Solve william minimizing cost using mip;

generates

-- Generating MIP model william
-- magic.gms(81) 4 Mb
-- 56 rows 46 columns 181 non-zeroes
-- 15 discrete-columns
-- Executing SCIP: elapsed 0:00:00.005
...
-- Restarting execution
-- magic.gms(81) 2 Mb
-- Reading solution for model william
Solve william minimizing cost using mip;

generates

-- Generating MIP model william
-- magic.gms(81) 4 Mb
-- 56 rows 46 columns 181 non-zeroes
-- 15 discrete-columns
-- Executing SCIP: elapsed 0:00:00.005
...
-- Restarting execution
-- magic.gms(81) 2 Mb
-- Reading solution for model william

▷ Returned to the user: solving and model status, solve statistics (solve time), objective value, bound on optimal value, primal/dual values for variable and equations with infeasibility markers, ...
▷ During solve, feedback solely via log output
▷ No interaction during solve
1. Feasibility Relaxation
2. Solve Tracing facility
3. Retrieving Multiple Solutions
4. Branch-Cut-Heuristic Facility
Log

-- Executing CPLEX: elapsed 0:00:00.004

IBM ILOG CPLEX Dec 18, 2012 24.0.1 LEX 37366.37409 LEG x86_64/Linux
...
LP status(3): infeasible
Cplex Time: 0.00sec (det. 0.01 ticks)

Model has been proven infeasible.

Listing

SOLVE SUMMARY

MODEL transport OBJECTIVE z
TYPE LP DIRECTION MINIMIZE
SOLVER CPLEX FROM LINE 74

**** SOLVER STATUS 1 Normal Completion
**** MODEL STATUS 4 Infeasible
**** OBJECTIVE VALUE 130.0000
- LP/NLP solvers usually compute **minimal infeasible points**
- check **INFEAS markers** in listing file
LP/NLP solvers usually compute **minimal infeasible points**

check **INFEAS markers** in listing file

feasopt option:

- allows to "price infeasibility", i.e., minimize infeas. w.r.t a certain norm
- also available for **MIPs**
- available for **GAMS/Cplex** and **GAMS/Gurobi**
- see `feasopt1` in GAMS model library
Analyzing Infeasible Models: Summary

- LP/NLP solvers usually compute **minimal infeasible points**
- check **INFEAS markers** in listing file

feasopt option:

- allows to "price infeasibility", i.e., minimize infeas. w.r.t a certain norm
- also available for **MIPs**
- available for **GAMS/CPLEX** and **GAMS/Gurobi**
- see `feasopt1` in GAMS model library

EMP adjustequ option:

- automatic reformulation of constraints as **soft constraint**
- works also with nonlinear models
Outline

1. Feasibility Relaxation
2. Solve Tracing facility
3. Retrieving Multiple Solutions
4. Branch-Cut-Heuristic Facility
Running `gams sp98ir.gms mip=scip optfile=1` with

options file `scip.opt`

- `gams/solvetrace/file = "SCIP.miptrace"`
- `gams/solvetrace/nodefreq = 100`
- `gams/solvetrace/timefreq = 1`
Running `gams sp98ir.gms mip=scip optfile=1` with options file `scip.opt`

```plaintext
gams/solvetrace/file = "SCIP.miptrace"
gams/solvetrace/nodefreq = 100
gams/solvetrace/timefreq = 1
```

generates during solve

```plaintext
solve trace file SCIP.miptrace
* solvetrace file SCIP.miptrace: ID = SCIP 3.0.1
* fields are lineNum, seriesID, node, seconds, bestFound, bestBound
  1, S, 1, 0, 260614197.6, 216717059.8
  2, T, 3, 1.12054, 260614197.6, 217028062.2
  ...
  63, E, 2550, 38.3884, 220249516.8, 217928729.7
* solvetrace file closed
```

- **common format** among all solvers that support this option
- available with Bonmin, CBC, CPLEX, Couenne, GloMIQO, Gurobi, SBB, SCIP, Xpress
Generate GAMS trace files (not to confuse with “solve trace files” from previous slide):

```gams
.gms <model> mip=<solver> trace=<solver>.trc traceopt=3
   reslim=1800 optcr=0 pf4=0 threads=1
```

GAMS trace file <solver>.trc

* Trace Record Definition
* GamsSolve
 * InputFileName, ModelType, SolverName, OptionFile, Direction, NumberOfEquations,
 * NumberOfVariables, NumberOfDiscreteVariables, NumberOfNonZeros,
 * NumberOfNonlinearNonZeros, ModelStatus, SolverStatus, ObjectiveValue,
 * ObjectiveValueEstimate, SolverTime, ETSolver, NumberOfIterations, NumberOfNodes

30n20b8, MIP, SCIP, 1, 0, 577, 18381, 11098, 109709, 0, 1, 1, 302, 302, 186.8, 189.833, 464659, 466
acc-tight5, MIP, SCIP, 1, 0, 3053, 1340, 1339, 16136, 0, 1, 1, 0, 0, 366.28, 367.651, 1788064, 1971
aflow40b, MIP, SCIP, 1, 0, 1443, 2729, 1364, 8148, 0, 1, 1, 1168, 1168, 1411.99, 1425.472, 5232401, 3
Benchmarking with GAMS trace files

Generate GAMS trace files (not to confuse with “solve trace files” from previous slide):

```
gams <model> mip=<solver> trace=<solver>.trc traceopt=3 reslim=1800 optcr=0 pf4=0 threads=1
```

GAMS trace file `<solver>.trc`

* Trace Record Definition
* GamsSolve
 * InputFileName, ModelType, SolverName, OptionFile, Direction, NumberOfEquations,
 * NumberOfVariables, NumberOfDiscreteVariables, NumberOfNonZeros,
 * NumberOfNonlinearNonZeros, ModelStatus, SolverStatus, ObjectiveValue,
 * ObjectiveValueEstimate, SolverTime, ETSolver, NumberOfIterations, NumberOfNodes

30n20b8, MIP, SCIP, 1, 0, 577, 18381, 11098, 109709, 0, 1, 1, 302, 302, 186.8, 189.833, 464659, 466
acc-tight5, MIP, SCIP, 1, 0, 3053, 1340, 1339, 16136, 0, 1, 1, 0, 0, 366.28, 367.651, 1788064, 1971
aflow40b, MIP, SCIP, 1, 0, 1443, 2729, 1364, 8148, 0, 1, 1, 1168, 1168, 1411.99, 1425.472, 5232401, 3

▶ makes it easy to compare solver runs (checkout GAMS Performance Tools)
▶ e.g., 3 different solvers on MIPLIB 2010 benchmark set:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>G</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean solve time</td>
<td>138.4s</td>
<td>130.1s</td>
<td>204.7s</td>
</tr>
</tbody>
</table>
However, in practice, solver should not only finish fast, but also find good primal solutions early.

To measure the latter, Achterberg, Berthold, and Hendel (2012) suggested to compute the primal integral:

$$ P(T) := \int_{t=0}^{T} p(t), $$

where

$$ p(t) = \begin{cases} 1, & \text{if } pb(t) = \infty \text{ or } pb(t) \cdot opt < 0, \\ 0, & \text{if } pb(t) = opt = 0, \\ |pb(t) - opt|, & \text{else}, \end{cases} $$

and $pb(t)$ is the primal bound at time t, opt is the optimal value.

$\Delta P(T) \Rightarrow \text{good solutions found early in search}$

Δ can use solve trace files to compute $P(T)$!

C G X

mean solve time 138.4s 130.1s 204.7s

mean $P(1800 \cdot \cdot) / P(1800 \cdot C)$ 1 1.034 2.099

However, in practice, solver should not only finish fast, but also find good primal solutions early. To measure the latter, Achterberg, Berthold, and Hendel (2012) suggested to compute the primal integral:

\[P(T) := \int_{t=0}^{T} p(t), \]

where \(p(t) = \begin{cases}
1, & \text{if } pb(t) = \infty \text{ or } pb(t) \cdot opt < 0, \\
0, & \text{if } pb(t) = opt = 0, \\
\frac{|pb(t) - opt|}{\max(|opt|,|pb(t)|)}, & \text{else},
\end{cases} \]

where \(pb(t) \) is primal bound at time \(t \), \(opt \) is optimal value.

However, in practice, solver should not only finish fast, but also find good primal solutions early. To measure the latter, Achterberg, Berthold, and Hendel (2012)\(^1\) suggested to compute the primal integral:

\[
P(T) := \int_{t=0}^{T} p(t),
\]

where

\[
p(t) = \begin{cases}
1, & \text{if } pb(t) = \infty \text{ or } pb(t) \cdot opt < 0, \\
0, & \text{if } pb(t) = opt = 0, \\
\frac{|pb(t) - opt|}{\max(|opt|, |pb(t)|)}, & \text{else},
\end{cases}
\]

where \(pb(t)\) is primal bound at time \(t\), \(opt\) is optimal value.

- small \(P(T) \Rightarrow \text{good solutions found early in search}\)
- can use solve trace files to compute \(P(T)\)!

However, in practice, solver should not only finish fast, but also find good primal solutions early. To measure the latter, Achterberg, Berthold, and Hendel (2012)1 suggested to compute the primal integral:

\[
P(T) := \int_{t=0}^{T} p(t),
\]

where \(p(t) = \begin{cases}
1, & \text{if } pb(t) = \infty \text{ or } pb(t) \cdot opt < 0, \\
0, & \text{if } pb(t) = opt = 0, \\
\frac{|pb(t) - opt|}{\max(|opt|,|pb(t)|)}, & \text{else,}
\end{cases}
\]

where \(pb(t) \) is primal bound at time \(t \), \(opt \) is optimal value.

\(\blacktriangleright \) small \(P(T) \Rightarrow \) good solutions found early in search

\(\blacktriangleright \) can use solve trace files to compute \(P(T) \)

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>G</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean solve time</td>
<td>138.4s</td>
<td>130.1s</td>
<td>204.7s</td>
</tr>
<tr>
<td>mean (P(1800; \cdot)/P(1800; C))</td>
<td>1</td>
<td>1.034</td>
<td>2.099</td>
</tr>
</tbody>
</table>

1Rounding and Propagation Heuristics for Mixed Integer Programming, Operations Research Proceedings 2011; ZIB-Report 11-29
1. Feasibility Relaxation
2. Solve Tracing facility
3. Retrieving Multiple Solutions
4. Branch-Cut-Heuristic Facility
Several solver links can write out alternative solutions as GDX files: AlphaECP, BARON, CBC, CPLEX, GloMIQO, Gurobi, SCIP, Xpress.

BARON, CPLEX, and Xpress also offer functionality to explicitly search for alternative solutions.

See GAMS model library model solnpool.
Branch-and-cut solvers can benefit from user supplied cutting planes and integer solutions

⇒ callback functions
Branch-and-cut solvers can benefit from user supplied cutting planes and integer solutions

→ callback functions

→ implementation requires knowledge of programming and solver API

→ solver specific
Branch-and-cut solvers can benefit from **user supplied** cutting planes and integer solutions

- **callback functions**

- implementation requires knowledge of programming and solver API

- solver specific

- **BCH Facility**: pass solver callbacks back into **GAMS model space**
Branch-and-cut solvers can benefit from user supplied cutting planes and integer solutions

⇒ callback functions

⇒ implementation requires knowledge of programming and solver API

⇒ solver specific

⇒ BCH Facility: pass solver callbacks back into GAMS model space

⇒ represent cut generator and heuristic in terms of original GAMS formulation

⇒ independent of specific solver

⇒ can use any other solvers in GAMS for computations

⇒ available only for CPLEX and SBB currently

GAMS System

GAMS Solver Link

BCH Facility

User Cut Generator & Heuristics

MIP Solver (e.g. CPLEX)
Single-commodity, uncapacitated, fixed-charge network flow problem:

\[
\begin{align*}
\min & \quad \sum_{(i,j) \in A} f_{ij} y_{ij} + c_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{(j,i) \in \delta^-(i)} x_{ij} - \sum_{(i,j) \in \delta^+(i)} x_{ij} = b_i, \quad i \in V \\
& \quad 0 \leq x_{ij} \leq M y_{ij}, \quad y_{ij} \in \{0, 1\}, \quad (i,j) \in A
\end{align*}
\]

GAMS model library: bchfcnet
Dicut: For $S \subset V$ with $b(S) > 0$:

$$\sum_{(i,j) \in \delta^-(S)} y_{ij} \geq 1$$
Dicut: For $S \subset V$ with $b(S) > 0$:

$$\sum_{(i,j) \in \delta^-(S)} y_{ij} \geq 1$$

Separation problem: find a good set S

$$\min \sum_{(i,j) \in A} \bar{y}_{ij} z_j (1 - z_i)$$

s.t. $\sum_{i \in V} b_i z_i > 0$

$z_i \in \{0, 1\}, \quad i \in V$

⇒ nonconvex quadratic binary program

⇒ let’s use GAMS MIQCP solver