Here I present a quick introductory tutorial for a beginner that is cross-referenced to the rest of the user manual and some examples.

<table>
<thead>
<tr>
<th>Basic models</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solving an optimization problem</td>
<td>3</td>
</tr>
<tr>
<td>Solving for an economic equilibrium</td>
<td>4</td>
</tr>
<tr>
<td>Solving a nonlinear equation system</td>
<td>5</td>
</tr>
<tr>
<td>Dissecting the simple models</td>
<td>5</td>
</tr>
<tr>
<td>Variables</td>
<td>5</td>
</tr>
<tr>
<td>What is the new Z variable in the optimization problem?</td>
<td>7</td>
</tr>
<tr>
<td>Equations</td>
<td>7</td>
</tr>
<tr>
<td>. specifications</td>
<td>8</td>
</tr>
<tr>
<td>Model</td>
<td>9</td>
</tr>
<tr>
<td>Solve</td>
<td>10</td>
</tr>
<tr>
<td>Why does my nonlinear equation system maximize something?</td>
<td>12</td>
</tr>
<tr>
<td>What are the .L items</td>
<td>12</td>
</tr>
<tr>
<td>Running the job</td>
<td>13</td>
</tr>
<tr>
<td>Command line approach</td>
<td>13</td>
</tr>
<tr>
<td>IDE approach</td>
<td>13</td>
</tr>
<tr>
<td>Examining the output</td>
<td>14</td>
</tr>
<tr>
<td>Echo print</td>
<td>14</td>
</tr>
<tr>
<td>Incidence of compilation errors</td>
<td>14</td>
</tr>
<tr>
<td>Symbol list and cross reference maps</td>
<td>16</td>
</tr>
<tr>
<td>Execution output</td>
<td>16</td>
</tr>
<tr>
<td>Generation listing</td>
<td>16</td>
</tr>
<tr>
<td>Equation listing</td>
<td>17</td>
</tr>
<tr>
<td>Variable listing</td>
<td>18</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Model statistics</td>
<td>20</td>
</tr>
<tr>
<td>Solver report</td>
<td>20</td>
</tr>
<tr>
<td>Solution summary</td>
<td>20</td>
</tr>
<tr>
<td>Equation solution report</td>
<td>21</td>
</tr>
<tr>
<td>Variable solution report</td>
<td>22</td>
</tr>
<tr>
<td>Exploiting algebra</td>
<td>23</td>
</tr>
<tr>
<td>Equation writing – sums</td>
<td>23</td>
</tr>
<tr>
<td>Revised algebra exploiting optimization example</td>
<td>24</td>
</tr>
<tr>
<td>Revised equilibrium example</td>
<td>25</td>
</tr>
<tr>
<td>Dissecting the algebraic model</td>
<td>27</td>
</tr>
<tr>
<td>Sets</td>
<td>27</td>
</tr>
<tr>
<td>Alias</td>
<td>28</td>
</tr>
<tr>
<td>Data entry</td>
<td>28</td>
</tr>
<tr>
<td>Scalars</td>
<td>28</td>
</tr>
<tr>
<td>Parameters</td>
<td>28</td>
</tr>
<tr>
<td>Tables</td>
<td>29</td>
</tr>
<tr>
<td>Direct assignment</td>
<td>30</td>
</tr>
<tr>
<td>Algebraic nature of variable and equation specifications</td>
<td>31</td>
</tr>
<tr>
<td>Algebra and model .. specifications</td>
<td>31</td>
</tr>
<tr>
<td>Output differences</td>
<td>32</td>
</tr>
<tr>
<td>Equation listing</td>
<td>32</td>
</tr>
<tr>
<td>Variable list</td>
<td>33</td>
</tr>
<tr>
<td>Equation solution report</td>
<td>34</td>
</tr>
<tr>
<td>Variable solution report</td>
<td>34</td>
</tr>
<tr>
<td>Good modeling practices</td>
<td>34</td>
</tr>
<tr>
<td>Structure of GAMS statements, programs and the ;</td>
<td>36</td>
</tr>
<tr>
<td>Adding complexity</td>
<td>37</td>
</tr>
<tr>
<td>Conditionals</td>
<td>37</td>
</tr>
<tr>
<td>Conditionally execute an assignment</td>
<td>37</td>
</tr>
<tr>
<td>Conditionally add a term in sum or other set operation</td>
<td>37</td>
</tr>
<tr>
<td>Conditionally define an equation</td>
<td>38</td>
</tr>
<tr>
<td>Conditionally include a term in an equation</td>
<td>38</td>
</tr>
<tr>
<td>Displaying data</td>
<td>38</td>
</tr>
<tr>
<td>Report writing</td>
<td>40</td>
</tr>
<tr>
<td>Why use GAMS and algebraic modeling</td>
<td>41</td>
</tr>
<tr>
<td>Use of algebraic modeling</td>
<td>41</td>
</tr>
<tr>
<td>Context changes</td>
<td>42</td>
</tr>
<tr>
<td>Expandability</td>
<td>42</td>
</tr>
<tr>
<td>Augmentation</td>
<td>43</td>
</tr>
<tr>
<td>Aid with initial formulation and subsequent changes</td>
<td>44</td>
</tr>
<tr>
<td>Adding report writing</td>
<td>44</td>
</tr>
<tr>
<td>Self-documenting nature</td>
<td>44</td>
</tr>
<tr>
<td>Large model facilities</td>
<td>45</td>
</tr>
<tr>
<td>Automated problem handling and portability</td>
<td>46</td>
</tr>
<tr>
<td>Model library and widespread professional use</td>
<td>46</td>
</tr>
<tr>
<td>Use by Others</td>
<td>46</td>
</tr>
</tbody>
</table>
Basic models

In my GAMS short courses I have discovered users approach modeling with at least three different orientations. These involve users who wish to

- Solve objective function oriented constrained optimization problems.
- Solve economically based general equilibrium problems.
- Solve engineering based nonlinear systems of equations.

In this tutorial I will use three base examples, one from each case hopefully allowing access to more than one class of user.

Solving an optimization problem

Many optimization problem forms exist. The simplest of these is the Linear Programming or LP problem. Suppose I wish to solve the optimization problem

\[
\begin{align*}
\text{Max} & \quad 109X_{\text{corn}} + 90X_{\text{wheat}} + 115X_{\text{cotton}} \\
\text{s.t.} & \quad X_{\text{corn}} + X_{\text{wheat}} + X_{\text{cotton}} \leq 100 \quad \text{(land)} \\
& \quad X_{\text{corn}} - 4X_{\text{wheat}} + 8X_{\text{cotton}} \leq 500 \quad \text{(labor)} \\
& \quad X_{\text{corn}} X_{\text{wheat}} X_{\text{cotton}} \geq 0 \quad \text{(nonnegativity)}
\end{align*}
\]

where this is a farm profit maximization problem with three decision variables: \(X_{\text{corn}}\) is the land area devoted to corn production, \(X_{\text{wheat}}\) is the land area devoted to wheat production and \(X_{\text{cotton}}\) is the land area devoted to cotton production. The first equation gives an expression for total profit as a function of per acre contributions times the acreage allocated by crop and will be maximized. The second equation limits the choice of the decision variables to the land available and the third to the labor available. Finally, we only allow positive or zero acreage.

The simplest GAMS formulation of this is (optimize.gms)

VARIABLES Z;
POSITIVE VARIABLES Xcorn , Xwheat , Xcotton;
EQUATIONS OBJ, land , labor;
OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
land.. Xcorn + Xwheat + Xcotton =L= 100;
labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
MODEL farmPROBLEM /ALL/;
SOLVE PROBLEM USING LP MAXIMIZING Z;

Below after introduction of the other two examples I will dissect this formulation explaining its
components.

Solving for an economic equilibrium

Economists often wish to solve problems that characterize economic equilibria. The simplest of these is the single good, single market problem. Suppose we wish to solve the equilibrium problem

- **Demand Price:** \[P \geq P_{d} = 6 - 0.3*Q_{d} \]
- **Supply Price:** \[P \leq P_{s} = 1 + 0.2*Q_{s} \]
- **Quantity Equilibrium:** \[Q_{s} \geq Q_{d} \]
- **Non negativity:** \[P, Q_{s}, Q_{d} \geq 0 \]

where \(P \) is the market clearing price, \(P_{d} \) the demand curve, \(Q_{d} \) the quantity demanded, \(P_{s} \) the supply curve and \(Q_{s} \) the quantity supplied. This is a problem in 3 equations and 3 variables (the variables are \(P, Q_{d}, \) and \(Q_{s} - \) not \(P_{d} \) and \(P_{s} \) since they can be computed afterwards from the equality relations).

Ordinarily one would use all equality constraints for such a set up. However, I use this more general setup because it relaxes some assumptions and more accurately depicts a model ready for GAMS. In particular, I permit the case where the supply curve price intercept may be above the demand curve price intercept and thus the market may clear with a nonzero price but a zero quantity. I also allow the market price to be above the demand curve price and below the supply curve price. To insure a proper solution in such cases I also impose some additional conditions based on Walras' law.

\[
\begin{align*}
Q_{d}*(P - P_{d}) &= 0 \quad \text{or} \quad Q_{d}*(P_{d}-(6 - 0.3*Q_{d})) &= 0 \\
Q_{s}*(P - P_{s}) &= 0 \quad \text{or} \quad Q_{s}*(P_{s}-(1 + 0.2*Q_{s})) &= 0 \\
P*(Q_{s}-Q_{d}) &= 0
\end{align*}
\]

which state the quantity demanded is nonzero only if the market clearing price equals the demand curve price, the quantity supplied is nonzero only if the market clearing price equals the supply curve price and the market clearing price is only nonzero if \(Q_{s}=Q_{d} \).

The simplest GAMS formulation of this is below *(econequil.gms)*. Note in this case we needed to rearrange the \(P_{s} \) equation so it was expressed as a greater than to accommodate the requirements of the PATH solver.

```gams
POSITIVE VARIABLES  P, Qd , Qs;
EQUATIONS     Pdemand,Psupply,Equilibrium;
Pdemand..     P            =g= 6 - 0.3*Qd;
Psupply..    ( 1 + 0.2*Qs) =g= P;
Equilibrium.. Qs           =g=  Qd;
MODEL PROBLEM /Pdemand.Qd,Psupply.Qs,Equilibrium.P/;
SOLVE PROBLEM USING MCP;
```

Below after introduction of the other example I will dissect this formulation explaining its components.

Courtesy of B.A. McCarl, October 2002
Solving a nonlinear equation system

Engineers often wish to solve a nonlinear system of equations often in a chemical equilibrium or oil refining context. Many such problem types exist. A simple form of one follows as adapted from the GAMS model library and the paper Wall, T W, Greening, D, and Woolsey, R E D, "Solving Complex Chemical Equilibria Using a Geometric-Programming Based Technique". Operations Research 34, 3 (1987). which is

\[
\begin{align*}
&ba \cdot so4 = 1 \\
&baoh \div ba \div oh = 4.8 \\
&hso4 \div so4 \div h = 0.98 \\
&h \cdot oh = 1 \\
&ba + 1e^{-7} \cdot baoh = so4 + 1e^{-5} \cdot hso4 \\
&2 \cdot ba + 1e^{-7} \cdot baoh + 1e^{-2} \cdot h = 2 \cdot so4 + 1e^{-5} \cdot hso4 + 1e^{-2} \cdot oh
\end{align*}
\]

which is a nonlinear system of equations where the variables are ba, so4, baoh, oh, hso4 and h. The simplest GAMS formulation of this is (nonlinsys.gms)

Variables ba, so4, baoh, oh, hso4, h;
Equations r1, r2, r3, r4, b1, b2;
r1.. ba * so4 =e= 1;
r2.. baoh / ba / oh =e= 4.8;
r3.. hso4 / so4 / h =e= 0.98;
r4.. h * oh =e= 1;
b1.. ba + 1e^{-7} * baoh =e= so4 + 1e^{-5} * hso4;
b2.. 2 * ba + 1e^{-7} * baoh + 1e^{-2} * h =e= 2 * so4 + 1e^{-5} * hso4 + 1e^{-2} * oh;
Model wall / all /;
b.a.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1;
Solve wall using nlp minimizing ba;

Dissecting the simple models

Each of the above models is a valid running GAMS program which contains a number of common and some differentiating language elements. Let us review these elements.

Variables

GAMS requires an identification of the variables in a problem. This is accomplished through a VARIABLES command as reproduced below for each of the three problems.

VARIABLES Z; (optimize.gms)
POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;

POSITIVE VARIABLES P, Qd, Qs; (econequil.gms)

Variables ba, so4, baoh, oh, hso4, h; (nonlinsys.gms)

The POSITIVE modifier on the variable definition means that these variables listed thereafter are
nonnegative i.e. X_{corn}, X_{wheat}, X_{cotton}, P, Q_{d}, Q_{s}.

The use of the word VARIABLES without the POSITIVE modifier (note several other modifiers are possible as discussed in the Variables, Equations, Models and Solves chapter) means that the named variables are unrestricted in sign as Z, ba, so_{4}, $baoh$, oh, hso_{4}, and h are above.

Notes

- The general form of these statements are

 \[\text{modifier variables comma or line feed specified list of variables;} \]

 where \text{modifier} is optional (positive for example)

 variable or variables is required

 a list of variables follows

 a \text{;} ends the statement

- This statement may be more complex including set element definitions (as we will elaborate on below) and descriptive text as illustrated in the file \text{(model.gms)}

\begin{verbatim}
Variables
 Tcost ' Total Cost Of Shipping- All Routes';
Binary Variables
 Build(Warehouse) Warehouse Construction Variables;
Positive Variables
 Shipsw(Supplyl,Warehouse) Shipment to warehouse
 Shipwm(Warehouse,Market) Shipment from Warehouse
 Shipsm(Supplyl,Market) Direct ship to Demand;
Semicont Variables
 X,y,z;
\end{verbatim}

as discussed in the Variables, Equations, Models and Solves chapter.

- The variable names can be up to 31 characters long as discussed and illustrated in the Rules for Item Names, Element names and Explanatory Text chapter.

- GAMS is not case sensitive, thus it is equivalent to type the command VARIABLE as variable or the variable names XCOTTON as XcOttoN. However, there is case sensitivity with respect to the way things are printed out with the first presentation being the one used as discussed in the Rules for Ordering and Capitalization chapter.

- GAMS does not care about spacing or multiple lines. Also a line feed can be used instead of a comma. Thus, the following three command versions are all the same

\begin{verbatim}
POSITIVE VARIABLES Xcorn ,Xwheat,Xcotton;
Positive Variables Xcorn,
 Xwheat,
 Xcotton;
positive variables Xcorn
 Xwheat , Xcotton;
\end{verbatim}
What is the new Z variable in the optimization problem?

In the optimization problem I had three variables as it was originally stated but in the GAMS formulation I have four. Why? GAMS requires all optimization models to be of a special form. Namely, given the model

Maximize cx

It must be rewritten as

Maximize R
R=CX

where R is a variable unrestricted in sign. This variable can be named however you want it named (in the above example case Z). There always must be at least one of these in every problem which is the objective function variable and it must be named as the item to maximize or minimize.

Thus in a problem one needs to declare a new unrestricted variable and define it though an equation. In our optimization example (optimize.gms) we declared Z as a Variable (not a Positive Variable), then we declared and specified an equation setting Z equal to the objective function expression and told the solver to maximize Z,

```gams
VARIABLES       Z; 
EQUATIONS      OBJ,  land,  labor; 
OBJ..  Z =E= 
        109 * Xcorn + 90 * Xwheat + 115 * Xcotton; 
SOLVE PROBLEM USING LP MAXIMIZING Z; 
```

Note users do not always have to add such an equation if there is a variable in the model that is unrestricted in sign that can be used as the objective function. For example the equation solving case (nonlinsys.gms) uses a maximization of b as a dummy objective function (as further discussed below the problem is really designed to just solve the nonlinear system of equations and the objective is just there because the model type used needed one).

Equations

GAMS requires that the modeler name each equation, which is active in the optimization model. Later each equation is specified using the .. notation as explained just below. These equations must be named in an EQUATION or EQUATIONS instruction. This is used in each of the example models as reproduced below

```gams
EQUATIONS      OBJ,  land,  labor; 
EQUATIONS     PDemand, PSupply, Equilibrium; 
Equations r1, r2, r3, r4, b1, b2; 
```

Courtesy of B.A. McCarl, October 2002
Notes

- The general form of these statements are
 Equations comma or line feed specified list of equations ;

 where equation or equations is required
 a list of equations follows
 a ; ends the statement

- In optimization models the objective function is always defined in one of the named
equations.

- This statement may be more complex including set element definitions (as we will
 elaborate on below) and descriptive text as illustrated in the file (model.gms)

 EQUATIONS
 TCOSTEQ TOTAL COST ACCOUNTING EQUATION
 SUPPLYEQ(SUPPLYL) LIMIT ON SUPPLY AVAILABLE AT A SUPPLY POINT
 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET
 BALANCE(WAREHOUSE) WAREHOUSE SUPPLY DEMAND BALANCE
 CAPACITY(WAREHOUSE) WAREHOUSE CAPACITY
 CONFIGURE ONLY ONE WAREHOUSE;

 as discussed in the Variables, Equations, Models and Solves chapter.

- The equation names can be up to 31 characters long as discussed and illustrated in the
 Rules for Item Names, Element names and Explanatory Text chapter.

.. specifications

The GAMS equation specifications actually consist of two parts. The first part naming equations,
was discussed just above. The second part involves specifying the exact algebraic structure of
equations. This is done using the .. notation. In this notation we give the equation name
followed by a .. then the exact equation type as it should appear in the model. The equation
type specification involves use of a special syntax to tell the exact form of the relation involved.
The most common of these are (see the Variables, Equations, Models and Solves chapter for a
complete list):

 =E= is used to indicate an equality relation
 =L= indicates a less than or equal to relation
 =G= indicates a greater than or equal to relation

This is used in each of the example models where a few of the component equations are
reproduced below

 OBJ.. Z =E= 109*Xcorn + 90*Xwheat + 115*Xcotton;
 (optimize.gms)
 land.. Xcorn + Xwheat + Xcotton =L= 100;
P_{\text{demand}} \quad P = g = 6 - 0.3*Q_d; \quad (\text{econequil.gms})

r1.. ba * so4 =e= 1 ; \quad (\text{nonlinsys.gms})

Notes

❖ The general form of these statements are

\text{Equationname}.. \quad \text{algebra1 equationtype algebra2 ;}

where an equation with that name must have been declared (have appeared in and equation statement)

the .. appears just after the equation name

the algebraic expressions algebra1 and algebra2 can each be a mixture of variables, data items and constants

the equationtype is the =E=, =L=, and =G= discussed above.

a ; ends the statement

❖ All equations must be specified in .. notation before they can be used.

❖ Some model equations may be specified in an alternative way by including upper or lower bounds as discussed in the Variables, Equations, Models and Solves chapter.

❖ .. specification statements may be more complex including more involved algebra as discussed later in this tutorial and in the Calculating Items chapter.

❖ It may be desirable to express equations as only being present under some conditions as discussed later in this tutorial and in the Conditionals chapter.

Model

Once all the model structural elements have been defined then one employs a MODEL statement to identify models that will be solved. Such statements occur in the each of the three example models:

\text{MODEL farmPROBLEM /ALL/;} \quad (\text{optimize.gms})

\text{MODEL PROBLEM /P_{\text{demand}}.Q_d, P_{\text{supply}}.Q_s, Equilibrium.P/;} \quad (\text{econequil.gms})

\text{Model wall / all / ;} \quad (\text{nonlinsys.gms})

Notes

❖ The general form of these statements are

Courtesy of B.A. McCarl, October 2002
Model modelname optional explanatory text / model contents/;

where Model or models is required

a modelname follows that can be up to 31 characters long as discussed in the Rules for Item Names, Element names and Explanatory Text chapter

the optional explanatory text is up to 255 characters long as discussed in the Rules for Item Names, Element names and Explanatory Text chapter

the model contents are set off by beginning and ending slashes and can either be the keyword all including all equations, a list of equations, or a list of equations and complementary variables. Each of these is discussed in the following bullets.

a ; ends the statement

- In the Model Statement in the model contents field
 - Using /ALL/ includes all the equations.
 - One can list equations in the model statement like that below.

 MODEL FARM /obj, Land, labor/;
 and one does not need to list all the equations listed in the Equations statements. Thus in (optimize.gms) one could omit the constraints called labor from the model

 MODEL ALTPROBLEM /obj, land/;

- The equilibrium problems are solved as Mixed complementarity problems (MCP) and require a special variant of the Model statement. Namely in such problems there are exactly as many variables as there are equations and each variable must be specified as being complementary with one and only one equation. The model statement expresses these constraints indicating the equations to be included followed by a period(.) and the name of the associated complementary variables as follows

 MODEL PROBLEM /Pdemand.Qd, Psupply.Qs, Equilibrium.P/; (econequil.gms)
 which imposes the complementary relations form our equilibrium problem above.

- All equations in the model which are named and any data included must have been specified in .. notation before this model can be used (in a later solve statement).

- Users may create several models in one run each containing a different set of equations and then solve those models and separately.

Solve

Once one believes that the model is ready in such that it makes sense to find a solution for the variables then the solve statement comes into play. The SOLVE statement causes GAMS to use a solver to optimize the model or solve the embodied system of equations.

 SOLVE farmPROBLEM USING LP MAXIMIZING Z; (optimize.gms)

Courtesy of B.A. McCarl, October 2002
SOLVE PROBLEM USING MCP;
(econequil.gms)

Solve wall using nlp minimizing ba;
(nonlinsys.gms)

Notes

❖ The general forms of these statements for models with objective functions are

Solve modelname using modeltype maximizing variablename ;
Solve modelname using modeltype minimizing variablename ;

and for models without objective functions is

Solve modelname using modeltype;

where Solve is required
a modelname follows that must have already been given this name in a Model statement
using is required
the modeltype is one of the known GAMS model types where

❖ models with objective functions are
 ➢ LP for linear programming
 ➢ NLP for nonlinear programming
 ➢ MIP for mixed integer programming
 ➢ MINLP for mixed integer non linear programming
 ➢ plus RMIP, RMINLP, DNLP, MPEC as discussed in the chapter on Model Types and Solvers.

❖ models without objective functions are
 ➢ MCP for mixed complementary programming
 ➢ CNS for constrained nonlinear systems

➢ maximizing or minimizing is required for all optimization problems (not MCP or CNS problems)
➢ a variablename to maximize or minimize is required for all optimization problems (not MCP or CNS problems) and must match with the name of a variable defined as free or just as a variable.

➢ a ; ends the statement

❖ The examples statement solve three different model types
- a linear programming problem (“using LP”).
- a mixed complementary programming problem (“using MCP”).
- a non linear programming problem (“using NLP”).

GAMS does not directly solve problems. Rather it interfaces with external solvers developed by other companies. This requires special licensing arrangements to have access to the solvers. It also requires that for the user to use a particular solver that it all ready must have been interfaced with GAMS. A list of the solvers currently interfaced is covered in the Model Types and Solvers chapter.

Why does my nonlinear equation system maximize something?

The nonlinear equation system chemical engineering problem in the GAMS formulation was expressed as a nonlinear programming (NLP) optimization model in turn requiring an objective function. Actually this is somewhat older practice in GAMS as the constrained nonlinear system (CNS) model type was added after this example was initially formulated. Thus, one could modify the model type to solve constrained nonlinear system yielding the same solution using

```
Solve wall using mcp;  (nonlinsys.gms).
```

However, the CNS model type can only be solved by select solvers and cannot incorporate integer variables. Formulation as an optimization problem relaxes these restrictions allowing use of for example the MINLP model type plus the other NLP solvers. Such a formulation involves the choice of a convenient variable to optimize which may not really have any effect since a feasible solution requires all of the simultaneous equations to be solved. Thus while ba is maximized there is no inherent interest in attaining its maximum it is just convenient.

What are the .L items

In the nonlinear equation system chemical engineering GAMS formulation a line was introduced which is

```
ba.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1;  (nonlinsys.gms)
```

This line provides a starting point for the variables in the model. In particular the notation variblename.l=value is the way one introduces a starting value for a variable in GAMS as discussed in the chapter on NLP and MCP Model Types. Such a practice can be quite important in achieving success and avoiding numerical problems in model solution (as discussed in the Execution Errors chapter).

Notes

- One may also need to introduce lower (variblename.lo=value) and upper (variblename.up=value) bounds on the variables as also discussed in the Execution Errors chapter.
The .l, .lo and .up appendages on the variable names are illustrations of variable attributes as discussed in the Variables, Equations, Models and Solves chapter.

The = statements setting the variable attributes to numbers are the first example we have encountered of a GAMS assignment statement as extensively discussed in the Calculating Items chapter.

Running the job

GAMS is a two pass program. One first uses an editor to create a file nominally with the extension GMS which contains GAMS instructions. Later when the file is judged complete one submits that file to GAMS. In turn, GAMS executes those instructions causing calculations to be done, solvers to be used and a solution file of the execution results to be created. Two alternatives for submitting the job exist the traditional command line approach and the IDE approach.

Command line approach

The basic procedure involved for running command line GAMS is to create a file (nominally myfilename.gms where myfilename is whatever is a legal name on the operating system being used) with a text editor and when done run it with a DOS or UNIX or other operating system command line instruction like

 GAMS trnsport

where trnsport.gms is the file to be run. Note the gms extension may be omitted and GAMS will still find the file.

The basic command line GAMS call also allows a number of arguments as illustrated below

 GAMS TRNSPORT pw=80 ps=9999 s=mysave

which sets the page width to 80, the page length to 9999 and saves work files. The full array of possible command line arguments is discussed in the GAMS Command Line Parameters chapter. When GAMS is run the answers are placed in the LST file. Namely if the input file of GAMS instructions is called myfile.gms then the output will be on myfile.LST.

IDE approach

Today with the average user becoming oriented to graphical interfaces it was a natural development to create the GAMSIDE or IDE for short. The IDE is a GAMS Corporation product providing an Integrated Development Environment that is designed to provide a Windows graphical interface to allow for editing, development, debugging, and running of GAMS jobs all in one program. I will not cover IDE usage in this tutorial and rather refer the reader to the tutorial on IDE usage that appears in the chapter on Running Jobs with GAMS and the GAMS IDE. When the IDE is run there is again the creation of the LST file. Namely if the
input file of GAMS instructions is called myfile.gms then the output will be on myfile.LST.

Examining the output

When a GAMS file is run then GAMS in turn creates a LST file of problem results. One can edit the LST file in either the IDE or with a text editor to find any error messages, solution output, report writing displays etc. In turn one can also reedit the GMS file if there were need to fix anything or alter the model contents and rerun with GAMS until a satisfactory result is attained. Now let us review the potential elements of the LST file.

Echo print

The first item contained within the LST file is the echo print. The echo print is simply a numbered copy of the instructions GAMS received in the GMS input file. For example, in the LST file segment immediately below is the portion associated with the GAMS instructions in optimize.gms.

```gams
3 VARIABLES Z;
4 POSITIVE VARIABLES Xcorn, Xwheat, Xcotton;
5 EQUATIONS OBJ, land, labor;
6 OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;
7 land.. Xcorn + Xwheat + Xcotton =L= 100;
8 labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;
9 MODEL farmPROBLEM /ALL/;
10 SOLVE farmPROBLEM USING LP MAXIMIZING Z;
```

Notes

- The echo print is of the same character for all three examples so I only include the optimize.gms LST file echo print here.
- The echo print can incorporate lines from other files if include files are present as covered in the Including External Files chapter.
- The echo print can be partially or fully suppressed as discussed in the Standard Output chapter.
- The numbered echo print often serves as an important reference guide because GAMS reports the line numbers in the LST file where solves or displays were located as well as the position of any errors that have been encountered.

Incidence of compilation errors

GAMS requires strict adherence to language syntax. It is very rare for even experienced users to get their syntax exactly right the first time. GAMS marks places where syntax does not correspond exactly as compilation errors in the echo print listing. For example I present the echo print from a syntactically incorrect variant of the economic equilibrium problem. In that example (econequilerr.gms) I have introduced errors in the form of a different spelling of the variable named Qd between line's 1, 3, 5 and 6 spelling it as Qd in line 1 and Qdemand in the

Courtesy of B.A. McCarl, October 2002
other three lines. I also omit a required ; in line 4.

\begin{verbatim}
1 POSITIVE VARIABLES P, Qd, Qs;
2 EQUATIONS PDemand, PSupply, Equilibrium;
3 Pdemand.\ P =g= 6 - 0.3*Qdemand;
 **** $140
4 Psupply.\ (1 + 0.2*Qs) =g= P
5 Equilibrium.. Qs =g= Qdemand;
 **** $409
6 MODEL PROBLEM /Pdemand.Qdemand, Psupply.Qs, Equilibrium.P/;
 **** $322
7 SOLVE PROBLEM USING MCP;
 **** $257
\end{verbatim}

\section*{Error Messages}

140 Unknown symbol
257 Solve statement not checked because of previous errors
322 Wrong complementarity pair. Has to be equ.var.
409 Unrecognizable item - skip to find a new statement
 looking for a ';' or a key word to get started again

The above echo print contains the markings relative to the compiler errors. A compiler error message consists of three important elements. First a marker **** appears in line just beneath the line where an error occurred. Second a $ is placed in the LST file just underneath the position in the above line where the error occurred. Third a numerical code is entered just after the $ which cross-references to a list appearing later in the LST file of the heirs encountered and a brief explanation of their cause sometimes containing a hint on how to repair the error.

\section*{Notes}

\begin{itemize}
 \item The above messages and markings show GAMS provides help in locating errors and gives clues as to what's wrong. Above there are error markings in every position where \textit{Qdemand} appears indicating that GAMS does not recognize the item mainly because it does not match with anything within the variable or other declarations above. It also marks the 409 error in the Equilibrium equation just after the missing ; and prints a message that indicates that a ; may be the problem.
 \item The **** marks all error messages whether they be compilation or execution errors. Thus, one can always search in the LST file for the **** marking to find errors.
 \item It is recommended that users do not use lines with **** character strings in the middle of their code (say in a comment as can be entered by placing an * in column 1—see the Comments chapter) but rather employ some other symbol.
 \item The example illustrates error proliferation. In particular the markings for the errors 140, 322 and 409 identify the places mistakes were made but the error to 257 does not mark a mistake. Also while the 140 and 322 mark mistakes, the real mistake may be that in line 1 where \textit{Qd} should have been spelled as \textit{Qdemand}. It is frequent in GAMS that a declaration error causes a lot of subsequent errors.
 \item In this case only two corrections need to be made to repair the file. One should spell \textit{Qd} in line 1 as \textit{Qdemand} or conversely change all the later references to \textit{Qd}. One also needs to add a semi colon to the end of line 4.
\end{itemize}
The IDE contains a powerful navigation aid which helps users directly jump from error messages into the place in the GMS code where the error message occurs as discussed in the Running Jobs with GAMS and the GAMS IDE chapter.

When multiple errors occur in a single position, GAMS cannot always locate the $ just in the right spot as that spot may be occupied.

New users may find desirable to reposition the error message locations so the messages appear just below the error markings as discussed in the Fixing Compilation Errors chapter.

Here I have only presented a brief introduction to compilation error discovery. The chapter on Fixing Compilation Errors goes substantially further and covers through example a number of common error messages received and their causes.

Symbol list and cross reference maps

The next component of the LST file is the symbol list and cross-reference map. These may or not be present as determined by the default settings of GAMS on your system. In particular, while these items appear by default when running command line GAMS they are suppressed by default when running the IDE.

The more useful of these outputs is the symbol list that contains an alphabetical order all the variables, equations, models and some other categories of GAMS language classifications that I have not yet discussed along with their optional explanatory text. These output items will not be further covered in its tutorial but are covered in the Standard Output chapter.

Execution output

The next, usually minor, element of the GAMS LST file is execution report. Typically this will involve

- A report of the time it takes GAMS to execute any statements between the beginning of the program and the first solve (or in general between solves),
- Any user generated displays of data; and
- If present, a list of numerical execution errors that arose.

I will not discuss the nature of this output here, as it is typically not a large concern of new users. Display statements will be discussed later within this tutorial and are discussed in the Improving Output via Report Writing chapter. Execution errors and their markings are discussed in the Fixing Execution Errors chapter.

Generation listing

Once GAMS has successfully compiled and executed then any solve statements that are present
will be implemented. In particular, the GAMS main program generates a computer readable version of the equations in the problem that it in turn passes on to whatever third party solver is going to be used on the model. During this so called model generation phase GAMS creates output

- Listing the specific form of a set of equations and variables,
- Providing a summary of the total model structure, and
- If encountered, detailing any numerical execution errors that occurred in model generation.

Each of these excepting execution errors will be discussed immediately below. Model generation time execution errors are discussed in the Execution Errors chapter.

Equation listing

When GAMS generates the model by default the first three equations for each named equation will be generated. A portion of the output (just that for the first two named equations) for the each for the three example models is

```plaintext
Equation Listing    SOLVE farmPROBLEM Using LP From line 10
----   OBJ =E=
OBJ..  Z - 109*Xcorn - 90*Xwheat - 115*Xcotton =E= 0 ; (LHS = 0)
----   land =L=
land..  Xcorn + Xwheat + Xcotton =L= 100 ; (LHS = 0)

Equation Listing    SOLVE wall Using NLP From line 28
----   PDemand =G=
PDemand..  P + 0.3*Qd =G= 6 ; (LHS = 0, INFES = 6 ***)
----   PSupply =G=
PSupply..  - P + 0.2*Qs =G= -1 ; (LHS = 0)

Equation Listing    SOLVE PROBLEM Using MCP From line 7
----   r1 =E= 
r1..  (1)*ba + (1)*so4 =E= 1 ; (LHS = 1)
----   r2 =E=
r2..  - (1)*ba + (1)*baoh - (1)*oh =E= 4.8 ; (LHS = 1, INFES = 3.8 ***)
```

Notes

- The first part of this output gives the words *Equation Listing* followed by the word Solve, the name of the model being solved and the line number in the echo print file where the solve associated with this model generation appears.
- The second part of this output consists of the marker ---- followed by the name of the equation with the relationship type (=L=, =G=, =E= etc).
- When one wishes to find this LST file component, one can search for the marker ---- or the string Equation Listing. Users will quickly find ---- marks other types of output like that from display statements.
- The third part of this output contains the equation name followed by a .. and then a listing of the equation algebraic structure. In preparing this output, GAMS collects all terms
involving variables on the left hand side and all constants on the right hand side. This output component portrays the equation in linear format giving the names of the variables that are associated with nonzero equation terms and their associated coefficients.

- The algebraic structure portrayal is trailed by a term which is labeled LHS and gives at evaluation of the terms involving endogenous variables evaluated at their starting points (typically zero unless the .L levels were preset). A marker INFEAS will also appear if the initial values do not constitute a feasible solution.

- The equation output is a correct representation of the algebraic structure of any linear terms in the equation and a local representation containing the first derivatives of any nonlinear terms. The nonlinear terms are automatically encased in parentheses to indicate a local approximation is present. For example in the non-linear equation solving example the first equation is algebraically structured as

\[ba \times so4 = 1 \]

but the equation listing portrays this as additive

\[
\text{---- r1 } =E= \\
\text{r1.. } (1)*ba + (1)*so4 =E= 1 ; \text{ (LHS = 1)}
\]

which the reader can verify as the first derivative use of the terms evaluated around the starting point (ba=1,so4=1).

More details on how the equation list is formed and controlled in terms of content and length are discussed in the Standard Output chapter while more on nonlinear terms appears in the NLP and MCP Model Types chapter.

Variable listing

When GAMS generates the model by default the first three variables for each named variable will be generated. A portion of the output (just that for the first two named variables) for the each for the three example models is

Column Listing

SOLVE farmPROBLEM Using LP From line 10

---- Z
Z
 (.LO, .L, .UP = -INF, 0, +INF)
 1 OBJ
---- Xcorn
Xcorn
 (.LO, .L, .UP = 0, 0, +INF)
 -109 OBJ
 1 land
 6 labor

Column Listing

SOLVE PROBLEM Using MCP From line 7

---- P
P
 (.LO, .L, .UP = 0, 0, +INF)
 1 PDemand
 -1 PSupply

Courtesy of B.A. McCarl, October 2002 18
Notes

- The first part of this output gives the words **Column Listing** followed by the word Solve, the name of the model being solved and the line number in the echo print file where the solve associated with this model generation appears.
- The second part of this output consists of the marker ---- followed by the name of the variable.
- When one wishes to find this LST file component, one can search for the marker ---- or the string Column Listing. Users will quickly find ---- marks other types of output like that from display statements.
- The third part of this output contains the variable name followed by (.LO, .L, .UP = lower bound, starting level, upper bound) where
 - lower bound gives the lower bound assigned to this variable (often zero)
 - starting level gives the starting point assigned to this variable (often zero)
 - upper bound gives the lower bound assigned to this variable (often positive infinity + INF).
- The fourth part of this output gives the equation names in which this variable appears with a nonzero term and the associated coefficients.
- The output is a correct representation of the algebraic structure of any linear terms in the equations where the variable appears and a local representation containing the first derivatives of any nonlinear terms. The nonlinear terms are automatically encased in parentheses to indicate a local approximation is present just analogous to the portrayals in the equation listing section just above.

More details on how the variable list is formed and controlled in terms of content and length are discussed in the Standard Output chapter while more on nonlinear terms appears in the NLP and MCP Model Types chapter.
Model statistics

GAMS also creates an output summarizing the size of the model as appears just below from the non-linear equation solving example `nonlinsys.gms`. This gives how many variables of equations and nonlinear terms are in the model along with some additional information. For discussion of the other parts of this output see the Standard Output and NLP and MCP model types chapters.

```
MODEL STATISTICS
BLOCKS OF EQUATIONS       6     SINGLE EQUATIONS        6
BLOCKS OF VARIABLES       6     SINGLE VARIABLES        6
NON ZERO ELEMENTS        20     NON LINEAR N-Z         10
DERIVATIVE POOL           6     CONSTANT POOL           8
CODE LENGTH              89
```

Solver report

The final major component of the LST file is the solution output and consists of a summary and then a report of the solutions for variables and equations. Execution error reports may also appear in nonlinear models as discussed in the Execution Errors Chapter.

Solution summary

The solution summary contains

- the marker `S O L V E S U M M A R Y`;
- the model name, objective variable name (if present), optimization type (if present), and location of the solve (in the echo print);
- the solver name;
- the solve status in terms of solver termination condition;
- the objective value (if present);
- some cpu time expended reports;
- a count of solver execution errors; and
- some solver specific output.

The report from the non-linear equation solving example `nonlinsys.gms` appears just below.

```
SOLVE SUMMARY
MODEL   wall                OBJECTIVE  ba
TYPE    NLP                 DIRECTION  MINIMIZE
SOLVER  CONOPT              FROM LINE  28
**** SOLVER STATUS     1 NORMAL COMPLETION
**** MODEL STATUS      2 LOCALLY OPTIMAL
**** OBJECTIVE VALUE                1.0000
```
More on this appears in the Standard Output chapter.

Equation solution report

The next section of the LST file is an equation by equation listing of the solution returned to GAMS by the solver. Each individual equation case is listed. For our three examples the reports are as follows

<table>
<thead>
<tr>
<th>EQU</th>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJ</td>
<td></td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>land</td>
<td>-INF</td>
<td>100.000</td>
<td>100.000</td>
<td>52.000</td>
</tr>
<tr>
<td>labor</td>
<td>-INF</td>
<td>500.000</td>
<td>500.000</td>
<td>9.500</td>
</tr>
<tr>
<td>PDemand</td>
<td>6.000</td>
<td>6.000</td>
<td>+INF</td>
<td>10.000</td>
</tr>
<tr>
<td>PSupply</td>
<td>-1.000</td>
<td>-1.000</td>
<td>+INF</td>
<td>10.000</td>
</tr>
<tr>
<td>Equilibri~</td>
<td>.</td>
<td>.</td>
<td>+INF</td>
<td>3.000</td>
</tr>
<tr>
<td>r1</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>0.500</td>
</tr>
<tr>
<td>r2</td>
<td>4.800</td>
<td>4.800</td>
<td>4.800</td>
<td>EPS</td>
</tr>
<tr>
<td>r3</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
<td>4.9951E-6</td>
</tr>
<tr>
<td>r4</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>2.3288E-6</td>
</tr>
<tr>
<td>b1</td>
<td></td>
<td></td>
<td></td>
<td>0.499</td>
</tr>
<tr>
<td>b2</td>
<td></td>
<td></td>
<td></td>
<td>2.5676E-4</td>
</tr>
</tbody>
</table>

The columns associated with each entry have the following meaning,

- **Equation marker ----**
- **EQU** - Equation identifier
- Lower bound (.lo) – RHS on =G= or =E= equations
- Level value (.l) – value of Left hand side variables. Note this is not a slack variable but inclusion of such information is discussed in the Standard Output chapter.
- Upper bound (.up) – RHS on =L= or =E= equations
- Marginal (.m) – dual variable or shadow price

Notes

- The numbers are printed with fixed precision, but the values are returned within GAMS
have full machine accuracy.

- The single dots '.' represent zeros.
- If present EPS is the GAMS extended value that means very close to but different from zero.
- It is common to see a marginal value given as EPS, since GAMS uses the convention that marginals are zero for basic variables, and nonzero for others.
- EPS is used with non-basic variables whose marginal values are very close to, or actually, zero, or in nonlinear problems with superbasic variables whose marginals are zero or very close to it.
- For models that are not solved to optimality, some items may additionally be marked with the following flags.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infes</td>
<td>The item is infeasible. This mark is made for any entry whose level value is not between the upper and lower bounds.</td>
</tr>
<tr>
<td>Nopt</td>
<td>The item is non-optimal. This mark is made for any non-basic entries for which the marginal sign is incorrect, or superbasic ones for which the marginal value is too large.</td>
</tr>
<tr>
<td>Unbnd</td>
<td>The row or column that appears to cause the problem to be unbounded.</td>
</tr>
</tbody>
</table>

- The marginal output generally does not have much meaning in an MCP or CNS model.

Variable solution report

The next section of the LST file is a variable by variable listing of the solution returned to GAMS by the solver. Each individual variable case is listed. For our three examples the reports are as follows:

```
LOWER     LEVEL     UPPER    MARGINAL
---- VAR Z              -INF   9950.000     +INF       .
---- VAR Xcorn           .       50.000     +INF       .
---- VAR Xwheat          .       50.000     +INF       .
---- VAR Xcotton         .         .        +INF    -13.000
---- VAR P               .        3.000     +INF       .
---- VAR Qd              .       10.000     +INF       .
---- VAR Qs              .       10.000     +INF       .
---- VAR ba             -INF      1.000     +INF       .
---- VAR so4            -INF      1.000     +INF       .
---- VAR baoh           -INF      4.802     +INF       .
---- VAR oh             -INF      1.000     +INF       .
---- VAR hso4           -INF      0.980     +INF       .
---- VAR h              -INF      1.000     +INF       .
```
The columns associated with each entry have the following meaning,

- Variable marker ----
- **VAR** - Variable identifier
- Lower bound (.lo) – often zero or minus infinity
- Level value (.l) – solution value.
- Upper bound (.up) – often plus infinity
- Marginal (.m) – reduced cost which does not convey much information in the non optimization cases,

Notes

- The numbers are printed with fixed precision, but the values are returned within GAMS have full machine accuracy.
- The single dots '.' represent zeros.
- If present EPS is the GAMS extended value that means very close to but different from zero.
- It is common to see a marginal value given as EPS, since GAMS uses the convention that marginals are zero for basic variables, and nonzero for others.
- EPS is used with non-basic variables whose marginal values are very close to, or actually, zero, or in nonlinear problems with superbasic variables whose marginals are zero or very close to it.
- For models that are not solved to optimality, some items may additionally be marked with the following flags.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infes</td>
<td>The item is infeasible. This mark is made for any entry whose level value is not between the upper and lower bounds.</td>
</tr>
<tr>
<td>Nopt</td>
<td>The item is non-optimal. This mark is made for any non-basic entries for which the marginal sign is incorrect, or superbasic ones for which the marginal value is too large.</td>
</tr>
<tr>
<td>Unbnd</td>
<td>The row or column that appears to cause the problem to be unbounded.</td>
</tr>
</tbody>
</table>

Exploiting algebra

By its very nature GAMS is an algebraic language. The above examples and discussion are not totally exploitive of the algebraic capabilities of GAMS. Now let me introduce more of the GAMS algebraic features.

Equation writing – sums
GAMS is fundamentally built to allow exploitation of algebraic features like summation notation. Specifically suppose x_i is defined with three elements

\[\sum_i x_i = x_1 + x_2 + x_3 \]

This can be expressed in GAMS as

\[z = \text{SUM}(I, X(I)); \]

where

- I is a set in GAMS
- z is a scalar or variable
- $X(I)$ is a parameter or variable defined over set I

and the sum automatically treats all cases of I.

Such an expression can be included either in a either a model equation .. specification or in an item to be calculated in the code. Let me now remake the first 2 examples better exploiting the GAMS algebraic features

Revised algebra exploiting optimization example
The optimization example is as follows

\[
\begin{align*}
\text{Max} & \quad 109 \cdot X_{\text{corn}} + 90 \cdot X_{\text{wheat}} + 115 \cdot X_{\text{Cotton}} \\
\text{s.t.} & \quad X_{\text{corn}} + X_{\text{wheat}} + X_{\text{Cotton}} \leq 100 \quad (\text{land}) \\
& \quad X_{\text{corn}} - 4 \cdot X_{\text{wheat}} + 8 \cdot X_{\text{Cotton}} \leq 500 \quad (\text{labor}) \\
& \quad X_{\text{corn}} \cdot X_{\text{wheat}} \cdot X_{\text{Cotton}} \geq 0 \quad (\text{nonnegativity})
\end{align*}
\]

This is a special case of the general resource allocation problem that can be written as

\[
\begin{align*}
\text{Max} & \quad \sum_j C_j X_j \\
\text{s.t.} & \quad \sum_j a_{ij} X_j \leq b_i \quad \text{for all } i \\
& \quad X_j \geq 0 \quad \text{for all } j
\end{align*}
\]

where

\[
\begin{align*}
& j = \{ \text{corn, wheat, cotton} \} \\
& i = \{ \text{land, labor} \} \\
& x_j = \{ X_{\text{corn}}, X_{\text{wheat}}, X_{\text{cotton}} \} \\
& c_j = \{ 109, 90, 115 \} \\
& a_{ij} = \begin{cases}
1 & i = \text{land} \\
1 & i = \text{labor} \\
6 & j = \text{corn} \\
4 & j = \text{wheat} \\
8 & j = \text{cotton} \\
\end{cases} \\
& b_i = \{ 100, 500 \}
\end{align*}
\]

Such a model can be cast in GAMS as (optalgebra.gms)

```
SET        j   /Corn,Wheat,Cotton/ 
          i   /Land ,Labor/ ;
PARAMETER
  c(j)         / corn     109    ,wheat 90 ,cotton 115/
  b(i)         /land 100 ,labor 500/ ;
TABLE a(i,j)
          corn   wheat   cotton
  land     1       1       1 \\
  labor    6       4       8 ;
POSITIVE VARIABLES    x(j); 
VARIABLES             PROFIT             ;
EQUATIONS                 OBJective          ,
                             constraint(i) ;
OBJective..  PROFIT=E=   SUM(J,(c(J))*x(J));
constraint(i)..            SUM(J,a(i,J) *x(J)) =L= b(i);
MODEL    RESALLOC /ALL/ ;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
```

I will dissect the GAMS components after presenting the other example.

Revised equilibrium example
The economic equilibrium model was of the form

\[
\begin{align*}
\text{Demand Price:} & \quad P \geq Pd = 6 - 0.3Qd \\
\text{Supply Price:} & \quad P \leq Ps = 1 + 0.2Qs \\
\text{Quantity Equilibrium:} & \quad Qs \geq Qd \\
\text{Non negativity} & \quad P, Qs, Qd \geq 0
\end{align*}
\]

and is a single commodity model. Introduction of multiple commodities means that we need a subscript for commodities and consideration of cross commodity terms in the functions. Such a formulation where \(c \) depicts commodity can be presented as

\[
\begin{align*}
\text{Demand Price for } c: & \quad P_c \geq Pd_c = Id_c - \sum_{cc} Sd_{c,cc} \cdot Qd_{cc} & \text{for all } c \\
\text{Supply Price for } c: & \quad P_c \leq Ps_c = Is_c + \sum_{cc} Ss_{c,cc} \cdot Qs_{cc} & \text{for all } c \\
\text{Quantity Equil. for } c: & \quad Qs_c \geq Qd_c & \text{for all } c \\
\text{Non negativity} & \quad P_c, Qd_c, Qs_c \geq 0 & \text{for all } c
\end{align*}
\]

where

- \(P_c \) is the price of commodity \(c \)
- \(Qd_c \) is the quantity demanded of commodity \(c \)
- \(Pd_c \) is the price from the inverse demand curve for commodity \(c \)
- \(Qs_c \) is the quantity supplied of commodity \(c \)
- \(Ps_c \) is the price from the inverse supply curve for commodity \(c \)
- \(cc \) is an alternative index to the commodities and is equivalent to \(c \)
- \(Id_c \) is the inverse demand curve intercept for \(c \)
- \(Dd_{c,cc} \) is the inverse demand curve slope for the effect of buying one unit of commodity \(cc \) on the demand price of commodity \(c \). When \(c=cc \) this is an own commodity effect and when \(c\neq cc \) then this is a cross commodity effect.
- \(Is_c \) is the inverse supply curve intercept for \(c \)
- \(Ds_{c,cc} \) is the inverse supply curve slope for the effect of supplying one unit of commodity \(cc \) on the supply price of commodity \(c \). When \(c=cc \) this is an own commodity effect and when \(c\neq cc \) then this is a cross commodity effect.

An algebraic based GAMS formulation of this is (\texttt{econequilalg.gms})

```gams
Set commodities /corn,wheat/;
Set curvetype /Supply,demand/;
Table intercepts(curvetype,commodities)
  corn    wheat
  demand  4      8
  supply  1      2;
table slopes(curvetype,commodities,commodities)
  corn      wheat
  demand.corn -.3    -.1
  demand.wheat -.07   -.4
  supply.corn  .5     .1
  supply.wheat  .1    .3
```

Courtesy of B.A. McCarl, October 2002
Dissecting the algebraic model

Sets

Above we used the subscripts i, j, commodities and cc for addressing the variable, equation and data items. In GAMS subscripts are SETs. In order to use any subscript one must declare an equivalent set.

The set declaration contains
- the set name
- a list of elements in the set (up to 31 characters long spaces etc allowed in quotes)
- optional labels describing the whole set
- optional labels defining individual set elements

The general format for a set statement is:

```
SET setname   optional defining text
             /       firstsetelementname    optional defining text
             secondsetelementname  optional defining text
             ...  /;
```

Examples

```
SETS  j         /x1,x2,x3/
       i         /r1,r2/;
SET PROCESS   PRODUCTION PROCESSES   /X1,X2,X3/;
SET Commodities Crop commodities   /corn in bushels,
                                 wheat in metric tons,
                                 milk in hundred pounds/ ;
```

More on sets appears in the Sets chapter.

Courtesy of B.A. McCarl, October 2002
Alias

One device used in the economic equilibrium formulation is the so called alias command that allows us to have a second name for the same set allowing us in that case to consider both the effects of own and cross commodity quantity on the demand and supply price for an item. Then general form of an Alias is

\[
\text{ALIAS(knownset,newset1,newset2,...);}
\]

where each of the new sets will refer to the same elements as in the existing knownset.

More on alias appears in the Sets chapter.

Data entry

GAMS provides for three forms of data entry. These involve PARAMETER, SCALAR and TABLE formats. Scalar entry is for scalars, Parameter generally for vectors and Table for matrices. Above I needed data for vectors and matrices but not a scalar. Nevertheless I will cover all three forms.

** Scalars**

SCALAR format is used to enter items that are not defined with respect to sets.

\[
\text{scalar item1name optional labeling text /numerical value/}
\text{item2name optional labeling text /numerical value/}
\text{... ;}
\]

Examples include

```
scalar dataitem /100/;
scalar landonfarm total arable acres /100/;
scalars landonfarm /100/;
pricecorn 1992 corn price per bushel /2.20/;
```

Scalars are covered in more depth in the Data Entry chapter.

** Parameters**

Parameter format is used to enter items defined with respect to sets. Generally parameter format is used with data items that are one-dimensional (vectors) although multidimensional cases can be entered. The general format for parameter entry is:

\[
\text{Parameter itemname(setdependency) optional text}
\text{/ firstsetelementname associated value,}
\text{secondsetelementname associated value,}
\]

Courtesy of B.A. McCarl, October 2002
Examples

```plaintext
PARAMETER
  c(j) / x1 3, x2 2, x3 0.5 /
Parameter
  b(i) / r1 10, r2 3 /
PARAMETERS
  PRICE(PROCESS) PRODUCT PRICES BY PROCESS
    / X1 3, X2 2, X3 0.5 /
  RESORAVAIL(RESOURCE) RESOURCE AVAILABILITY
    / CONSTRAIN1 10, CONSTRAIN2 3 /
Parameter
  multidim(i,j,k) three dimensional
    / i1.j1.k1 100, i2.j1.k2 90 /
```

Notes

- The set elements referenced must appear in the defining set. Thus when data are entered for c(j) the element names within the / designators must be in the set j.
- More than one named item is definable under a single parameter statement with a semicolon terminating the total statement.
- Note GAMS commands are always ended with a ; but can be multiline in nature.
- Items can be defined over up to 10 sets with each numerical entry associated with a specific simultaneous collection of set elements for each of the named sets. When multi set dependent named items are entered then the notation is `set1elementname.set2elementname.set3elementname` etc with periods (.) setting off the element names in the associated sets.
- All elements that are not given explicit values are implicitly assigned with a value of zero.
- Parameters are an all-encompassing data class in GAMS into which data are kept including data entered as Scalars and Table.
- More on parameters appears in the Data Entry chapter.

Tables

TABLE format is used to enter items that are dependent on two more sets. The general format is

```
Table itemname(setone, settwo ... ) descriptive text
  set_2_element_1  set_2_element_2
  set_1_element_1   value_11       value_12
  set_1_element_2   value_21       value_22;
```

Examples

```
TABLE a(i,j) crop data
  corn    wheat   cotton
  land    1       1      1
  labor   6       4      8
```

Courtesy of B.A. McCarl, October 2002
Table intercepts(curvetype,commodities)
corn wheat
 demand 4 8
 supply 1 2;

table slopes(curvetype,commodities,commodities)
corn wheat
 demand.corn -.3 -.1
 demand.wheat -.07 -.4
 supply.corn .5 .1
 supply.wheat .1 .3 ;

Notes

- Alignment is important. Each numerical entry must occur somewhere below one and only
 one column name in the Table.
- All elements that are not given explicit values or have blanks under them are implicitly
 assigned to equal zero.
- Items in tables must be defined with respect to at least 2 sets and can be defined over up
 to 10 sets. When more than two dimensional items are entered, as in the equilibrium
 example, periods(•) set off the element names

 set1elementname•set2elementname•set3elementname etc.
- Tables are a specific input entry format for the general GAMS parameter class of items
 that also encompasses scalars.
- More on tables appears in the Data Entry chapter.

Direct assignment

Data may also be entered through replacement or assignment statements. Such statements
involve the use of a statement like

 parametername(setdependency) = expression;

where the parameters on the left hand side must have been previously defined in a set, parameter
or table statement.

Examples
(Caldata.gms)

 scalar a1;
 scalars a2 /11/;
 parameter cc(j) , bc(j) /j2 22/;
 a1=10;
 a2=5;
 cc(j)=bc(j)+10;
 cc("j1")=1;
Notes

- When a statement like \(cc(j) = bc(j) + 10; \) is executed this is done for all elements in \(j \) so if \(j \) had 100,000 elements this would define values for each and every one.
- These assignments can be the sole entry of a data item or may redefine items.
- If an item is redefined then it has the new value from then on and does not retain the original data.
- The example \(cc("j1") = 1; \) shows how one addresses a single specific element not the whole set, namely one puts the entry in quotes (single or double). This is further discussed in the Sets chapter.
- Calculations do not have to cover all set element cases of the parameters involved (through partial set references as discussed in the Sets chapter). Set elements that are not computed over retain their original values if defined or a zero if never defined by entry or previous calculation.
- A lot more on calculations appears in the Calculating chapter.

Algebraic nature of variable and equation specifications

When one moves to algebraic modeling the variable and equation declarations can have an added element of set dependency as illustrated in our examples and reproduced below

```plaintext
POSITIVE VARIABLES    x(j);
VARIABLES             PROFIT             ;
EQUATIONS                 OBJective          ,
constraint(i) ;

POSITIVE VARIABLES  P(commodities)
Qd(commodities)
Qs(commodities)  ;
EQUATIONS     PDemand(commodities)
PSupply(commodities)
Equilibrium(commodities)  ;
```

Such definitions indicate that these variables and equations are potentially defined for every element of the defining set (also called the domain) thus \(x \) could exist for each and every element in \(j \). However the actual definition of variables does not occur until the .. equation specifications are evaluated as discussed next. More on set dependent variable and equation definitions appears in the Variables, Equations, Models and Solves chapter.

Algebra and model .. specifications

The equations and variables in a model are defined by the evaluation of the .. equation specifications. The .. equations for our examples are

```plaintext
OBJjective.. PROFIT=E=   SUM(J,c(J)*x(J)) ;
constraint(i).. SUM(J,a(i,J) *x(J))  =L= b(i);
```
Here GAMS will operate over all the elements in the sets in each term. For example, in the
OBJective equation GAMS will add up the term \(c(J) \times x(J) \) for all set elements in \(j \). Similarly, the
equation **constraint(i)** will define a separate constraint equation case for each element of \(i \). Also
within the equation case associated with an element of \(i \) only the elements of \(a(i,j) \) associated
with that particular \(i \) will be included in the term \(\sum(J, a(i,J) \times x(J)) \). Similarly, within the
second example equations of each type are included for each member of set **commodities**.

Notes

- These examples show us moving away from the data specification that we were
 employing in the GAMS the early GAMS examples in this chapter. In particular rather
 than entering numbers in the model we are now entering data item names and associated
 set dependency. This permits us to specify a model in a more generic fashion as will be
discussed in a later section of this tutorial on virtues of algebraic modeling.

- The only variables that will be defined for a model are those that appear with nonzero
 coefficient somewhere in at least one of the equations defined by the .. equations.

- More on .. specifications appears within the Variables, Equations, Models and Solves
 chapter.

Output differences

When set dependency is used in association with variables and equations and model then this
changes the character of a few of the output items. In particular, there are some changes in the
equation listing, variable listing, and solution reports for variables and equations.

Equation listing

The equation listing exhibits a few different characteristics in the face of set dependent variable
and equation declarations. In particular, the variables declared over sets are reported with a
display of their set dependency encased in parentheses. Also the equations declared over sets
have multiple cases listed under a particular equation name. An example is presented below in
the context of our core optimization example (**optimize.gms**) and shows three cases of the \(x \)
variable (those associated with the corn, wheat, and cotton set elements). It also shows that two
cases are present for the equation called constraint (land and labor).

```plaintext
---- OBJective =E=
```
Objective.. - 109*x(Corn) - 90*x(Wheat) - 115*x(Cotton) + PROFIT =E= 0 ; (LHS = 0)

----- constraint =E=
constraint(Land).. x(Corn) + x(Wheat) + x(Cotton) =L= 100 ; (LHS = 0)
constraint(Labor).. 6*x(Corn) + 4*x(Wheat) + 8*x(Cotton) =L= 500 ; (LHS = 0)

A portion of the equation listing from a more involved example (model.gms) also reveals additional differences. In the TCOSTEQ equation that we see the portrayal of coefficients involved with several declared variables: 3 cases of Build, 6 cases of Shipsw, 6 cases of Shipwm and 4 cases of Shipsm. The model.gms example also shows what happens there are more cases of equation than the number of equation output items output by default as controlled by the option Limrow (as discussed in the Standard Output chapter). In this case Limrow was set to 2 but there were three cases of the equation named Capacity and GAMS indicates that one case was skipped. If there had been 100, then 98 would have been skipped.

---- TCOSTEQ =E= TOTAL COST ACCOUNTING EQUATION
TCOSTEQ.. Tcost - 50*Build(A) - 60*Build(B) - 68*Build(C) - Shipsw(S1,A) - 2*Shipsw(S1,B) - 8*Shipsw(S1,C) - 6*Shipsw(S2,A) - 3*Shipsw(S2,B) - Shipsw(S2,C) - 4*Shipwm(A,D1) - 6*Shipwm(A,D2) - 3*Shipwm(B,D1) - 4*Shipwm(B,D2) - 5*Shipwm(C,D1) - 3*Shipwm(C,D2) - 4*Shipsm(S1,D1) - 8*Shipsm(S1,D2) - 7*Shipsm(S2,D1) - 6*Shipsm(S2,D2) =E= 0 ;
(LHS = -4, INFES = 4 ***)

----- CAPACITY =L= WAREHOUSE CAPACITY
CAPACITY(A).. - 999*Build(A) + Shipwm(A,D1) + Shipwm(A,D2) =L= 0 ; (LHS = 0)
CAPACITY(B).. - 60*Build(B) + Shipwm(B,D1) + Shipwm(B,D2) =L= 0 ; (LHS = 0)

REMAINING ENTRY SKIPPED

Variable list

The variable listing also exhibits a few different characteristics in the face of set dependent variable and equation declarations. In particular, the variables declared over sets have multiple cases listed under a particular variable name as do any involved sets. An example is presented below in the context of our core optimization example (optimize.gms) and shows three cases of the x variable (those associated with the corn, wheat, and cotton set elements). It also shows that the variables use resources from two cases of the equation called constraint (land and labor).

---- x
x(Corn)
(-LO, .L, .UP = 0, 0, +INF)
 -109 Objective
 1 constraint(Land)
 6 constraint(Labor)

x(Wheat)
(-LO, .L, .UP = 0, 0, +INF)
 -90 Objective
 1 constraint(Land)
 4 constraint(Labor)

x(Cotton)
(-LO, .L, .UP = 0, 0, +INF)
 -115 Objective
 1 constraint(Land)
 8 constraint(Labor)

A portion of the variable listing from the more involved model.gms example shows GAMS indicating four cases were skipped when Limcol was smaller than the number of cases on hand (as discussed in the Standard Output Chapter).
Equation solution report

The equation solution LST also shows all existing cases grouped under each equation name when set dependency is present as illustrated below in the context of our core optimization example (optimize.gms).

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>-INF</td>
<td>100.000</td>
<td>100.000</td>
</tr>
<tr>
<td>Labor</td>
<td>-INF</td>
<td>500.000</td>
<td>500.000</td>
</tr>
</tbody>
</table>

Variable solution report

The variable solution LST segment also shows all existing cases grouped under each variable name when set dependency is present as illustrated below in the context of our core optimization example (optalgebra.gms).

<table>
<thead>
<tr>
<th>LOWER</th>
<th>LEVEL</th>
<th>UPPER</th>
<th>MARGINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>.</td>
<td>50.000</td>
<td>+INF</td>
</tr>
<tr>
<td>Wheat</td>
<td>.</td>
<td>50.000</td>
<td>+INF</td>
</tr>
<tr>
<td>Cotton</td>
<td>.</td>
<td>+INF</td>
<td>-13.000</td>
</tr>
</tbody>
</table>

Good modeling practices

Above I have covered the essential GAMS features one would employ in any modeling exercise. However I have not done very good job of exploiting a major GAMS capability involved self-documentation. In any modeling exercise there are an infinite variety of choices that can be made in naming the variables, equations, parameters, sets etc. and formatting their presentation in the GMS instruction file. Across these choices that can be large differences in the degree of self-documentation within the GMS code. In particular, as explained in the chapter on Rules for Item Names, Element names and Explanatory Text, one employ short names like x(j) as in optalgebra.gms or longer names (up to 31 characters) for the variables like production(products). I advocate use of longer names to enhance the readability of the document.

The GAMS also permits one to add comments, for example telling what is being done by
particular instructions or indicating data sources. This can be done by a number of means including typing lines beginning with an * in column one or encasing longer comments between a $ONTEXT and $OFFTEXT. GAMS elements for including comments are discussed in the chapter entitled Including Comments.

I illustrate the longer name and comment capability along with improved spacing and line formatting in the context of the model `optalgebra.gms` creating the new model `goodoptalgebra.gms`. The two models use the same data and get the same answer only the item names and formatting have been changed. In my judgment, the longer names substantially contribute to self-documentation and make it easier to go back to use a model at a future time or transfer a model to others for their use. More material on the formatting subject appears in the Writing Models and Good Modeling Practices chapter.

Original version
`optalgebra.gms`

```
SET     j               /Corn,Wheat,Cotton/
        i               /Land ,Labor/;
PARAMETER
    c(j)      / corn     109    ,wheat   90 ,cotton    115/
        b(i)     /land 100 ,labor 500/;
TABLE a(i,j)
     corn    wheat  cotton
   land          1       1       1
   labor         6       4       8      ;
POSITIVE VARIABLES   x(j);
VARIABLES            PROFIT             ;
EQUATIONS            OBJective          ,  constraint(i) ;
OBJective.. PROFIT=E=   SUM(J,(c(J))*x(J)) ;
constraint(i).. SUM(J,a(i,J) *x(J))  =L= b(i);
MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
```

Revised version with comments in blue
`goodoptalgebra.gms`

```
*well formatted algebraic version of model optalgebra.gms
SET     Products  Items produced by firm
        Resources  Resources limiting firm production
              /Corn   in acres,
              Wheat  in acres,
              Cotton in acres/;
PARAMETER Netreturns(products)  Net returns per unit produced
        Endowments(resources) Amount of each resource available
              /corn 109 ,wheat 90 ,cotton 115/
        /land 100 ,labor 500/;
TABLE     Resourceusage(resources,products) Resource usage per unit produced
     corn    wheat  cotton
   land          1       1       1
   labor         6       4       8      ;
POSITIVE VARIABLES   Production(products) Number of units produced;
VARIABLES            Profit               Total fir summed net returns ;
EQUATIONS            ProfitAcct           Profit accounting equation ,
                   Available(Resources) Resource availability limit;
$ontext
```

Courtesy of B.A. McCarl, October 2002
Structure of GAMS statements, programs and the

Now that I have been through the most essential basic elements of the GAMS syntax, I can review the general format of GAMS statements and GMS files. A GAMS program is a collection of statements in the GAMS language. A number of comments can be made about how the file needs to be formatted

- Statements must be ordered so that items are initially declared before they are used. If they are used on the right hand side of a calculation (an = statement) they also must be given data before use. If they are used in a model equation then they must be given data before a Solve appears. This is enforced by GAMS indicating a lack of declaration and numerical specification as a compilation error so one does not need to meticulously check order of declaration, definition and use.¹

- Individual GAMS statements can be formatted in almost any style. Multiple lines may be used for a statement, blank lines can be embedded, any number of spaces or tabs may be inserted and multiple statements may be put on one line separated by a ;

- Every GAMS statement should be terminated with a semicolon, as all the examples in this book illustrate.

- GAMS is not case sensitive, thus it is equivalent to type the command VARIABLE as variable or the variable names XCOTTON as XcOttoN. However, there is case sensitivity with respect to the way things are printed out with the first presentation being the one used as discussed in the Rules for Ordering and Capitalization chapter.

- The use of a named item (which in GAMS can be a set, parameter, scalar, table, acronym, variable, equation, model or file) involves three steps:
 - Declaration where one announces the existence of a named item giving it a name.
 - Assignment giving it a specific value or replacing its value with the results of an expression.

¹ This a a number of the other points in this section are adapted from Richard E. Rosenthal's "A GAMS Tutorial" that appeared in the GAMS Users Guide documents by Brooke et al.
Adding complexity

There are a few more topics meritorious of coverage in this tutorial that involve GAMS capabilities to include conditionals, display data, do calculations incorporating optimal solution information and solve a model more than once. Each is discussed below.

Conditionals

Certainly when doing calculations and setting up models cases arise where one might wish to do different things conditional upon data. In particular, one might wish to do a calculation like \(z = \frac{x}{y} \) only if \(y \) is nonzero or one might wish to define demand equations only for cases where demand exists. Incorporation of such considerations into GAMS program involves what's known as the \$-conditional as extensively discussed in the Conditionals chapter. Below I present several examples of this feature. Generally the expressions are of the form

\[
\text{term}\$\text{logical condition}
\]

which says do something with term only if the logical condition is true where the \$ can be read as if it were the word if. Conditionals can appear in a number of contexts, as I will illustrate below.

Conditionally execute an assignment

The condition

\[
x$(y \gt 0) = 10;
\]

says set \(X = 10 \) if the scalar \(y \) is greater than zero, while the condition

\[
\text{percentchange}\$(y \neq 0) = 100 \ast (x-y)/y;
\]

says compute the item percentchange if \(y \) is not equal to zero.

For more on this class of conditionals see the discussion in the Conditionals chapter.

Conditionally add a term in sum or other set operation

The condition

\[
z=\text{sum}(i$(y(i) \gt 0),x(i));
\]

says include the term for set element \(i \) only if \(y(i) > 0 \), while
\[
 z = \text{sum}(i, j) \text{sameas}(i, j), x(i, j));
\]
says add the term corresponding to a pair of set elements \(i\) and \(j\) only if the set elements have the same name (thus if the name of element \(i\) was Chicago then the \(j\) term would be included in the sum only if the name of element \(j\) was Chicago).

For more on this class of conditionals see the discussion in the Conditionals chapter. For more on \text{Sameas} also see the Conditionals chapter.

Conditionally define an equation

The conditions

\[
\begin{align*}

 \text{Eq1$(qq > 0)$.. xvar=e=3;} \\
 \text{Eq2$(\text{sum}(I, q(i)) > 0)$.. yvar=l=4;} \\
 \text{Eq3(i)$(a(i) > 0)$.. ivar(i)=g= -a(i);} \\
\end{align*}
\]
each cause an equation to exist in a model only if the condition is satisfied.

For more on this class of conditionals see the discussion in the Conditionals chapter.

Conditionally include a term in an equation

The conditions

\[
\begin{align*}
 \text{Eq4 .. xvar+yvar$(qq > 0)=e=3;} \\
 \text{X=sum(I, q(i))$(qq > 0)+4;} \\
 \text{Q(i)=a(i)+1$(a(i) > 0);} \\
\end{align*}
\]
each cause the term in red to only be included in an expression (it is treated as zero otherwise) only if the condition is satisfied.

For more on this class of conditionals see the discussion in the Conditionals chapter.

Displaying data

One may display any GAMS parameter, set, variable attribute, equation attribute or model attribute as well as quoted text using the GAMS display statement. Generally the display is of the format

```
DISPLAY ITEM1,ITEM2,ITEM3;
```

where the items are either

- Quoted strings in single or double quotes such as
Display 'here it is', "hello";

- Parameter or set names without any referencing to setdependency. Thus in Dispond.gms while the parameter data is defined over 4 sets

```
parameter data(index1,index2,index3,index4);
```

I simply say

```
display data;
```

- Variable, equation or model attributes with the item name and attribute desired specified

```
Display x.l, eq.m;
```

- Multiple items can be listed in a display statement separated by commas.

Notes

- Display will not print out items that are zero leaving blanks or skipping items where entire rows or columns are zero.
- GAMS displays can be enhanced in terms of form, and content in several ways as discussed in the Report Writing Chapter. One option is to use the option command

```
OPTION ITEMNAME:DECIMAL:ROWitems:COLUMNitems
```

which will cause all subsequent displays of the named item to follow rules specified by three numbers following the colons which are

- **DECIMAL** number of decimal places to be included
- **ROWitems** number of indices displayed within rows
- **COLUMNitems** number of indices displayed within columns

A display formatting sequence is introduced into the optimization example (goodoptalgebra.gms) as follows:

```
option thisreport:2:1:2;
display thisreport;
```

which says use 2 decimal places and produce a display with 1 item in the rows and 2 in the columns yielding

<table>
<thead>
<tr>
<th>Total Available</th>
<th>Use by Corn</th>
<th>Use by Wheat</th>
<th>Marginal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land</td>
<td>100.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>Labor</td>
<td>500.00</td>
<td>300.00</td>
<td>200.00</td>
</tr>
</tbody>
</table>

A display of the same item with option thisreport:4:2:1; yields
Report writing

GAMS permits one to do calculations using solution information to improve the information content of the output. This exercise is commonly called report writing. Information relative to the variable, equation and model solution is passed to GAMS from solvers. These data can be used in report writing computations.

In GAMS the solution level for a variable is Variablename.L while it is Equationname.L for an equation. The dual or shadow price information for an equation is addressed as Equationname.M and the reduced cost for a variable is Equationname.M. The numerical values of these parameters are generally undefined until a solve is performed and retains the value from the most recent solve from then on.

In the algebraic version of the equilibrium model (econequilalg.gms) I introduce the following report writing sequence

```gams
set qitem /Demand, Supply, "Market Clearing"/
set item /Quantity, Price/
parameter myreport(qitem,item,commodities);
myreport("Demand","Quantity",commodities)= Qd.l(commodities);
myreport("Supply","Quantity",commodities)= Qs.l(commodities);
myreport("Market Clearing","Price",commodities)= p.l(commodities);
display myreport;
```

which saves the supply and demand quantities along with the market clearing price. The resultant report is generated with a display statement and is

```
----     39 PARAMETER myreport

Corn  Wheat
Supply .Quantity       1.711       8.156
Demand .Quantity       1.711       8.156
Market Clearing.Price          2.671       4.618
```

where I have color coded the originating statements and resultant output.

A report writing sequence is also introduced into the optimization example (goodoptalgebra.gms) as follows

```gams
set item  /Total,"Use by",Marginal/;
set qitem /Available,Corn,Wheat,Cotton,Value/;
parameter Thisreport(resources,item,qitem) Report on resources;
Thisreport(resources,"Total","Available")=endowments(resources);
Thisreport(resources,"Use by",qitem)=
   sum(products$sameas(products,qitem),
       resourceusage(resources,products) *production.l(products));
```

```
```
This report\(\text{resources, "Marginal", "Value"} = \text{available.m} (\text{resources})\);
option thisreport:2:1:2;
display thisreport;

where both \text{equation marginals (shadow prices)} and \text{variable levels} are included in the report writing calculations. This yields the report

\[
\begin{array}{cccc}
\text{Total} & \text{Use by} & \text{Use by} & \text{Marginal} \\
\text{Available} & \text{Corn} & \text{Wheat} & \text{Value} \\
\hline
\text{Land} & 100.00 & 50.00 & 50.00 & 52.00 \\
\text{Labor} & 500.00 & 300.00 & 200.00 & 9.50 \\
\end{array}
\]

where I have color coded the originating statements and resultant output.

The report writing topic is extensively discussed in the Report Writing chapter with a more advanced discussion also appearing in the Output via Put Commands chapter.

Why use GAMS and algebraic modeling

Finally I feel it is beneficial to examine the attributes and difficulties with GAMS based algebraic modeling. This is done under the following topics

- Use of algebraic modeling
 - Context changes,
 - Expandability
 - Augmenting models
 - Aid with initial formulation and subsequent changes
 - Adding report writing
 - Self-Documenting Nature
 - Large Model Facilities
 - Automated Problem Handling
 - Model Library and widespread professional use
 - Use by Others
 - Ease of use with nonlinear, mixed integer, CGE and other problem forms
 - Interface with other packages

Use of algebraic modeling

GAMS permits one to express a formulation in general algebraic terms using symbolic summation notation. This allows modelers to concisely state problems, largely independent of the data and exact application context. Such formulations are inherently expandable, easily subjected to context changes, and easily augmented as will be discussed just below.

However use of algebraic modeling can be a two edged sword GAMS algebraic requirements and summation notation are difficult for some users. Some people will always desire to deal with the exact problem context, not an abstract general formulation. This does lead to a strategy.
most modelers use when employing GAMS modeling. Namely, GAMS exercises are usually supported by small hand formulations that capture problem essence and serve as an aid in GAMS model formulation.

Context changes

Consider the optimization example from above (goodoptalgebra.gms) which involved a farming example. This can be rewritten to another context as follows (newcontext.gms)

```gams
SET       Products  Items produced by firm
   /Chairs  , Tables , Dressers /
Resources Resources limiting firm production
   /RawWood , Labor , WarehouseSpace /;
PARAMETER Netreturns(products)  Net returns per unit produced
   /Chairs 19 , Tables 50, Dressers 75/
Endowments(resources) Amount of each resource available
   /RawWood 700 , Labor 1000 , WarehouseSpace 240 /;
TABLE     Resourceusage(resources,products) Resource usage per unit produced
          Chairs   Tables   Dressers
RawWood           8        20      32
Labor             12        32      45
WarehouseSpace    4        12      10
POSITIVE VARIABLES   Production(products) Number of units produced;
VARIABLES            Profit               Total firm summed net returns
EQUATIONS            ProfitAcct           Profit accounting equation
                     Available(Resources) Resource availability limit;
ProfitAcct..  
PROFIT =E= SUM(products,netreturns(products)*production(products)) ;
available(resources)..  
SUM(products,
   resourceusage(resources,products) *production(products))
=L= endowments(resources);
MODEL RESALLOC /ALL/;
SOLVE RESALLOC USING LP MAXIMIZING PROFIT;
```

where only the lines in black changed not those in red relative to the farming example. So what? The algebraic structure once built did not need to be altered and GAMS models can easily be changed from one context to another.

Expandability

Consider the newcontext.gms optimization example from just above that made three products from three resources. Two new products and two new resources can be added as follows (expand.gms)

```gams
SET       Products  Items produced by firm
   /Chairs  , Tables , Dressers, HeadBoards, Cabinets /
Resources Resources limiting firm production
   /RawWood , Labor , WarehouseSpace , Hardware, ShopTime /;
PARAMETER Netreturns(products)  Net returns per unit produced
   /Chairs 19 , Tables 50, Dressers 75, HeadBoards 28, Cabinets 25 /
Endowments(resources) Amount of each resource available
   /RawWood 700 , Labor 1000 , WarehouseSpace 240 , Hardware 100 , Shoptime 600 /;
TABLE     Resourceusage(resources,products) Resource usage per unit produced
          Chairs   Tables   Dressers   HeadBoards   Cabinets
RawWood           8        20      32        22        15
Labor             12        32      45        12        18
WarehouseSpace    4        12      10        3          7
Hardware           1        1        3        0          2
```

Courtesy of B.A. McCarl, October 2002 42
where only the material in black was added with no alterations of that in red relative to the newcontext.gms example. So what? The algebraic structure once built did not need to be altered and GAMS models can easily be expanded from smaller to larger data sets. Such capabilities constitute a major GAMS model development strategy. One can originally develop a model with a small data set and fully debug it. Then later one can move to the full problem data set without having to alter any of the algebraic structure but have confidence in the algebraic structure. This is discussed further in the Small to Large: Aid in Development and Debugging chapter.

Augmentation

Consider the newcontext.gms optimization example from just and suppose we wish to augment the model with constraints and variables reflecting the capability to rent or hire additional resources subject to a maximum availability constraint. This is done in the following example (augment.gms)
where only the material in black was added with no alterations of that in red relative to the newcontext.gms example. So what? The algebraic structure from the other study could be used supplied the core of the new model with structural features added as needed. Such a capability constitutes another major GAMS model development strategy.

One can adapt models from other studies customizing them for the problem at hand speeding up the development process. In addition to adapting models from related studies done by the modeler or the group in which the modeler works, there are number of other sources one may be able to exploit to jumpstart a model development project. This is further discussed below.

Aid with initial formulation and subsequent changes

GAMS aids both in initially formulating and subsequently revising formulations. GAMS facilitates specification and debugging of an initial formulation by allowing the modeler to begin with a small data set, then after verifying correctness expand to a much broader context. For example, one could initially specify a small transportation model with a few suppliers and demanders. Then after that model is debugged one could expand the problem to encompass fifty shipping origins and two hundred destinations without needing to change the algebraic model as discussed in the Small to Large: Aide in Development and Debugging chapter and the expandability section above.

GAMS also makes it easy to alter the model. Large models in programs like spreadsheets can be difficult to modify. In a spreadsheet, I find it hard to add in a set of new constraints and variables properly interjecting all the linkages and cannot figure out how to easily get a model right with a few commodities then automatically expand the model scope to many commodities and locations as illustrated in the expandability section above. On the other hand, GAMS allows one to add model features much more simply. Generally, modelers do not try to make a complete formulation the first time around. Rather one starts with a small formulation and then adds structural features as needed adding features as illustrated in the augmentation section above. GAMS also enforces consistent modeling, allowing models to be transferred between problem contexts as shown above.

Adding report writing

Generally, default GAMS output for the model solution is not adequate for conveying solution information to the modeler or associated decision-makers. One often does calculations using solution information to improve information content of the GAMS output. This is elaborated upon in the Report Writing chapter.

Self-documenting nature
One important GAMS feature is its self-documenting nature. Modelers can use long variable, equation and index names as well as comments, data definitions etc., allowing a readable and fairly well documented problem description. Model structure, assumptions, and any calculation procedures used in the report writing are documented as a byproduct of the modeling exercise in a self-contained file. Comment statements can be inserted by placing an asterisk in column one, followed by text identifying data sources or particular assumptions being used (i.e., in some of the my models, comments identify data source publication and page). Under such circumstances GAMS allows either the original author or others to alter the model structure and update data.

Consider for example the following example. Can you figure out what context the example is from?

```gams
LABOR(Farm) ..
   PLOWLAB(Farm) * PLOW(Farm)
   + SUM( crop, PLNTLAB(Farm,Crop) *PLANT(Farm,Crop)
   + HARVLAB(Farm,Crop) * HARVEST(Farm,Crop) )
   =L=  LABORAVAIL(Farm);
```

Large model facilities

GAMS is not the tool of choice for small, infrequently solved problems. In such cases, the generality of the presentation may not be worth the effort, and spreadsheet or other formulations are probably quicker and easier to deal with. GAMS is best employed for medium or large sized models (more than 100 rows and/or columns) and can handle large problems as the table of a few or my application model sizes below indicates.

<table>
<thead>
<tr>
<th>MODELS</th>
<th>VARIABLES</th>
<th>EQUATIONS</th>
<th>NOTES ON IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 REGION ASM</td>
<td>9860</td>
<td>811</td>
<td>412 crop budgets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>129 livestock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45423 lines 2.9Mb</td>
</tr>
<tr>
<td>ASM</td>
<td>30146</td>
<td>2844</td>
<td>1662 crop budgets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>838 livestock budgets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60469 lines 8.3Mb</td>
</tr>
<tr>
<td>SOIL ASM</td>
<td>41574</td>
<td>2935</td>
<td>123087 lines 33.6Mb</td>
</tr>
<tr>
<td>GLOBAL ASM(sto)</td>
<td>305605</td>
<td>14556</td>
<td>120991 lines 43.5Mb</td>
</tr>
<tr>
<td>FASOM</td>
<td>26012</td>
<td>1774</td>
<td>141697 lines 35.3Mb</td>
</tr>
<tr>
<td>HUMUS</td>
<td>429364</td>
<td>236234</td>
<td>41444 lines 123.1Mb</td>
</tr>
<tr>
<td>EDWARD</td>
<td>12161</td>
<td>5655</td>
<td>7858 lines 6.1Mb</td>
</tr>
</tbody>
</table>

The gains to using GAMS rise with problem size and complexity of the model use exercise study. When a modeler deals with large problems, the GAMS algebraic statement is probably the only thing that is thoroughly understood. Often the numerical formulation has grown out of control.

Courtesy of B.A. McCarl, October 2002
Automated problem handling and portability

Many of the tasks that would traditionally have required a computer programmer are automated. As such, GAMS automatically does coefficient calculation; checks the formulation for obvious flaws; chooses the solver; formats the programming problem to meet the exact requirements of the solver; causes the solver to execute the job; saves and submits the advanced basis when doing related solutions; and permits usage of the solution for report writing. Also GAMS verifies the correctness of the algebraic model statements and allows empirical verification using programs like GAMSCHK.

Furthermore, GAMS code is portable between computers. GAMS has been implemented on machines ranging from PCs to UNIX/LINUX workstations to CRAY super computers. Exactly the same code runs on all of these computer systems.

Switching solvers is simple requiring changing a solver option statement or changing from using LP to using NLP as discussed in the Variables, Equations, Models and Solves chapter. Links to spreadsheets have also been developed as discussed in the Links to Other Programs Including Spreadsheets chapter.

Model library and widespread professional use

Today GAMS has become the de facto standard for optimization modeling in many fields. Modelers may be able to adapt models or gain insights from others. Some sources of models from which model features can be adapted include:

- Models from experienced users that address similar problems that are closely related in concept or structure and can be adapted.
- Models associated with textbooks. For example, my book with Spreen contains many examples. The book and the examples are available through my Web page agecon.tamu.edu/faculty/mccarl
- Models are available through the GAMS library which is directly included in the IDE. These cover many different settings.

Each of these resources along with others are discussed in the chapter called Learning Resources: Model Library, Web Sites, Documentation.

Use by Others

Modeling personnel are often rare. For example, in international development contexts, detailed GAMS applications have been set-up by modeling experts but subsequently, the model is utilized by policy-makers with minimal, if any, assistance from the modeling experts. Often, given
proper internal documentation and a few instructions, clerical labor and nontechnical problem analysts can handle an analysis.

Ease of use with NLP, MIP, CGE and other problem forms

GAMS handles a variety of different problem types and has become one of principal languages for computable general equilibrium modeling, agricultural economic modeling and oil refinery modeling. It is also one of the principal platforms for experimentation with developing fields like mixed integer nonlinear programming models and global optimization models. GAMS Corporation is continually engaged in an effort to provide the most recent available solver software. This likely implies that GAMS users will have available the most recent developments in solver software and libraries of application test problems in emerging fields.

Interface with other packages

While not as well developed as I would like, GAMS does have procedures to interface with other programs like spreadsheets, databases, custom control programs, and Visual basic procedures among others. These interfaces are discussed in the chapter entitled to Links to Other Programs including Spreadsheets.

Alphabetic list of features

- .. specifications Tutorial coverage
- .. specifications Algebraic content, tutorial coverage
- Algebra Tutorial coverage
- Algebraic modeling GAMS exploitation of algebraic modeling - tutorial coverage
- Alias Tutorial coverage
- Augmentation Expanding a core model - tutorial coverage
- Automated problem handling GAMS capabilities
- Command line GAMS Tutorial coverage
- Compilation errors Tutorial coverage
- Conditionals Tutorial coverage
- Context changes Changing model domain of applicability -tutorial coverage
- Cross reference map Tutorial coverage
- Data entry Tutorial coverage
- Display Tutorial coverage
- Echo print Tutorial coverage
- Economic equilibrium Tutorial example
- Equation listing Tutorial coverage
- Equation listing Algebra use effects on, tutorial coverage
- Equation solution report Tutorial coverage
- Equation solution report Algebra use effects on, tutorial coverage
- Equations Algebraic content, tutorial coverage
- Equations Tutorial coverage

Courtesy of B.A. McCarl, October 2002
Execution output Tutorial coverage
Expandability Small to large modeling - tutorial coverage
GAMSIDE approach Tutorial coverage
Generation listing Tutorial coverage
Good modeling practices Tutorial coverage
.Library Tutorial coverage
Large model facilities Tutorial coverage
Library Tutorial coverage
Model Tutorial coverage
Model library Tutorial coverage
Model statistics Tutorial coverage
Nonlinear equation system Tutorial example
Optimization problem Tutorial example
Parameters Tutorial coverage
Portability Platform independence
Report writing Tutorial coverage
Running a job Tutorial coverage
Scalars Tutorial coverage
Self-documenting nature Tutorial coverage
Sets Tutorial coverage
Solution Summary Tutorial coverage
Solve Tutorial coverage
Solver report Tutorial coverage
Structure of GAMS statements Tutorial coverage
Sums Tutorial coverage
Symbol list Tutorial coverage
Tables Tutorial coverage
Use by Others Tutorial coverage
Variable listing Tutorial coverage
Variable listing Algebra use effects on, tutorial coverage
Variable solution report Tutorial coverage
Variable solution report Algebra use effects on, tutorial coverage
Variables Tutorial coverage
Variables Algebraic content, tutorial coverage