Pre-Conference Workshop

Steve Dirkse

GAMS Development Corporation

SDirkse@gams.com

www.gams.com

Minneapolis, 5 Oct 2013
Introduction

- **Workshop is aimed at novice users**
 - What are the core features and strengths of GAMS?
 - What does effective GAMS use look like?

- **Visit us at the GAMS booth**
 - Bring your questions, comments, etc.
 - Learn about the latest features, solvers, etc.

- **COIN-OR Cup celebration**
 - Monday night, 8:30-??
 - The Loon (500 N. 1st St)
Outline

• GAMS
 – GAMS at a Glance
 – Simple Example
 – GAMS/Base
 – Using GAMS Effectively
• Advanced features
 – Data Import/Export
 – Advanced Use of GAMS Solver Links
 – Extending the GAMS Syntax
Outline

- GAMS
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
 - Using GAMS Effectively
- Advanced Features
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
GAMS at a Glance

Algebraic Modeling System

- Facilitates formulation of mathematical optimization problems expressed in an algebraic notation
 - Simplified model building

- Provides links to appropriate state-of-the-art external algorithms
 - Efficient solution process
GAMS at a Glance

General Algebraic Modeling System

- Roots: World Bank, 1976
- Went commercial in 1987
- GAMS Development Corp.
- GAMS Software GmbH

- Broad academic & commercial user community and network
GAMS’ Fundamental concepts

- **Platform independence**
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

![Supported Platforms Diagram]
GAMS’ Fundamental concepts

- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

30+ Integrated Solvers

- ALPHAEC
- MOSEK
- XPRESS
- XA
- MINOS
- CONOPT
- BARON
- LINDOLOBAL
- CPLEX
- BDMLP
- GUROBI
- COIN-OR
- DICOPT
Binary Data Exchange

- Fast exchange of data
- Syntactical check on data before model starts
- Data Exchange at any stage (Compile and Run-time)
- Platform Independent
- Direct GDX interfaces and general API
- Scenario Management Support
- Full Support of Batch Runs

GAMS’ Fundamental concepts

- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements
GAMS’ Fundamental concepts

- Platform independence
- Hassle-free switch of solution methods
- Open architecture and interfaces to other systems
- Balanced mix of declarative and procedural elements

Declaration of..
- Sets
- Parameters
- Variables
- Equations
- Models
- …

Procedural Elements like…
- loops
- if-then-else
- …
Outline

- **GAMS**
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
 - Using GAMS Effectively
- **Advanced Features**
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
A Transportation Model

Seattle (350)
San Diego (600)
Chicago (300)
New York (325)
Topeka (275)
Minimize Transportation cost
subject to Demand satisfaction at markets
Supply constraints

A Transportation Model

San Diego 600
Seattle 350

New York 325
Topeka 275
Chicago 300

Transportation cost:
- San Diego to New York: 2.5
- San Diego to Topeka: 1.4
- San Diego to Chicago: 1.8
- Seattle to New York: 2.5
- Seattle to Topeka: 1.8
- Seattle to Chicago: 1.7
Model Formulation

Indices: i (Canning plants)

$\quad j$ (Markets)

Decision variables: x_{ij} (Number of cases to ship)

Parameter: c_{ij} (Transport cost per case)

\[\text{min } \sum_i \sum_j c_{ij} \cdot x_{ij} \] (Minimize total transportation cost)

subject to

\[\sum_j x_{ij} \leq sup_i \quad \forall i \] (Shipments from each plant \leq supply capacity)

\[\sum_i x_{ij} \geq dem_j \quad \forall j \] (Shipments to each market \geq demand)

\[x_{ij} \geq 0 \quad \forall i, j \]

\[i, j \in \mathbb{N} \]
GAMS Algebra

Variables
\[x(i,j) \quad \text{shipment quantities in cases} \]
\[z \quad \text{total transportation costs in thousands of dollars} \]

Positive Variable \(x \);

Equations
\[\text{cost} \quad \text{define objective function} \]
\[\text{supply}(i) \quad \text{observe supply limit at plant } i \]
\[\text{demand}(j) \quad \text{satisfy demand at market } j \]

\[\text{cost} \quad z = \sum (i,j), c(i,j) \times x(i,j) \]
\[\text{supply}(i) \quad \sum (j, x(i,j)) = l = a(i) \]
\[\text{demand}(j) \quad \sum (i, x(i,j)) = g = b(j) \]

Model transport /all/ ;
Outline

GAMS
- GAMS at a Glance
- Simple Example
- GAMS/Base
 - Using GAMS Effectively

Advanced Features
- Data Import/Export
- Advanced Use of GAMS Solver Links
- Extending the GAMS Syntax
GAMS at a Glance

The GAMS/BASE Module

• Compiler and Execution System

• GAMS IDE (Windows)

• Documentation + Model libraries

• GDX Utilities

• Free Solvers/Solver Links
GAMS at a Glance

The GAMS/BASE Module

• Compiler and Execution System
• GAMS IDE (Windows)
• Documentation + Model libraries
• GDX Utilities
• Free Solvers/Solver Links
Integrated Development Environment

- Project management
- Editor / Syntax coloring / Spell checking
- Launching and monitoring of (multiple) GAMS processes
- Listing file / Tree view / Syntax-error navigation
- Solver selection / Option selection
- GDX viewer
 - Data cube
 - Data export (e.g. to MS Excel)
 - Charting facilities
- Model libraries
- Documentation
- Diff for GDX and Text
GAMS at a Glance

The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links
Documentation

• **Distributed Documentation**
 – GAMS Users Guide
 – Expanded GAMS Users Guide (McCarl)
 – Solver Manuals
 – GAMS Utility Manuals

• **Wikis**
 – Support Wiki http://support.gams-software.com
 – Interfaces Wiki http://interfaces.gams-software.com
• **Groups**
 – Google Group http://groups.google.de/group/gamsworld

• **Newsletter**
 – Release List

• **Search all GAMS Websites**
 http://www.gams.com/search.htm
Distributed Model Libraries

- **GAMS Model Library**
 - Example and user-contributed models
 - Very often used as templates
 - Tests for
 - Solver robustness and correctness
 - Backward compatibility

- **GAMS Test Library**
 - Transparent and reproducible Quality Assurance Tests
 - Tests for
 - Solver correctness
 - Special functions
 - GAMS utilities
Distributed Model Libraries

• **GAMS Data Utilities Library**
 – Demonstration of the various utilities interfacing GAMS with other applications
 – E.g. gdxxrw, mdb2gms, sql2gms

• **GAMS EMP Library**
 – Examples for the use of Extended Mathematical Programming

• **Practical Financial Optimization Models**
 Models of the book

 “PRACTICAL FINANCIAL OPTIMIZATION – A Library of GAMS Models”

 by Consiglio, Nielsen and Zenios
GAMS at a Glance

The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links
Gams Data eXchange

Binary Data Exchange

- Fast exchange of data
- Syntactical check on data before model starts
- Data Exchange at any stage (Compile and Run-time)
- Platform Independent
- Direct GDX interfaces and general API
- Scenario Management Support
- Full Support of Batch Runs

GDX Tools

- Invert
- IDE
- GDX Viewer
- GDXrank
- GDX2HAR/HAR2GDX
- GDXmerge
- GDXdump
- GDXcopy
- GDXdiff
- MDB2GMS
- GDX2XLS
- GDXxrw
- GDXAPI
GAMS at a Glance

The GAMS/BASE Module

- Compiler and Execution System
- GAMS IDE (Windows)
- Documentation + Model libraries
- GDX Utilities
- Free Solvers/Solver Links
GAMS at a Glance

The GAMS/BASE Module

Free Solvers:

• Convert
• EMP/JAMS, DE, NLPEC
• BENCH, EXAMINER, GAMSCHK
• BDMLP, LS, and MILES
• KESTREL (Remote Solver Execution on NEOS Servers)
• COIN-OR: Cbc, IpOpt, BonMin, Couenne, …
• Soplex, Scip (academic only)
• All other solvers in limited versions
Outline

<table>
<thead>
<tr>
<th>GAMS</th>
<th>Advanced Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>– GAMS at a Glance</td>
<td>– Data Import/Export</td>
</tr>
<tr>
<td>– Simple Example</td>
<td>– Advanced Use of GAMS Solver Links</td>
</tr>
<tr>
<td>– GAMS/Base</td>
<td>– Extending the GAMS Syntax</td>
</tr>
<tr>
<td>– Using GAMS Effectively</td>
<td></td>
</tr>
</tbody>
</table>
Outline

<table>
<thead>
<tr>
<th>GAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>– GAMS at a Glance</td>
</tr>
<tr>
<td>– Simple Example</td>
</tr>
<tr>
<td>– GAMS/Base</td>
</tr>
<tr>
<td>– Using GAMS Effectively</td>
</tr>
</tbody>
</table>

Advanced Features

<table>
<thead>
<tr>
<th>Advanced Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Data Import/Export</td>
</tr>
<tr>
<td>– Advanced Use of GAMS Solver Links</td>
</tr>
<tr>
<td>– Extending the GAMS Syntax</td>
</tr>
</tbody>
</table>
Then …

In Table 17.1 we list sizes and attributes of representative models that are “large” in the sense that they are near the limit of what is practical on a personal computer, along with the model generation time (GAMS) and solution time (solver), both in minutes. These examples were run on an 8 MHz AT with an 80287 coprocessor and 640K of RAM. The times shown are to give you a rough idea of what is possible: these are not precisely controlled benchmarks, and we have a host of performance improvements in mind for the near future.

Table 17.1: Problem Characteristics

<table>
<thead>
<tr>
<th>Name</th>
<th>Number of Rows</th>
<th>Number of Columns</th>
<th>Number of Nonzeros</th>
<th>Generation Time *</th>
<th>Solution Time *</th>
<th>Iterations</th>
<th>Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>DINAMICO</td>
<td>318</td>
<td>425</td>
<td>4156</td>
<td>3.0</td>
<td>30.1</td>
<td>628</td>
<td>MINOS</td>
</tr>
<tr>
<td>SARF</td>
<td>532</td>
<td>542</td>
<td>3949</td>
<td>37.7</td>
<td>115.8</td>
<td>2775</td>
<td>MINOS</td>
</tr>
<tr>
<td>FERTD</td>
<td>458</td>
<td>2968</td>
<td>7252</td>
<td>11.4</td>
<td>28.3</td>
<td>1368</td>
<td>ZOOM</td>
</tr>
<tr>
<td>CAMCGE</td>
<td>243</td>
<td>280</td>
<td>1356</td>
<td>0.8</td>
<td>7.0</td>
<td>189</td>
<td>MINOS</td>
</tr>
<tr>
<td>GANGES</td>
<td>274</td>
<td>357</td>
<td>1405</td>
<td>1.8</td>
<td>7.3</td>
<td>187</td>
<td>MINOS</td>
</tr>
<tr>
<td>VENECM</td>
<td>168</td>
<td>258</td>
<td>953</td>
<td>0.9</td>
<td>7.6</td>
<td>600</td>
<td>ZOOM</td>
</tr>
<tr>
<td>EITPP</td>
<td>281</td>
<td>618</td>
<td>3168</td>
<td>4.0</td>
<td>25.3</td>
<td>1551</td>
<td>ZOOM</td>
</tr>
</tbody>
</table>

* Measured in minutes.

* The problem is too big for MINOS. ZOOM was used instead.

* A nonlinear problem. 63% of the non-zeroes are nonlinear.

* A nonlinear problem. 58% of the non-zeroes are nonlinear.

* A mixed binary problem, with 55 binary variables (solved with a relative termination criterion of 10%).

* A linear problem, solved using XMP which is contained within ZOOM.
... and now

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>s in 1988</th>
<th>s in 2013</th>
<th>Improvement Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>camcge</td>
<td>NLP</td>
<td>468</td>
<td>0.031</td>
<td>15097</td>
</tr>
<tr>
<td>dinamico</td>
<td>LP</td>
<td>1986</td>
<td>0.125</td>
<td>15888</td>
</tr>
<tr>
<td>egypt*</td>
<td>LP</td>
<td>1758</td>
<td>0.015</td>
<td>117200</td>
</tr>
<tr>
<td>fertd*</td>
<td>MIP</td>
<td>2382</td>
<td>0.062</td>
<td>38419</td>
</tr>
<tr>
<td>ganges</td>
<td>NLP</td>
<td>546</td>
<td>0.109</td>
<td>5009</td>
</tr>
<tr>
<td>sarf</td>
<td>LP</td>
<td>9210</td>
<td>0.139</td>
<td>66259</td>
</tr>
<tr>
<td>yemcem*</td>
<td>MIP</td>
<td>510</td>
<td>0.140</td>
<td>3643</td>
</tr>
</tbody>
</table>

* 1988 solver ZOOM, 2008 solver CPLEX 11.0.1
Improvements on all Frontiers

- **Solver Technology**
 - Updates for existing solver
 - New solvers

- **Productivity Tools**
 - Databases, spreadsheets
 - Specialized visualization tools
 - IDE improvements
 - Grid computing

- **Interfaces**
 - Gams Data eXchange
 - Using GAMS from other applications
Outline

<table>
<thead>
<tr>
<th>GAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>- GAMS at a Glance</td>
</tr>
<tr>
<td>- Simple Example</td>
</tr>
<tr>
<td>- GAMS/Base</td>
</tr>
<tr>
<td>- Using GAMS Effectively</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advanced Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Data Import/Export</td>
</tr>
<tr>
<td>- Advanced Use of GAMS Solver Links</td>
</tr>
<tr>
<td>- Extending the GAMS Syntax</td>
</tr>
</tbody>
</table>
GDXXRW

- Read and write Excel spreadsheet data
- Can read multiple ranges in a spreadsheet and write the data to a GDX file
- Can read from a GDX file and write the data to different ranges in a spreadsheet
- Examples in the GAMS Data Library

Hands-On
GDXMRW

- Import/export data between GAMS and MATLAB
- Call GAMS models from MATLAB
- Get results back in MATLAB
- Gives MATLAB users the ability to use all the optimization capabilities of GAMS
- Allows visualization of GAMS models directly within MATLAB
GDXRRW

- GDXRRW bridges the gap between R and GAMS (import/export data between GAMS and R)

- Fits into the ecosystem of existing GDX utilities

- Presents data in a natural form for R users

- More information:

Source: http://blog.modelworks.ch
Load from GDX

Compile Time:

$gdxIn transSol.gdx // open file for reading
$load // list file content
$load i // load symbol i
$load jj=j // load symbol j as jj
$loadDC a b // load a & b domain controlled
$load[DC]M k // load symbol k, merge content
$load[DC]R l // load symbol l, replace content
$gdxIn // close open file

Execution Time:

execute_load 'transSol.gdx' a;

put_utility 'gdxin' / 'transSol.gdx';
execute_load b;
Outline

- **GAMS**
 - GAMS at a Glance
 - Simple Example
 - GAMS/Base
 - Using GAMS Effectively
- **Advanced Features**
 - Data Import/Export
 - Advanced Use of GAMS Solver Links
 - Extending the GAMS Syntax
Model transport /all/ ;
Option solvelink = { %Solvelink.ChainScript%,
 %Solvelink.CallScript%,
 %Solvelink.CallModule%,
 %Solvelink.AsyncGrid%,
 %Solvelink.AsyncSimulate%,
 %Solvelink.LoadLibrary%};

solve transport using lp minimizing z;

• ChainScript [0]: Solver process, GAMS vacates memory
 + Maximum memory available to solver
 + protection against solver failure (hostile link)
 - swap to disk
Solvelink Option – cont.

• Call{Script [1]/Module [2]}: Solver process, GAMS stays live
 + protection against solver failure (hostile link)
 + no swap of GAMS database
 - file based model communication

• LoadLibrary [5]: Solver DLL in GAMS process
 + fast memory based model communication
 + update of model object inside the solver (hot start)
 - not supported by all solvers
Solving Scenarios

transport.gms (LP) solved 500 times with CPLEX:

```gams
Loop(s,
    d(i,j) = dd(s,i,j);
    f = ff(s);
    solve transport using lp minimizing z;
    rep(s) = transport.objval;
);
```

<table>
<thead>
<tr>
<th>Setting</th>
<th>Solve time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvelink=%Solvelink.ChainScript%</td>
<td>52.221</td>
</tr>
<tr>
<td>Solvelink=%Solvelink.CallModule%</td>
<td>37.366</td>
</tr>
<tr>
<td>Solvelink=%Solvelink.LoadLibrary%</td>
<td>03.252</td>
</tr>
</tbody>
</table>
Gather-Update-Solve-Scatter (GUSS)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Solve time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvelink=%Solvelink.ChainScript%</td>
<td>52.221</td>
</tr>
<tr>
<td>Solvelink=%Solvelink.CallModule%</td>
<td>37.366</td>
</tr>
<tr>
<td>Solvelink=%Solvelink.LoadLibrary%</td>
<td>03.252</td>
</tr>
<tr>
<td>GUSS</td>
<td>01.046</td>
</tr>
</tbody>
</table>

- Update model data instead of matrix coefficients/rhs
- Hot start (keep the model hot inside the solver and use solver’s best update mechanism)
- Save model generation and solver setup time
- Model rim unchanged from scenario to scenario
- Apriori knowledge of all scenario data

Hands-On
Solution Pool

- Several solver links can write out alternative solutions to GDX: AlphaECP, ANTIGONE, BARON, CBC, CPLEX, GloMIQO, Gurobi, SCIP, Xpress
- BARON, CPLEX, and Xpress also offer functionality to explicitly search for alternative solutions
- See GAMS Model Library model solnpool

142 PARAMETER xcostX cost structure by solution

totcost tcost fcost

file1 499.000 219.000 280.000
file2 512.000 212.000 300.000
file3 985.000 355.000 630.000
Outline

<table>
<thead>
<tr>
<th>• GAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>– GAMS at a Glance</td>
</tr>
<tr>
<td>– Simple Example</td>
</tr>
<tr>
<td>– GAMS/Base</td>
</tr>
<tr>
<td>– Using GAMS Effectively</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Advanced Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Data Import/Export</td>
</tr>
<tr>
<td>– Advanced Use of GAMS Solver Links</td>
</tr>
<tr>
<td>– Extending the GAMS Syntax</td>
</tr>
</tbody>
</table>
Function Libraries

- Allows users to import functions from an external library into a GAMS model
- Imported functions can be used in the same way as intrinsic GAMS functions
- Some function libraries are included in the GAMS distribution
- Users can create their own libraries using an open programming interface (simple examples written in C, Delphi and Fortran come with every GAMS system)
- To make a library available call
 \[
 $\text{FuncLibIn} \ <\text{IntLibName}> \ <\text{ExtLibName}>
 \]
- Declare functions similar to sets, parameters, ..., :
 \[
 \text{Function} \ <\text{IntFuncName}> \ /<\text{IntLibName}>.\<\text{FuncName}>/;
 \]
Function Libraries – Included Examples

- FITfclib
 - FITPACK from P. Dierckx
 - One and two dimensional spline interpolation
- LSAdclib
 - Use sampling routines from Lindo inside GAMS
 - Requires GAMS/Lindo license (or runs in limited demo mode)
- PWPcclib
 - Piecewise polynomial function evaluation
- STOdclib
 - Random deviates, probability density functions, cumulative density functions and inverse cumulative density functions
 - E.g., ChiSquare, Gumbel, Logistic, Rayleigh, …
- TRIcclib, TRIdclib, TRIfclib
 - Simple examples compiled and as source code written in C, Delphi and Fortran respectively
Function Libraries – Interface

- `int LibInit(
 abcRec_t *abc, // in handle
 const int version, // in library version
 char *msg) // out message
```

- `int <FUNCTIONNAME>(
  abcRec_t *abc,    // in handle
  const int DR,     // in derivative request
  const int args,   // in number of arguments
  const double x[], // in arguments
  double *f,        // out function value
  double g[],       // out gradient
  double h[],       // out hessian
  void *cb,         // in error callback
  void *usermem)    // in user memory for error callback
```
Stochastic Programming in GAMS

- The Extended Mathematical Programming (EMP) framework is used to replace parameters in the model by random variables.

- Support for Multi-stage recourse problems and chance constraint models.

- Easy to add uncertainty to existing deterministic models, to either use specialized algorithms or create Deterministic Equivalent (new free solver DE).
Excursus: EMP, what?

With new modeling and solution concepts do not:

- overload existing GAMS notation right away!
- attempt to build new solvers right away!

But:

- Use existing language features to specify additional model features, structure, and semantics
- Express extended model in symbolic (source) form and apply existing modeling/solution technology
- Package new tools with the production system

→ Extended Mathematical Programming (EMP)
JAMS: a GAMS EMP Solver

- EMP Information
- Original Model
- Reformulated Model
- Solving using established Algorithms
- Solution

Mapping Solution into original space

Translation

Viewable