computing Facility
 - NEOS (Kestrel)

Data Independence

- Declarative Modeling
- > Sparse Data Structures
- → Scalable Models
- > ASCII: Initial model
- ➤ GDX: Data layer ("contract")
 between GAMS and applications

SQL

- > Platform independent
- Direct GDX interfaces and general API's...

SQLite

User Interface Independence

No preference for a particular User Interface

- Smart Links to popular environments, like Excel, MATLAB, R, Databases, ...
- ➤ Object Oriented APIs: .Net, Java, Python, C++
- ➤ Embedded Code Facility
- ➤ Web Interface (GAMS MIRO)

Evolved and Matured System

- > Evolution through decades of R&D
- Maturity through experience and rigorous testing
- Lots of Development and Debugging Tools: Model Profiler, GAMSCHK, CONVERT, PAVER,...
- Quality Assurance

- 2009 GAMS available on the Amazon Elastic
- 2009 GAMS supports extended mathematical
- 2010 GAMS is awarded the company award
- 2011 Support for Extrinsic Function Libraries
- 2012 The Winners of the 2012 INFORMS Im important algebraic modeling languages [1]
- 2012 Introduction of Object Oriented API for
- 2012 The winners of the 2012 Coin OR Cup
- 2013 Support for distributed MIP (Cplex/Gur
- 2013 Stochastic programming extension
 o
- 2014 Local search solver LocalSolver added
- 2015 LaTeX documentation from GAMS sou
- 2016 New Management Team₽
- 2017 EmbeddedCode Facility

 ☑
- 2017 C++ API₽
- 2018 GAMS Studio (Beta)₽
- 2019 GAMS MIRO Model Interface with Ra

Quality Assurance

- What are the impacts of new features, updated modules or platforms?
- ➤ Is the new distribution backward compatible?
- GAMS Test Library: ~800 quality tests
- Automatically executed every night for all solver combinations (13,000+ runs/platform

GAMS Studio

- Development Environment for GAMS Models
- Platform Independent (Win/Mac/Linux)
- Open source Qt project, published on GitHub (GPL)
- All features for efficient model development

Uniform System Documentation

- > Tutorials
- GAMS Language
- > Solver
- > Tools
- > APIs
- Online/Offline

GAMS Documentation Ce

The GAMS Documentation Center provide maintaining our GAMS (General Algebraic

- Release Notes 25.1.1 Major rele
- User's Guide
 - Installation and Licensing license
 - Tutorials and Examples S
 - GAMS Language and Envi environment for executing a
- Solver Manuals Manuals of solve

Free Model Libraries

- > More than 1,600 models
- Part of any distribution
- Organized in different libraries
 - Application Specific e.g. Finance, Energy
 - Data Connections
 - System Tests

Striving for Innovation and Compatibility

Models must benefit from

Advancing hardware / New Platforms

Enhanced / New solver and solution technology

New Modeling Concepts

Improved / New interfaces

Protect Investments of Users

Life time of a model: 15+ years

New maintainer, platform, solver, user interface

Backward Compatibility

Don't lock developers and users into a certain environment.

Agenda

GAMS at a Glance

Model Development and Model Deployment

GAMS MIRO Demo

OR Modeler's Perspective

Analyze

Develop

- > Problem class
- Algorithm / Algebra
- Data
- Solver
- Solution

```
fund(date)
                                 'Index fund report parameter'
      error(date)
                                 'Absolute error':
34 Set td(date)
                  'training days'
     ntd(date)
                  'none-training days';
                    = sum(d, price(d,s))/card(d);
38 weight(symbol) = avgprice(symbol)/sum(s, avgprice(s));
39 contribution(d,s) = weight(s)*price(d,s);
                    = sum(s, contribution(d,s));
42 Variable
     p(symbol) 'is stock included?'
                 'what part of the portfolio'
      w(symbol)
      slpos(date) 'positive slack'
      slneg(date) 'negative slack'
                  'objective';
49 Positive variables w, slpos, slneg;
50 Binary variable p;
     deffit(date)
                     'fit to Dow Jones index'
      defpick(symbol) 'can only use stock if picked'
      defnumstock
                      'few stocks allowed'
                      'absolute violation (L1 norm) from index';
58 deffit(td).. sum(s, price(td,s)*w(s)) === index(td) + slpos(td) - slneg(td);
60 defpick(s).. w(s) =1= p(s);
62 defnumstock.. sum(s, p(s)) =1= maxstock;
64 defobi.. obi =e= sum(td. slpos(td) + slneg(td));
66 Model pickStock /all/;
68 option optCR=0.01;
  td(d) = ord(d) <= training days;
  solve pickStock min obj using mip;
  fund(d) = sum(s, price(d, s)*w.l(s));
76 error(d) = abs(index(d)-fund(d));
```


Separation of Tasks

Use GAMS for modeling and optimization

- Use Object oriented GAMS APIs for connecting GAMS to other environments
 - > ASCII (e.g. CSV)
 - Smart Links to Databases, Spreadsheets, Matlab, R,...
 - > .Net, Java, Python, C++
 - Embedded Code Facility (Python)
 - Communication through Memory or Files
- → (Some) Programming required

Model Deployment

- Increasing importance for intuitive deployment and visualization
- Need for easy-to-use tools
- End-users are not modeling experts
- → Configuration instead of Programming

GAMS MIRO

- Model Interface with Rapid Orchestration
- A web interface for GAMS models
- Based on Shiny (R), open source (GPL)
- Desktop / Server Version

Agenda

GAMS at a Glance

Model Development and Model Deployment

GAMS MIRO Demo

- Data: Performance of all shares of the Dow Jones index over one year
- Goal: Find a small selection of stocks that follows the Dow Jones as closely as possible
- ➤ Optimization model: Select a subset (≤ maxstock) of Dow Jones stocks, along with weights, so that this portfolio behaves similarly to the overall index (in the training phase)

obj :=
$$\sum_{ds} \text{slpos}_{ds} + \text{slneg}_{ds}$$

subject to

$$\sum_{s} \operatorname{price}_{ds,s} \cdot w_s = \operatorname{index}_{ds} + \operatorname{slpos}_{ds} - \operatorname{slneg}_{ds} \quad (\forall ds)$$

$$w_s \le p_s \tag{\forall s}$$

$$\sum_{s} p_{s} \leq \text{maxstock}$$

$$w_s \ge 0, \qquad p_s \in \{0, 1\} \tag{\forall s}$$

$$slpos_d \ge 0, \qquad slneg_d \ge 0$$
 $(\forall d)$

minimize obj :=
$$\sum_{ds} \text{slpos}_{ds} + \text{slneg}_{ds}$$

minimize obj :=
$$\sum_{ds} \text{slpos}_{ds} + \text{slneg}_{ds}$$

minimize obj :=
$$\sum_{ds} \text{slpos}_{ds} + \text{slneg}_{ds}$$

Hypercube mode scenario generation

Hypercube mode scenario generation

Key points

- >Quick deployment of GAMS models
- >Intuitive usage without GAMS knowledge
- > Easy and convenient data management
- > Powerful data visualization
- >Scenario Management
- ➤ Data export

GAMS MIRO on a server

- ➤ Based on docker technology
- >Authentication: LDAP, OAuth 2.0, Google,...
- >Multi-user and -application management
- >Load balancing
- ➤ Rolling Updates

Conclusions

- ➤ Desktop / Server Version
- >Commercially supported
- >Currently a BETA version
- >Used in commercial projects
- ➤Installer for Windows, MacOS, (and Linux)
- Configuration Generator
- Comprehensive Documentation

More Information

Documentation & Software https://www.gams.com/miro/

Video https://youtu.be/7pUrZ-u9ZcQ

Thank you!

Scenario runs and sensitivity analysis

The GAMS MIRO Hypercube mode

Hypercube mode Data import & monitoring of scenario runs

Import data				e
Owner	Submission date	Job tags	Status	Action
user	2019-01-18 15:05:09	runxy	running	Show log Discard
user	2019-01-18 15:04:53		running	Show log Discard
user	2019-01-18 15:04:42	run1	completed	Import Show log Discard
user	2019-01-18 15:02:57	all_types	completed	Import Show log Discard
user	2019-01-18 14:58:50	MIP min_ship	completed	Import Show log Discard
Show history				Manual import

Hypercube mode Scenario management

Hypercube mode Analysis

