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The History of CONOPT @Nopr
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= 1976: CONOPT began as a Pn.D. project by Arne Stolbjerg Drud to
develop a nonlinear solver.

= 1979 A crucial partnership was established with Alex Meeraus
and the CAMS team at the World Bank, leading to the first
oractical versions of both CAMS and CONOPT in the early 80s.

= Ongoing Partnership: Drud founded his own company, ARK]
Consulting and Development, and continued a close
collaporation with GAMS Development Corp.

= L asting Legacy: The development of the solver has been
successfully transferred to a group at CAMS in 2024, ensuring its
future and cementing the long-term relationship.




A New Chapter for CONOPT @NOPT
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Long-Term Partnership: The transfer of CONOPT's development
to GAMS represents the natural conclusion of a more than 30-
year partnershnip.

Ensuring Continuity: This move guarantees the solver's long-
term sustainability and ensures a seamless continuity of
orofessional development and user support,

Leveraging Expertise: By fully integrating CONOPT, CAMS can
leverage its extensive experience in solver development and
optimization to further enhance the solver.

Commitment to Users: The primary focus remains on delivering
a reliable, high-performance, and user-friendly solver across a
wide range of platforms and workflows.
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= Ksenia Bestuznheva
= Renke Kuhlmann
= Stephen Maher

= Stefan Vigerske

= (Lutz Westermann)



Algorithmic History and Evolution @NOPT
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= [nitial Algorithm: The solver's foundation is the Generalized Reduced
Cradient (GRG) method, designed for highly nonlinear problemes.

=  Continuous Improvement: Early versions were optimized by rermoving
optimal control components in favor of more efficient sparse procedures.

= [ntegration of LP Techniques: The solver evolved by incorporating sparse
matrix technigues from linear programming to handle large-scale models
more efficiently.

= Multi-Method Architecture: Later versions introduced a dynamic "multi-
method" architecture that selects the best solution approach for a given

model and adjusts it as it solves: GRG, SLP, SQP, ...




CONOPT Today @Nop-r
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=  Proven NLP Solver: CONOPT is a well-established and trusted solver for
smooth, continuous nonlinear programming (NLP) problemes.

=  Large-Scale Performance: Based on a proven active set method, it excels at
solving large-scale, structured models with many continuous variables and
smooth differentiable constraints.

=  Seamless Integration: It is seamlessly integrated into leading modeling
systems like CGAMS, CAMSPy, AMPL, AIMMS, and the LINDO AP/

=  Robust and Reliable: The solver is highly valued in both academic and
industrial contexts for its stability, robustness, and adaptability to a wide

variety of problemes.




CONOPT Today @Nopr
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= Highly Nonlinear Constraints: CONOPT is exceptionally well-suited for models
that contain highly nonlinear constraints.

= Models with Few Degrees of Freedom: It has a fast method for finding a first
feasible solution, making it particularly effective for "almost square" models where
the number of variables is approximately the same as the number of constraints.

= Powerful Preprocessing: CONOPT's advanced preprocessing engine
automatically simplifies models by identifying and solving recursive equations and
variables. This feature is a significant advantage for models with a structured,
sequential design.

= Valuable Diagnostic Tool: It serves as a useful diagnostic tool during model
development, with built-in tests for issues like poor scaling. When a model can be

improved, CONOPT provides a constructive message to guide the user.
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Recent Core Improvements @Nop-r
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. Intelligent switching pbetween conjugate and scaled
conjugate gradient methods for faster convergence

. Default threading increased from 1to 4

. Enhanced handling of small bound constraints and edge
conditions

. Strengthened LU factorization consistency through added
numerical checks

. IMmproved licensing infrastructure and updated branding
reflecting CAMS stewardship

. Numerous multithreading and boundary-related bugs
resolved for smoother runs
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Perforrmance Benchmarks @Nop-r
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. Evaluated on a comprehensive suite of academic and real-
world models (3029 instances from globallib, minlplib
(continuous relaxations), princetonlio and more)

. Measurable reductions in runtirme across many cases

. Substantial improvements in ropbustness and iteration
efficiency

. Benchmarked on an i9-12900K with 64 GB RAM

« Time limit of 1000s for each run
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Benchmark summary
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Conopt 4.37 vs. Conopt 3170 @Nop-r
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Conopt 4.37 vs. Conopt 4.3 @Nop-r
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Conopt 4.5/ vs. IPOPT MAZ/
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=xcursus: Neural Net Verification
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The use of neural networks and machine learning has become

stries

Dervasive across many indt
Combining optimization
research and application.
Verification provides a vita
and safety of Al models.
CONOPT performs excepti
demonstrating its capabilit

that arise from optimizing 4

Would you like to know more?

WE-0O9
Wednesday, 16:30-18:00
Room: HI5

"Embedding Neural Networks
iNnto Optimization Models with
CAMSPY”

8%
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Robusthness
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Optimization (Robustness Example) ONOPT

minnoiseNN(inPUt)correct - NN(input)incor?‘ect

|noise|| <€

mput = 1mage + noise

noise € R3xXHXW

image € R3*HxW

input € R3*HXW

. 3X HxW 2
NN :R — R o vy
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German Slgn Recognition Benchmark OO
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43 traffic signs

Real 1ife example

Not trivially recognizable
A critical example

>50,000 images

2]



A sample neural network @NOPT

GELU (x)

® 4 convolutional layers - —- m
® 2 linear layers I
® Average pooling =

® GELU .

® Batch normalization 1,758,731 trailnable parameters

85% accuracy on test set
22




Solve statistics

158,508 constraints

155,436 variables

15,969,198 Jacobian elements
62,016 of which are nonlinear

Local optimal solution found
in 24 secs w/ CONOPT

No feasible solution found in
9 hours by a global solver

(onopT

nonlinear optimization

99.8%

No vehicles over
3.5 t permitted

99%

Speed limit
100 km/h
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New APls — C++, Python, and Java @NOPT
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= Support for modern programming languages extends
CONOPT's usability

= Designed for seamless embedding in custom workflows
and applications

= |deal for integrating NLP solvers into research, industrial, or
enterprise environments

= APlsenable:
= Python scripting for rapid prototyping and teaching
= C++integration for high-performance computing
= Java support for cross-platform and enterprise applications

25



Why These APIs Matter @Nop-r
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= Provide direct, flexible access to CONOPT without a
modeling system

= Enable novel use cases in simulation, optimization
oipelines, and software engineering

= Simplify experimentation and research for students and
developers alike

= Lower the barrier to adoption in nontraditional
environments such as embpedded systems or web services

= Allows also us to integrate CONOPT in other systems

26



Conopt as new subsolver for SCIP @NOPT
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1000 -

Planned to be
released with
SCIP 10.0

1 1 I I
1 10 100 1000
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Supplying Derivatives @NOPT
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= Providing accurate derivatives significantly improves
convergence speed and stabllity!
= CONOPT supports:

= Analytic derivs via user-written source code
= Analytic derivs via automatic differentiation (e.g. via a modeling

system or external tool)
= Numerical derivs (approximations: useful but less precise)

= Derivatives include:
= Functions & Gradients (Oth and Ist derivs): required
= Hessian-vector products (directional derivs): optional
=  Hessians (2nd derivs): optional

28



WWW.CONOPT.COM

CONOPT - Powerful
Nonlinear Optimization

t A/S i

24. CONOPT

continues to evolve as a

olving large-scale,

has kindly writte

Key Features

1ii Large Scale NLP m Feasible Path Solver

Excels in smooth, large NLP models Robust, stable, and proven solver for

with complex constraints. challenging problems.

fll (x) Second-Order Derivative &“ Flexible licensing
Support Available for academic and
Can leverage second-order commercial use with flexible options
information for fast convergence and

better accuracy in suitable models.

Smart Model Preprocessing
Automatically detects and removes
redundant equations and variables

for better solve efficiency.

Supported Platforms
Integrates seamlessly with modeling
systems (AIMMS, AMPL, GAMS,
GAMSPy, Pyomo) and programming

languages (C++, C, Fortran, Java,
Python)

Documentation  Using the CONOPT API

CONOPT

CONOPT Documentation Page
The CONOPT algorithm
Library Organization
The Mathematical Model
Overview over CONOPT routines - Fortran users
Overview over CONOPT routines - C users
Changelog
Tutorial

Using the CONOPT API

ONOPT

nonlinear optimization

CONOPT Documentation Page

CONOPT is a general-purpose op
i based on active set methods, particularly suited to large, sparse models. CONOPT can be used as an dedicated non-linear solver,

system for large-scale nonlinear models, CONOPT employs a feasible path algorithm tha

either stand-alone or integrated with in a larger system, by interfacing directly through the API. When using the CONOPT AP, the
user must define routines to evaluate non-linear expressions. This can achieved through hand-coded evaluation routines, or the
integration with automatic differentiation packages, such as ADOL-C and CppAD. As an altemative, CONOPT can be used through
modeling systems such as AIMMS, AMPL, GAMS and LINGO.

This documentation provides numerous resources for getting started with CONOPT. The Introduction provides an overview of the
CONOPT library and some details on how to bild your own project. Following this, it is recommended to work through the Tutorial
and look at the Examples using CONOPT. Finally, the CONOPT API (Fortran, C, C++, Python and Java) is detailed in Public API.

Introduction

+ The CONOPT algorithm
+ Library Organization

+ The Mathematical Model

s Overview over CONOPT routines — Fortran users
+ Overview over CONOPT routines — C users

« Changelog

Tutorial and Examples

« Tutorial

« Examples using CONOPT

©
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Summary @Nop-r
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. Under GAMS, CONOPT has undergone significant
modernization and refinement

. Renewed drive for better performance and reliability

« APl support opens doors to new workflows beyond
traditional modeling systems

. Flexible deployment enables both educational and
enterprise adoption

. Positioned for growth in academic research, teaching, and
real-world applications

31



What's Next? @NOPT
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. Continued focus on platform support, usability, and
documentation
. Keyroadmap initiatives:

o

o

Comprehensive, user-friendly documentation enhancements

Expanded ecosystem integration:
. nearly completed SCIP support
i JuMP integration in development

Performance tuning and feature development guided by

community input
Advanced tools for diagnostics, debugging, and model

oerformance analysis
Alternative interface that allows for automatic differentiation

without external tools

52



Academic Program @NOPT
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® Free for Academia

A Tull-featured CONOPT license is now available at no cost
for academic research and teaching

No [imitations on model size or capabilities

Also included in the CAMSPy academic package

[U's easy to get with the program:
o Viathe portal: academic.gams.com
o Via emall: sales@gams.com

Designed to foster education and experimentation with
nonlinear optimization

33


http://academic.gams.com
mailto:sales@gams.com

Contact Us

WWW.CONOPL.CoOM

academic.gams.com

sales@gams.com

m https//www.linkedin.com/company/gams-development

(onopT
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Visit Uus at our booth!
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