
McCarl GAMS User Guide

Version 24.6 Bruce A. McCarl University Distinguished Professor of Agricultural Economics Texas A&M University Alex Meeraus Paul van der Eijk Michael Bussieck Steven Dirkse Franz Nelissen GAMS Development Corporation

McCarl GAMS User GuideI

© 2022 Prof. Bruce McCarl

Table of Contents

Foreword 0

Chapter I McCarl GAMS User Guide 1

... 21 Forword

... 32 Introduction

Chapter II Quick Start Tutorial 4

... 41 Basic models

.. 5Solving an optimization problem

.. 5Solving for an economic equilibrium

.. 6Solving a nonlinear equation system

... 72 Dissecting the simple models

.. 7Variables

... 8What is the new Z variable in the optimization problem?

.. 9Equations

.. 10.. specifications

.. 11Model

.. 12Solve

... 13Why does my nonlinear equation system maximize something?

.. 14What are the .L items

... 143 Running the job

.. 14Command line approach

.. 15IDE approach

... 154 Examining the output

.. 15Echo print

... 16Incidence of compilation errors

.. 17Symbol list and cross reference maps

.. 18Generation listing

... 18Equation listing

... 19Variable listing

... 21Model statistics

.. 21Execution output

.. 21Solver report

... 21Solution summary

... 22Equation solution report

... 23Variable solution report

... 255 Exploiting algebra

.. 25Equation writing – sums

.. 25Revised algebra exploiting optimization example

.. 27Revised equilibrium example

... 286 Dissecting the algebraic model

.. 28Sets

... 29Alias

.. 29Data entry

... 30Scalars

... 30Parameters

IIContents

II

© 2022 Prof. Bruce McCarl

... 31Tables

... 32Direct assignment

... 32Algebraic nature of variable and equation specif ications

... 33Algebra and model .. specif ications

.. 34Output differences

... 34Equation listing

... 35Variable list

... 36Equation solution report

... 36Variable solution report

... 367 Good modeling practices

... 388 Structure of GAMS statements, programs and the ;

... 399 Adding complexity

.. 39Conditionals

... 39Conditionally execute an assignment

... 39Conditionally add a term in sum or other set operation

... 40Conditionally define an equation

... 40Conditionally include a term in an equation

.. 40Displaying data

.. 42Report writing

... 4310 Why use GAMS and algebraic modeling

.. 43Use of algebraic modeling

... 44Context changes

... 44Expandability

... 45Augmentation

.. 46Aid w ith initial formulation and subsequent changes

.. 47Adding report writing

.. 47Self-documenting nature

.. 47Large model facilities

.. 48Automated problem handling and portability

.. 48Model library and widespread professional use

.. 49Use by Others

.. 49Ease of use w ith NLP, MIP, CGE and other problem forms

.. 49Interface w ith other packages

Chapter III Language Basics 49

... 491 Sets

.. 50Set declaration

.. 51Singleton Sets

.. 53Subsets

.. 54Element definition

... 54Explicit element definition

... 55Set definition through Tables

... 56Element definition by computation

.. 56Multi dimensional sets

.. 57Domain checking

.. 58Set element referencing

... 58Whole sets

... 59Single elements

... 59Operating over part of a set

... 59Using subsets

... 60Using conditionals

... 60Sameas and Diag

McCarl GAMS User GuideIII

© 2022 Prof. Bruce McCarl

... 61Ord and Card

... 61Using tuples

... 62Defining a tuple w ith the matching and # operators

.. 63Universal Set: * as a set identifier

.. 64Using set attributes

.. 65Finding sets from data

.. 66Using another name or an alias

.. 67Element order and capitalization in output

.. 67Functions specifically referencing sets

... 67Ord

... 67Ordered and Unordered sets

... 68Card

... 68Sameas

... 69Diag

.. 69Indexing sets defined over time

... 69Leads and Lags: + / -

... 70Circular or Equilibrium Leads and Lags: ++ / --

... 70Element Position

.. 71Set Arithmetic

... 71Unions

... 71Intersections

... 71Complements

... 71Differences

... 722 Data Entry

.. 72Scalars

.. 73Parameters

.. 74Table

.. 76Calculated data

... 773 Variables, Equations, Models and Solves

.. 77Variables

... 77Variable Declaration

... 79Variable attributes

... 81Assigning variable and equation attributes

.. 82Equation

... 82Equation Declaration

... 83.. Equation specif ications

... 87Equation attributes

... 87Assigning equation attributes

.. 87Model

... 90Model attributes

... 90List of attributes

.. 93Solve: Maximizing, Minimizing, and Using

... 95Actions on executing solve

... 96Programs w ith multiple solve statements

... 97Multiple solve management - merge replace

... 98Choosing a solver

... 984 Model Types and Solvers

.. 99Model Types

... 99Linear programs (LP)

... 99Nonlinear program (NLP)

... 100Quadratically constrained program (QCP)

... 100Mixed integer programming (MIP)

... 101Relaxed mixed integer programming (RMIP)

IVContents

IV

© 2022 Prof. Bruce McCarl

... 102Mixed complementarity problem (MCP)

... 103Mixed integer nonlinear program (MINLP)

... 104Relaxed mixed integer nonlinear program (RMINLP)

... 104Mixed integer quadratically constrained program (MIQCP)

... 105Relaxed mixed integer quad. constrain program (RMIQCP)

... 105Constrained nonlinear systems (CNS)

... 106Mathematical program w ith equilibrium constraints (MPEC)

... 107Nonlinear programming w ith discontinuous derivatives (DNLP)

... 107Relaxed mathematical program w ith equilibrium constraints (RMPEC)

... 107Extended Mathematical Programs (EMP)

.. 108Solver capabilities matrix

.. 108Solvers

... 108General notes on solver licensing

... 109General notes on solver versions

... 110Available solvers

... 111ALPHAECP

... 111ANTIGONE

... 112BARON

... 112BONMIN/BONMINH

... 113CBC

... 114CSDP

... 114CONOPT

... 114CONOPTD

... 114CONVERT

... 115CONVERTD

... 115CPLEX

... 115CPLEXD

... 115DE

... 116DEA

... 116DECIS/DECISC/DECISM

... 116DICOPT

... 116EMP

... 117EMPSP

... 117EXAMINER

... 117GAMSCHK

... 118GLOMIQO

... 118GUROBI

... 118GUSS

... 126IPOPT/IPOPTH

... 126JAMS

... 127KESTREL

... 127KNITRO

... 127LGO

... 128LINDO/LINDOGLOBAL

... 128LOGMIP

... 128MILES

... 129MILESE

... 129MILESOLD

... 129MINOS

... 129MINOS5

... 129MOSEK

... 129MPSGE

... 130MPS2GMS

... 130MSNLP

McCarl GAMS User GuideV

© 2022 Prof. Bruce McCarl

... 130NLPEC

... 130OSICplex

... 130OSIGurobi

... 131OSIMosek

... 131OSIXPRESS

... 131OSISOPLEX

... 131PATH/PATHNLP

... 132PATHC

... 132PATHNLP

... 132PATHOLD

... 132SBB

... 132SCENRED

... 132SCIP

... 133SNOPT

... 133SOPLEX

... 133XA

... 133XAPAR

... 133XPRESS

... 134Choosing a solver

... 1345 Standard Output

.. 134Where is my output? LOG and LST files

.. 134Output overview and navigation

.. 137GAMS phases and output generated

.. 137Compilation phase output

... 137Echo print of the input f ile

... 138Compilation phase error messages

... 141Repositioning error messages

... 142Symbol reference map

... 144Symbol listing

... 145Unique element list

... 146Unique element cross reference

.. 146Execution output

... 147Display output

... 147Execution error output

... 147Symptoms of the presence of an execution error

.. 147Output produced by a solve statement

... 148Model generation error listing

... 149Equation listing

... 151Variable listing

... 152Model characteristics statistics

... 153Model generation time

... 153Solve summary

... 153Common solver report

... 154Solver report

... 155The variable and equation solution listing

... 156Including slacks in the output

... 156Ranging analysis

... 161Final execution summary

... 161Report summary

... 161File summary

.. 161Managing output pages

... 162Page w idth and height

... 162New pages

... 163Adding an output title to each page

VIContents

VI

© 2022 Prof. Bruce McCarl

.. 163Managing output volume

... 163Eliminate model listing

... 164Eliminate cross reference map

... 164Eliminate symbol list

... 164Eliminate solution output

... 164Eliminate echo print

... 164Restrict output just to a few displays

.. 164Adding slack variables to the output

.. 165Sending messages to the LOG file

... 1656 Writing Models and Good Modeling Practices

.. 165Formatting models - my recommendations

... 166Use longer names and descriptions

... 167Basic point

... 168Include comments on procedures and data nature and sources

... 169Entering raw versus calculated data

... 169Avoiding use of * in input data set specif ication

... 170Making sets w ork for you

... 170Making subsets w ork for you

... 171Formatting the typing of f iles to improve model readability

... 173Other possible conventions

Chapter IV Changing licenses 174

... 1741 Licenses on IDE

... 1742 Licenses outside of IDE—Windows and Unix/Linux

Chapter V Running Jobs with GAMS and the GAMS IDE 175

... 1751 Basic approaches to GAMS usage

... 1752 Running GAMS from the command line

... 1763 IDE concept and usage

.. 177Steps to using IDE

... 177Create a project

... 177Defining a project name and location.

... 178Creating or opening an existing GMS file

... 179Preparing f ile for execution

... 180Select default IDE functions

... 180Page size and LST file opening

... 181Make IDE the default GMS file processor

... 181Run GAMS by clicking the run button

... 183Open and navigate around the output

... 184Using the process w indow

... 185Using the LST file navigation w indow

... 188Finding the Active Location

.. 189Working with your own file

.. 190Fixing compilation errors

.. 192Selected techniques for use of the IDE

... 192Ways to f ind and/or replace text strings

... 193Search menu and f ind in f iles

... 194Matching parentheses

... 195Moving column blocks

... 195Altering syntax coloring

.. 196Finding out more through help

McCarl GAMS User GuideVII

© 2022 Prof. Bruce McCarl

... 197Help on the IDE

... 198Help on GAMS

... 200Accessing help on solvers

... 201Adding your ow n documentation

... 202Accessing documentation outside the IDE

.. 202Unraveling complex files: Refreader

... 202Basic output

... 203Symbol Tab

... 203Files used Tab

... 204Sets, Parameters etc. Tabs

... 205Unused Tab

... 206Steps to Using Refreader

... 207Saving the Refreader output

.. 208Differencing files

.. 210Spell checking in files

.. 210Saving and Using a Script

.. 212When is it not worth using?

.. 212Employing command line parameters

.. 213A difficulty you will have using IDE

.. 213Installation

... 213Install GAMS and on Window s machines the IDE

... 214On Window s machines make IDE icon

... 214On Linux/Unix run Gamsinst

... 214Choosing solvers

... 215Solver choice outside of IDE

... 216Unpacking softw are on Window s machines

Chapter VI Fixing Compilation Errors 216

... 2161 Don’t bark up the wrong tree

... 2162 Finding errors: ****

... 2173 Finding errors: $

... 2174 Repositioning error messages: Errmsg

... 2185 Improperly placed semi colons - error A

... 2196 Error message proliferation

... 2197 Commonly found errors and their cause

... 2208 Other common errors

.. 221Excess or insufficient semi colons - error B

.. 221Spelling mistakes - error C

.. 222Omitted Set elements - error D

.. 223Indexing problems - error E

.. 223Summing over sets already indexed - error F

.. 224Neglecting to deal w ith sets - error G

.. 224Mismatched parentheses - error H

.. 225Improper equation ".." statements - error I

.. 226Entering improper nonlinear expressions - error J

.. 227Using undefined data - error K

.. 228Improper references to individual set elements - error L

.. 229No variable, parameter, or equation definition - error M

.. 229Duplicate names - error N

.. 230Referencing item with wrong set - error O

.. 230ORD on an unordered set - error P

VIIIContents

VIII

© 2022 Prof. Bruce McCarl

Chapter VII More Language Basics 231

... 2321 Rules for Item Names, Element Names and Explanatory Text

.. 232Item name rules

.. 232Element name rules

.. 233Explanatory text rules

... 2342 Including Comments

.. 235Blank lines

.. 235Single line comments

.. 236Multiple line comments

.. 236End of line comments

.. 237In line comments

.. 238Outside margin comments

.. 239Hidden comments

... 2393 Calculating Items

.. 239Basic components of calculations

... 240Operators

... 240=

... 240.. statements

... 241Basic arithmetic + - * / **

... 241Arithmetic hierarchy

... 242Changing hierarchy using parentheses

.. 242Operations over set dependent items

... 242= replacement or .. statements

... 242Sum , Smax, Smin, Prod

... 242Sum

... 243Smin Smax

... 244Prod

... 244Alternative set addressing schemes

... 244Avoiding set domain errors

... 245Multiple sets

... 245Conditionals to restrict set coverage

... 246Tuples and subsets to restrict set coverage

.. 247Items that can be calculated

... 247Sets

... 247Data

... 248Equation calculations

... 248Acronyms

.. 249Cautions about calculations

... 249Dynamic

... 249Static

... 249Repeated static

... 249Cautions about dynamic /static calculations

.. 251Potential other components in calculations

... 251Mixing logical expressions, sets and numbers

... 252Functions

... 252Intrinsic Functions

... 252Common mathematical functions

... 253Abs

... 253Execseed

... 253Exp

... 254Ifthen

... 254Log, Log10, Log2

McCarl GAMS User GuideIX

© 2022 Prof. Bruce McCarl

... 254Max , Min

... 254Prod

... 255Round

... 255Smin , Smax

... 255Sqr

... 255Sqrt

... 256Sum

... 256Other Mathematical functions

... 260Logical Functions

... 261Time and Calender functions

... 263GAMS utility and performance functions

... 266String manipulation functions: Ord, Ordascii, Ordebcdic

... 267String manipulation functions: Card

... 267Computer Characteristic Functions

... 268Extrinsic Functions

... 271Probability Distribution Function use in models

... 275Random Numbers from Functions

... 282Defining an Extrinsic Function

... 283Special values

... 283Inf, -Inf

... 283Na

... 283Eps

... 283Undf

... 284Yes/No

... 284Model and optimal solution items

... 284Attributes of variables and equations

... 284L

... 285M

... 286Lo

... 286.range

... 287Up

... 287Fx

... 288Scale

... 288Prior

... 289Attributes of models

.. 289Including conditionals

... 289Right and left hand side conditionals

... 2904 Improving Output via Report Writing

.. 291Adding report writing

... 291Basics of solution based report w riting calculations

... 292Adding a report

... 293Notes on indefinite sets in parameter statements

.. 293Using displays

... 294Abort

... 294Controlling displays

... 294Formatting display decimals and layout

... 297Taking control of display decimals

... 299Controlling item ordering

... 299Controlling item capitalization

.. 299Formatting pages and lines

.. 300Output via put commands

.. 300Reordering set order in output

.. 301Preprogrammed table making utility: Gams2tbl

.. 302Output to other programs

XContents

X

© 2022 Prof. Bruce McCarl

.. 302Obtaining graphical output

.. 303Sorting output

... 304Sorting in GAMS

... 304Rank

... 3065 Rules for Item Capitalization and Ordering

.. 306Item capitalization

... 306Review ing capitalization: $Onsymlist and $Onuellist

.. 307Set element order

.. 310Reviewing set element ordering: $Onuellist

... 3106 Conditionals

.. 310Basic forms of conditionals

... 311$ conditionals

... 311Ways $ conditionals are employed

... 311Suppressing calculation of items (left hand side)

... 312Suppressing terms in equations (right hand side)

... 313Controlling indices in sums etc

... 314Suppressing model equations (left hand side)

... 315Conditionally displaying information

... 316Terminating a program: Abort

... 316If, Else, and Elseif

... 317While

... 317Repeat

.. 317Conditional placement and program execution speed

.. 317Forms of conditional / logical true false statements

... 317Numerical comparisons

... 318Eq: =

... 318Ne:<>

... 319Gt: >

... 319Lt: <

... 319Ge: >=

... 320Le: <=

... 320Eqv: <=> Imp: ->

... 321Data existence

... 321Existence/nonzero data item or result

... 322Computation over a set

... 323Set comparisons

... 323Element position: Ord and Card

... 323Element text comparison: Sameas and Diag

... 324Subset or tuple membership

... 325Acronym comparisons

.. 326Nesting logical conditions

... 326Nesting operators

... 326And

... 327Or

... 327Xor

... 328Not

... 329Nested $ conditionals

... 329Nested Operators and precedence order

... 329Note of caution

.. 330The conditional alternative: the tuple

... 3317 Control Structures

.. 331If, Else, and Elseif

... 334Alternative syntax

McCarl GAMS User GuideXI

© 2022 Prof. Bruce McCarl

... 334Endif

.. 334Loop

... 336Alternative syntax

... 336Endloop

.. 337While

... 338Alternative syntax

... 338Endw hile

.. 339For, To, Downto, and By

... 340Alternative syntax

... 340Endfor

.. 341Repeat, Until

Chapter VIII Doing a Comparative Analysis with GAMS 342

... 3421 Basic approaches

... 3422 Manual approach

.. 345Introducing cross scenario report writing

... 346Percentage change cross scenario reports

.. 347Preserving changed data

... 3483 An automated approach - avoiding repeated work

.. 351Adding a scenario

.. 351Changing model structure

... 3524 Where am I?

Chapter IX GAMS Command Line Parameters 353

... 3541 Important parameters

.. 354Compiler function – regional settings

.. 354Error detection and correction

.. 355LST and LOG output content and format control

.. 356Solver name choice

.. 357Option file presence

.. 357Directory management

.. 358Saves and restarts

.. 359More Secure "obfuscated" saves and restarts

.. 361User defined options

... 3612 Alphabetic list of all GAMS command line parameters

.. 363-- // -/ /-- on command lines

.. 363Action: A

.. 364Appendexpand: Ae

.. 364Appendlog: Al

.. 364Appendout: Ao

.. 364Bratio

.. 365Case

.. 365Cerr

.. 365Charset

.. 366CNS

.. 366Curdir: Cdir

.. 366Dformat: Df

.. 367DNLP

.. 367Domlim

.. 367Dumpopt

.. 370Dumpparms: Dp

XIIContents

XII

© 2022 Prof. Bruce McCarl

.. 371DumpParmsLogPrefix: DPLP

.. 372EMP

.. 372Eolonly: Ey

.. 372Errmsg

.. 373Errnam

.. 373Error

.. 373Errorlog: Er

.. 373Etlim: Etl

.. 374Execerr

.. 374Execmode

.. 374Expand: Ef

.. 375FDDelta

.. 376FDOpt

.. 377Ferr

.. 377Filecase

.. 377FileStem

.. 378Forcework: Fw

.. 378Forlim

.. 378Fsave

.. 378G205

.. 379Gdx

.. 379Gdxcompress

.. 379Gdxconvert

.. 380GdxUELs

.. 380Griddir: Gdir

.. 380Gridscript: Gscript

.. 381HeapLimit: Hl

.. 381Holdfixed

.. 381Ide

.. 382Input: I

.. 382Inputdir: Idir

.. 383Inputdir1 to inputdir40: Idir1 to idir40

.. 383Integer1 to Integer5

.. 383IntVarUp

.. 384iterlim

.. 384Jobtrace: Jt

.. 385Keep

.. 385Libincdir: Ldir

.. 385License

.. 385Limcol

.. 386Limrow

.. 386Logfile: Lf

.. 386Logline: Ll

.. 387Logoption: Lo

.. 387LP

.. 387MaxProcDir

.. 387MCP

.. 388McprHoldFx

.. 388MINLP

.. 388MIP

.. 388MIQCP

.. 388MPEC

.. 389Multipass: Mp

.. 389NLP

McCarl GAMS User GuideXIII

© 2022 Prof. Bruce McCarl

.. 389Nodlim

.. 389NoNewVarEqu

.. 390On115

.. 390Optca

.. 390Optcr

.. 390Optdir

.. 391Optfile

.. 391Output: O

.. 391Pagecontr: Pc

.. 391Pagesize: Ps

.. 392Pagewidth: Pw

.. 392Parmfile: Pf

.. 393Plicense

.. 393ProcDir

.. 393Profile

.. 394Profilefile

.. 394Profiletol: Ptol

.. 395Putdir: Pdir

.. 395QCP

.. 395Reference: Rf

.. 395Reslim

.. 396Restart: R

.. 396RMINLP

.. 396RMIP

.. 396RMIQCP

.. 397RMPEC

.. 397Save: S

.. 397Savepoint: Sp

.. 398Scrdir: Sd

.. 398Scrext: Se

.. 398Scriptexit

.. 398Scriptfrst: Sf

.. 399Scriptnext: Script

.. 399Scrnam: Sn

.. 399Seed

.. 399Solprint

.. 400Solvelink: Sl

.. 402Solver

.. 402Solvercntr: Scntr

.. 402Solverdict: Sdict

.. 402Solverinst: Sinst

.. 403Solvermatr: Smatr

.. 403Solversolu: Ssolu

.. 403Solverstat: Sstat

.. 403Stepsum

.. 404strictSingleton

.. 404Stringchk

.. 405Subsys

.. 405Suppress

.. 405Symprefix

.. 405Symbol

.. 405Sys10

.. 406Sys11

.. 406Sysdir

XIVContents

XIV

© 2022 Prof. Bruce McCarl

.. 406Sysincdir: Sdir

.. 407Sysout

.. 407Tabin

.. 407Tformat: Tf

.. 407Threads

.. 408ThreadsAsync

.. 409Timer

.. 409Trace

.. 409Traceopt

.. 409User1 to user5: U1 to U5

.. 410Warnings

.. 410Workdir: Wdir

.. 410Workfactor

.. 410Workspace

.. 411Xsave: Xs

.. 411Zerores

.. 411Zeroresrep

Chapter X Saves and Restarts 411

... 4121 Save Restart Basics

.. 413Save: S

.. 413Restart: R

.. 414Xsave: Xs

... 4142 Use of save and restarts and their effect

.. 414Save and restart on command line

.. 415IDE usage

... 415Save and restart calling GAMS from w ithin GAMS

... 4163 Why use save and restart?

.. 416Increasing run efficiency

.. 417Output management

.. 417Separation of code function

.. 418Save study results

.. 418Comparative statics analysis

.. 418Compiled code

.. 418Fast related solutions

Chapter XI Customizing GAMS 419

... 4191 What types of options are there?

... 4192 Possible command line parameters to customize

... 4203 How can these options be set?

.. 420To set in command line via pf=

.. 421To set in Gmsprmxx.txt parameter file

.. 422To set in IDE

... 4234 Hierarchy for customizing options

... 4235 List of all customizing options

Chapter XII Finding and Fixing Errors or Performance
Problems 439

... 4391 Fixing Execution Errors

McCarl GAMS User GuideXV

© 2022 Prof. Bruce McCarl

.. 440GAMS limit errors

.. 441Arithmetic errors during GAMS execution

.. 442Execution errors during model generation

.. 444Execution errors during model solution

... 445Solver function evaluation errors

... 445Symptoms

... 446Allow ing errors to occur

... 446Repair

... 447Presolve errors

... 447Problem eliminated

... 448No feasible mixed integer solution

... 449No feasible continuous solution

... 450Solver specif ic limits

.. 450Basing conditionals on number of errors

.. 451Clearing error conditions

... 4512 Scaling GAMS Models

.. 451Basics

.. 452Theory of scaling

... 452Scaling a variable

... 453Scaling equations

.. 454Simultaneous equation and variable scaling

... 455Example of scaling

.. 456Scaling of GAMS models

... 456Scaling in GAMS solvers

.. 457Using GAMS scaling assistance

... 458Why should you scale?

.. 458Effect of scaling on GAMS output

.. 459How do you know how much to scale?

.. 459A caution when scaling – runaway cases

.. 460User defined data scaling

.. 460Nonlinear scaling

... 4603 Small to Large: Aid in Development and Debugging

.. 461Basics

... 461Expandability in an example

.. 463Essence of the small to large approach

.. 464Steps for working from small to large.

.. 464Making small parts of large models

... 464Save and restart to isolate problem areas

... 465Strategic sub-setting

... 466Data reduction

... 4664 Speeding up GAMS

.. 467Basics

.. 467Finding where excessive time is being used

... 468Screen w atching and LOG file examination

... 468Profile

... 469Use of profile to f ind slow statements

... 469Invoking profile

... 470On the GAMS command line

... 470In the IDE GAMS parameters box

... 470As an internal option

... 470What should the number be

... 470Limiting profile output: Profiletol

... 471Isolating terms in slow statements

XVIContents

XVI

© 2022 Prof. Bruce McCarl

... 471It takes too long - searching

.. 472Why programs can be slow and their repair

... 472Set addressing and references

... 474Avoiding considering unnecessary cases

... 474Calculation statements

... 476Equation existence limited using conditionals

... 476Equation term consideration limited using conditions

... 476Variable specif ication - suppression

... 477Watch out for incomplete suppression

... 477Post solution report w riting computations

.. 477Trading memory for time

.. 478Other speed ups

... 4785 Memory Use Reduction in GAMS

.. 479Basics

.. 479Finding where excessive memory is being used

... 479Screen w atching and LOG file examination

... 480Profile

... 481Profiling to f ind memory hogging statements

... 482Invoking profile

... 482On the GAMS command line

... 482In the IDE GAMS parameters box

... 482As an internal option

... 482What should the profile number be

... 483Limiting profile output: Profiletol

... 483Memory use dumps: Dmpsym

... 485Looking w ithin memory hogs to f ind offending term

... 485My code w on’t w ork - searching

.. 486Causes of excessive memory use and repair

... 487Avoiding considering unnecessary cases

... 487Calculation statements

... 487Equation existence using conditionals

... 488Equation term consideration limited using conditions

... 488Variable specif ication - suppression

... 488Watch out for incomplete suppression

... 489Memory traps to w atch out for

... 489Clearing memory of unnecessary items

.. 490Limiting memory use w ith HeapLimit

Chapter XIII More Language Features 490

... 4901 Including External Files

.. 490Inclusion without arguments

... 491$Include

... 493Includes that cause compiler error messages

.. 494Suppressing the listing of include files

.. 494Redefining the location of include files - Idir

.. 494Include with arguments

... 494$Batinclude

... 495How parameter inclusion w orks

... 497$Libinclude

... 498Ldir

... 498$Sysinclude

... 498Sdir

.. 498Influence on LST file contents: $Oninclude and $Offinclude

McCarl GAMS User GuideXVII

© 2022 Prof. Bruce McCarl

.. 499Passing $ commands between code segments: $Onglobal and $Offglobal

.. 499Special provision for CSV files

... 499$Ondelim and $Offdelim

... 5002 Dollar Commands

.. 500Basics

... 501When do dollar commands occur?

.. 502Categories of $ commands

... 503Commands for inclusion of comments

... 503LST and other output f ile contents control

... 504Ways of including external f iles

... 504Contents dependent compilation

... 506Alter numerical procedures used

... 506Alter data for items

... 506GDX file read/w rite

... 506Alter compiler procedures

... 507Cause execution of an external program

... 507Restrict access to data

... 507Tear apart strings

... 508Compress and encrypt f iles

... 508Handling and definition of macros

... 508Include user defined function

.. 509Detailed description of dollar commands

... 510$$

... 510Abort

... 510Batinclude

... 510Call

... 511Call.Async

... 512Call.AsyncNC

... 512Clear

... 512Clearerror

... 513Comment

... 513Compress

... 513Decompress

... 514Dollar

... 514Double

... 514Echo, Echon

... 515Eject

... 515Encrypt

... 515Eolcom

... 516Error

... 516Escape

... 516Eval

... 517Evalglobal

... 517Evallocal

... 517Exit

... 517Expose

... 518Gdxin

... 519Gdxout

... 519Goto

... 520Hidden

... 520Hide

... 520If, If not, If i, If i not, Ife, Ife not

... 522Ifthen, Iftheni, If thene, Else, Elseif, Elseif i, Elseife, Endif

... 523Include

XVIIIContents

XVIII

© 2022 Prof. Bruce McCarl

... 523Inlinecom

... 523Kill

... 524Label

... 524Libinclude

... 524Lines

... 524Load

... 526Loaddc

... 526Loaddcm

... 527Loaddcr

... 527Loadm

... 527Loadr

... 528Log

... 528Macro

... 529Maxcol

... 529Maxgoto

... 529Mincol

... 529Ondelim and Offdelim

... 529Ondigit and Offdigit

... 530Ondollar and Offdollar

... 530Ondotl and Offdotl

... 531Onecho and Offecho

... 532Onembedded and Offembedded

... 532Onempty and Offempty

... 533Onend and Offend

... 533Oneolcom and Offeolcom

... 533Oneps and Offeps

... 534Onexpand and Offexpand

... 534Onglobal and Offglobal

... 534Oninclude and Offinclude

... 534Oninline and Offinline

... 535Onlisting and Offlisting

... 535Onlocal and Offlocal

... 535Onlog and Offlog

... 536Onmacro and Offmacro

... 536Onmargin and Offmargin

... 537Onmulti and Offmulti

... 537Onnestcom and Offnestcom

... 538OnOrder and OffOrder

... 539Onput, Onputs, Onputv, Offput

... 539Onrecurse and Offrecurse

... 539OnStrictSingleton and OffStrictSingleton

... 540Onsymlist and Offsymlist

... 540Onsymxref and Offsymxref

... 540Ontext and Offtext

... 541Onuellist and Offuellist

... 541Onuelxref and Offuelxref

... 541Onundf and Offundf

... 541Onverbatim and Offverbatim

... 542Onw arning and Offw arning

... 542Phantom

... 543Prefixpath

... 543Protect

... 543Purge

... 544Remark

McCarl GAMS User GuideXIX

© 2022 Prof. Bruce McCarl

... 544Set and Drop

... 544Setargs

... 545Setcomps

... 546Setddlist

... 546Setglobal and Dropglobal

... 547Setenv and Dropenv

... 547Setlocal and Droplocal

... 548Setnames

... 548Shift

... 548Show

... 548Single

... 549SplitOption

... 549Stars

... 549Stop

... 549Stitle

... 550Sysinclude

... 550Terminate

... 550Title

... 550Unload

... 551Use205

... 551Use225

... 551Use999

... 551Version

... 551Warning

... 5513 The Option Command

.. 552Basics

.. 552Options by function

... 553Options for control of solver choice

... 553Options including debugging information in LST file

... 553Options influencing LST file contents

... 554Options influencing solver function

... 554Other options altering GAMS settings

... 555Options affecting data for items in memory

... 555Options that form projections of data items

.. 555Description of options

... 555Option itemname:d and Option itemname:d:r:c

... 556Option itemname < or <= itemname2

... 557Bratio

... 557Clear

... 557CNS

... 558Decimals

... 558Dispw idth

... 558DNLP

... 558Domlim

... 559DmpOpt

... 559Dmpsym

... 559Dualcheck

... 559Eject

... 559Forlim

... 559IntVarUp

... 560Iterlim

... 560Kill

... 560Limcol

... 560Limrow

XXContents

XX

© 2022 Prof. Bruce McCarl

... 561LP

... 561MCP

... 561Measure

... 561MINLP

... 561MIP

... 562NLP

... 562Oldname

... 562Optca

... 562Optcr

... 562Profile

... 563Profiletol

... 563Reslim

... 563RMIP

... 564RMINLP

... 564Savepoint

... 564Seed

... 564Shuffle

... 565Solvelink

... 566Solprint

... 567Solslack

... 567Solveopt

... 567Solver

... 568strictSingleton

... 568Subsystems

... 568Sys10

... 569Sysout

Chapter XIV Advanced Language Features 569

... 5691 Macros in GAMS

... 5742 Output via Put Commands

.. 575Basics of put

.. 577Details on put related commands

... 578File

... 578Putdr: Pdir

... 578.Pdir

... 579Sending output to the LOG file

... 579Sending output to the SCREEN

... 579Put

... 580Items w ithin a put

... 580Quoted text

... 581Set elements

... 581Set element names via .tl

... 582Set element explanatory text via .te and .tf

... 584Putting out set elements for parameters via .Tn

... 585Item explanatory text via .ts

... 585Numeric items

... 585Parameter values

... 587
Model solution status attributes: .Modelstat, .Solvestat, .Tmodstat,

.Tsolstat

... 588Variable and equation attributes: .L and .M

... 589System attributes

... 590.CNS

... 590.Date

McCarl GAMS User GuideXXI

© 2022 Prof. Bruce McCarl

... 590.Dirsep

... 590.DNLP

... 590.Fe

... 591.Fn

... 591.Fp

... 591.Gamsrelease

... 591.Gstring

... 591.If ile

... 591.Iline

... 591.Lice1 .Lice2

... 591.LP

... 591.MIP

... 591.MINLP

... 591.NLP

... 591.MCP

... 591.MPEC

... 591.Ofile

... 591.Opage

... 591.Page

... 591.Pfile

... 591.Platform

... 591.Prline

... 591.Prpage

... 591.Rdate

... 592.Rfile

... 592.RMINLP

... 592.RMIP

... 592.Rtime

... 592.Sfile

... 592.Sstring

... 592.Time

... 592.Title

... 592.Version

... 592GAMS command line parameters

... 593Write position controls

... 593Skip to a specif ied column: @

... 594Skip to a new line: /

... 595Skip to a specif ied row : #

... 595Other positioning parameters

... 595.Cc

... 596.Cr

... 596.Hdcc

... 596.Hdcr

... 597.Hdll

... 597.Ll

... 598.Lp

... 598.Tlcc

... 598.Tlll

... 598.Tlcr

... 599.Ws

... 599Formatting of items

... 599File formatting – append or overw rite

... 599.Ap

... 600Page formatting

XXIIContents

XXII

© 2022 Prof. Bruce McCarl

... 600.Bm - bottom margin

... 600.Lm - left margin

... 600.Pc - Page control

... 601.Ps or page height

... 602.Pw - page w idth

... 602.Tm - top margin

... 602Inserting Tabs

... 602Adding page titles and headers

... 603Puttl

... 604Puthd

... 604Putclear

... 604Upper low er font case formatting: .Case and .Lcase

... 605Width and decimal formatting

... 605Global formatting

... 606.Lw set element name w idth

... 607.Nd number of decimals

... 607.Nw number w idth

... 608.Sw set indicator w idth

... 609.Tw explanatory and quoted text w idth

... 610Local formatting

... 612Continuous vs f ixed w idth

... 612Justif ication

... 612Global formatting

... 613lj set element name justif ication

... 614nj number justif ication

... 615sj set indicator justif ication

... 616tj explanatory and quoted text justif ication

... 618Local formatting

... 619Additional numeric display control

... 619.nr

... 620.nz

... 620Putclose

... 621Putpage

.. 621Putting out a block of text: $onput, $offput, $onputs, $onputv

.. 622Making puts conditional

.. 623Output to other programs

... 623Put of data to a regression code

... 624Put f ile for export to mapping program

.. 625Errors that arise during puts

... 6253 Acronyms

.. 625Declaration

.. 626Usage

... 6274 Conditional Compilation

.. 628Control variables

... 628Establishing control variables

... 628$Setglobal

... 629$Setlocal

... 629$Set

... 630$EvalGlobal

... 631$Evallocal

... 632$Eval

... 633Setting environment variables

... 633Destroying Contol Variables

McCarl GAMS User GuideXXIII

© 2022 Prof. Bruce McCarl

... 633A problem w ith control variable definitions

.. 634Environment variables

... 634Names of some system environment variables

... 635Defining and destroying user environment variables

... 635Augmenting environment variables

... 636Accessing environment variable status at any point in the code: $Show

.. 637$If and $Ifi conditionals

... 637$If and $If i

... 637$Ife conditionals

... 639Not as a modif ier

.. 640$ifthen, iftheni, ifthene, else, elseif, endif conditionals

.. 643Forms of conditionals

... 644Based on control and environment variables

... 644Existence

... 645Contents

... 646Numerical Value

... 648Based on characteristics of named item or parameter

... 648Item type

... 650Definition status: Declared and Defined

... 650Set dependency: Dimension

... 652Passed parameter existence

... 652Based on GAMS command line parameters

... 654Based on system characteristics

... 654Based on error and w arning checks

... 655Based on f ile or directory existence

... 655Based on put f ile status

.. 656Incorporating Goto: $Goto and $Label

.. 657Redefining expressions

... 657System attributes that can be included

... 659GAMS command line attributes that can be included

... 659Based on user options and command line: -- // -/ /- User1-5

... 660Passed parameter inclusion

... 660Control variable inclusion

.. 660Running external programs or commands

... 660$Call

... 661Execute

... 661Shellexecute

... 661$Setargs

.. 661Writing messages to LST, LOG and other files

... 661LST File: $Abort and $Error

... 662LOG file: $Log

... 662Other named files: $Echo, $Offecho, $Onecho

.. 663End the job: $Exit, $Abort, $Error, $Stop, $Terminate

.. 663Longer examples

... 663Changing model type depending on control variable

... 664Changing form of data in model and their use

... 666Having batincludes that deal w ith different data types

... 667For more examples

Chapter XV Using GAMS Data Exchange or GDX Files 667

... 6681 Creating a GDX file in GAMS

.. 668Command line GDX option - GDX dump of the whole problem

.. 669GDX Point Solution file

XXIVContents

XXIV

© 2022 Prof. Bruce McCarl

.. 670GDX files containing selected items

... 670Execution time selected item GDX file creation

... 672Compile time selected item GDX file creation

... 6732 Inputting data from a GDX file into GAMS

.. 673Compile time imports from GDX files

.. 675Execution time GDX imports

... 675Execute_Load

... 676Execute_loaddc

... 678Execute_Loadpoint

... 6793 General notes on GDX files

... 6804 Identifying contents of a GDX file

.. 680Identifying contents w ith $Load

.. 681Identifying contents w ith the IDE

.. 682Identifying contents w ith Gdxdump

.. 685Identifying differences in contents w ith Gdxdiff

... 6875 Merging GDX files

... 6896 Using GDX files to interface with other programs

.. 689Spreadsheets

.. 689GEMPACK

.. 689Other

... 6897 Gdxcopy Making GDX files compatable

... 6918 Writing older GDX versions with GDXCONVERT

Chapter XVI Links to Other Programs Including
Spreadsheets 691

... 6921 Executing an external program

.. 693$Call

... 694Spaces in f ile names and paths

.. 694Execute

.. 696Put_utility

.. 699Timing of execution with $Call and Execute

... 7012 Passing data from GAMS to other programs

.. 701Put file data passage

... 702Plain text

... 703CSV or otherw ise delimited

.. 704Rutherford's CSV put: Gams2csv

.. 705GDX

.. 706Spreadsheet links

.. 706Graphics programs

... 706Gnuplot

... 706Gnuplot.gms

... 706Gnuplotxyz.gms

... 711Matlab

... 711Spreadsheet graphics

.. 711Geographic mapping programs

.. 711GDX2ACCESS

.. 711Gdx2sqlite

.. 711Gdxrrw

.. 711Gdxviewer links: Access, Excel pivot table, Excel, CSV, GAMS include, HTML, Text files, Plots, XML

.. 712Other programs and conversions: Convert, DB2, FLM2GMS, GAMS2TBL, HTML, Latex, MPS, Oracle, XML

McCarl GAMS User GuideXXV

© 2022 Prof. Bruce McCarl

... 7123 Passing data from other programs to GAMS

.. 713Including data

.. 713Spreadsheet links

... 713Xls2gms

... 713Interactive mode

... 715Batch mode

... 716GAMS program in Excel sheet

... 716XLSDUMP

.. 717Database links

... 717SQL: Sql2gms

... 717GDX

... 717Mdb2gms

... 717Interactive mode

... 719Batch Mode

.. 720Gdxrrw

... 7204 API usage

... 7205 Other programs: DB2, Latex, GNETGEN, Gnuplot, Matlab, MPS, NETGEN, Oracle

... 7216 Customized data interchange links for spreadsheets

.. 721Xlexport, Xldump, Xlimport

... 722Xlimport

... 723Xlexport

... 725Xldump

.. 726Gdxxrw

... 727Command line parameters

... 727Rng=

... 728NameConv=: NC=

... 729GAMS item dimension: Dim=, Rdim=, Cdim=

... 729Data specif ication

... 730Writing Text and Links

... 731Set data: Set= and Dset=

... 737Examples

... 738Loading row s of set elements

... 738Loading columns of set elements

... 738Loading set elements only if they have data or text

... 739Writing set elements

... 739Sets and explanatory text – use of Set

... 740Loading by upper left hand corner

... 740Loading sets from data tables

... 740Loading sets from lists w ith duplicates

... 741Dealing w ith a tuple

... 741Execution time set reads

... 741Execution time set w rites

... 741Loading the set into GAMS

... 742Unloading the set from GAMS

... 743Parameter data: Par

... 744Rearranging row s and columns

... 746Variable and equation data: Equ and Var

... 746Special options for reading from a spreadsheet: Skipempty= and Se=

... 748Special options for w riting to a spreadsheet

... 749Is the w orkbook open or shared?

... 749Merge

... 750Clear

... 751Filter

XXVIContents

XXVI

© 2022 Prof. Bruce McCarl

... 752Special value and zero cell w riting options

... 752Epsout

... 752Naout

... 753Minfout

... 753Pinfout

... 753Undfout

... 753Zeroout

... 753Squeeze

... 753Resetout

... 754Options for reading in command line parameters

... 754Command line parameters in a f ile

... 755Parameters in a spreadsheet

... 757Other Options

... 757Tracing Options

... 757Log and Logappend

... 757Trace

... 758Workbook performance options

... 758Updlinks

... 758RunMacros

... 759Other GDXXRW Options

... 759Debugging Gdxxrw instructions

.. 759Spreadsheet graphics

.. 761Interactively including results

... 761Interactive calculations in a spreadsheet

... 764Calling GAMS from GAMS

... 7667 Using equations defined by external programs

.. 766Identifying the equations and their contents: =X=

.. 768Building the external function evaluator

Chapter XVII Controlling GAMS from External Programs 768

... 7691 Calling GAMS from other programs

.. 769Excel spreadsheet in charge

... 770Excel part of implementation

... 770Defining the links through the map

... 772Worksheets present

... 773Inputs sheet structure

... 774Results sheet structure

... 775Running GAMS – the main macro

... 775Critical user defined items

... 775GAMS run sequence

... 776Actions involved w ith executing GAMS

... 776Examining the macros

... 777GAMS part of implementation

... 780Developing Excel in charge – summary steps

.. 781Excel Spawning Alternative

.. 781Compiled program in charge – Delphi

... 781A Delphi example

... 782Steps in application development

... 783Passing data to GAMS

... 783Calling GAMS

... 784Challenges in running GAMS

... 784Reading the GAMS solution

.. 785Web servers or programs in other languages in charge

McCarl GAMS User GuideXXVII

© 2022 Prof. Bruce McCarl

... 7852 Transferring models to other systems

Chapter XVIII Utilities included in GAMS 786

... 7861 Posix utilities

... 7902 Matrix Utilities

.. 791Invert

.. 792Cholesky

.. 793Eigenvalue

.. 794Eigenvector

... 7953 GDX Utilities

.. 796CSV2GDX

.. 797Gdx2sqlite

.. 798Gdxcopy

.. 798Gdxdiff

.. 798Gdxdump

.. 799Gdxmerge

.. 799Gdxrank

.. 800Gdxrename

.. 801Gdxrrw

.. 802Gdxviewer

.. 802Gdxxrw

.. 802Gdx2access

.. 802Gdx2xls

.. 804MCFilter

.. 804MDB2GMS

.. 804SQL2GMS

.. 804Xls2gms

... 8044 Interface utilities

.. 804Ask

.. 807Msappavail

.. 808Shellexecute

.. 808Xlstalk

... 8095 Zip Utilities

Chapter XIX Solver Option Files 810

... 8101 Basics

.. 810Telling a solver to look for an options file: .Optfile

.. 811Option file name

... 811Alternative option f ile extention names: .Opt, .Op?, .O??, .???

... 8122 Option file contents

.. 812Comments: *

.. 812Option specifications

... 8133 Option file editor

... 8154 Writing options during a model run

... 8165 Learning about options: Solver manuals

... 8166 Default settings for Optfile

... 8167 Defining a central location for the option files: Optdir

... 8168 Transitory nature of options

XXVIIIContents

XXVIII

© 2022 Prof. Bruce McCarl

Chapter XX Advanced Basis Usage 816

... 8171 Basics

... 8172 Advanced basis formation in GAMS

... 8173 Effect of advanced basis on solution performance

... 8184 Bratio

... 8185 Providing a basis

.. 818Getting a basis through repeated solution

... 818Save f iles

.. 819An alternative – use a GDX point file

.. 820GAMSBAS

... 8206 Guessing at a basis

... 8207 Problems with a basis

.. 821Symptoms and causes of a poor advanced basis

.. 821MIP

.. 822NLP

Chapter XXI Mixed Integer, Semi, and SOS Programming 822

... 8221 Specifying types of variables

.. 823Binary variables

.. 823Integer variables

.. 824Specially ordered set variables of type 1 (SOS1)

.. 825Specially ordered set variables of type 2 (SOS2)

.. 826Semi-continuous variables

.. 827Semi-integer variables

... 8282 Imposing priorities

... 8293 Branch-and-Cut-and-Heuristic Facility

... 8294 GAMS options and model attributes

.. 829Modelname.Cheat = x

.. 830Modelname.Cutoff = x

.. 830Modelname.Nodlim = x

.. 830x = Modelname.objest

.. 831Modelname.Optca=X Option Optca=X

.. 831Modelname.Optcr=X Option Optcr=X

.. 832Modelname.Optfile = 1

.. 832Modelname.Prioropt = 1

.. 832Modelname.Tryint = x

... 8325 Branch and bound output

... 8336 Nonlinear MIPs

... 8347 Identifying the solver

.. 834MINLP

.. 834MIP

.. 834RMIP

.. 835RMINLP

... 8358 Model termination conditions and actions

... 8359 Things to watch out for

.. 835Default bounds

McCarl GAMS User GuideXXIX

© 2022 Prof. Bruce McCarl

.. 836Ending with a gap – big default for Optcr (10%)

.. 836The nonending quest

Chapter XXII NLP and MCP Model Types 836

... 8371 Terminology

.. 837Superbasic

.. 837Complementarity

... 8372 Problem setup

.. 838Starting points -- initial values

.. 839Computing Derivatives

.. 840Upper and lower bounds

.. 841Scaling

.. 841Degenerate cycling blocking

.. 842Advanced bases

.. 842MCP complementarity specification

... 8433 Output

.. 843Problem displays - limrow/limcol marking

.. 844Model setup output

.. 844Solver results

... 844Iteration log

... 845Termination messages

... 845Function evaluation errors

... 845MCP difference in Equation and Variable Solution Output

... 8464 NLP and MCP variants

... 8465 Solvers

Chapter XXIII Model Attributes 846

... 8471 Attribute addressing

... 8472 Model Attributes mainly used before solve

... 8513 Model Attributes mainly used after solve

.. 854Marginals

.. 854Modelstat: Tmodstat

.. 855Solvestat: Tsolstat

Chapter XXIV Application Help: Model Library, Web Sites,
Documentation 857

... 8571 Libraries

.. 858GAMS model library

.. 862GAMS Test Library

.. 862GAMS Data Utilities Library

.. 862GAMS EMP Library

.. 862GAMS Financial Library

.. 862Using another model library

... 8642 Other general documentation sources

.. 864Installation

.. 865Latest GAMS version

.. 865Solver manuals

.. 865GAMS FAQ

.. 866GAMS Wiki

XXXContents

XXX

© 2022 Prof. Bruce McCarl

.. 866GAMS World

.. 867GAMSWorld Google Group

.. 867Gams-List

.. 867Newsletter

.. 868Supplemental GAMS Corporation materials

.. 868User generated materials

.. 868Courses and workshops

Chapter XXV Compressed and encrypted files 868

Chapter XXVI Grid and Distributed Computing 870

... 8701 Distributed Processing

... 8732 Introduction to Grid Computing

.. 874Grid Computing language features

.. 880Grid_example

Chapter XXVII Interfacing from other languages with API 881

Chapter XXVIII Licensing 882

Index 883

McCarl GAMS User Guide1

© 2022 Prof. Bruce McCarl

1 McCarl GAMS User Guide

McCarl Expanded GAMS
User Guide
Version 24.6

by

Bruce A. McCarl
University Distinguished Professor

Regents Professor of Agricultural Economics
Texas A&M University

Alex Meeraus
Paul van der Eijk
Michael Bussieck

Steven Dirkse
Franz Nelissen

GAMS Development Corporation

McCarl GAMS User Guide 2

© 2022 Prof. Bruce McCarl

February 28, 2016

1.1 Forword

The General Algebraic Modeling System (GAMS) is a high-level modeling system for mathematical
programming problems. This document is a guide to GAMS language elements. The coverage in this
document is as complete as possible for developments up to GAMS release 24.4.3 GAMS generated
information on subsequent releases can be found on Release Notes.

The guide is designed to provide a smart document with many hyperlinks. When you click on those
they will move you to related places in the document or open up example GMS files.

The document is organized into the sections identified below; an index is also present. For those
wishing a printable copy as of now it is typically on C:\GAMS\win64\GAMS24.5\docs\userguides\mccarl
\index.html or here.

The overall contents of the document are as follows

Quick Start Tutorial

Sets

Data Entry

Variables, Equations, Models and Solvers

Model Types and Solvers

Standard Output

Writing Models and Good Modeling Practices

Running Jobs with GAMS and the GAMS IDE

Fixing Compilation Errors

Rules for Item Names, Element Names and Explanatory Text

Including Comments

Calculating Items

Improving Output via Report Writing

Rules for Item Capitalization and Ordering

Conditionals

Control Structures

Doing a Comparative Analysis with GAMS

GAMS Command Line Parameters

Saves and Restarts

Customizing GAMS

Fixing Execution Errors

Scaling GAMS Models

Small to Large: Aid in Development and Debugging

Speeding up GAMS

Memory Use Reduction in GAMS

Including External Files

Dollar Commands

The Option Command

Output via Put Commands

Acronyms

https://www.gams.com/latest/docs/RN_MAIN.html
https://www.gams.com/mccarlGuide/gams_user_guide_2005.htm

McCarl GAMS User Guide3

© 2022 Prof. Bruce McCarl

Conditional Compilation

Using GAMS Data Exchange or GDX Files

Links to Other Programs Including Spreadsheets

Controlling GAMS from External Programs

Solver Option Files

Advanced Basis Usage

Mixed Integer, Semi, and SOS Programming

NLP and MCP Model Types

Model Attributes

Application Help: Model Library, Web Sites, Documentation

Many have contributed to this document beyond the authors. Erwin Kalvelagen wrote visual Basic
Macros used in forming the complete document. Armin Pruessner provided comments and aid in the
GDX chapter. Tony Brooke, David Kenderick, Alex Meeraus and later Ramesh Raman wrote and
rewrote the earlier GAMS Users Guide which provided a foundation for this document. In addition,
outside of GAMS Arne Drud of ARKI Consulting provided a number of insightful comments on the NLP
chapter helping improve its contents. Gideon Kruseman of Wageningen University provided several
useful comments. Rich Benjamin of FERC identified a number of errors or unclear sections in the text
that we have fixed. McCarl's many students at Texas A&M and in commercial GAMS classes have also
made contributions.

1.2 Introduction

The years since the 1950s have seen the rapid development of algorithms and computer codes to
analyze and solve large mathematical programming problems. One important part of this growth was the
development in the early 1980's of modeling systems, one of the earlier of which was the Generalized
Algebraic Modeling System or GAMS - the topic of this book. GAMS is designed to

• Provide an algebraically based high-level language for the compact representation of large and

complex models

• Allow changes to be made in model specifications simply and safely

• Allow unambiguous statements of algebraic relationships

• Provide an environment where model development is facilitated by subscript based

expandability allowing the modeler to begin with a small data set, then after verifying
correctness expand to a much broader context.

• Be inherently self documenting allowing use of longer variable, equation and index names as

well as comments, data definitions etc. GAMS is designed so that model structure,
assumptions, and any calculation procedures used in the report writing are documented as a
byproduct of the modeling exercise in a self-contained file.

• Be an open system facilitating interface to the newest and best solvers while being solver

independent allowing different solvers to be used on any given problem

• Automate the modeling process including

� permitting data calculation;

� verifying the correctness of the algebraic model statements;

� checking the formulation for obvious flaws;

McCarl GAMS User Guide 4

© 2022 Prof. Bruce McCarl

� interfacing with a solver;

� saving and submitting an advanced basis when doing related solutions;

� permitting usage of the solution for report writing.

• Permitting portability of a model formulation between computer systems allowing usage on a

variety of computers ranging from PC's to workstations to super computers.

• Switching solvers is also very simple requiring changing a solver option statement or changing

from using LP to using NLP.

• Facilitating import and export of data to and from other computer packages

• Allow use by groups of varying expertise

• Provide a example models that may assist modelers through provision of a model library.

This Users Guide updates and expands upon the original document by Brooke, Kenderick and Meeraus
and a revision thereof by Brooke, Kenderick, Meeraus and Raman. This document unifies many system
features that have occurred in the continuing system development efforts of the GAMS development
Corporation with the capabilities of modern day electronic documents and computer systems.

2 Quick Start Tutorial

This book is long and detailed. Here I present a quick introductory tutorial for beginners, cross
referenced to the rest of the treatment.

Basic models

Dissecting the simple models

Running the job

Examining the output

Exploiting algebra

Dissecting the algebraic model

Good modeling practices

Structure of GAMS statements, programs and the ;

Adding complexity

Why use GAMS and algebraic modeling

2.1 Basic models

In my GAMS short courses I have discovered that users approach modeling with at least three different
orientations. These involve users who wish to

• Solve objective function oriented constrained optimization problems.

• Solve economically based general equilibrium problems.

• Solve engineering based nonlinear systems of equations.

In this tutorial I will use three base examples, one from each case hopefully allowing access to more
than one class of user.

McCarl GAMS User Guide5

© 2022 Prof. Bruce McCarl

Solving an optimization problem

Solving for an economic equilibrium

Solving a nonlinear equation system

2.1.1 Solving an optimization problem

Many optimization problem forms exist. The simplest of these is the Linear Programming or LP
problem. Suppose I wish to solve the optimization problem

where this is a farm profit maximization problem with three decision variables: X
c orn

 is the land area

devoted to corn production, X
wheat

 is the land area devoted to wheat production, and X
c ot t on

 is the land

area devoted to cotton production. The first equation gives an expression for total profit as a function of
per acre contributions times the acreage allocated by crop and will be maximized. The second equation
limits the choice of the decision variables to the land available and the third to the labor available.
Finally, we only allow positive or zero acreage.

The simplest GAMS formulation of this is optimize.gms

VARIABLES Z;

POSITIVE VARIABLES Xcorn , Xwheat , Xcotton;

EQUATIONS OBJ, land , labor;

OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

land.. Xcorn + Xwheat + Xcotton =L= 100;

labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;

MODEL farmPROBLEM /ALL/;

SOLVE farmPROBLEM USING LP MAXIMIZING Z;

Below after introduction of the other two examples I will dissect this formulation explaining its
components.

2.1.2 Solving for an economic equilibrium

Economists often wish to solve problems that characterize economic equilibria. The simplest of these is
the single good, single market problem. Suppose we wish to solve the equilibrium problem

Demand Price: P > Pd = 6 - 0.3*Qd

Supply Price: P < Ps = 1 + 0.2*Qs

Quantity Equilibrium: Qs > Qd

Non negativity: P, Qs, Qd > 0

Quick Start Tutorial 6

© 2022 Prof. Bruce McCarl

where P is the market clearing price, Pd the demand curve, Qd the quantity demanded, Ps the supply
curve and Qs the quantity supplied. This is a problem in 3 equations and 3 variables (the variables are
P, Qd, and Qs - not Pd and Ps since they can be computed afterwards from the equality relations).

Ordinarily one would use all equality constraints for such a set up. However, I use this more general
setup because it relaxes some assumptions and more accurately depicts a model ready for GAMS. In
particular, I permit the case where the supply curve price intercept may be above the demand curve price
intercept and thus the market may clear with a nonzero price but a zero quantity. I also allow the
market price to be above the demand curve price and below the supply curve price. To insure a proper
solution in such cases I also impose some additional conditions based on Walras' law.

Qd*(P - Pd)= 0 or Qd*(Pd-(6 - 0.3*Qd))=0

Qs*(P – Ps)=0 or Qs*(Ps-(1 + 0.2*Qs))=0
P*(Qs-Qd)=0

which state the quantity demanded is nonzero only if the market clearing price equals the demand curve
price, the quantity supplied is nonzero only if the market clearing price equals the supply curve price
and the market clearing price is only nonzero if Qs=Qd.

The simplest GAMS formulation of this is below (econequil.gms). Note in this case we needed to
rearrange the Ps equation so it was expressed as a greater than to accommodate the requirements of
the PATH solver.

POSITIVE VARIABLES P, Qd , Qs;

EQUATIONS Pdemand,Psupply,Equilibrium;

Pdemand.. P =g= 6 - 0.3*Qd;

Psupply.. (1 + 0.2*Qs) =g= P;

Equilibrium.. Qs =g= Qd;

MODEL PROBLEM /Pdemand.Qd,Psupply.Qs,Equilibrium.P/;

SOLVE PROBLEM USING MCP;

Below after introduction of the other example I will dissect this formulation explaining its components.

2.1.3 Solving a nonlinear equation system

Engineers often wish to solve a nonlinear system of equations often in a chemical equilibrium or oil
refining context. Many such problem types exist. A simple form of one follows as adapted from the
GAMS model library and the paper Wall, T W, Greening, D, and Woolsey , R E D, "Solving Complex
Chemical Equilibria Using a Geometric-Programming Based Technique". Operations Research 34, 3
(1987). which is

ba * so4 = 1
baoh / ba / oh = 4.8
hso4 / so4 / h =0 .98
h * oh = 1
ba + 1e-7*baoh = so4 + 1e-5*hso4
2 * ba + 1e-7*baoh + 1e-2*h = 2 * so4 + 1e-5*hso4 + 1e-2*oh

McCarl GAMS User Guide7

© 2022 Prof. Bruce McCarl

which is a nonlinear system of equations where the variables are ba, so4, baoh, oh, hso4 and h. The
simplest GAMS formulation of this is (nonlinsys.gms)

Variables ba, so4, baoh, oh, hso4, h ;

Equations r1, r2, r3, r4, b1, b2 ;

r1.. ba * so4 =e= 1 ;

r2.. baoh / ba / oh =e= 4.8 ;

r3.. hso4 / so4 / h =e= .98 ;

r4.. h * oh =e= 1 ;

b1.. ba + 1e-7*baoh =e= so4 + 1e-5*hso4 ;

b2.. 2 * ba + 1e-7*baoh + 1e-2*h =e= 2 * so4 + 1e-5*hso4 + 1e-2*oh ;

Model wall / all / ;

ba.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1;

Solve wall using nlp minimizing ba;

2.2 Dissecting the simple models

Each of the above models is a valid running GAMS program which contains a number of common and
some differentiating language elements. Let us review these elements.

Variables

Equations

.. specifications

Model

Solve

What are the .L items

2.2.1 Variables

GAMS requires an identification of the variables in a problem. This is accomplished through a
VARIABLES command as reproduced below for each of the three problems.

VARIABLES Z; (optimize.gms)
NonNegative Variables Xcorn ,Xwheat,Xcotton;

POSITIVE VARIABLES P, Qd , Qs; (econequil.gms)

Variables ba, so4, baoh, oh, hso4, h ; (nonlinsys.gms)

The POSITIVE and Nonnegative modifiers on the variable definitions means that these variables listed
thereafter are nonnegative i.e. Xcorn , Xwheat , Xcotton, P, Qd, Qs.

The use of the word VARIABLES without the POSITIVE modifier (note several other modifiers are
possible as discussed in the Variables, Equations, Models and Solvers chapter) means that the named
variables are unrestricted in sign as Z, ba, so4, baoh, oh, hso4, and h are above.

Notes:

Quick Start Tutorial 8

© 2022 Prof. Bruce McCarl

• The general form of these statements is

modifier variables comma or line feed specified list of variables ;

where

modifier is optional (positive for example)

variable or variables is required

a list of variables follows

a ; ends the statement

• This statement may be more complex including set element definitions (as we will elaborate on

below) and descriptive text as illustrated in the file (model.gms)

Variables

 Tcost ' Total Cost Of Shipping- All Routes';

Binary Variables

 Build(Warehouse) Warehouse Construction Variables;

Positive Variables

 Shipsw(Supplyl,Warehouse) Shipment to warehouse

 Shipwm(Warehouse,Market) Shipment from Warehouse

 Shipsm(Supplyl,Market) Direct ship to Demand;

Semicont Variables

 X,y,z;

as discussed in the Variables, Equations, Models and Solves chapter.

• The variable names can be up to 63 characters long as discussed and illustrated in the Rules for

Item Names, Element names and Explanatory Text chapter.

• GAMS is not case sensitive, thus it is equivalent to type the command VARIABLE as variable or the

variable names XCOTTON as XcOttoN. However, there is case sensitivity with respect to the way
things are printed out with the first presentation being the one used as discussed in the Rules for
Item Capitalization and Ordering chapter.

• GAMS does not care about spacing or multiple lines. Also a line feed can be used instead of a

comma. Thus, the following three command versions are all the same

POSITIVE VARIABLES Xcorn ,Xwheat,Xcotton;
Positive Variables Xcorn,

Xwheat,
Xcotton;

positive variables Xcorn
Xwheat , Xcotton;

2.2.1.1 What is the new Z variable in the optimization problem?

In the optimization problem I had three variables as it was originally stated but in the GAMS formulation I
have four. Why? GAMS requires all optimization models to be of a special form. Namely, given the
model

McCarl GAMS User Guide9

© 2022 Prof. Bruce McCarl

Maximize cx

It must be rewritten as

Maximize R
R=CX

where R is a variable unrestricted in sign. This variable can be named however you want it named (in the
above example case Z). There always must be at least one of these in every problem which is the
objective function variable and it must be named as the item to maximize or minimize.

Thus in a problem one needs to declare a new unrestricted variable and define it through an equation. In
our optimization example (optimize.gms) we declared Z as a Variable (not a Positive Variable), then we
declared and specified an equation setting Z equal to the objective function expression and told the
solver to maximize Z,

VARIABLES Z;

EQUATIONS OBJ, land , labor;

OBJ.. Z =E=

 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

SOLVE PROBLEM USING LP MAXIMIZING Z;

Note users do not always have to add such an equation if there is a variable in the model that is
unrestricted in sign that can be used as the objective function. For example the equation solving case
(nonlinsys.gms) uses a maximization of ba as a dummy objective function (as further discussed below
the problem is really designed to just solve the nonlinear system of equations and the objective is just
there because the model type used needed one).

2.2.2 Equations

GAMS requires that the modeler name each equation, which is active in the optimization model. Later
each equation is specified using the .. notation as explained just below. These equations must be
named in an EQUATION or EQUATIONS instruction. This is used in each of the example models as
reproduced below

EQUATIONS OBJ, land , labor; (optimize.gms)

EQUATIONS PDemand,PSupply, Equilibrium; (econequil.gms)

Equations r1, r2, r3, r4, b1, b2 ; (nonlinsys.gms)

Notes:

• The general form of these statements are

Equations comma or line feed specified list of equations ;

where

equation or equations is required

Quick Start Tutorial 10

© 2022 Prof. Bruce McCarl

a list of equations follows

a ; ends the statement

• In optimization models the objective function is always defined in one of the named equations.

• This statement may be more complex including set element definitions (as we will elaborate on

below) and descriptive text as illustrated in the file (model.gms)

EQUATIONS

 TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 SUPPLYEQ(SUPPLYL) LIMIT ON SUPPLY AVAILABLE AT A SUPPLY POINT

 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET

 BALANCE(WAREHOUSE) WAREHOUSE SUPPLY DEMAND BALANCE

 CAPACITY(WAREHOUSE) WAREHOUSE CAPACITY

 CONFIGURE ONLY ONE WAREHOUSE;

as discussed in the Variables, Equations, Models and Solves chapter.

• The equation names can be up to 63 characters long as discussed and illustrated in the Rules for

Item Names, Element Names and Explanatory Text chapter.

2.2.3 .. specifications

The GAMS equation specifications actually consist of two parts. The first part naming equations, was
discussed just above. The second part involves specifying the exact algebraic structure of equations.

This is done using the .. notation. In this notation we give the equation name followed by a .. then the

exact equation type as it should appear in the model. The equation type specification involves use of a
special syntax to tell the exact form of the relation involved. The most common of these are (see the
Variables, Equations, Models and Solves chapter for a complete list):

=E= is used to indicate an equality relation
=L= indicates a less than or equal to relation
=G= indicates a greater than or equal to relation

This is used in each of the example models where a few of the component equations are reproduced
below

OBJ.. Z =E= 109*Xcorn + 90*Xwheat + 115*Xcotton; (optimize.gms)

land.. Xcorn + Xwheat + Xcotton =L= 100;

Pdemand.. P =g= 6 - 0.3*Qd; (econequil.gms)

r1.. ba * so4 =e= 1 ; (nonlinsys.gms)

Notes:

• The general form of these statements is

McCarl GAMS User Guide11

© 2022 Prof. Bruce McCarl

Equationname .. algebra1 equationtype algebra2 ;

where

an equation with that name must have been declared (have appeared in and equation
statement)

the .. appears just after the equation name

the algebraic expressions algebra1 and algebra2 can each be a mixture of variables, data
items and constants

the equationtype is the =E=, =L=, and =G= discussed above.

a ; ends the statement

• All equations must be specified in .. notation before they can be used.

• Some model equations may be specified in an alternative way by including upper or lower bounds

as discussed in the Variables, Equations, Models and Solves chapter.

• .. specification statements may be more complex including more involved algebra as discussed

later in this tutorial and in the Calculating Items chapter.

• It may be desirable to express equations as only being present under some conditions as

discussed later in this tutorial and in the Conditionals chapter.

2.2.4 Model

Once all the model structural elements have been defined then one employs a MODEL statement to
identify models that will be solved. Such statements occur in the each of the three example models:

MODEL farmPROBLEM /ALL/; (optimize.gms)

MODEL PROBLEM /Pdemand.Qd, Psupply.Qs,Equilibrium.P/; (econequil.gms)

Model wall / all / ; (nonlinsys.gms)

Notes:

• The general form of these statements are

Model modelname optional explanatory text / model contents/ ;

where

Model or models is required
a modelname follows that can be up to 63 characters long as discussed in the Rules for

Item Names, Element names and Explanatory Text chapter
the optional explanatory text is up to 255 characters long as discussed in the Rules for Item

Names, Element names and Explanatory Text chapter
the model contents are set off by beginning and ending slashes and can either be the

keyword all including all equations, a list of equations, or a list of equations and

Quick Start Tutorial 12

© 2022 Prof. Bruce McCarl

complementary variables. Each of these is discussed in the following bullets.

a ; ends the statement

• In the Model Statement in the model contents field

Using /ALL/ includes all the equations.

One can list equations in the model statement like that below.

MODEL FARM /obj, Land,labor/;

and one does not need to list all the equations listed in the Equations statements. Thus, in
(optimize.gms), one could omit the constraints called labor from the model

MODEL ALTPROBLEM / obj,land/;

• The equilibrium problems are solved as Mixed complementarity problems (MCP) and require a

special variant of the Model statement. Namely in such problems there are exactly as many
variables as there are equations and each variable must be specified as being complementary with
one and only one equation. The model statement expresses these constraints indicating the
equations to be included followed by a period(.) and the name of the associated complementary
variables as follows

MODEL PROBLEM /Pdemand.Qd, Psupply.Qs,Equilibrium.P/; (econequil.gms)

which imposes the complementary relations from our equilibrium problem above.

• All equations in the model which are named and any data included must have been specified in ..

notation before this model can be used (in a later solve statement).

• Users may create several models in one run each containing a different set of equations and then

solve those models and separately.

2.2.5 Solve

Once one believes that the model is ready in such that it makes sense to find a solution for the variables
then the solve statement comes into play. The SOLVE statement causes GAMS to use a solver to
optimize the model or solve the embodied system of equations.

SOLVE farmPROBLEM USING LP MAXIMIZING Z; (optimize.gms)

SOLVE PROBLEM USING MCP; (econequil.gms)

Solve wall using nlp minimizing ba; (nonlinsys.gms)

Notes:

• The general forms of these statements for models with objective functions are

Solve modelname using modeltype maximizing variablename ;

Solve modelname using modeltype minimizing variablename ;

McCarl GAMS User Guide13

© 2022 Prof. Bruce McCarl

and for models without objective functions is

Solve modelname using modeltype;

where

Solve is required
a modelname follows that must have already been given this name in a Model statement
using is required
the modeltype is one of the known GAMS model types where

models with objective functions are

LP for linear programming

NLP for nonlinear programming

MIP for mixed integer programming

MINLP for mixed integer non linear programming

plus RMIP, RMINLP, DNLP, MPEC as discussed in the chapter on Model Types and Solvers.

models without objective functions are

MCP for mixed complementary programming

CNS for constrained nonlinear systems

maximizing or minimizing is required for all optimization problems (not MCP or CNS problems)

a variablename to maximize or minimize is required for all optimization problems (not MCP or CNS
problems) and must match with the name of a variable defined as free or just as a variable.

a ; ends the statement

• The examples statement solve three different model types

a linear programming problem ("using LP").

a mixed complementary programming problem ("using MCP").

a non linear programming problem ("using NLP").

• GAMS does not directly solve problems. Rather it interfaces with external solvers developed by

other companies. This requires special licensing arrangements to have access to the solvers. It
also requires that, for the user to use a particular solver, it already must have been interfaced with
GAMS. A list of the solvers currently interfaced is covered in the Model Types and Solvers chapter.

2.2.5.1 Why does my nonlinear equation system maximize something?

The nonlinear equation system chemical engineering problem in the GAMS formulation was expressed
as a nonlinear programming (NLP) optimization model in turn requiring an objective function. Actually
this is somewhat older practice in GAMS as the constrained nonlinear system (CNS) model type was
added after this example was initially formulated. Thus, one could modify the model type to solve
constrained nonlinear system yielding the same solution using

Quick Start Tutorial 14

© 2022 Prof. Bruce McCarl

Solve wall using mcp; (nonlinsyscns.gms)

However, the CNS model type can only be solved by select solvers and cannot incorporate integer
variables. Formulation as an optimization problem relaxes these restrictions allowing use of for example
the MINLP model type plus the other NLP solvers. Such a formulation involves the choice of a
convenient variable to optimize which may not really have any effect since a feasible solution requires all
of the simultaneous equations to be solved. Thus, while ba is maximized, there is no inherent interest in
attaining its maximum; it is just convenient.

2.2.6 What are the .L items

In the nonlinear equation system chemical engineering GAMS formulation a line was introduced which is

ba.l=1; so4.l=1; baoh.l=1; oh.l=1; hso4.l=1; h.l=1; (nonlinsys.gms)

This line provides a starting point for the variables in the model. In particular the notation
variablename.l=value is the way one introduces a starting value for a variable in GAMS as discussed in
the chapter on NLP and MCP Model Types. Such a practice can be quite important in achieving
success and avoiding numerical problems in model solution (as discussed in the Fixing Execution
Errors chapter).

Notes:

• One may also need to introduce lower (variablename.lo=value) and upper (variablename.up=value)

bounds on the variables as also discussed in the Fixing Execution Errors chapter.

• The .l, .lo and .up appendages on the variable names are illustrations of variable attributes as

discussed in the Variables, Equations, Models and Solves chapter.

• The = statements setting the variable attributes to numbers are the first example we have

encountered of a GAMS assignment statement as extensively discussed in the Calculating Items
chapter.

2.3 Running the job

GAMS is a two pass program. One first uses an editor to create a file nominally with the extension
GMS which contains GAMS instructions. Later when the file is judged complete one submits that file to
GAMS. In turn, GAMS executes those instructions causing calculations to be done, solvers to be used
and a solution file of the execution results to be created. Two alternatives for submitting the job exist the
traditional command line approach and the IDE approach.

Command line approach

IDE approach

2.3.1 Command line approach

The basic procedure involved for running command line GAMS is to create a file (nominally
myfilename.gms where myfilename is whatever is a legal name on the operating system being used)

McCarl GAMS User Guide15

© 2022 Prof. Bruce McCarl

with a text editor and when done run it with a DOS or UNIX or other operating system command line
instruction like

GAMS trnsport

where trnsport.gms is the file to be run. Note the gms extension may be omitted and GAMS will still
find the file.

The basic command line GAMS call also allows a number of arguments as illustrated below

GAMS TRNSPORT pw=80 ps=9999 s=mysave

which sets the page width to 80, the page length to 9999 and saves work files. The full array of possible
command line arguments is discussed in the Command Line Parameters chapter. When GAMS is run
the answers are placed in the LST file. Namely if the input file of GAMS instructions is called
myfile.gms then the output will be on myfile.LST.

2.3.2 IDE approach

Today with the average user becoming oriented to graphical interfaces it was a natural development to
create the GAMSIDE or IDE for short. The IDE is a GAMS Corporation product providing an Integrated
Development Environment that is designed to provide a Windows graphical interface to allow for editing,
development, debugging, and running of GAMS jobs all in one program. I will not cover IDE usage in this
tutorial and rather refer the reader to the tutorial on IDE usage that appears in the chapter on Running
Jobs with GAMS and the GAMS IDE. When the IDE is run there is again the creation of the LST file.
Namely if the input file of GAMS instructions is called myfile.gms then the output will be on myfile.LST.

2.4 Examining the output

When a GAMS file is run then GAMS in turn creates a LST file of problem results. One can edit the LST
file in either the IDE or with a text editor to find any error messages, solution output, report writing
displays etc. In turn one can also reedit the GMS file if there were need to fix anything or alter the
model contents and rerun with GAMS until a satisfactory result is attained. Now let us review the
potential elements of the LST file.

Echo print

Symbol list and cross reference maps

Execution output

Generation listing

Solver report

2.4.1 Echo print

The first item contained within the LST file is the echo print. The echo print is simply a numbered copy
of the instructions GAMS received in the GMS input file. For example, in the LST file segment
immediately below is the portion associated with the GAMS instructions in optimize.gms.

 3 VARIABLES Z;v

Quick Start Tutorial 16

© 2022 Prof. Bruce McCarl

 4 POSITIVE VARIABLES Xcorn , Xwheat , Xcotton;

 5 EQUATIONS OBJ, land , labor;

 6 OBJ.. Z =E= 109 * Xcorn + 90 * Xwheat + 115 * Xcotton;

 7 land.. Xcorn + Xwheat + Xcotton =L= 100;

 8 labor.. 6*Xcorn + 4 * Xwheat + 8 * Xcotton =L= 500;

 9 MODEL farmPROBLEM /ALL/;

 10 SOLVE farmPROBLEM USING LP MAXIMIZING Z;

Notes:

• The echo print is of the same character for all three examples so I only include the optimize.gms

LST file echo print here.

• The echo print can incorporate lines from other files if include files are present as covered in the

Including External Files chapter.

• The echo print can be partially or fully suppressed as discussed in the Standard Output chapter.

• The numbered echo print often serves as an important reference guide because GAMS reports the

line numbers in the LST file where solves or displays were located as well as a the position of any
errors that have been encountered.

2.4.1.1 Incidence of compilation errors

GAMS requires strict adherence to language syntax. It is very rare for even experienced users to get
their syntax exactly right the first time. GAMS marks places where syntax does not correspond exactly
as compilation errors in the echo print listing. For example I present the echo print from a syntactically
incorrect variant of the economic equilibrium problem. In that example (econequilerr.gms) I have
introduced errors in the form of a different spelling of the variable named Qd between line's 1, 3, 5 and 6
spelling it as Qd in line 1 and Qdemand in the other three lines. I also omit a required ; in line 4.

 1 POSITIVE VARIABLES P, Qd , Qs;
 2 EQUATIONS PDemand,PSupply, Equilibrium;
 3 Pdemand.. P =g= 6 - 0.3*Qdemand;
**** $140
 4 Psupply.. (1 + 0.2*Qs) =g= P
 5 Equilibrium.. Qs =g= Qdemand;
**** $409
 6 MODEL PROBLEM /Pdemand.Qdemand, Psupply.Qs,Equilibrium.P/;
**** $322
 7 SOLVE PROBLEM USING MCP;
**** $257

Error Messages
140 Unknown symbol
257 Solve statement not checked because of previous errors
322 Wrong complementarity pair. Has to be equ.var.
409 Unrecognizable item - skip to find a new statement
 looking for a ';' or a key word to get started again

The above echo print contains the markings relative to the compiler errors. A compiler error message
consists of three important elements. First a marker **** appears in line just beneath the line where an

McCarl GAMS User Guide17

© 2022 Prof. Bruce McCarl

error occurred. Second a $ is placed in the LST file just underneath the position in the above line where
the error occurred. Third a numerical code is entered just after the $ which cross-references to a list
appearing later in the LST file of the heirs encountered and a brief explanation of their cause sometimes
containing a hint on how to repair the error.

Notes:

• The above messages and markings show GAMS provides help in locating errors and givies clues

as to what's wrong. Above there are error markings in every position where Qdemand appears
indicating that GAMS does not recognize the item mainly because it does not match with anything
within the variable or other declarations above. It also marks the 409 error in the Equilibrium
equation just after the missing ; and prints a message that indicates that a ; may be the problem.

• The **** marks all error messages whether they be compilation or execution errors. Thus, one can

always search in the LST file for the **** marking to find errors.

• It is recommended that users do not use lines with **** character strings in the middle of their code

(say in a comment as can be entered by placing an * in column 1—see the Including Comments
chapter) but rather employ some other symbol.

• The example illustrates error proliferation. In particular the markings for the errors 140, 322 and

409 identify the places mistakes were made but the error to 257 does not mark a mistake. Also
while the 140 and 322 mark mistakes, the real mistake may be that in line 1 where Qd should have
been spelled as Qdemand. It is frequent in GAMS that a declaration error causes a lot of
subsequent errors.

• In this case only two corrections need to be made to repair the file. One should spell Qd in line 1 as

Qdemand or conversely change all the later references to Qd. One also needs to add a semi colon
to the end of line 4.

• The IDE contains a powerful navigation aid which helps users directly jump from error messages

into the place in the GMS code where the error message occurs as discussed in the Running Jobs
with GAMS and the GAMS IDE chapter.

• When multiple errors occur in a single position, GAMS cannot always locate the $ just in the right

spot as that spot may be occupied.

• New users may find it desirable to reposition the error message locations so the messages

appear just below the error markings as discussed in the Fixing Compilation Errors chapter.

• Here I have only presented a brief introduction to compilation error discovery. The chapter on Fixing

Compilation Errors goes substantially further and covers through example a number of common
error messages received and their causes.

2.4.2 Symbol list and cross reference maps

The next component of the LST file is the symbol list and cross-reference map. These may or not be
present as determined by the default settings of GAMS on your system. In particular, while these items
appear by default when running command line GAMS they are suppressed by default when running the
IDE.

The more useful of these outputs is the symbol list that contains an alphabetical order all the variables,
equations, models and some other categories of GAMS language classifications that I have not yet
discussed along with their optional explanatory text. These output items will not be further covered in
this tutorial, but are covered in the Standard Output chapter.

Quick Start Tutorial 18

© 2022 Prof. Bruce McCarl

2.4.3 Generation listing

Once GAMS has successfully compiled and executed then any solve statements that are present will
be implemented. In particular, the GAMS main program generates a computer readable version of the
equations in the problem that it in turn passes on to whatever third party solver is going to be used on
the model. During this so called model generation phase GAMS creates output

• Listing the specific form of a set of equations and variables,

• Providing a summary of the total model structure, and

• If encountered, detailing any numerical execution errors that occurred in model generation.

Each of these excepting execution errors will be discussed immediately below. Model generation time
execution errors are discussed in the Fixing Execution Errors chapter.

2.4.3.1 Equation listing

When GAMS generates the model by default the first three equations for each named equation will be
generated. A portion of the output (just that for the first two named equations) for the each for the three
example models is

Equation Listing SOLVE farmPROBLEM Using LP From line 10
---- OBJ =E=
OBJ.. Z - 109*Xcorn - 90*Xwheat - 115*Xcotton =E= 0 ; (LHS = 0)
---- land =L=
land.. Xcorn + Xwheat + Xcotton =L= 100 ; (LHS = 0)

Equation Listing SOLVE wall Using NLP From line 28
---- PDemand =G=
PDemand.. P + 0.3*Qd =G= 6 ; (LHS = 0, INFES = 6 ***)
---- PSupply =G=
PSupply.. - P + 0.2*Qs =G= -1 ; (LHS = 0)

Equation Listing SOLVE PROBLEM Using MCP From line 7
---- r1 =E=
r1.. (1)*ba + (1)*so4 =E= 1 ; (LHS = 1)
---- r2 =E=
r2.. - (1)*ba + (1)*baoh - (1)*oh =E= 4.8 ; (LHS = 1, INFES = 3.8
***)

Notes:

• The first part of this output gives the words Equation Listing followed by the word Solve, the name of

the model being solved and the line number in the echo print file where the solve associated with
this model generation appears.

• The second part of this output consists of the marker ---- followed by the name of the equation with

the relationship type (=L=, =G=, =E= etc).

• When one wishes to find this LST file component, one can search for the marker ---- or the string

Equation Listing. Users will quickly find ---- marks other types of output like that from display
statements.

McCarl GAMS User Guide19

© 2022 Prof. Bruce McCarl

• The third part of this output contains the equation name followed by a .. and then a listing of the

equation algebraic structure. In preparing this output, GAMS collects all terms involving variables on
the left hand side and all constants on the right hand side. This output component portrays the
equation in linear format giving the names of the variables that are associated with nonzero
equation terms and their associated coefficients.

• The algebraic structure portrayal is trailed by a term which is labeled LHS and gives at evaluation of

the terms involving endogenous variables evaluated at their starting points (typically zero unless the
.L levels were preset). A marker INFEAS will also appear if the initial values do not constitute a
feasible solution.

• The equation output is a correct representation of the algebraic structure of any linear terms in the

equation and a local representation containing the first derivatives of any nonlinear terms. The
nonlinear terms are automatically encased in parentheses to indicate a local approximation is
present. For example in the non-linear equation solving example the first equation is algebraically
structured as

ba * so4 = 1

but the equation listing portrays this as additive

---- r1 =E=

r1.. (1)*ba + (1)*so4 =E= 1 ; (LHS = 1)

which the reader can verify as the first derivative use of the terms evaluated around the starting point
(ba=1,so4=1).

More details on how the equation list is formed and controlled in terms of content and length are
discussed in the Standard Output chapter while more on nonlinear terms appears in the NLP and MCP

Model Types chapter.

2.4.3.2 Variable listing

When GAMS generates the model by default the data for the first three cases in existence under each
named variable will be generated. A portion of the output (just that for the first two named variables) for
the each for the three example models is

Column Listing SOLVE farmPROBLEM Using LP From line 10
---- Z
Z
 (.LO, .L, .UP = -INF, 0, +INF)
 1 OBJ
---- Xcorn
Xcorn
 (.LO, .L, .UP = 0, 0, +INF)
 -109 OBJ
 1 land
 6 labor

Column Listing SOLVE PROBLEM Using MCP From line 7
---- P
P
 (.LO, .L, .UP = 0, 0, +INF)
 1 PDemand

Quick Start Tutorial 20

© 2022 Prof. Bruce McCarl

 -1 PSupply
---- Qd
Qd
 (.LO, .L, .UP = 0, 0, +INF)
 0.3 PDemand
 -1 Equilibrium

Column Listing SOLVE wall Using NLP From line 28
---- ba
ba
 (.LO, .L, .UP = -INF, 1, +INF)
 (1) r1
 (-1) r2
 1 b1
 2 b2
---- so4
so4
 (.LO, .L, .UP = -INF, 1, +INF)
 (1) r1
 (-1) r3
 -1 b1
 -2 b2

Notes:

• The first part of this output gives the words Column Listing followed by the word Solve, the name of

the model being solved and the line number in the echo print file where the solve associated with
this model generation appears.

• The second part of this output consists of the marker ---- followed by the name of the variable.

• When one wishes to find this LST file component, one can search for the marker ---- or the string

Column Listing. Users will quickly find ---- marks other types of output like that from display
statements.

• The third part of this output contains the variable name followed by (.LO, .L, .UP = lower bound,

starting level, upper bound) where

lower bound gives the lower bound assigned to this variable (often zero)

starting level gives the starting point assigned to this variable (often zero)

upper bound gives the lower bound assigned to this variable (often positive infinity + INF).

• The fourth part of this output gives the equation names in which this variable appears with a

nonzero term and the associated coefficients.

• The output is a correct representation of the algebraic structure of any linear terms in the equations

where the variable appears and a local representation containing the first derivatives of any
nonlinear terms. The nonlinear terms are automatically encased in parentheses to indicate a local
approximation is present just analogous to the portrayals in the equation listing section just above.

More details on how the variable list is formed and controlled in terms of content and length are
discussed in the Standard Output chapter while more on nonlinear terms appears in the NLP and
MCP Model Types chapter.

McCarl GAMS User Guide21

© 2022 Prof. Bruce McCarl

2.4.3.3 Model statistics

GAMS also creates an output summarizing the size of the model as appears just below from the non-
linear equation solving example nonlinsys.gms. This gives how many variables of equations and
nonlinear terms are in the model along with some additional information. For discussion of the other
parts of this output see the Standard Output and NLP and MCP model types chapters.

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 6
BLOCKS OF VARIABLES 6 SINGLE VARIABLES 6
NON ZERO ELEMENTS 20 NON LINEAR N-Z 10
DERIVATIVE POOL 6 CONSTANT POOL 8
CODE LENGTH 89

2.4.4 Execution output

The next, usually minor, element of the GAMS LST file is execution report. Typically this will involve

• A report of the time it takes GAMS to execute any statements between the beginning of the

program and the first solve (or in general between solves),

• Any user generated displays of data; and

• If present, a list of numerical execution errors that arose.

I will not discuss the nature of this output here, as it is typically not a large concern of new users.
Display statements will be discussed later within this tutorial and are discussed in the Improving Output
via Report Writing chapter. Execution errors and their markings are discussed in the Fixing Execution
Errors chapter.

2.4.5 Solver report

The final major component of the LST file is the solution output and consists of a summary and then a
report of the solutions for variables and equations. Execution error reports may also appear in nonlinear
models as discussed in the Fixing Execution Errors Chapter.

2.4.5.1 Solution summary

The solution summary contains

• the marker S O L V E S U M M A R Y;

• the model name, objective variable name (if present), optimization type (if present), and

location of the solve (in the echo print);

• the solver name;

• the solve status in terms of solver termination condition;

• the objective value (if present);

• some cpu time expended reports;

• a count of solver execution errors; and

Quick Start Tutorial 22

© 2022 Prof. Bruce McCarl

• some solver specific output.

The report from the non-linear equation solving example nonlinsys.gms appears just below.

 S O L V E S U M M A R Y

 MODEL wall OBJECTIVE ba

 TYPE NLP DIRECTION MINIMIZE

 SOLVER CONOPT FROM LINE 28

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 2 LOCALLY OPTIMAL

**** OBJECTIVE VALUE 1.0000

 RESOURCE USAGE, LIMIT 0.090 1000.000

 ITERATION COUNT, LIMIT 5 10000

 EVALUATION ERRORS 0 0

 C O N O P T 2 Windows NT/95/98 version 2.071J-011-046

 Copyright (C) ARKI Consulting and Development A/S

 Bagsvaerdvej 246 A

 DK-2880 Bagsvaerd, Denmark

 Using default control program.

 ** Optimal solution. There are no superbasic variables.

More on this appears in the Standard Output chapter.

2.4.5.2 Equation solution report

The next section of the LST file is an equation by equation listing of the solution returned to GAMS by
the solver. Each individual equation case is listed. For our three examples the reports are as follows

 LOWER LEVEL UPPER MARGINAL

---- EQU OBJ . . . 1.000

---- EQU land -INF 100.000 100.000 52.000

---- EQU labor -INF 500.000 500.000 9.500

 LOWER LEVEL UPPER MARGINAL

---- EQU PDemand 6.000 6.000 +INF 10.000

---- EQU PSupply -1.000 -1.000 +INF 10.000

---- EQU Equilibri~ . . +INF 3.000

 LOWER LEVEL UPPER MARGINAL

---- EQU r1 1.000 1.000 1.000 0.500

---- EQU r2 4.800 4.800 4.800 EPS

---- EQU r3 0.980 0.980 0.980 4.9951E-6

---- EQU r4 1.000 1.000 1.000 2.3288E-6

---- EQU b1 . . . 0.499

---- EQU b2 . . . 2.5676E-4

McCarl GAMS User Guide23

© 2022 Prof. Bruce McCarl

The columns associated with each entry have the following meaning,

• Equation marker ----

• EQU - Equation identifier

• Lower bound (.lo) – RHS on =G= or =E= equations

• Level value (.l) – value of Left hand side variables. Note this is not a slack variable but

inclusion of such information is discussed in the Standard Output chapter.

• Upper bound (.up) – RHS on =L= or =E= equations

• Marginal (.m) – dual variable, shadow price or in MCPs only complementary variable value

(See the NLP and MCP chapter)

Notes:

• The numbers are printed with fixed precision, but the values are returned within GAMS have full

machine accuracy.

• The single dots '.' represent zeros.

• If present EPS is the GAMS extended value that means very close to but different from zero.

• It is common to see a marginal value given as EPS, since GAMS uses the convention that

marginals are zero for basic variables, and nonzero for others.

• EPS is used with non-basic variables whose marginal values are very close to, or actually, zero, or

in nonlinear problems with superbasic variables whose marginals are zero or very close to it.

• For models that are not solved to optimality, some items may additionally be marked with the

following flags.

Flag Description
Infes The item is infeasible. This mark is made for any entry whose level value is

not between the upper and lower bounds.
Nopt The item is non-optimal. This mark is made for any non-basic entries for

which the marginal sign is incorrect, or superbasic ones for which the
marginal value is too large.

Unbnd The row or column that appears to cause the problem to be unbounded.

• The marginal output generally does not have much meaning in an MCP or CNS model.

2.4.5.3 Variable solution report

The next section of the LST file is a variable by variable listing of the solution returned to GAMS by the
solver. Each individual variable case is listed. For our three examples the reports are as follows

 LOWER LEVEL UPPER MARGINAL

---- VAR Z -INF 9950.000 +INF .

---- VAR Xcorn . 50.000 +INF .

---- VAR Xwheat . 50.000 +INF .

Quick Start Tutorial 24

© 2022 Prof. Bruce McCarl

---- VAR Xcotton . . +INF -13.000

 LOWER LEVEL UPPER MARGINAL

---- VAR P . 3.000 +INF .

---- VAR Qd . 10.000 +INF .

---- VAR Qs . 10.000 +INF .

 LOWER LEVEL UPPER MARGINAL

---- VAR ba -INF 1.000 +INF .

---- VAR so4 -INF 1.000 +INF .

---- VAR baoh -INF 4.802 +INF .

---- VAR oh -INF 1.000 +INF .

---- VAR hso4 -INF 0.980 +INF .

---- VAR h -INF 1.000 +INF .

The columns associated with each entry have the following meaning,

• Variable marker ----

• VAR - Variable identifier

• Lower bound (.lo) – often zero or minus infinity

• Level value (.l) – solution value.

• Upper bound (.up) – often plus infinity

• Margninal (.m) – reduced cost or in MCPs only slack in complementary equations (See the

NLP and MCP chapter)

Notes:

• The numbers are printed with fixed precision, but the values are returned within GAMS have full

machine accuracy.

• The single dots '.' represent zeros.

• If present EPS is the GAMS extended value that means very close to but different from zero.

• It is common to see a marginal value given as EPS, since GAMS uses the convention that

marginals are zero for basic variables, and nonzero for others.

• EPS is used with non-basic variables whose marginal values are very close to, or actually, zero, or

in nonlinear problems with superbasic variables whose marginals are zero or very close to it.

• For models that are not solved to optimality, some items may additionally be marked with the

following flags.

Flag Description
Infes The item is infeasible. This mark is made for any entry whose level value is

not between the upper and lower bounds.
Nopt The item is non-optimal. This mark is made for any non-basic entries for

which the marginal sign is incorrect, or superbasic ones for which the
marginal value is too large.

Unbnd The row or column that appears to cause the problem to be unbounded.

McCarl GAMS User Guide25

© 2022 Prof. Bruce McCarl

2.5 Exploiting algebra

By its very nature GAMS is an algebraic language. The above examples and discussion are not totally
exploitive of the algebraic capabilities of GAMS. Now let me introduce more of the GAMS algebraic
features.

Equation writing – sums

Revised algebra exploiting optimization example

Revised equilibrium example

2.5.1 Equation writing – sums

GAMS is fundamentally built to allow exploitation of algebraic features like summation notation.
Specifically suppose xi is defined with three elements

Algebra

This can be expressed in GAMS as

z = SUM(I, X(I));

where

I is a set in GAMS
z is a scalar or variable
X(I) is a parameter or variable defined over set I

and the sum automatically treats all cases of I.

Such an expression can be included either in a either a model equation .. specification or in an item to
be calculated in the code. Let me now remake the first 2 examples, better exploiting the GAMS
algebraic features.

2.5.2 Revised algebra exploiting optimization example

The optimization example is as follows

Quick Start Tutorial 26

© 2022 Prof. Bruce McCarl

This is a special case of the general resource allocation problem that can be written as

where

j = { corn wheat cotton }

i = { land labor }

x
j
 = { X

c orn
 X

wheat
 X

c ot t on
 }

c
j
 = { 109 90 115 }

a
i j
 = 1 1 1

6 4 8

bi = { 100 500 }'

Such a model can be cast in GAMS as (optalgebra.gms)

SET j /Corn,Wheat,Cotton/

 i /Land ,Labor/;

PARAMETER

 c(j) / corn 109 ,wheat 90 ,cotton 115/

 b(i) /land 100 ,labor 500/;

TABLE a(i,j)

 corn wheat cotton

land 1 1 1

labor 6 4 8 ;

POSITIVE VARIABLES x(j);

VARIABLES PROFIT ;

McCarl GAMS User Guide27

© 2022 Prof. Bruce McCarl

EQUATIONS OBJective ,

 constraint(i) ;

OBJective.. PROFIT=E= SUM(J,(c(J))*x(J)) ;

constraint(i).. SUM(J,a(i,J) *x(J)) =L= b(i);

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

I will dissect the GAMS components after presenting the other example.

2.5.3 Revised equilibrium example

The economic equilibrium model was of the form

Demand Price: P > Pd = 6 - 0.3*Qd

Supply Price: P < Ps = 1 + 0.2*Qs

Quantity Equilibrium: Qs > Qd

Non negativity P, Qs, Qd > 0

and is a single commodity model. Introduction of multiple commodities means that we need a subscript
for commodities and consideration of cross commodity terms in the functions. Such a formulation where
c depicts commodity can be presented as

where

P
c

is the price of commodity c

Qd
c

is the quantity demanded of commodity c

Pd
c

is the price from the inverse demand curve for commodity c

Qs
c

is the quantity supplied of commodity c

Ps
c

is the price from the inverse supply curve for commodity c

cc is an alternative index to the commodities and is equivalent to c
Id

c
is the inverse demand curve intercept for c

Sd
c , c c

is the inverse demand curve slope for the effect of buying one unit of commodity cc on

the demand price of commodity c. When c=cc this is an own commodity effect and

Is
c

is the inverse supply curve intercept for c

Ss
c , c c

is the inverse supply curve slope for the effect of supplying one unit of commodity cc on

the supply price of commodity c. When c=cc this is an own commodity effect and

Quick Start Tutorial 28

© 2022 Prof. Bruce McCarl

An algebraic based GAMS formulation of this is (econequilalg.gms)

Set commodities /corn,wheat/;

Set curvetype /Supply,demand/;

Table intercepts(curvetype,commodities)

 corn wheat

 demand 4 8

 supply 1 2;

table slopes(curvetype,commodities,commodities)

 corn wheat

 demand.corn -.3 -.1

 demand.wheat -.07 -.4

 supply.corn .5 .1

 supply.wheat .1 .3 ;

POSITIVE VARIABLES P(commodities)

 Qd(commodities)

 Qs(commodities) ;

EQUATIONS PDemand(commodities)

 PSupply(commodities)

 Equilibrium(commodities) ;

alias (cc,commodities);

Pdemand(commodities)..

 P(commodities)=g=

 intercepts("demand",commodities)

 +sum(cc,slopes("demand",commodities,cc)*Qd(cc));

Psupply(commodities)..

 intercepts("supply",commodities)

 +sum(cc,slopes("supply",commodities,cc)* Qs(cc))

 =g= P(commodities);

Equilibrium(commodities)..

 Qs(commodities)=g= Qd(commodities);

MODEL PROBLEM /Pdemand.Qd, Psupply.Qs,Equilibrium.P/;

SOLVE PROBLEM USING MCP;

2.6 Dissecting the algebraic model

Sets

Data entry

Output differences

2.6.1 Sets

Above we used the subscripts i , j, commodities and cc for addressing the variable, equation and data
items. In GAMS subscripts are SETs. In order to use any subscript one must declare an equivalent set.

The set declaration contains

the set name
a list of elements in the set (up to 63 characters long spaces etc allowed in quotes)

McCarl GAMS User Guide29

© 2022 Prof. Bruce McCarl

optional labels describing the whole set
optional labels defining individual set elements

The general format for a set statement is:

SET setname optional defining text

 / firstsetelementname optional defining text

secondsetelementname optional defining text

 ... /;

Examples:

(sets.gms)

SETs j /x1,x2,x3/

i /r1 ,r2/;

SET PROCESS PRODUCTION PROCESSES /X1,X2,X3/;

SET Commodities Crop commodities /

corn in bushels,

wheat in metric tons,

milk in hundred pounds/ ;

More on sets appears in the Sets chapter.

2.6.1.1 Alias

One device used in the economic equilibrium formulation is the so called alias command that allows us
to have a second name for the same set allowing us, in that case, to consider both the effects of own
and cross commodity quantity on the demand and supply price for an item. Then general form of an
Alias is

ALIAS(knownset,newset1,newset2,...);

where each of the new sets will refer to the same elements as in the existing knownset.

The command can deal with single and multidimensional set.

More on alias appears in the Sets chapter.

2.6.2 Data entry

GAMS provides for three forms of data entry. These involve PARAMETER, SCALAR and TABLE
formats. Scalar entry is for scalars, Parameter generally for vectors and Table for matrices. Above I
needed data for vectors and matrices but not a scalar. Nevertheless I will cover all three forms.

Scalars

Parameters

Quick Start Tutorial 30

© 2022 Prof. Bruce McCarl

Tables

2.6.2.1 Scalars

SCALAR format is used to enter items that are not defined with respect to sets.

scalar item1name optional labeling text /numerical value/

 item2name optional labeling text /numerical value/

... ;

Examples include

scalar dataitem /100/;

scalar landonfarm total arable acres /100/;

scalars landonfarm /100/

 pricecorn 1992 corn price per bushel /2.20/;

Scalars are covered in more depth in the Data Entry chapter.

2.6.2.2 Parameters

Parameter format is used to enter items defined with respect to sets. Generally parameter format is
used with data items that are one-dimensional (vectors) although multidimensional cases can be
entered. The general format for parameter entry is:

Parameter itemname(setdependency) optional text

 / firstsetelementname associated value,

 secondsetelementname associated value,

... /;

Examples:

PARAMETER c(j) / x1 3 ,x2 2 ,x3 0.5/;

Parameter b(i) /r1 10 ,r2 3/;

PARAMETERS

 PRICE(PROCESS) PRODUCT PRICES BY PROCESS

/X1 3,X2 2,X3 0.5/;

 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 /CONSTRAIN1 10 ,CONSTRAIN2 3/;

Parameter multidim(i,j,k) three dimensional

 /i1.j1.k1 100 ,i2.j1.k2 90 /;

Notes:

• The set elements referenced must appear in the defining set. Thus when data are entered for c(j)

the element names within the / designators must be in the set j.

• More than one named item is definable under a single parameter statement with a semicolon

terminating the total statement.

McCarl GAMS User Guide31

© 2022 Prof. Bruce McCarl

• Note GAMS commands are always ended with a ; but can be multiline in nature.

• Items can be defined over up to 20 sets with each numerical entry associated with a specific

simultaneous collection of set elements for each of the named sets. When multi set dependent
named items are entered then the notation is

set1elementname.set2elementname.set3elementname etc with periods(.) setting off the

element names in the associated sets.

• All elements that are not given explicit values are implicitly assigned with a value of zero.

• Parameters are an all-encompassing data class in GAMS into which data are kept including data

entered as Scalars and Table.

• More on parameters appears in the Data Entry chapter.

2.6.2.3 Tables

TABLE format is used to enter items that are dependent on two more sets. The general format is

Table itemname(setone, settwo ...) descriptive text
 set_2_element_1 set_2_element_2
set_1_element_1 value_11 value_12
set_1_element_2 value_21 value_22;

Examples:

TABLE a(i,j) crop data

 corn wheat cotton

 land 1 1 1

 labor 6 4 8 ;

Table intercepts(curvetype,commodities)

 corn wheat

 demand 4 8

 supply 1 2;

table slopes(curvetype,commodities,commodities)

 corn wheat

 demand.corn -.3 -.1

 demand.wheat -.07 -.4

 supply.corn .5 .1

 supply.wheat .1 .3 ;

Notes:

• Alignment is important. Each numerical entry must occur somewhere below one and only one

column name in the Table.

• All elements that are not given explicit values or have blanks under them are implicitly assigned to

equal zero.

• Items in tables must be defined with respect to at least 2 sets and can be defined over up to 20

sets. When more than two dimensional items are entered, as in the equilibrium example, periods

Quick Start Tutorial 32

© 2022 Prof. Bruce McCarl

(.) set off the element names set1elementname.set2elementname.set3elementname etc.

• Tables are a specific input entry format for the general GAMS parameter class of items that also

encompasses scalars.

• More on tables appears in the Data Entry chapter.

2.6.2.4 Direct assignment

Data may also be entered through replacement or assignment statements. Such statements involve the
use of a statement like

parametername(setdependency) = expression;

where the parameters on the left hand side must have been previously defined in a set, parameter or
table statement.

Examples:

(caldata.gms)

scalar a1;

scalars a2 /11/;

parameter cc(j) , bc(j) /j2 22/;

a1=10;

a2=5;

cc(j)=bc(j)+10;

cc("j1")=1;

Notes:

• When a statement like cc(j)=bc(j)+10; is executed this is done for all elements in j so if j had

100,000 elements this would define values for each and every one.

• These assignments can be the sole entry of a data item or may redefine items.

• If an item is redefined then it has the new value from then on and does not retain the original data.

• The example cc("j1")=1; shows how one addresses a single specific element not the whole set,

namely one puts the entry in quotes (single or double). This is further discussed in the Sets
chapter.

• Calculations do not have to cover all set element cases of the parameters involved (through partial

set references as discussed in the Sets chapter). Set elements that are not computed over retain
their original values if defined or a zero if never defined by entry or previous calculation.

• A lot more on calculations appears in the Calculating Items chapter.

2.6.2.4.1 Algebraic nature of variable and equation specif ications

When one moves to algebraic modeling the variable and equation declarations can have an added
element of set dependency as illustrated in our examples and reproduced below

McCarl GAMS User Guide33

© 2022 Prof. Bruce McCarl

POSITIVE VARIABLES x(j) ;

VARIABLES PROFIT ;

EQUATIONS OBJective ,

constraint(i) ;

POSITIVE VARIABLES P(commodities)

Qd(commodities)

Qs(commodities) ;

EQUATIONS PDemand(commodities)

PSupply(commodities)

Equilibrium(commodities) ;

Such definitions indicate that these variables and equations are potentially defined for every element of
the defining set (also called the domain) thus x could exist for each and every element in j. However the
actual definition of variables does not occur until the .. equation specifications are evaluated as
discussed next. More on set dependent variable and equation definitions appears in the Variables,
Equations, Models and Solves chapter.

2.6.2.4.2 Algebra and model .. specif ications

The equations and variables in a model are defined by the evaluation of the .. equation specifications.
The .. equations for our examples are

OBJective.. PROFIT=E= SUM(J,c(J)*x(J)) ;

constraint(i).. SUM(J,a(i,J) *x(J)) =L= b(i);

Pdemand(commodities)..

 P(commodities)=g=

 intercepts("demand",commodities)

 +sum(cc,slopes("demand",commodities,cc)*Qd(cc));

Psupply(commodities)..

 intercepts("supply",commodities)

 +sum(cc,slopes("supply",commodities,cc)* Qs(cc))

 =g= P(commodities);

Equilibrium(commodities)..

 Qs(commodities)=g= Qd(commodities);

Here GAMS will operate over all the elements in the sets in each term. For example, in the OBJective
equation GAMS will add up the term c(J)*x(J) for all set elements in j. Similarly, the equation constraint
(i) will define a separate constraint equation case for each element of i. Also within the equation case
associated with an element of i only the elements of a(i,j) associated with that particular i will be
included in the term SUM(J,a(i,J) *x(J)). Similarly, within the second example equations of each type
are included for each member of set commodities.

Notes:

• These examples show us moving away from the data specification that we were employing in the

Quick Start Tutorial 34

© 2022 Prof. Bruce McCarl

GAMS the early GAMS examples in this chapter. In particular rather than entering numbers in the
model we are now entering data item names and associated set dependency. This permits us to
specify a model in a more generic fashion as will be discussed in a later section of this tutorial on
virtues of algebraic modeling.

• The only variables that will be defined for a model are those that appear with nonzero coefficient

somewhere in at least one of the equations defined by the .. equations.

• More on .. specifications appears within the Variables, Equations, Models and Solves chapter.

2.6.3 Output differences

When set dependency is used in association with variables and equations and model then this changes
the character of a few of the output items. In particular, there are some changes in the equation listing,
variable listing, and solution reports for variables and equations.

Equation listing

Variable list

Equation solution report

Variable solution report

2.6.3.1 Equation listing

The equation listing exhibits a few different characteristics in the face of set dependent variable and
equation declarations. In particular, the variables declared over sets are reported with a display of their
set dependency encased in parentheses. Also the equations declared over sets have multiple cases
listed under a particular equation name. An example is presented below in the context of our core
optimization example (optimize.gms) and shows three cases of the x variable (those associated with
the corn, wheat, and cotton set elements). It also shows that two cases are present for the equation
called constraint (land and labor).

---- OBJective =E=

OBJective.. - 109*x(Corn) - 90*x(Wheat) - 115*x(Cotton) + PROFIT =E= 0 ; (LHS = 0)

---- constraint =L=

constraint(Land).. x(Corn) + x(Wheat) + x(Cotton) =L= 100 ; (LHS = 0)

constraint(Labor).. 6*x(Corn) + 4*x(Wheat) + 8*x(Cotton) =L= 500 ; (LHS = 0)

A portion of the equation listing from a more involved example (model.gms) also reveals additional
differences. In the TCOSTEQ equation that we see the portrayal of coefficients involved with several
declared variables: 3 cases of Build, 6 cases of Shipsw, 6 cases of Shipwm and 4 cases of Shipsm.
The model.gms example also shows what happens there are more cases of equation than the number
of equation output items output by default as controlled by the option Limrow (as discussed in the
Standard Output chapter). In this case Limrow was set to 2 but there were three cases of the equation
named Capacity and GAMS indicates that one case was skipped. If there had been 100, then 98 would
have been skipped.

---- TCOSTEQ =E= TOTAL COST ACCOUNTING EQUATION

TCOSTEQ.. Tcost - 50*Build(A) - 60*Build(B) - 68*Build(C) - Shipsw(S1,A) - 2*Shipsw(S1,B)

 - 8*Shipsw(S1,C) - 6*Shipsw(S2,A) - 3*Shipsw(S2,B) - Shipsw(S2,C) - 4*Shipwm(A,D1)

McCarl GAMS User Guide35

© 2022 Prof. Bruce McCarl

 - 6*Shipwm(A,D2) - 3*Shipwm(B,D1) - 4*Shipwm(B,D2) - 5*Shipwm(C,D1) - 3*Shipwm(C,D2)

 - 4*Shipsm(S1,D1) - 8*Shipsm(S1,D2) - 7*Shipsm(S2,D1) - 6*Shipsm(S2,D2) =E= 0 ;

 (LHS = -4, INFES = 4 ***)

---- CAPACITY =L= WAREHOUSE CAPACITY

CAPACITY(A).. - 999*Build(A) + Shipwm(A,D1) + Shipwm(A,D2) =L= 0 ; (LHS = 0)

CAPACITY(B).. - 60*Build(B) + Shipwm(B,D1) + Shipwm(B,D2) =L= 0 ; (LHS = 0)

REMAINING ENTRY SKIPPED

2.6.3.2 Variable list

The variable listing also exhibits a few different characteristics in the face of set dependent variable and
equation declarations. In particular, the variables declared over sets have multiple cases listed under a
particular variable name as do any involved sets. An example is presented below in the context of our
core optimization example (optimize.gms) and shows three cases of the x variable (those associated
with the corn, wheat, and cotton set elements). It also shows that the variables use resources from two
cases of the equation called constraint (land and labor).

---- x

x(Corn)

(.LO, .L, .UP = 0, 0, +INF)

 -109 OBJective

 1 constraint(Land)

 6 constraint(Labor)

x(Wheat)

(.LO, .L, .UP = 0, 0, +INF)

 -90 OBJective

 1 constraint(Land)

 4 constraint(Labor)

x(Cotton)

(.LO, .L, .UP = 0, 0, +INF)

 -115 OBJective

 1 constraint(Land)

 8 constraint(Labor)

A portion of the variable listing from the more involved model.gms example shows GAMS indicating four
cases were skipped when Limcol was smaller than the number of cases on hand (as discussed in the
Standard Output chapter).

---- Shipsw Amount Shipped To Warehouse

Shipsw(S1,A)

(.LO, .L, .UP = 0, 0, 1000)

 -1 TCOSTEQ

 1 SUPPLYEQ(S1)

 -1 BALANCE(A)

Shipsw(S1,B)

(.LO, .L, .UP = 0, 0, 1000)

 -2 TCOSTEQ

Quick Start Tutorial 36

© 2022 Prof. Bruce McCarl

 1 SUPPLYEQ(S1)

 -1 BALANCE(B)

REMAINING 4 ENTRIES SKIPPED

2.6.3.3 Equation solution report

The equation solution LST also shows all existing cases grouped under each equation name when set
dependency is present as illustrated below in the context of our core optimization example
(optimize.gms).

---- EQU constraint

 LOWER LEVEL UPPER MARGINAL

Land -INF 100.000 100.000 52.000

Labor -INF 500.000 500.000 9.500

2.6.3.4 Variable solution report

The variable solution LST segment also shows all existing cases grouped under each variable name
when set dependency is present as illustrated below in the context of our core optimization example
(optalgebra.gms).

---- VAR x

 LOWER LEVEL UPPER MARGINAL

Corn . 50.000 +INF .

Wheat . 50.000 +INF .

Cotton . . +INF -13.000

2.7 Good modeling practices

Above I have covered the essential GAMS features one would employ in any modeling exercise.
However I have not done very good job of exploiting a major GAMS capability involved self-
documentation. In any modeling exercise there are an infinite variety of choices that can be made in
naming the variables, equations, parameters, sets etc. and formatting their presentation in the GMS
instruction file. Across these choices that can be large differences in the degree of self-documentation
within the GMS code. In particular, as explained in the chapter on Rules for Item Names, Element
names and Explanatory Text, one employs short names like x(j) as in optalgebra.gms or longer names
(up to 63 characters) for the variables like production(products). I advocate use of longer names to
enhance the readability of the document.

The GAMS also permits one to add comments, for example telling what is being done by particular
instructions or indicating data sources. This can be done by a number of means including typing lines
beginning with an * in column one or encasing longer comments between a $ONTEXT and $OFFTEXT.
GAMS elements for including comments are discussed in the chapter entitled Including Comments.

I illustrate the longer name and comment capability along with improved spacing and line formatting in
the context of the model optalgebra.gms creating the new model goodoptalgebra.gms. The two
models use the same data and get the same answer only the item names and formatting have been
changed. In my judgment, the longer names substantially contribute to self-documentation and make it
easier to go back to use a model at a future time or transfer a model to others for their use. More
material on the formatting subject appears in the Writing Models and Good Modeling Practices chapter.

McCarl GAMS User Guide37

© 2022 Prof. Bruce McCarl

Original version

(optalgebra.gms)

SET j /Corn,Wheat,Cotton/

 i /Land ,Labor/;

PARAMETER

 c(j) / corn 109 ,wheat 90 ,cotton 115/

 b(i) /land 100 ,labor 500/;

TABLE a(i,j)

 corn wheat cotton

 land 1 1 1

 labor 6 4 8 ;

POSITIVE VARIABLES x(j);

VARIABLES PROFIT ;

EQUATIONS OBJective , constraint(i) ;

 OBJective.. PROFIT=E= SUM(J,(c(J))*x(J)) ;

 constraint(i).. SUM(J,a(i,J) *x(J)) =L= b(i);

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

Revised version with comments in blue

(goodoptalgebra.gms)

*well formatted algebraic version of model optalgebra.gms

SET Products Items produced by firm

 /Corn in acres,

 Wheat in acres ,

 Cotton in acres/

 Resources Resources limiting firm production

 /Land in acres,

 Labor in hours/;

PARAMETER Netreturns(products) Net returns per unit produced

 /corn 109 ,wheat 90 ,cotton 115/

 Endowments(resources) Amount of each resource available

 /land 100 ,labor 500/;

TABLE Resourceusage(resources,products) Resource usage per unit produced

 corn wheat cotton

 land 1 1 1

 labor 6 4 8 ;

POSITIVE VARIABLES Production(products) Number of units produced;

VARIABLES Profit Total fir summed net returns ;

EQUATIONS ProfitAcct Profit accounting equation ,

 Available(Resources) Resource availability limit;

$ontext

 specify definition of profit

$offtext

 ProfitAcct..

 PROFIT

 =E= SUM(products,netreturns(products)*production(products)) ;

Quick Start Tutorial 38

© 2022 Prof. Bruce McCarl

$ontext

 Limit available resources

 Fix at exogenous levels

$offtext

 available(resources)..

 SUM(products,

 resourceusage(resources,products) *production(products))

 =L= endowments(resources);

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

2.8 Structure of GAMS statements, programs and the ;

Now that I have been through the most essential basic elements of the GAMS syntax, I can review the
general format of GAMS statements and GMS files. A GAMS program is a collection of statements in
the GAMS language. A number of comments can be made about how the file needs to be formatted

• Statements must be ordered so that items are initially declared before they are used. If they

are used on the right hand side of a calculation (an = statement) they also must be given data
before use. If they are used in a model equation then they must be given data before a Solve
appears. This is enforced by GAMS indicating a lack of declaration and numerical
specification as a compilation error so one does not need to meticulously check order of

declaration, definition and use.1

• Individual GAMS statements can be formatted in almost any style. Multiple lines may be used

for a statement, blank lines can be embedded, any number of spaces or tabs may be inserted
and multiple statements may be put on one line separated by a ;

• Every GAMS statement should be terminated with a semicolon, as all the examples in this

book illustrate.

• GAMS is not case sensitive, thus it is equivalent to type the command VARIABLE as

variable or the variable names XCOTTON as XcOttoN. However, there is case sensitivity with
respect to the way things are printed out with the first presentation being the one used as
discussed in the Rules for Item Capitalization and Ordering chapter.

• The use of a named item (which in GAMS can be a set, parameter, scalar, table, acronym,

variable, equation, model or file) involves three steps:

Declaration where one announces the existence of a named item giving it a name.
Assignment giving it a specific value or replacing its value with the results of an
expression.
Subsequent usage.

• The item names, elements and explanatory text must follow certain rules as discussed in the

Rules for Item Names, Element names and Explanatory Text chapter.

1 This and a number of the other points in this section are adapted from Richard E. Rosenthal's "A GAMS Tutorial"

that appeared in the GAMS Users Guide documents by Brooke et al.

McCarl GAMS User Guide39

© 2022 Prof. Bruce McCarl

2.9 Adding complexity

There are a few more topics meritorious of coverage in this tutorial that involve GAMS capabilities to
include conditionals, display data, do calculations incorporating optimal solution information and solve a
model more than once. Each is discussed below.

Conditionals

Displaying data

Report writing

2.9.1 Conditionals

Certainly when doing calculations and setting up models cases arise where one might wish to do
different things conditional upon data. In particular, one might wish to do a calculation like z=x/y only if
y is nonzero or one might wish to define demand equations only for cases where demand exists.
Incorporation of such considerations into GAMS program involves what's known as the $conditional as
extensively discussed in the Conditionals chapter. Below I present several examples of this feature.
Generally the expressions are of the form

term$logical condition

which says do something with term only if the logical condition is true where the $ can be read as if it
were the word if. Conditionals can appear in a number of contexts, as I will illustrate below.

2.9.1.1 Conditionally execute an assignment

The condition

X$(y gt 0) = 10;

says set X=10 if the scalar y is greater than zero, while the condition

percentchange$(y ne 0)= 100*(x-y)/y;

says compute the item percentchange if y is not equal to zero.

For more on this class of conditionals see the discussion in the Conditionals chapter.

2.9.1.2 Conditionally add a term in sum or other set operation

The condition

z=sum(i$(y(i) gt 0),x(i));;

says include the term for set element i only if y(i) > 0, while

Quick Start Tutorial 40

© 2022 Prof. Bruce McCarl

z=sum((i,j)$(sameas(i,j)),x(i,j));

says add the term corresponding to a pair of set elements i and j only if the set elements have the same
name (thus if the name of element i was Chicago then the j term would be included in the sum only if the
name of element j was Chicago).

For more on this class of conditionals see the discussion in the Conditionals chapter. For more on
Sameas also see the Conditionals chapter.

2.9.1.3 Conditionally define an equation

The conditions

Eq1$(qq gt 0).. xvar=e=3;

Eq2$(sum(I,q(i)) gt 0).. yvar=l=4;

Eq3(i)$(a(i) gt 0).. ivar(i)=g= -a(i);

each cause an equation to exist in a model only if the condition is satisfied.

For more on this class of conditionals see the discussion in the Conditionals chapter.

2.9.1.4 Conditionally include a term in an equation

The conditions

Eq4 . . xvar+yvar$(qq gt 0)=e=3;
X=sum(I,q(i))$(qq gt 0)+4;

Q(i)=a(i)+1$(a(i) gt 0);

each cause the term in red to only be included in an expression (it is treated as zero otherwise) only if
the condition is satisfied.

For more on this class of conditionals see the discussion in the Conditionals chapter.

2.9.2 Displaying data

One may display any GAMS parameter, set, variable attribute, equation attribute or model attribute as
well as quoted text using the GAMS display statement. Generally the display is of the format

DISPLAY ITEM1,ITEM2,ITEM3;

where the items are either

• Quoted strings in single or double quotes such as

Display 'here it is', "hello";

• Parameter or set names without any referencing to setdependency. Thus in dispord.gms

while the parameter data is defined over 4 sets

McCarl GAMS User Guide41

© 2022 Prof. Bruce McCarl

parameter data(index1,index2,index3,index4);

I simply say

display data;

• Variable, equation or model attributes with the item name and attribute desired specified

Display x.l, eq.m;

• Multiple items can be listed in a display statement separated by commas.

Notes:

• Display will not print out items that are zero leaving blanks or skipping items where entire rows or

columns are zero.

• GAMS displays can be enhanced in terms of form, and content in several ways as discussed in the

Improving Output via Report Writing chapter. One way involves use of an option command of the
following form

OPTION ITEMNAME:DECIMAL:ROWitems:COLUMNitems

which will cause all subsequent displays of the named item to follow rules specified by three
numbers following the colons which are

DECIMAL number of decimal places to be included
ROWitems number of indices displayed within rows
COLUMNitems number of indices displayed within columns

A display formatting sequence is introduced into the optimization example (goodoptalgebra.gms)
as follows:

option thisreport:2:1:2;
display thisreport;

which says use 2 decimal places and produce a display with 1 item in the rows and 2 in the
columns yielding

 Total Use by Use by Marginal
 Available Corn Wheat Value

Land 100.00 50.00 50.00 52.00
Labor 500.00 300.00 200.00 9.50

A display of the same item with option this report:4:2:1; yields

 Corn Wheat Available Value

Land .Total 100.0000
Land .Use by 50.0000 50.0000
Land .Marginal 52.0000

Quick Start Tutorial 42

© 2022 Prof. Bruce McCarl

Labor.Total 500.0000
Labor.Use by 300.0000 200.0000
Labor.Marginal 9.5000

2.9.3 Report writing

GAMS permits one to do calculations using solution information to improve the information content of the
output. This exercise is commonly called report writing. Information relative to the variable, equation
and model solution is passed to GAMS from solvers. These data can be used in report writing
computations.

In GAMS the solution level for a variable is Variablename.L while it is Equationname.L for an equation.
The dual or shadow price information for an equation is addressed as Equationname.M and the reduced
cost for a variable is Equationname.M. The numerical values of these parameters are generally
undefined until a solve is performed and retains the value from the most recent solve from then on. In the
algebraic version of the equilibrium model (econequilalg.gms) I introduce the following report writing
sequence

set qitem /Demand, Supply, "Market Clearing"/;

set item /Quantity,Price/

parameter myreport(qitem,item,commodities);

myreport("Demand","Quantity",commodities)= Qd.l(commodities);

myreport("Supply","Quantity",commodities)= Qs.l(commodities);

myreport("Market Clearing","Price",commodities)= p.l(commodities);

display myreport;

which saves the supply and demand quantities along with the market clearing price. The resultant report
is generated with a display statement and is

---- 39 PARAMETER myreport

 Corn Wheat

Supply .Quantity 1.711 8.156
Demand .Quantity 1.711 8.156
Market Clearing.Price 2.671 4.618

where I have color coded the originating statements and resultant output.

A report writing sequence is also introduced into the optimization example (goodoptalgebra.gms) as
follows

set item /Total,"Use by",Marginal/;

set qitem /Available,Corn,Wheat,Cotton,Value/;

parameter Thisreport(resources,item,qitem) Report on resources;

Thisreport(resources,"Total","Available")=endowments(resources);

Thisreport(resources,"Use by",qitem)=

 sum(products$sameas(products,qitem),

 resourceusage(resources,products) *production.l(products));

Thisreport(resources,"Marginal","Value")=

 available.m(resources);

McCarl GAMS User Guide43

© 2022 Prof. Bruce McCarl

option thisreport:2:1:2;

display thisreport;

where both equation marginals (shadow prices) and variable levels are included in the report writing
calculations. This yields the report

 Total Use by Use by Marginal

 Available Corn Wheat Value

Land 100.00 50.00 50.00 52.00

Labor 500.00 300.00 200.00 9.50

where I have color coded the originating statements and resultant output.

The report wring topic is extensively discussed in the Improving Output via Report Writing chapter with a
more advanced discussion also appearing in the Output via Put Commands chapter.

2.10 Why use GAMS and algebraic modeling

Finally I feel it is beneficial to examine the attributes and difficulties with GAMS based algebraic
modeling. This is done under the following topics

Use of algebraic modeling

Context changes

Expandability

Augmentation

Aid with initial formulation and subsequent changes

Adding report writing

Self-documenting nature

Large model facilities

Automated problem handling and portability

Model library and widespread professional use

Use by Others

Ease of use with Non Linear, Mixed Integer, CGE and other problem forms

Interface with other packages

2.10.1 Use of algebraic modeling

GAMS permits one to express a formulation in general algebraic terms using symbolic summation
notation. This allows modelers to concisely state problems, largely independent of the data and exact
application context. Such formulations are inherently expandable, easily subjected to context changes,
and easily augmented as will be discussed just below.

However, use of algebraic modeling can be a two edged sword. GAMS algebraic requirements and
summation notation are difficult for some users. Some people will always desire to deal with the exact
problem context, not an abstract general formulation. This does lead to a strategy most modelers use
when employing GAMS modeling. Namely, GAMS exercises are usually supported by small hand
formulations that capture problem essence and serve as an aid in GAMS model formulation.

Quick Start Tutorial 44

© 2022 Prof. Bruce McCarl

2.10.1.1 Context changes

Consider the optimization example from above (goodoptalgebra.gms) which involved a farming
example. This can be rewritten to another context as follows (newcontext.gms)

SET Products Items produced by firm

 /Chairs , Tables , Dressers /

 Resources Resources limiting firm production

 /RawWood , Labor , WarehouseSpace/;

PARAMETER Netreturns(products) Net returns per unit produced

 /Chairs 19 , Tables 50, Dressers 75/

 Endowments(resources) Amount of each resource available

 /RawWood 700 , Labor 1000 , WarehouseSpace 240/;

TABLE Resourceusage(resources,products) Resource usage per unit produced

 Chairs Tables Dressers

 RawWood 8 20 32

 Labor 12 32 45

 WarehouseSpace 4 12 10 ;

POSITIVE VARIABLES Production(products) Number of units produced;

VARIABLES Profit Total fir summed net returns ;

EQUATIONS ProfitAcct Profit accounting equation ,

 Available(Resources) Resource availability limit;

 ProfitAcct..

 PROFIT

 =E= SUM(products,netreturns(products)*production(products)) ;

 available(resources)..

 SUM(products,

 resourceusage(resources,products) *production(products))

 =L= endowments(resources);

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

where only the lines in black changed not those in red relative to the farming example. So what? The
algebraic structure once built did not need to be altered and GAMS models can easily be changed from
one context to another.

2.10.1.2 Expandability

Consider the newcontext.gms optimization example from just above. That examples depicts
production of three products from three resources. One could add two new products and two new
resources as follows (expand.gms)

SET Products Items produced by firm

 /Chairs , Tables , Dressers, HeadBoards, Cabinets /

 Resources Resources limiting firm production

 /RawWood , Labor , WarehouseSpace , Hardware, ShopTime/;

PARAMETER Netreturns(products) Net returns per unit produced

 /Chairs 19,Tables 50,Dressers 75,HeadBoards 28,Cabinets 25/

 Endowments(resources) Amount of each resource available

McCarl GAMS User Guide45

© 2022 Prof. Bruce McCarl

 /RawWood 700,Labor 1000,WarehouseSpace 240,Hardware 100, Shoptime 600/;

TABLE Resourceusage(resources,products) Resource usage per unit produced

 Chairs Tables Dressers HeadBoards Cabinets

 RawWood 8 20 32 22 15

 Labor 12 32 45 12 18

 WarehouseSpace 4 12 10 3 7

 Hardware 1 1 3 0 2

 Shoptime 6 8 30 5 12;

POSITIVE VARIABLES Production(products) Number of units produced;

VARIABLES Profit Total fir summed net returns ;

EQUATIONS ProfitAcct Profit accounting equation ,

 Available(Resources) Resource availability limit;

 ProfitAcct..

 PROFIT

 =E= SUM(products,netreturns(products)*production(products)) ;

 available(resources)..

 SUM(products,

 resourceusage(resources,products) *production(products))

 =L= endowments(resources);

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

where only the material in black was added with no alterations of that in red relative to the
newcontext.gms example. So what? The algebraic structure once built did not need to be altered and
GAMS models can easily be expanded from smaller to larger data sets. Such capabilities constitute a
major GAMS model development strategy. One can originally develop a model with a small data set and
fully debug it. Then later one can move to the full problem data set without having to alter any of the
algebraic structure but have confidence in the algebraic structure. This is discussed further in the Small
to Large: Aid in Development and Debugging chapter.

2.10.1.3 Augmentation

Consider the newcontext.gms optimization example from just and suppose we wish to augment the
model with constraints and variables reflecting the capability to rent or hire additional resources subject
to a maximum availability constraint. This is done in the following example (augment.gms)

SET Products Items produced by firm

 /Chairs , Tables , Dressers /

 Resources Resources limiting firm production

 /RawWood , Labor , WarehouseSpace/

 Hireterms Resource hiring terms

 /Cost , Maxavailable /;

PARAMETER Netreturns(products) Net returns per unit produced

 /Chairs 19 , Tables 50, Dressers 75/

 Endowments(resources) Amount of each resource available

 /RawWood 700 , Labor 1000 , WarehouseSpace 240/;

TABLE Resourceusage(resources,products) Resource usage per unit produced

 Chairs Tables Dressers

 RawWood 8 20 32

 Labor 12 32 45

Quick Start Tutorial 46

© 2022 Prof. Bruce McCarl

 WarehouseSpace 4 12 10 ;

Table Hiredata(Resources,hireterms) Resource hiring data

 Cost Maxavailable

 RawWood 3 200

 Labor 12 120

 WarehouseSpace 4 112;

POSITIVE VARIABLES Production(products) Number of units produced

 HireResource(Resources) Resources hired;

VARIABLES Profit Total firm summed net returns ;

EQUATIONS ProfitAcct Profit accounting equation ,

 Available(Resources) Resource availability limit

 Hirelimit(Resources) Resource hiring limit;

 ProfitAcct..

 PROFIT

 =E= SUM(products,netreturns(products)*production(products))

 -SUM(resources,hiredata(resources,"cost")* HireResource(Resources)) ;

 available(resources)..

 SUM(products,

 resourceusage(resources,products) *production(products))

 =L= endowments(resources) + HireResource(Resources);

Hirelimit(Resources)..

 HireResource(Resources) =l= hiredata(resources,"maxavailable");

MODEL RESALLOC /ALL/;

SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

where only the material in black was added with no alterations of that in red relative to the
newcontext.gms example. So what? The algebraic structure from the other study could be used
supplied the core of the new model with structural features added as needed. Such a capability
constitutes another major GAMS model development strategy.

One can adapt models from other studies customizing them for the problem at hand speeding up the
development process. In addition to adapting models from related studies done by the modeler or the
group in which the modeler works, there are number of other sources one may be able to exploit to
jumpstart a model development project. This is further discussed below.

2.10.2 Aid with initial formulation and subsequent changes

GAMS aids both in initially formulating and subsequently revising formulations. GAMS facilitates
specification and debugging of an initial formulation by allowing the modeler to begin with a small data
set, then after verifying correctness expand to a much broader context. For example, one could initially
specify a small transportation model with a few suppliers and demanders. Then after that model is
debugged one could expand the problem to encompass fifty shipping origins and two hundred
destinations without needing to change the algebraic model as discussed in the Small to Large: Aide in
Development and Debugging chapter and the expandability section above.

GAMS also makes it easy to alter the model. Large models in programs like spreadsheets can be
difficult to modify. In a spreadsheet, I find it hard to add in a set of new constraints and variables
properly interjecting all the linkages and cannot figure out how to easily get a model right with a few
commodities then automatically expand the model scope to many commodities and locations as
illustrated in the expandability section above. On the other hand, GAMS allows one to add model

McCarl GAMS User Guide47

© 2022 Prof. Bruce McCarl

features much more simply. Generally, modelers do not try to make a complete formulation the first
time around. Rather one starts with a small formulation and then adds structural features as needed
adding features as illustrated in the augmentation section above. GAMS also enforces consistent
modeling, allowing models to be transferred between problem contexts as shown above.

2.10.3 Adding report writing

Generally, default GAMS output for the model solution is not adequate for conveying solution information
to the modeler or associated decision-makers. One often does calculations using solution information to
improve information content of the GAMS output. This is elaborated upon in the Improving Output via
Report Writing chapter below.

2.10.4 Self-documenting nature

One important GAMS feature its self-documenting nature. Modelers can use long variable, equation and
index names as well as comments, data definitions etc., allowing a readable and fairly well documented
problem description. Model structure, assumptions, and any calculation procedures used in the report
writing are documented as a byproduct of the modeling exercise in a self-contained file. Comment
statements can be inserted by placing an asterisk in column one, followed by text identifying data
sources or particular assumptions being used (i.e., in some of the my models, comments identify data
source publication and page). Under such circumstances GAMS allows either the original author or
others to alter the model structure and update data.

Consider for example the following example. Can you figure out what context the example is from?

LABOR(Farm)..

 PLOWLAB(Farm) * PLOW(Farm)

+ SUM(crop, PLNTLAB(Farm,Crop) *PLANT(Farm,Crop)

 + HARVLAB(Farm,Crop) * HARVEST(Farm,Crop))

=L= LABORAVAIL(Farm);

2.10.5 Large model facilities

GAMS is not the tool of choice for small, infrequently solved problems. In such cases, the generality of
the presentation may not be worth the effort, and spreadsheet or other formulations are probably quicker
and easier to deal with. GAMS is best employed for medium or large sized models (more than 100 rows
and/or columns) and can handle large problems as the table of a few or my application model sizes
below indicates.

MODELS VARIABLES EQUATIONS NOTES ON IMPLEMENTATION

10 REGION ASM 9860 811 412 crop budgets

129 livestock

45423 lines 2.9Mb

ASM 30146 2844 1662 crop budgets

Quick Start Tutorial 48

© 2022 Prof. Bruce McCarl

838 livestock budgets

60469 lines 8.3Mb

SOIL ASM 41574 2935 123087 lines 33.6Mb

GLOBAL ASM(sto) 305605 14556 120991 lines 43.5Mb

FASOM 26012 1774 141697 lines 35.3Mb

HUMUS 429364 236234 41444 lines 123.1Mb

EDWARD 12161 5655 7858 lines 6.1Mb

The gains to using GAMS rise with problem size and complexity of the model use exercise study.
When a modeler deals with large problems, the GAMS algebraic statement is probably the only thing
that is thoroughly understood. Often the numerical formulation has grown out of control.

2.10.6 Automated problem handling and portability

Many of the tasks that would traditionally have required a computer programmer are automated. As
such, GAMS automatically does coefficient calculation; checks the formulation for obvious flaws;
chooses the solver; formats the programming problem to meet the exact requirements of the solver;
causes the solver to execute the job; saves and submits the advanced basis when doing related
solutions; and permits usage of the solution for report writing. Also GAMS verifies the correctness of the
algebraic model statements and allows empirical verification using programs like GAMSCHK.

Furthermore, GAMS code is portable between computers. GAMS has been implemented on machines
ranging from PCs to UNIX/LINUX workstations to CRAY super computers. Exactly the same code runs
on all of these computer systems.

Switching solvers is simple, requiring changing a solver option statement, or changing from using LP to
using NLP, as discussed in the Variables, Equations, Models and Solves chapter. Links to
spreadsheets have also been developed as discussed in the Links to Other Programs Including
Spreadsheets chapter.

2.10.7 Model library and widespread professional use

Today GAMS has become the de facto standard for optimization modeling in many fields. Modelers
may be able to adapt models or gain insights from others. Some sources of models from which model
features can be adapted include:

• Models from experienced users that address similar problems that are closely related in

concept or structure and can be adapted.

• Models associated with textbooks. For example, my book with Spreen contains many

examples. The book and the examples are available through my Web page http://
agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/books.htm

McCarl GAMS User Guide49

© 2022 Prof. Bruce McCarl

• Models are available through the GAMS library which is directly included in the IDE. These

cover many different settings.

• References from the GAMS web pages http://www.gams.com/, or http://gamsworld.org/.

Each of these resources along with others are discussed in the chapter called Application Help: Model
Library, Web Sites, Documentation.

2.10.8 Use by Others

Modeling personnel are often rare. For example, in international development contexts, detailed GAMS
applications have been set-up by modeling experts but subsequently, the model is utilized by policy-
makers with minimal, if any, assistance from the modeling experts. Often, given proper internal
documentation and a few instructions, clerical labor and nontechnical problem analysts can handle an
analysis.

2.10.9 Ease of use with NLP, MIP, CGE and other problem forms

GAMS handles a variety of different problem types and has become one of principal languages for
computable general equilibrium modeling, agricultural economic modeling and oil refinery modeling. It is
also one of the principal platforms for experimentation with developing fields like mixed integer nonlinear
programming models and global optimization models. GAMS Corporation is continually engaged in an
effort to provide the most recent available solver software. This likely implies that GAMS users will have
available the most recent developments in solver software and libraries of application test problems in
emerging fields.

2.10.10 Interface with other packages

While not as well developed as I would like, GAMS does have procedures to interface with other
programs like spreadsheets, databases, custom control programs, and Visual basic procedures among
others. These interfaces are discussed in the chapter entitled to Links to Other Programs Including
Spreadsheets.

3 Language Basics

This section covers the real basics of the GAMS language covering how to specify a basic program. The
coverage is organized by chapter with the chapters covering:

Sets

Data Entry

Variables, Equations, Models and Solves

Model Types and Solvers

Standard Output

Writing Models and Good Modeling Practices

3.1 Sets

Within GAMS, sets are equivalent to subscripts in algebra and are a series of items that can be

http://www.gams.com/
http://gamsworld.org/

Language Basics 50

© 2022 Prof. Bruce McCarl

simultaneously operated over including summed over or looped over among other possibilities. Here
material is given on the major aspects of sets usage under the following categories:

Set declaration

Subsets

Element definition

Multi dimensional sets

Domain checking

Set element referencing

Universal Set: * as a set identifier

Finding sets from data

Element order and capitalization in output

Functions specifically referencing sets

Indexing sets defined over time

Set Arithmetic

3.1.1 Set declaration

In order to use any set one must first declare it. In its most complete form the set declaration contains

set name (rules for item names)
optional explanatory text for the whole set (rules for entries)
list of elements contained surrounded by /'s (rules for set element names)
optional explanatory text for the whole set (rules for entries)
optional explanatory text for individual elements (rules for entries)

The general format for the set declaration and element definition statement is:

SET setname optional explanatory text

 / first set element name Optional explanatory text

 second set element name Optional explanatory text

 …

 /;

or

SETs setname optional explanatory text

/ first set element name Optional explanatory text

 second set element name Optional explanatory text

 …

 /;

Examples:

(sets.gms)

SETs j /x1,x2,x3/
 i /r1 ,r2/;

McCarl GAMS User Guide51

© 2022 Prof. Bruce McCarl

SET PROCESS PRODUCTION PROCESSES /X1,X2,X3/;

SET commodities Crop commodities / corn in bushels

 Wheat in metric tons

 milk in pounds

 cost "cost/unit"

 "long-complex-*&$name"

 'element name'/ ;

Set jj(j) set to b e computed later without entries ;

$onmulti

set i additional entries for i /i1,i2/;

set composite(i,j) multidimensional /r1.set.j/;

set kk kk has all of i and j in it /set.i,set.j/;

Notes:

• The word set or sets can be used.

• Set names must obey the item naming presented in the Rules for Item Names, Element names

and Explanatory Text chapter.

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• Multiple sets can be stacked with the set or sets keyword only used once (see example with i and j

below). When multiple sets are defined in one set statement a ; is entered after all set definitions.

• Set elements are separated by spaces or commas.

• Element definitions can be quoted, have blanks or special characters as discussed in the Rules for

Item Names, Element names and Explanatory Text chapter.

• Use of $onmulti allows multiple set statements to appear for a named set.

• One can add the entire contents of a previously defined set to the definition of another set using the

syntax set.setname as used to inclide sets i and j in the definition of set kk above

3.1.2 Singleton Sets

GAMS permits a type of set which is called a Singleton Set. This is a special case of a GAMS

Set which has at most a single element (it may also be empty with zero elements).

In its most complete form the singleton set declaration contains

Singleton set

set name

(rules for item names)
optional explanatory text for the whole set (rules for entries)

the single element contained surrounded by /'s (rules for set element

names)
optional explanatory text for the individual element (rules for entries)

The general format for the set declaration and element definition statement is:

Singleton SET setname optional explanatory text

Language Basics 52

© 2022 Prof. Bruce McCarl

 / Only set element name Optional explanatory text

 /;

or
Singleton SETs setname optional explanatory text

/ Only set element name Optional explanatory text

/;

Examples:

(singleton.gms)

Singleton set s /oneelement/;

Set a /a1*a3/;

set b /b1*b3/ ;

Singleton set subsetofa(a) /a1/;

Singleton set subsetofb(b);

singleton set multidim(a,b) /a2.b3/ ;

subsetofb("b3")=yes;

parameter xx(a) /a1 10, a2 4, a3 6/;

parameter xy(b) /b1 10, b2 4, b3 6/;

scalar zz;

zz=xx(subsetofa);

display xx,subsetofa,zz;

zz=xx(subsetofa)+100*xy(subsetofb);

display zz;

positive variables myy(a)

 qq;

variable obj;

equations objeq

 limitmyy(a)

 pegzz;

objeq.. obj=e= qq+xx(subsetofa)*myy(subsetofa);

limitmyy(a).. myy(a)=g= xx(a);

pegzz.. qq=e=xx(subsetofa)/2;

model singletest /all/;

solve singletest minimizing obj using lp;

display xx,subsetofa,qq.l,myy.l;

Subsetofa("a1")=yes;

display Subsetofa;

Subsetofa("a2")=yes;

display Subsetofa;

Comments:

· In the example s, subsetofa and multidim are singleton sets in simple set, subset and tuple forms

· Singleton Sets can be used in assignment statements without being controlled by an index

operator like a sum loop or family name as illustrated by the following lines from the

example.

McCarl GAMS User Guide53

© 2022 Prof. Bruce McCarl

zz=xx(subsetofa);

zz=xx(subsetofa)+100*xy(subsetofb);

objeq.. obj=e= qq+xx(subsetofa)*myy(subsetofa);

pegzz.. qq=e=xx(subsetofa)/2;

· When assigning to a singleton set it is automatically cleared out first thus using the

commands

Subsetofa(“a1”)=yes;

Subsetofa(“a2”)=yes;

Would result in Subsetofa containing only a2 after execution.

· A data statement for a singleton set with more than one element will result in a compilation

error:

Singleton Set s / s1*s3 /;

**** $844

Error Message

844 Singleton with more than one entry

· The behavior of assignments to Singleton Sets can be influenced by the

option strictSingleton or the dollar commands

$onStrictSingleton/$offStrictSingleton:

3.1.3 Subsets

One can define subsets containing part of the elements of another set using a set statement. The
general format is

SET subsetname(setname) optional explanatory text

 / Elementname1 optional explanatory text

 Elementname2 optional explanatory text/;

where most of the contents are as discussed under set declaration above. The new elements are

Subsetname which names this subset.
Setname which names the "super" set that this one is a subset of.

Examples:

(sets.gms)

Set Superset /r1,r2,r4*r15, r25/

 Subset(superset) /r1,r25/;

Set allitems /Corn,wheat,water,land/

Language Basics 54

© 2022 Prof. Bruce McCarl

 Crop(allitems) /Corn,wheat/

 Resources(allitems) /water,land/;

Notes:

• The named elements of the subset must be elements of the superset.

• The subset does not need to contain all elements of the superset.

• The subset may be defined with explicit or calculated elements as discussed below.

3.1.4 Element definition

Elements within sets can be entered explicitly or in the case of subsets may be defined with
computations. Each case is covered below.

Explicit element definition

Element definition by computation

3.1.4.1 Explicit element definition

Explicit element definition involves the types of statements as above composed of

set

name of the set

optional explanatory text

/

element names followed by optional explanatory text.

between element names either a comma or a carriage return

/.

In element definition, one may cause multiple elements to be defined in sequence by using notation
such as r1*r4 which causes definition of r1,r2,r3,r4. One can also place the number in other positions

using for example 1u*10u which would define 1u, 2u, 3u etc. up to 10u. Additionally one may assign
members to a set in decreasing order.

Examples:

(sets.gms)

SETs rj /x1,"x2 item",'x3*case'/
 ri /r1 ,r2,r4*r10, 1a*200a/;

SET mPROCESS PROCESSES /X1,X2,X3/;

SET mcommodities Commodities / corn in bushels

 Wheat in metric tons

 milk in pounds/ ;

SET years items in decreasing order

McCarl GAMS User Guide55

© 2022 Prof. Bruce McCarl

/
bc2000*bc1,rr2009*rr0/;

SET years2 decreasing /"-20"*"-1"/;

3.1.4.1.1 Set definition through Tables

One can define set elements for sets that have 2 or more dimensions through tables. This is done using
a set then a table command or a set table command where the table entries are numerical or yes/no.

Examples:

The following four definitions all have the same effect (sets.gms)

set Linkedbyroad2(origins,destinations) Places linked by roadways

 /"NEW York" .Portland, "New York" .Houston,

 boston.portland, boston.Houston/;

set Table Linkedbyroad3(origins,destinations) Places linked by roadways

 Portland London Houston

 "NEW York" yes yes

 boston yes No yes;

set Linkedbyroad4(origins,destinations) Places linked by roadways;

Table Linkedbyroad4(origins,destinations) Places linked by roadways

 Portland London Houston

 "NEW York" yes yes

 boston yes No yes;

set Table Linkedbyroad5(origins,destinations) Places linked by roadways

 Portland London Houston

 "NEW York" 3209 1429

 boston 3180 0 1520;

Notes:

One can

• Define the set and elements in a tabular framework using the syntax Set Table.

• Define the set first using a set command without elements specified that later go back to fill in the

elements with a table command.

• Define the set elements using the same convention as in the Data Entry chapter table command

section (with entries aligned under column names) using either nonzero numeric entries to define
active elements or yes/no.

• Three or more dimensional items are defined as in the Data Entry chapter, table command section.

Language Basics 56

© 2022 Prof. Bruce McCarl

3.1.4.2 Element definition by computation

Elements of subsets may also be computed. This is done by using a statement such as

Set("nameofelement")=yes;

which is equivalent to including a set element named nameofelement in the set declaration. One may
also use computations to remove elements by using a statement like

Set("nameofelement")=no;

Examples:

(sets.gms)

Set nSuperset /r1*r15/

nSubset(nsuperset);

nSubset(nsuperset)=yes;

nSubset("r4")=no;

Set nallitems /Corn,wheat,water,land/

 nCrop(nallitems) ;

Parameter yield(nallitems) /Corn 100,Wheat 40/;

nCrop(nallitems)$(yield(nallitems) gt 0)=yes;

Notes:

• By default all elements in a set without definition are undefined (set to no), so one only has to

identify the items present (setting them to yes).

• Setting an element to no removes it from the set.

• Complex conditionals can be employed in defining the sets. Conditionals are discussed in the

Conditionals chapter.

• Computed sets cannot be used to define the domain of data items. One must use the superset for

the domain.

• Sometimes one will compute a set and set all elements to yes then go back and selectively remove

items using a command setting them to no.

• More on set computations appears in the Calculating Items chapter.

• Calculated sets are called dynamic and cannot be used with the ord command. Leads and lags

only work in conjunction with $offorder.

3.1.5 Multi dimensional sets

Sets do not need to be one dimensional and rather can be composed as sets of other sets where the
basic notation to identify the presence of an element is

set multidimset(set1name,set2name)

McCarl GAMS User Guide57

© 2022 Prof. Bruce McCarl

/set1elementname.set2elementname /

with the period separating the two set elements.

Examples:

(sets.gms)

Sets Origins Originating Places /"New York", Boston/

Destinations Demand points /"Portland",London, Houston/

Linkedbyroad(origins,destinations) Places linked by roadways

/"NEW York" .Portland, "New York" .Houston,

 boston.Portland, boston.Houston/;

Notes:

• Up to 20 sets may be used to define a multidimensional set.

• These sets are useful in speeding up GAMS and making sure that unneeded cases like sending

goods by truck across the ocean are not considered in the context of conditionals.

• A major use of multi dimensional sets is as a tuple in sums or conditions.

• Shorthand notation may be used to specify elements in multidimensional sets using parentheses.

For example, the statement

Set xx(origins,destinations) /boston.(houston,london)/;

is the same as the statement

Set xx(origins,destinations) /boston.houston,boston.london/;

• As of version 24.2 the alias may be used with multidimensional sets.

• One can add explanatory text to multidimensional sets as illustrated below where the text is in red

set d1 /d1,d2/

 e1 /e1,e2/

 f1 /f1,f2/

 tuplewithexp(d1,e1,f1)/ d1.e1.f1 has text

 d2.e2.f2/

3.1.6 Domain checking

The GAMS compiler conducts 'domain checking,' with respect to subset definition and set element
usage. Domain checking verifies that each element defined in a subset is in fact a member of the
superset. It also insures that each referenced element of a set in GAMS calculations or other equations
is in fact a member of the set associated with the definition of that location in parameters, variables, sets
etc. When the items are not in the domain of the referenced set GAMS issues a compilation error and
points to the missing element.

Language Basics 58

© 2022 Prof. Bruce McCarl

Examples:

(seterr.gms)

In the following case, the elements in bold and blue would pass the domain check, but the elements in bold
and red would stimulate compiler errors because Baltimore is not an element of the set places and seatle is
a misspelling.

Set places list of locations /boston,Miami,seattle/;

Set place(places) /boston,Miami,seatle,Baltimore/;

Parameter dataitem(places) / boston 5,Miami 8,seatle 4,Baltimore 3/;

Notes:

• Domain checking is automatic and is only suppressed under two circumstances

� When the set in the position is either the universal set or is aliased to the universal set as
discussed below.

� When the $onwarning option is used to suppress domain checking.

• Domain checking finds misspellings and omitted elements and thus should be used as often as

possible.

• Sets with calculated elements cannot be used in definition of item domains. This will generate a

GAMS error. These sets are called dynamic sets.

3.1.7 Set element referencing

Set elements are referenced in calculations, equation specifications, loops and many other statements.
 GAMS statements ordinarily refer to either a single element or to every element in the set. Special
provisions must be made to operate on more than one, but not all, elements of a set. Set referencing
may also be controlled by tuples where multiple sets are referenced only for specially defined joint
elements. Each of these cases is defined below.

Whole sets

Single elements

Operating over part of a set

Universal Set: * as a set identifier

3.1.7.1 Whole sets

GAMS ordinarily operates over every element in a set. Thus, the command (sets.gms)

Set II /i1*i4000/;
Parameter x(ii);
x(ii)=4;

will define every case of x associated with the set II to 4 and in this case 4000 of them.

McCarl GAMS User Guide59

© 2022 Prof. Bruce McCarl

Similarly the definition

X(ii)=y(ii) +3;

Will sequentially define every case of x in II to equal the associated case in y plus 3;

Also the following commands will each operate or define items for each case of II

Loop(II, z=z+y(Ii));
Z=sum(II,y(Ii));
Variable zz(Ii);
Equation eq(Ii);

3.1.7.2 Single elements

One can also specify an element name in quotes to cause GAMS to operate over just a single element
of a set. Thus the command

x("i344")=4;

will only operate over the I344 element of x leaving the rest alone.

Similarly, the definition

X("i344")=y("i344") +3;

will only define the i344 case of x to equal the i344 case in y plus 3; The command

X(Ii)=y("i344") +3;

will set every case of x associated with the entries in Ii to the i344 case of y plus 3.

3.1.7.3 Operating over part of a set

Ordinarily one operates over each and every element of the reference set that an item is defined over.
Thus in the case

NX(II,J)=4;

Each element of NX associated with every element of II in interaction with every element in J is operated
over. However, there are cases where one wishes only to operate over part of those cases. In such a
situation GAMS can be commanded to operate over part of the set through defined subsets, conditionals
or tuples. Each case will be covered below.

3.1.7.3.1 Using subsets

There may be cases where one wishes to reference a priori known or calculated subsets. In such case,

Language Basics 60

© 2022 Prof. Bruce McCarl

one may define a subset, either explicitly or through calculation, then reference the item with respect to
that subset. Consider the following example. (sets.gms)

Set thisI /i1*i10/;

Set thisJ(thisI) / i1,i3,i5/;

Parameter A(thisI) /i7 5, i2 9, i3 11/;

Set wherea(thisI);

Wherea(thisi)$a(thisi)=yes;

Parameter nzz(thisi);

nZz(thisi)=5;

nZz(wherea)=-1;

nZz(thisj)=12;

In this case, the blue colored statements operate over subsets of thisI with the where a reference being
over a calculated subset and the this j reference being over an explicitly defined subset.

3.1.7.3.2 Using conditionals

One may also operate over part of a set depending upon a conditional. For example the following
statement

Z=sum(thisI$nzz(thisI),1);

would add up the number of elements in thisI that are associated with a nonzero value of nzz(thisI) as
controlled by the conditional $nzz(thisI). The chapter on conditionals covers a lot more cases and
provides a fuller description.

Some particular forms of conditionals merit special mention in this document on sets. Conditionals can
involve functions that return particular values depending on the position of elements in sets, the length of
sets or the comparison of set elements to each other or text strings. These functions are defined in the
section on functions below. Discussion of their use follows.

3.1.7.3.2.1 Sameas and Diag

Sameas and diag are functions that allow comparison of set names. Suppose I wish to add up
shipments within cities. Further suppose I have an array move(origins,cities) giving the amount from
origins to cities. In addition the within city are those in move(origins, cities) where the origin name is the
same as the cities name. (sets.gms)

Alias(origins,cities);

Z=sum((origins,cities)$sameas(origins,cities),move(origins,cities));

or

Z=sum((origins,cities)$diag(origins,cities),move(origins,cities));

Equivalently a statement like

Z=sum((origins,cities)$(not sameas(origins,cities)),move(origins,cities));

McCarl GAMS User Guide61

© 2022 Prof. Bruce McCarl

adds up the shipments between cities.

One could also operate over particular elements using these commands

Available(resource)$(sameas(resource,"cropland") or

 sameas(resource,"pasture"))..

 Sum(activity,usage(resource,activity)*xvar(activity))=l=

 endowment(resource);

where the sameas command would compare the text for the element name for each elements of the set
resource with the string cropland or pasture and if so operate over that part of the resource set.

3.1.7.3.2.2 Ord and Card

ORD and CARD are functions defined in the Conditionals chapter that allow knowledge of and special
processing for the relative position of a set element within a set. Namely, I may also wish to do
particular things if I am on the first or last or other elements of a set. The statement (sets.gms)

stock(t)$(ord(t) eq 1) = initial;

defines a constraint only for the first element of t.

The command

Carryout.lo(t)$(ord(t) eq card(t)) = final;

only operates for the last element of t.

3.1.7.3.3 Using tuples

A tuple refers to a set defined over other sets. The set may either be a one dimensional subset or a
multidimensional set. Tuples are useful in calculations and in imposing conditionals.

Examples:

(sets.gms)

One can replace a sum that would go over all cases of a set with one that only operates over a subset. Namely
in

mZ=sum(r(mi),mx(mi));

the index r(mi) only operates over those elements in mI that appear in the subset r.

Similarly in

mQ(i_am_a_tuple (mI,mj) =mx(mi)+my(mj);

Language Basics 62

© 2022 Prof. Bruce McCarl

the only the mi and mj cases which are operated over are those explicitly defined in the set named
i_am_a_tuple.

Finally, note that when using a tuple on both sides of the equation that one does not need to explicitly enter the
component sets as follows

mQ(i_am_a_tuple) =mQ(i_am_a_tuple)*1.5;

where mq is declared as mq(mi,mj) in sets.gms but so is i_am_a_tuple so the mi and mj can be left out of the
replacement statement and the replacement will operate over all mi and mj cases in the tuple.

3.1.7.3.4 Defining a tuple w ith the matching and # operators

Mappings between tuples can be lengthy and inconvenient to enter via data statements plus difficult

to compute. The matching operator (:) can be used to simplify definition and assignment. When

using a matching operator one uses the general syntax

setsa:setsb

where elements of the set or sets specified befoore the : are matched with elements of the set or
sets specified after the colon in the order both are specified in GAMS up until the matching is
complete or all of the elements of one set or the other have been used. Namely the matching will
follow the order of set elements in GAMS with the first element of one set matched with the first
element of the second set etc.

For example, the statement (matchtuple.gms)

Set I / t1*t6:s3*s5 /

matches t1 with s3, t2 with s4 and t3 with s5. The elements t4, t5 and t6 are not matched because
the elements in the second set specification are exhausted. The result is the same as the explicit set
specification

Set j / t1.s3,t2.s4,t3.s5 /

One may also construct all combinations of the elements of 2 sets using notation involving the set
name and a # as follows

sets h /h1*h5/, d /d1*d20/, dh(d,h) /#d.#h/;

and address whole sets in the matching operation again using the set name and # as follows

sets t /t1*t100/, tdh(t,d,h) /#t:#dh/, dht/#dh:#t/;

The resulting set tdh will then have the values:

 t1.d1.h1, t2.d1.h2, t3.d1.h3 ..

while dht will have

McCarl GAMS User Guide63

© 2022 Prof. Bruce McCarl

 d1.h1.t1,d1.h2.t2, d1.h3.t3 ...

An option statement also causes the matching to occur. Namely given the set definitions

set i1 /el1*el5/,j1/jel1*jel10/,k/ka,kb,kc/,l/l1*l200/
;
Set ijk(I1,j1,k), x(I1,j1,k,l);

Then using an option statement that contains the matching operator (:) also causes the matching to
occur. Namely given the command

Option ijk(i1:j1,k), x(ijk:l);

Results in the set ijk being emptied then the set ijk being defined according to a matching of elements
of I with j for each k In turn then the x set is defined with the elements of ijk matched with l.

3.1.8 Universal Set: * as a set identifier

Set references may be indefinite allowing any entries at all by referring to the universal set. This is done
by either

• Using an * instead of a set name in an item definition, or

• Aliasing a set to the universal set (denoted by an *) and then using that set in item definitions.

In either case domain checking is suppressed and any entry whatsoever may be used without error.

Examples:

(sets.gms)

Here I use the universal set in a number of places

Set knownset /p1*p4/;

Alias (newuniverse,*);

Set a1(newuniverse);

Parameter dataitem(*) data without fixed set assignments /

 Newitem1 1, newitem2 3/;

Parameter dd(newuniverse);

Dd(knownset)=4;

Dd("newone")=5;

Dataitem("newitem4")=dataitem("newitem1")*dataitem("newitem2");

A1("boston")=yes;

where the blue and bolded items are all associated with universal sets and no domain checking is going
on and new elements can be freely introduced.

Notes:

• Use of universal sets for data input items is not recommended as spelling errors will not generally

Language Basics 64

© 2022 Prof. Bruce McCarl

be detected.

• GAMS will check in replacement statements to make sure specifically referenced elements have

been defined and will give an error if not (setuniverr.gms). But this is not done in model equations.

• Sometimes this is useful in finding the sets over which data items are defined or in quickly

formulating reports.

• The universal set is specified as ordered and ordered operators like lag, leads and ORD can be

applied to any sets aliased with it.

3.1.9 Using set attributes

Set elements have attributes that may be recovered during execution. In particular there are 9
attributes that may be revered in a statement of a for

a(setname)=setname.attribute;

where

setname is the name of the set

attribute is one of the following

• ord which gives the position of the element in the current set so for the first
element is at position one, the second at two etc.

• rev which gives the reverse position in the current set (card(i)-i.pos) so the last
element is at reverse position zero, the last but one at one etc

• pos which gives the element position without the requirement that the set be
ordered so for the first element is at position one, the second at two etc.

• off which gives the position in the current set less one (i.pos-1) so for the first
element is at position zero, the second at one etc

• uel which gives the element position in the unique element list

• val which converts set element names that happen to be numbers into values.

• len which gives the length of the text for the set element name (a count of the
number of characters)

• first which gives 1 for the first element of the current set and 0 for all others

• last which gives 1 for the last element of the current set and 0 for all others

Notes:

• ord is the same as the function pos and only works when the set is ordered
otherwise it generates a compilation error.

• pos which gives the element position without the requirement that the set be
ordered so for the first element is at position one, the second at two etc.

McCarl GAMS User Guide65

© 2022 Prof. Bruce McCarl

• val generates a number of the set element has a numeric counterpart (ie when
the element text is "1" or "100" etc but not when any non numeric characters
.excepting a decimal point are present in the set element name in which case an
execution error occurs

Examples:

set id set to find attributes for / aa,'-inf',1,12,24,'13.14',inf /;

parameter report(id,*) gives set values;

 report(id,'value') = id.val;

 report(id,'length') = id.len;

 report(id,'offset') = id.off;

 report(id,'position') = id.pos;

 report(id,'ord') = id.ord;

 report(id,'uel') = id.uel;;

display report;

which generates the output

**** Exec Error at line 188: Coud not extract number from element: aa

(this error is because element "aa" is non numeric)

---- 194 PARAMETER report gives set values

 value length offset position ord uel

aa UNDF 2.000 1.000 1.000 4260.000

-inf -INF 4.000 1.000 2.000 2.000 4261.000

1 1.000 1.000 2.000 3.000 3.000 4262.000

12 12.000 2.000 3.000 4.000 4.000 4263.000

24 24.000 2.000 4.000 5.000 5.000 4264.000

13.14 13.140 5.000 5.000 6.000 6.000 4265.000

inf +INF 3.000 6.000 7.000 7.000 4266.000

Note aa has an undefined value

3.1.10 Finding sets from data

Sometimes it is desirable to find the set that characterizes an item then use it from then on. One may
accomplish this by using an alias with the universal set and then compute set elements based on data
using conditionals. This also can be accomplished through the load command drawing data from a GDX
file.

Examples:

Consider the example trnsprt.gms where this is done using several steps. First I define sets without
specifying elements (sources and places here) as equivalent to universal (unspecified) set.

Language Basics 66

© 2022 Prof. Bruce McCarl

alias(sources,places,*)

Then I enter data which contains an indicator of which set elements are valid entries in the set to be computed
where in this case to be associated with the set sources the named place must have totalsupply.

table trandata (sources,places) data from spreadsheet

 newyork chicago totalsupply

 seattle 2.5 1.7 350

 Sandiego 2.5 1.8 300

 totalneed 325 75

Now in preparation of set calculation I define subsets for the sets I will compute. These sets will be set to yes
based on the data.

set source(sources) sources in spreadsheet data

 destinaton(places) destinations in spreadsheet data;

Then I compute the set elements based on the data. In this case a source is defined (set to yes) if that location
has an entry for totalsupply and a destination is defined if that place has an entry for totalneed.

source(sources)$(trandata(sources,"totalsupply"))=yes;

destinaton(places)$(trandata("totalneed", places))=yes;

These sets can be used from then on.

Such computations are useful if a report has been specified with indefinite elements but needs to be
manipulated or if one gets in a data table from elsewhere which defines the problem dimensions (set
elements).

3.1.11 Using another name or an alias

There are occasions when one may wish to address a single set more than once in a statement. In
GAMS this is done by giving the set another name through the ALIAS command as follows

ALIAS(knownset,newset1,newset2,...);

where each of the new sets will refer to the same elements as in the existing known set. As an
alternative to this one can use the .Local notation but generally only in macros and only ith care..

Examples:

(sets.gms)

Suppose I have a two-dimensional data item that addresses the same set in both dimensions and I wish to
compute the cost from each place to each other as a function of distance. To do this I use an alias as follows

Set place /p1,p2/;

Alias(place,otherplace);

Table distplace(place,place) distaces

 P1 p2

P1 0 4

McCarl GAMS User Guide67

© 2022 Prof. Bruce McCarl

P2 4 0;

Parameter cost(place,place) cost data;

Cost(place,otherplace)=1+5*distplace(place,otherplace);

Notes:

• As of version 24.2 the alias may be used with multidimensional sets.

3.1.12 Element order and capitalization in output

Set element ordering and capitalization are dictated by the general rules in GAMS for such items which
is called the Unique Element List or UEL that is discussed in the Rules for Item Capitalization and
Ordering chapter. The short answer from these rules is that the capitalization used is the first one seen
in the program and the order is the order in which the names for the set elements first appear in the
program.

3.1.13 Functions specifically referencing sets

There are four types of functions that are usable within GAMS that involve sets. These allow
comparisons of set elements (sameas,diag), an indication of the relative position of a set element within
a set (ord) and a count of the total number of elements within a set (card).

Ord

Card

Sameas

Diag

3.1.13.1 Ord

ORD(setelement) reports the position of his particular setelement within the overall set. Thus the
command

thisX(ione)=ord(ione);

will set thisx(ione) equal to one for the first element in Ione, two for the second etc;

Notes:

• Ord only works with ordered sets.

• Ord refers to the relative position of each element in the set not necessarily the order in which they

are typed. In particular the order may be different as determined by the rules for set ordering.

3.1.13.1.1 Ordered and Unordered sets

Ord and the leads and lags below only work on ordered sets unless the $command $offorder is
specified. Such sets typically must have explicit element definitions and cannot contain calculated
elements, thus being only sets with a priori specified values. Unordered sets are those that are not

Language Basics 68

© 2022 Prof. Bruce McCarl

ordered. The universal set is ordered and any set may be reported in ordered form using the special
predefined tuple set SortedUels(*,*). For example, to write a set in sorted order:

alias(*,u);

loop(SortedUels(u,i),

 put / i.tl i.te(i));

Sets with explicit elements are not always ordered if the elements are defined in two explicitly specified
sets and are referenced out of order in the second one as discussed here.

Note sets with calculated elements are also sometimes called dynamic.

3.1.13.2 Card

CARD(setname) reports the count of the total number of elements within the set. Thus the command

number=card(i);

will set the parameter number equal to the count of the total elements in i.

Note card works with any sets whether they contain calculated elements or not.

3.1.13.3 Sameas

One may wish to do conditional processing dependent upon the text defining a name of a set element
matching the text for a particular text string or matching up with the text for a name of a set element in
another set. This can be done in GAMS using the sameas command. SAMEAS
(setelement,othersetelement) or sameas(asetelement,"text") returns an indicator that is true if the
text giving the name of setelement is the same as the text for othersetelement and a false otherwise.
 Similarly sameas(asetelement,"texttotest") returns an indicator that is true if the text giving the name
of asetelement is the same as the texttotest and false otherwise. SAMEAS can also be used as a
set.

Examples:

(sameas.gms)

The following red use of sameas will only permit the case of cityI and cityj to be part of the sum where the
elements for both are boston and do not require the sets to be subsets of each other. The blue use will only
operate for the element of I associated with the name "new york".

Set cityI / "new york", Chicago, boston/;

Set cityj /boston/;

Scalar ciz,cir,cirr;

ciZ=sum(sameas(cityI,cityj),1);

ciR=sum((cityI,cityj)$ sameas(cityI,cityj),1);

ciRR=sum(sameas(cityI,"new york"),1);

McCarl GAMS User Guide69

© 2022 Prof. Bruce McCarl

Note:

The above examples show that sameas can be used as a tuple or a multidimensional set.

3.1.13.4 Diag

DIAG(setelement,othersetelement) or diag(asetelement,"text") returns a number that is one if the
text giving the name of setelement is the same as the text for othersetelement and a zero otherwise.
Similarly diag(asetelement,"texttotest") returns a one if the text giving the name of asetelement is
the same as the texttotest and zero otherwise.

Examples:

(diag.gms)

The following red use of diag will only be one for cityI and cityj where the elements for both are the same
(boston in this case). The blue use will only be one for the element of cityI associated with the name "new
york".

Set cityI / "new york", Chicago, boston/;

Set cityj /boston/;

Scalar ciz,cir,cirr;

ciZ=sum((cityi,cityj),diag(cityI,cityj));

ciRR=sum(cityi, diag(cityI,"new york"));

3.1.14 Indexing sets defined over time

Special features are included in GAMS for use with sets that represent time. These involve leads and
lags in both equilibrium and non equilibrium settings and the use of special functions for particular time
periods.

Leads and Lags: + / -

Circular or Equilibrium Leads and Lags: ++ / --

Element Position

3.1.14.1 Leads and Lags: + / -

Some problems involve sets defined over time covering years or quarters or months. Often when
operating with such sets one may wish to define carryover relationships. For example, suppose
beginning storage in a quarter equals ending storage in a previous quarter. These operators only work

with ordered sets unless one uses the $ command $On/OffOrder..

GAMS lead and lag features for set referencing are used as follows (dynindex.gms)

Stockbal(t).. endstock(t-1)=e=beginstock(t);

Where the -1 notation references the previous time period to the current one, or equivalently

Language Basics 70

© 2022 Prof. Bruce McCarl

Stockbal2(t).. endstock(t)=e=beginstock(t+1);

Notes:

• The lead and lag can also use +2 to go two periods into the future or +someothernumber for other

leads and –somenumber for lags.

• When the case identified by t-1 ot t+1 etc does not exist the term is just skipped. Thus in the

stockbal example above no lag t-1 tem is defined for the first case of t and no t+1 case is defined in
stockbal2 equation for the last set element in t.

3.1.14.2 Circular or Equilibrium Leads and Lags: ++ / --

Some problems involve sets defined over time covering quarters or months. Often when operating with
such sets one may wish to define carryover relationships where the year wraps around in an equilibrium
fashion and beginning storage in January equals ending storage in December. These operators only
work with ordered sets.

Examples:

The GAMS equilibrium lead and lag features for set referencing are used as follows (dynindex.gms)

Stockbal3(t).. endstock(t--1)=e=beginstock(t);

Where the --1 notation references the previous time period to the current one and wraps to the last
element when on the first element, or equivalently

Stockbal4(t).. endstock(t)=e=beginstock(t++1);

Notes:

• The lead and lag can also use ++n (--n) to go n periods into the future (past).

• When a case t--1 or t++1 etc does not exist the reference wraps restarting at the top or the bottom.

• The leads an lags ordinarily can only be used on sets with static contents (predefined) that are

ordered. Tis can be relaced through use of $offorder.

3.1.14.3 Element Position

Dynamic models often lead one to need to specify initial, terminal and normal operating rules. For
example, given a model defined over years one could want beginning storage in year one to equal Initial
storage, ending storage in the last period to equal a fixed amount and initial storage in the years in
between to equal carry out storage from the year before. This is commonly imposed using CARD and
ORD. In such a case one could impose the following (dynindex.gms)

Storecarry(t).. Beginstorage(t) =e= initial$(ord(t) eq 1) +endstorage(t-1);
Termstore(t)$(ord(t)=card(t)).. Endstorage(t)=e=finalstore;

McCarl GAMS User Guide71

© 2022 Prof. Bruce McCarl

3.1.15 Set Arithmetic

Arithmetic like set operations can be performed over sets that are a subset of a common superset to
form set unions, intersections, complements, and differences

Unions

Intersections

Complements

Differences

3.1.15.1 Unions

Set unions can be formed using an addition type operation namely (setarith.gms)

Subset3(superset) = Subset1(superset) + Subset2(superset);

The membership of subset3 contains all elements that are either members of subset1 and or subset2.
This operation is equivalent to the statements

Subset3(superset)=no; subset3(subset1)=yes; subset3(subset2)=yes;

3.1.15.2 Intersections

Set intersections can be formed using a multiplication type operation namely (setarith.gms)

Subset3(superset) = Subset1(superset) * Subset2(superset);

The membership of subset3 contains all elements that are members of both subset1 and subset2. This
operation is equivalent to the statements

Subset3(superset)=yes$(subset1(superset) and subset2(superset));

3.1.15.3 Complements

Set complements can be formed using the not operator (setarith.gms)

Subset3(superset) = not Subset1(superset);

The membership of subset3 contains all elements that are not members of subset1. This operation is
equivalent to the statements

Subset3(superset)=yes; subset3(subset1)=no;

3.1.15.4 Differences

Set differences can be formed using a subtraction type operation namely (setarith.gms)

Subset3(superset) = Subset1(superset) - Subset2(superset);

Language Basics 72

© 2022 Prof. Bruce McCarl

The membership of subset3 contains all elements that are in subset1 but not in subset2. This operation
is equivalent to the statements

subset3(subset1)=yes; subset3(subset2)=no;

3.2 Data Entry

GAMS provides for four forms of data entry. These involve:

Scalars

Parameters

Table

Calculated data

3.2.1 Scalars

A SCALAR declaration is used to enter items that are not defined with respect to sets. The general
form of the SCALAR entry is

scalar

 item1name optional explanatory text /numerical value/

 item2name optional explanatory text /numerical value/

... ;

or

scalars

 item1name optional explanatory text /numerical value/

 item2name optional explanatory text /numerical value/

... ;

Examples:

(scalar.gms)

scalar dataitem /100/;
scalar landonfarm total arable acres /100/;
scalars landonfarms /100/

 cost /-10.02/

 pricecorn 1992 corn price per bushel /2.20/;

scalars a1 , a2 , a3 /5/;
scalar withnodata enter a scalar without data;

Notes:

• Scalar names plus the explanatory text must obey the rules presented in the Rules for Item Names,

Element names and Explanatory Text chapter.

McCarl GAMS User Guide73

© 2022 Prof. Bruce McCarl

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• SCALAR or SCALARS can be used interchangeably.

• More than one named scalar is definable under a single scalar statement with a semicolon

terminating the total statement.

• Multiple named scalars can be defined in a line set off with commas.

• Data do not have to be entered in the scalar statement, but rather can be defined later with

replacement (=) statement calculations or assignments.

• Scalars are a specific input entry format for the general GAMS parameter class of items that also

encompasses Tables.

3.2.2 Parameters

Parameter format is used to enter items defined with respect to sets. Parameter format is most
commonly used with data items that are dependent on only one set (a vector) although multi set cases
can be entered.

The general format for parameter entry is:

Parameter

 itemname(setdependency) optional explanatory text

 /first set element name associated value,

 second set element name associated value,

... /;

or

Parameters

 itemname(setdependency) optional explanatory text

 /first set element name associated value,

 second set element name associated value,

... /;

Examples:

(parameter.gms)

PARAMETER c(j) / x1 3 ,x2 2 ,x3 0.5/

b(i) / r1 10

r2 3/;
PARAMETER

PRICE(PROCESS) PRODUCT PRICES BY PROCESS

/X1 3,X2 2,X3 0.5/;

RESORAVAIL(RESOURCE) RESOURCE AVAIL

/CONSTRAIN1 10 ,CONSTRAIN2 3/;
Parameter multd(i,j,k) three dimension /

i1.j1.k1 10 ,

Language Basics 74

© 2022 Prof. Bruce McCarl

i2.j1.k2 90 /;
parameters cc(j), cb(i) /i1 2/;
parameter hh(j) define all elements to 10 /set.j 10/;

Notes:

• Item names, the contained set element names plus the explanatory text must obey the rules

presented in the Rules for Item Names, Element names and Explanatory Text chapter.

• Explanatory text and long explanatory parameter names should be used where possible as argued

in the Writing Models and Good Modeling Practices chapter.

• PARAMETER or PARAMETERS can be used interchangeably.

• More than one named item is definable under a single parameter statement with a semicolon

terminating the total statement.

• Multiple named items can be defined in a line of a parameter statement set off with commas.

• Data do not have to be entered in the parameter statement, but rather can be defined later with

replacement (=) statement calculations or assignments.

• Items can be defined over up to 20 sets and thus one named item may be associated with

numerous individual numerical values for elements of the parameter, each associated with a
specific simultaneous collection of set elements for each of the named sets.

• When multi set dependent named items are entered then the notation is

set1elementname.set2elementname.set3elementname etc with periods(.) setting off the

element names in the associated sets.

• All elements that are not given explicit values are implicitly assigned with a value of zero.

• Multiple entries can occur within one command using notation such as

Parameter a(i) /(i1,i5) 3,(i6*i11) 5/;

• The referenced set elements must appear in the set the named item is defined over.

• Data for an element can only be defined once in a parameter statement.

• Parameters are an all-encompassing data class in GAMS into which data are kept including data

entered as Scalars and Table. Parameters may also contain acronyms.

• One can specify values for all elements in a set using the set reference set.setname as in definition

of hh above.

3.2.3 Table

TABLE format is used to enter items that are dependent on two or more sets.

The general format is

Table itemname(setone, settwo ...) optional explanatory text
 set_2_element_1 set_2_element_2

set_1_element_1 value_11 value_12
set_1_element_2 value_21 value_22;

McCarl GAMS User Guide75

© 2022 Prof. Bruce McCarl

More than two set dimensions can be entered as shown below.

Examples:

(tables.gms)

TABLE a(i,j) crop data

 corn wheat cotton

 land 1 1 1

 labor 6 4 8 ;

Table RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 Makechair Maketable Makelamp

 plantcap 3 2 1.1

 salecontrct 1 1 ;

Table fivedim(i,j,k,l,m) fivedimensional

 l1.m1 l2.m2

 i1.j1.k2 11 13

 i2.j1.k11 6 -3

+ l3.m1 l2.m7

 i1.j1.k2 1 3

 i10.j1.k4 7 9;

Table avariant1(i,j,state) crop data

 cn.al wt.al cn.al cr.in wt.in cn.in

 land 1 1 1 1 1 1

 labor 6 4 8 5 7 2;

Table avariant2(i,j,state) crop data

 al in

 land.corn 1 1

 labor.corn 6 5

 land.wheat 1 1

 labor.wheat 4 7

 land.cotton 1 1

 labor.cotton 8 2;

Notes:

• Item names, explanatory text and the contained set element names must obey the item naming

rules presented in the Rules for Item Names, Element names and Explanatory Text chapter.

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• Table statements must contain at least one data element. Ordinarily, if data are to be defined by

subsequent replacement (=) statement calculations or assignments it is usually better to define
that item with a parameter statement.

Language Basics 76

© 2022 Prof. Bruce McCarl

• Items in tables must be defined with respect to at least 2 sets and can be defined over up to 20

sets. Thus one item name may be associated with numerous individual numerical values for
elements of the parameter, each associated with a specific simultaneous collection of set
elements for each of the named sets.

• Tables are a specific input entry format for the general GAMS parameter class of items that also

encompasses scalars.

• When more than two dimensional items are entered in Tables then the notation is

set1elementname.set2elementname.set3elementname etc with periods(.) setting off the

element names in the associated sets. Multiple orders can be used as illustrated in avariant1 and
avariant2 above.

• Alignment is important. Each numerical entry must occur somewhere below one and only one

column name in the Table.

• All elements that are not given explicit values or have blanks under them are implicitly assigned to

equal zero.

• Multiple entries can occur within one table command using notation such as

 Table ta(i,j)

 J1 j2*j4

 (i1,i5) 3 1

 (i6*i11) 5 8;

• The referenced set elements must appear in the set the named parameter is defined over.

• Data for an element can only defined once in a table statement

• Tables that become too wide can be split and continued with a + (plus).

• Tables can also be used to define elements of sets as discussed in the sets chapter.

3.2.4 Calculated data

Data may also be entered through replacement or assignment statements. Such statements involve the
use of a statement like

parametername(setdependency) = expression;

where the parameters on the left hand side must have been previously defined in a set, parameter or
table statement.

Examples:

(caldata.gms)

scalar a1;

scalars a2 /11/;

parameter cc(j) , bc(j) /j2 22/;

a1=10;

a2=5;

McCarl GAMS User Guide77

© 2022 Prof. Bruce McCarl

cc(j)=bc(j)+10;

cc("j1")=1;

Notes:

• When a statement like cc(j)=bc(j)+10; is executed this is done for all elements in k so if j had

100,000 elements this would define values for each and every one.

• These assignments can be the sole entry of a data item or may redefine items.

• If an item is redefined then it has the new value from then on and does not retain the original data.

• Items in parameter or scalar coefficients without a data definition must have a calculated value

specified before they can be used.

• Calculations do not have to cover all set element cases of the parameters involved (through partial

set references as discussed in the Sets chapter). Set elements that are not computed over retain
their original values if defined or a zero if never defined by entry or previous calculation.

3.3 Variables, Equations, Models and Solves

In GAMS one specifies and solves models using an identification of variables, and equations along with
an equation specification, a model specification and a solve statement. Here I cover specification of
model types excepting those involving MPSGE. Users interested in that model type should review the
document MPSGE .

Variables

Equation

Model

Solve: Maximizing, Minimizing, and Using

3.3.1 Variables

A variable in GAMS identifies a quantity that can be manipulated in the solution of an optimization model
or a system of simultaneous equations. Variables and their set dependency must be declared before
they can be used.

Declaration

Variable attributes

3.3.1.1 Variable Declaration

The general syntax for variable declaration is

Variabletype

 firstvariablename(setdependency) optional explanatory text
/optional values for attributes/

 secondvarname(setdependency) optional explanatory text

/optional values for attributes/

https://www.gams.com/latest/docs/UG_MPSGE.html

Language Basics 78

© 2022 Prof. Bruce McCarl

…
;

where variabletype gives restrictions on the eligible numerical values for a variable. The following types
are allowed

Variable type Nature of restrictions on numerical values of variable

Variable
No restriction, variable value can range from minus to plus infinity.

Free Variable
Same as case just above.

Positive Variable
Non-negative values only, variable value can range from zero to plus
infinity Same as nonnegative below.

Nonnegative variable
Non-negative values only, variable value can range from zero to plus
infinity Same as positive above

Negative Variable
Non-positive values only, variable value can range from minus infinity to
zero.

Binary Variable
Restricted to equal either zero or one in an integer programming setting.

Integer Variable
Integer values only; by default ranging from 0 to 100.

SOS1 Variable
A group of variables only one of which can be non zero and by default are
positive. Details appear in the MIP chapter.

SOS2 Variable
A group of variables only two adjacent ones of which can be non zero and
by default are positive. Details appear in the MIP chapter.

Semicont Variable
Semi-continuous, must be zero or above a given minimum level. Details
appear in the MIP chapter.

Semiint Variable
Semi-integer, must be zero or above a given minimum level and integer.
Details appear in the MIP chapter.

Each variable must fit into one of these cases. One may also declare all variables in the Variable or
Free classes then redefine into one of the others. This is not recommended as it entails multiple
declarations of the same item.

Examples:

(model.gms)

McCarl GAMS User Guide79

© 2022 Prof. Bruce McCarl

Variables

 Tcost 'Total Cost Of Shipping- All Routes';

Binary Variables

 Build(Warehouse) Warehouse Construction Variables;

Positive Variables

 Shipsw(Supplyl,Warehouse) Shipment to warehouse

 tu/S1.a.l 5//

 Shipwm(Warehouse,Market) Shipment from Warehouse

Nonnegative Variables

 Shipsm(Supplyl,Market) Direct ship to Demand;

Semicont Variables

 X,y,z;

Notes:

• Variable names, the contained set element names plus the explanatory text must obey the rules

presented in the Rules for Item Names, Element names and Explanatory Text chapter.

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• Any of the variable type commands can end with the word variable or variables.

• More than one named variable is definable in a single variable statement separated by commas or

line feeds with a semicolon terminating the total statement.

• Multiple named variables can be defined in a single line of a variable statement set off with

commas.

• No data may be associated with a named variable in a variable statement.

• Named variables can be defined over from 0 up to 20 sets and thus one variable name may be

associated with a single case or numerous individual variables, each associated with a specific
simultaneous collection of set elements for each of the named sets.

• Every optimization model must contain at least one unrestricted named variable (i.e. one defined

with just the Variable or the Free Variable type).

• Such definitions indicate that these variables are potentially defined for every element of the defining

sets (also called the domain). However the actual definition of variables does not occur until the ..
equation specifications are evaluated as discussed later.

• The optional attribute data are discussed in the variable and equation attribute section.

3.3.1.2 Variable attributes

Variables have attributes that can be used in specifying bounds, starting values, scaling and integer
programming priorities. The attributes also contain the solution level and marginal for the variable after
execution of a solve statement. They are more extensively discussed in the Calculations chapter and
represent:

Variable attribute Symbol Description

Lower bound .lo Lower bound for the variable. Set by the user either explicitly or through
default values associated with the variable type.

Language Basics 80

© 2022 Prof. Bruce McCarl

Upper bound .up Upper bound for the variable. Set by the user either explicitly or through
default values associated with the variable type.

Fixed value .fx A fixed value for the variable which if set results in the variable up and lo
bounds being set to the value of the fx attribute.

Range .range The difference between the lower and upper bounds for a variable cannot
be assigned but can be used in computations.

Activity level .l Solution level for the variable, also the current value or starting point. This
attribute is reset to a new value when a model containing the variable is
solved.

Marginal .m Reduced cost, simplex criterion or dual value marginal value for the
variable. This attribute is reset to a new value when a model containing
the variable is solved.

Scale factor .scale Numerical scaling factor for all coefficients associated with the variable
providing the model attribute scaleopt is set to 1. This is discussed in the
Scaling chapter.

Branching priority .prior Branching priority value used in integer programming models providing the
model attribute prioropt is set to 1 as discussed in the MIP chapter. Also
permits one to relax integer restrictions by setting .prior = +inf regardless
of prioropt setting.

Slack upper bound .slackup Slack from variable upper bound. This is computed as x.slackup = max
(x.up-x.l,0)

Slack lower bound .slacklo Slack from variable lower bound. This is computed as x.slacklo = max(x.l-
x.lo,0)

Slack .slack Smaller slack from variable bounds. This is computed as x.slack = min
(x.slacklo,x.slackup)

Infeasibility .infeas Amount that variable is infeasible falling below its lower bound or above its
 upper bound. This is computed as x.infeas = - min(x.l-x.lo,x.lu-x.l,0)

The user distinguishes between these attributes by appending a suffix to the variable name. Values may
be assigned as defined here.

Examples:

(model.gms)

 Shipsw.up(Supplyl,Warehouse)=1000;

 Shipwm.scale(Warehouse,Market)=50;

 Shipsm.lo(Supplyl,Market)$(ord(supplyl) eq 1 and

 ord(market) eq 1)=1;

 totalship=

 sum((supplyl,market) ,shipsm.l(supplyl,market))

 +sum((supplyl,warehouse),shipsw.l(supplyl,warehouse))

 +sum((warehouse,market) ,shipwm.l(warehouse,market));

McCarl GAMS User Guide81

© 2022 Prof. Bruce McCarl

Notes:

• When variables are used in display statements you must specify which of the attributes should be

displayed. Appending the appropriate suffix to the variable name does this i.e.

display x.m,y.l,z.scale;

 No set element dependency specification appears.

• Wherever a variable appears in a GAMS calculation statement, the attribute desired must be

specified.

• The only place where a variable name can appear without a attribute suffix is in a variable

declaration, or a .. equation specification, which is discussed below.

• One can use the .L and .M attributes of variables to construct reports on problem solution as

discussed in the Improving Output via Report Writing chapter.

• One can assign values to these items in data statements as discussed here.

3.3.1.2.1 Assigning variable and equation attributes

One may specify initial values for the attributes of equations and variables. Those new data
statements follow the syntax for parameters or tables by adding an additional dimension to specify
the specific data attribute but appear in the context of the variable and equation definitions or a Table
statement.

The items that can be entered are the upper, lower and fixed bounds (.up, .lo, .fx); starting values
(.l); scaling factors (.scale); marginals (.m); and priorities (.prior for variables only).

The format is an extension of the variable and equation commands of one of two forms.

· The conventional variable and equation statements can be augmented with a parameter

like section where values are enclosed in between /'s as follows

 Variable x1(j) my first / j1.up 10 , j1.lo 5, j1.scale 20, jl.l 7, j1.m 0 /

;

 Equation landconstrain(landtype) my land constraints

 / cropland.scale 20, cropland.l 7, cropland.m 100 /;

· A table structure can be used The conventional variable and equation statements can be
augmented with a parameter like section where values are enclosed in between /'s as
follows

 variable table x(i,j) initial values
 l m

seattle. new-york 50

seattle. Chicago 300

san-diego.new-york 275

san-diego.chicago 0.009;

Language Basics 82

© 2022 Prof. Bruce McCarl

 Equation table landconstrain(landtype) my land constraints

 Scale l m

cropland 20 7 100

Pasture 10 6 30;

3.3.2 Equation

An equation in GAMS identifies a relationship in the model to be optimized or solved which is one of the
constraints that must be satisfied in choosing the solution levels for the variables. Equations and their
set dependency must be declared before their exact form can be specified.

Declaration

.. Equation specifications

Equation attributes

3.3.2.1 Equation Declaration

The general syntax for equation declaration is

Equation firstequationname(setdependency) optional explanatory
text
 /optional values for attributes/
 secondeqname(setdependency) optional explanatory text
 /optional values for attributes/

 …
;

or

Equation firstequationname(setdependency) optional explanatory
text
 /optional values for attributes/
 secondeqname(setdependency) optional explanatory text
 /optional values for attributes/

 …
;

Example:

(model.gms)

Equations
 tcosteq total cost accounting equation
 supplyeq(supplyl) limit on supply available at a
supply point
 demandeq(market) minimum requirement at a demand market
 balance(warehouse) warehouse supply demand balance
 capacity(warehouse) warehouse capacity

McCarl GAMS User Guide83

© 2022 Prof. Bruce McCarl

 /a.scale 50,a.l 10,b.m 20/
 configure only one warehouse;

Notes:

• Item names, the contained set element names plus the explanatory text must obey the rules

presented in the Rules for Item Names, Element names and Explanatory Text chapter.

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• Equation or equations may be used interchangeably.

• More than one named item is definable under a single equation statement separated by commas

or line feeds with a semicolon terminating the total statement.

• Multiple named items can be defined in a single line of an equation statement set off with commas.

• Data may not be associated with a named equation in an equation statement.

• Equations can be defined over from 0 up to 20 sets. Thus one item name may be associated with a

single case or numerous individual equations in the model, each associated with a specific
simultaneous collection of set elements for the named sets.

• There are no modifying keywords preceding Equations as there are with variables.

• Such definitions indicate that these equations are potentially defined for every element of the

defining sets (also called the domain). However the actual definition of variables does not occur

until the .. equation specifications are evaluated as discussed later.

3.3.2.2 .. Equation specifications

While the equation section names the equations it contains nothing about their algebraic structure. That
structure is defined in the specification or .. relationships within GAMS. In particular, each equation
defined must be matched by a .. command which contains it's exact algebraic structure. The syntax for
an equation specification is

equation name(setdependency)$optional logical condition . .
 lhs_equation_terms equation_type rhs_equation_terms;

where

• equation name(setdependency) must have already been named in an equation declaration.

• The set dependency specification must either match the sets used in the declaration, or use

sets which are subsets thereof or elements thereof.

• The $optional logical condition is optional and is discussed in the Conditionals chapter.

• The definition always contains two dots '..' .

Examples:

(model.gms)

Language Basics 84

© 2022 Prof. Bruce McCarl

tcosteq..
 tcost =e=

 sum(warehouse,dataw(warehouse,"cost")/dataw(warehouse,"life")

 *build(warehouse))

 +sum((supplyl,market) ,shipsm(supplyl,market)

 *costsm(supplyl,market))

 +sum((supplyl,warehouse),shipsw(supplyl,warehouse)

 *costsw(supplyl,warehouse))

 +sum((warehouse,market) ,shipwm(warehouse,market)

 *costwm(warehouse,market));

 supplyeq(supplyl).. sum(market, shipsm(supplyl, market))
 + sum(warehouse,shipsw(supplyl,warehouse))

 =l= supply(supplyl);

 demandeq(market)$ demand(market)..
 sum(supplyl, shipsm(supplyl, market))

 + sum(warehouse, shipwm(warehouse, market))

 =g= demand(market);

 balance(warehouse).. sum(market, shipwm(warehouse, market))
 - sum(supplyl,shipsw(supplyl,warehouse))

 =l= 0;

 capacity(warehouse).. sum(market, shipwm(warehouse, market))
 -build(warehouse)*dataw(warehouse,"capacity")

 =l= 0 ;

 configure.. sum(warehouse,build(warehouse)) =l= 1;
Here GAMS will operate over all the elements in the sets in each term. For example, in the tcosteq equation
GAMS will add up the term shipsm(supplyl,market)*costsm(supplyl,market) for all pairs of the set elements in
supplyl and market. Similarly the equation capacity(warehouse) will define a separate equation case for each
element of warehouse and within the equation for each paricular case of warehouse only the elements of
shipwm(warehouse, market) associated with that warehouse will be included in the term sum(market,
shipwm(warehouse, market)).

Notes:

• The algebraic terms of the equation (lhs equation terms, rhs equation terms) can be constants or

algebraic expressions at least one of which contains variables.

• Terms containing variables can appear on either or both of the right or left hand side of the

algebraic part of the equation specification.

• The equation type specifies the type of equation restriction with the following types allowed:

Symbol
Used

Equation Type Nature of restriction

=e= Equality eq.term 1 = eq.term 2

=g= Greater than or

McCarl GAMS User Guide85

© 2022 Prof. Bruce McCarl

equal to

=l= Less than or
equal to

=n= No specification Rarely used but can occur in MCP models.

=x= External defined Equation defined by external program as discussed in
Links to Other Programs Including Spreadsheets
chapter.

=c= Conic See the Mosek solver manual or the GAMS notes on
conic models a http://www.gams.com/conic/.

=b= Boolean A logic equation as discussed below

• Equation specification .. statements can carry over as many lines of input as needed.

• Blanks can be inserted to improve readability.

• An equation, once defined, cannot be altered or re-defined. If one needs to change the logic, a new

equation with a new name will have to be defined.

• Parameter data or calculated sets incorporated in the equations may be changed by using

assignment statements (see the Calculating Items chapter).

• Equation specifications end with a ;

• The equations and variables in a model are defined by the evaluation of the .. equation

specifications. If conditionals or subsets used so that the entire domain of the defining sets is not
covered the variables and equations will not be present for all elements of the domain. This given a
constraint resource(j) and a subset i(j) where there are elements in j that are not in i and a ..
command for resource(i).. means that resource equations will only be defined for the cases of j that
also exist in i, not all that are in j.

• The only variables that will be defined for a model are those that appear with nonzero coefficient

somewhere in at least one of the equations defined by the .. equations.

• More examples are in the GAMS test library

• Logic equations use Boolean algebra and have to evaluate to TRUE (or 1) to be feasible. The

Boolean functions available in GAMS and the default order of precedence of the operators are given
in the Table below.

Function Operator Alternative

Notation

Return Values Order of

Precedence

Negation not x bool_not(x) returns 1 if x=0 else 0 1

Logical
Conjunction x and y

bool_and
(x,y)

returns 1 if x=y=1 else 0 2

Logical
disjunction x or y bool_or(x,y)

returns 0 if x=y=0 else 1 3

Exclusive
disjunction x xor y

bool_xor
(x,y)

returns 1 if exactly one argument is

1, else 0
3

http://www.gams.com/conic/

Language Basics 86

© 2022 Prof. Bruce McCarl

Material
implication

x imp y or x ->
y bool_imp

(x,y)
returns 0 if x=1 and y=0 else 1

3

Material
equivalence

x eqv y or x
<=> y

bool_eqv
(x,y)

returns 0 if exactly one argument is
0, else 1 3

Note that in the table above x and y are binary variables.

There are three ways to declare and define logic equations:

1. The logic equation is declared using the keyw ord Logic Equation and the definition contains only Boolean algebra

symbols.

2. The logic equation is declared like any other equation using the keyword Equation and in the definition

the symbol =b= appears indicating that it is a logic equation.

3. This is a combination of the first two options: the equation is declared with the keyword Logic

Equation and defined using the symbol =b=.

The following example demonstrates the first way to declare and define a logic equation. It is adapted from the
food manufacturing

problem foodemp. In this problem the blending of oils is modeled.

Sets

m "planning period (month)" / m1*m6 /
p "raw oils" / v1*v2, o1*o3 /

Variables

induse(m,p) "indicator for usage of raw oil per month" ;

Binary variable induse;

Logic Equation
deflogic(m) "if some vegetable raw oil is used we also need to use the non-

vegetable oil o3" ;

deflogic(m).. induse(m,'v1') or induse(m,'v2') -> induse(m,'o3');

The variable induse is a binary variable, it can only take the values 0 and 1. The equation ensures that in an

optimal solution if either vegetable oil v1 or vegetable oil v2 is blended in a product, then non-vegetable oil

o3 is also blended in that product.

An alternative formulation of the equation deflogic using the =b= notation is given below.

deflogic(m).. induse(m,'v1') or induse(m,'v2') -> induse(m,'o3') =b= 1;

Note that the value of 1 on the right-hand side means that the logic expression on the left-hand side must evaluate to TRUE

in a feasible solution. To illustrate further, w e could negate the left-hand side expression using the logic operator not and

then the right-hand side w ould have to evaluate to zero or FALSE to yield the same result as above. The respective

McCarl GAMS User Guide87

© 2022 Prof. Bruce McCarl

equation definition follow s.

deflogic(m).. not (induse(m,'v1') or induse(m,'v2') -> induse(m,'o3')) =b= 0;

Note that currently logic equations are allowed only in models of the GAMS model type EMP.

3.3.2.3 Equation attributes

Equations have attributes that can be used in specifying starting values, and scaling. The attributes also
contain the solution level and marginal for the equation after execution of a solve statement. They are
extensively discussed in the Calculations chapter and represent:

Equation attribute Symbol Description

Lower bound .lo Negative infinity or the right hand side of a =g= or =e= equation.

Upper bound .up Positive infinity or the right hand side of a =l= or =e= equation.

Equation level .l Optimal level for the equation which is equal to the level of all terms
involving variables.

Marginal .m Dual, shadow price or marginal value for the equation. This attribute is
reset to a new value when a model containing the equation is solved.

Scale factor .scale Numerical scaling factor that scales all coefficients in the equation
providing the model attribute scaleopt is set to 1. This is discussed in
the Scaling GAMS models chapter.

The user distinguishes between these attributes by appending a suffix to the equation name.

Examples:

(model.gms)

SUPPLYEQ.scale(SUPPLYL)=33;

marg(supplyl)=SUPPLYEQ.m(SUPPLYL);

3.3.2.4 Assigning equation attributes

This topic is discussed here.

3.3.3 Model

Models are objects that GAMS solves. They are collections of the specified equations and contain
variables along with the upper and lower bound attributes of the variables. The model statement
identifies and labels them so that they can be solved. Three fundamental types of models can be
identified.

1 Optimization models (LP, NLP, MIP, MINLP, ...) where the model statement identifies the

Language Basics 88

© 2022 Prof. Bruce McCarl

equations present in the model.

2 Simultaneous systems of equations (CNS) that are to be solved where the model statement
identifies the equations present in the model.

3 Mixed complementary problems (MCP) where the model statement identifies the equations
present in the model and their complementary relationships with the problem variables.

The basic form of the model statement is

Model Modelname optional explanatory text / model contents /;

or

Models Modelname optional explanatory text / model contents /;

Notes:

• Modelname, plus the explanatory text must obey the rules presented in the Rules for Item

Names, Element names and Explanatory Text chapter.

• Labels and long explanatory names should be used where possible as argued in the Writing

Models and Good Modeling Practices chapter.

• Model or Models can be used interchangeably.

• More than one named model is definable under a single Model statement separated by

commas or line feeds with a semicolon terminating the total statement.

• Model contents can be defined in several different ways.

� The notation /all/ includes all equations seen before the model statement within the
named model. (model.gms)

Model warehousel Warehouse location model /all/;

� In optimization and nonlinear system models one can list the equations to be included
as follows (model.gms)

Model warehousel2 Warehouse location model

/tcosteq,supplyeq,demandeq,balance,capacity,configure/;

� One may include the names of models that were previously defined. Thus for example:
 Model one first model /

TCOSTEQ,SUPPLYEQ,DEMANDEQ /
 two second model that nests first / one, balance /

 three third model that nests first and second / two,

capacity,configure /;

In turn model two will now contain equations TCOSTEQ,SUPPLYEQ,DEMANDEQ while
model three will contain all of model two plus equation balance. Similarly model three will
have all of model two plus the two specified equations.

� One may include + and - to augment or remove items relative to models that were

previously defined. Thus for example:

McCarl GAMS User Guide89

© 2022 Prof. Bruce McCarl

Model four fourth model that includes what is in model one and three / one

+three /

 five fifth model includes equations in WAREHOUSEL2 but not

those in model one / WAREHOUSEL2-one /

 six sixth model includes those in model WAREHOUSEL2 but

not equation configure/ WAREHOUSEL2-configure /

In turn model four will contain the union of all equations in models one and three while five
will contain what is in the WAREHOUSEL2 model less the equations in model one.
Finally model six will contain what is in WAREHOUSEL2 less the equation configure.

This shows both model and equation names can be used in association with the + and -
symbols..

� In selected model types (MCP, MPEC, RMPEC) including mixed complementary

models one can list the equations to be included and their complementary variables
as follows (mcp.gms)

Model qp6 Michael Ferris example of MCP

/ d_x?x, d_w?w, retcon?m_retcon,

budget?m_budget, wdef?m_wdef /;

where the notation has

equation name?complementary variable name

• Note this notation will allow GAMS to compile without errors in all model types

but will not be an active part of the specification except in MCP, MPEC, and
RMPEC models.

• In MCP models one can use the /all / notation to add all equations and match up

complementary variables provided that all the equations are of the form =e= or =n= and the
variables are all free with the problem being square with free variables defined with exactly
matching subscripts for each equation (kormcp.gms). However this is somewhat risky as the
model does not choose variables that are really related to equations and much of the problem
structure is not conveyed to the solver. It is generally better to specify the complementary
pairs in the model statement.

• In MCP problems one need only define part of the complementary relations and the remaining

ones can be filled in by GAMS and the solvers providing a free variable can be found for each
of the remaining equations and that the system is square. The equation names and possible
complementary variable names included in the model contents specification need to be
named variables and equations. Again, this is risky.

• Set membership is not included in the model contents field.

• The terms in an equation are recomputed every time a solve statement is executed as

discussed in the Calculating Items chapter.

• The MCP problem structure imposes particular requirements on specification of the equations

in the problem.

� It is always acceptable to write the equations defining the problem with =N= relations. In

Language Basics 90

© 2022 Prof. Bruce McCarl

this case, the sign of the associated equation is implied by the equation/variable
matching and the variable bounds.

� If a variable is complementary with an equation and that variable has lower bounds only
(e.g if the variable in GAMS terms is a positive variable) then it is acceptable to write the
complementary equation with =G= relations, since this is consistent with the constraint
implied by the lower bound on the variable.

� A variable bounded only above can be matched with =L= equations.

� Free variables without bounds can be matched with =E= equations.

These restrictions are elaborated on in the Model Types and Solvers chapter.

3.3.3.1 Model attributes

A number of attributes of models may be accessed by the user in the form of numerical values. These
include three fundamental types of items.

• Attributes that contain information about the results of a solver performed, Solve statement

generated, solution of a model.

• Attributes that tell a solver or GAMS to use of certain features.

• Attributes that pass information to the solver or GAMS giving various setting that are also

subject to option statement settings.

The general way these are used is as follows.

X=modelname.attribute;
Modelname.attribute=3;

where modelname is the name used in a model statement and attribute is one of the items listed below.
 More specifically, given the modelname is transport then statements like

x=transport.modelstat;
transport.holdfixed=1;
transport.bratio=1;

3.3.3.1.1 List of attributes

Here a brief list of the available attributes is presented. The attributes are extensively covered in the
Model Attributes chapter. An * below indicates this attribute is also controlled by a GAMS option
command.

Attribute

Main Usage
relative to Solve

NotesPre Post

McCarl GAMS User Guide91

© 2022 Prof. Bruce McCarl

Bratio*
X

Controls whether to discard advanced basis

Cheat
X

Minimum improvement in MIP objective value

Cutoff
X

Limit on acceptable MIP objective value

Domlim
X

Number of numerical errors allowed during solution

Domusd
X

Number of equation evaluation numerical errors encountered in
solving

Fddelta
X

Step size for numerical derivatives

Fdopt
X

Controls methods of numerical Hessian calculation

Holdfixed
X

Reduces problem size by eliminating fixed variables

Iterlim* X Iteration limit which as of 23.1 has a default value of 2 billion

Iterusd
X

Number of iterations to solve problem

Limcol*
X

Limit on number of variables in output

Limrow*
X

Limit on number of equations in output

Marginals
X

Whether or not the solver provides a dual solution.

Mcprholdfx An attribute if set to one results in a printout of the rows in an
MCP problem that are complementary with variables that are
held fixed by a .fx command when the holdfixed command is
employed. More discussion on this appears here.

Modelstat
X

Model solution status. Values of 1 or 2 or 8 generally denotes
optimal solution or with CNS values of 15 and 16., Other
values denote infeasible, unbounded, solver failure etc.
Consult solver manuals or the modelstat table for more.

Nodlim
X

Node limit in MIP

Numdepnd X
Number of dependencies in a CNS model

Numdvar
X

Number of discrete variables in the model

Language Basics 92

© 2022 Prof. Bruce McCarl

Numequ
X

Number of total equations in the model

Numinfes
X

Number of infeasibilities in the solution

Numnopt
X

Number of non-optimalities in the solution

Numnz
X

Number of non-zero entries in the model coefficient matrix

Numunbd
X

Number of unbounded variables in the solution

Numvar
X

Number of single variables in the model

Objest X
Bound on best possible objective value far a MIP as derived by
the solver

Optca*
X

Max absolute MIP optimality gap

Optcr*
X

Max relative MIP optimality gap

Optfile
X

Causes use of solver options file

Prioropt
X

Causes use of MIP priorities

Reslim*
X

Max time available to solve in seconds

Resusd
X

Time in CPU seconds the solver used to solve the model

Robj
X

Relaxed objective value from MIPs when solve doesn't work

Scaleopt
X

Use user defined internal scaling factors

Solprint*
X

Controls solution print in LST file. A related set of solprint
constants is also present.

Solveopt
X

Merge or replace solution information

Solvestat
X

Solver termination status. Value of 1 denotes normal
termination, larger values denote iteration limits, solver failure
etc. A full list appears here.

Sysout*
X

Expands solution output

Tmodstat
X

Can be used in put statements to give problem optimality

McCarl GAMS User Guide93

© 2022 Prof. Bruce McCarl

status text

Tolinfrep
X

Sets the tolerance for marking infeasible in the equation
listing. The default value is 1.0e-6

Tolproj
X

Sets tolerance for filtering marginals and variable/equation
levels (i.e. setting marginals within a tolerance to 0 and
projecting levels to their lower or upper bound) when they are
within the tolerance when reading then outputting a solution,
default is 1e-8. Levels reset are reported in solution report
as projected. Marginals are only reset for basic items.

Tryint
X

Try to make current solution integer and use it in MIP solve

TryLinear
X

Examine empirical NLP model to see if there are any NLP
terms active. If there are none the default LP solver will be
used. To activate use modelname.trylinear=1. Default value is

zero. The procedure also checks to see if QCP, and DNLP
models can be reduced to an LP; MIQCP and MINLP can
be solved as an MIP; RMIQCP and RMINLP can be
solved as an RMIP.

Tsolstat
X

Can be used in put statements to give problem optimality
status text

Workspace*
X

Amount of CPU memory to allocate

3.3.4 Solve: Maximizing, Minimizing, and Using

Various types of problems can be solved with GAMS. The type of the model must be specified so
GAMS can choose the appropriate solver to use as must some information about the model, and, if
relevant, direction of optimization. This is done through a Solve statement. The general syntax for the
Solve statement depends on model type and is

For optimization model types (LP, NLP, MIP, MINLP etc.) the Solve is one of the following 4 forms

Solve modelname maximizing var name using model type ;

Solve modelname minimizing var name using model type ;

Solve modelname using modeltype maximizing var name ;

Solve modelname using modeltype minimizing var name ;

with the possible addition of the words when GUSS is being used

SCENARIO tuplename ;

while for MCP and CNS model types which involve solution of equations systems we use

Language Basics 94

© 2022 Prof. Bruce McCarl

Solve modelname using modeltype ;

where

• modelname is the name of a model specified in a Model statement somewhere earlier in the

program.

• the key word maximizing or minimizing is used to identify the direction of optimization.

• var name is the name of an unrestricted in sign variable (free or one declared as a variable

only) which is declared and in a .. equation specification for at least one equation in the model
and is the item to be maximized or minimized. Often such variables must be added as
covered in the Tutorial chapter.

• modeltype which is one of the following types of problems.

GAMS model
type Model Type Description Requirement

LP Linear Program Optimization problem which cannot contain nonlinear
terms or discrete (binary or integer) variables

NLP Non Linear Program Optimization problem which contains smooth nonlinear
terms, but not discrete (binary or integer) variables

QCP Quadratically Constrained
Program

Optimization problem which can contain quadratic
nonlinear terms, but cannot contain other types of
nonlinear terms or discrete (binary or integer) variables.

DNLP Discontinuous Non Linear
Program

Optimization problem which contains non smooth
nonlinear terms with discontinuous derivatives, but not
discrete (binary or integer) variables

MIP Mixed Integer Program Optimization problem which contains discrete (binary or
integer) variables, but does not contain nonlinear terms

RMIP Relaxed Mixed Integer
Program

Optimization problem which contains binary, integer,
SOS and/or semi variables, but does not contain
nonlinear terms and has discrete/SOS/Semi variable
requirement relaxed

MINLP Mixed Integer Nonlinear
Program

Optimization problem which contains smooth nonlinear
terms and discrete (binary or integer) variables

RMINLP Relaxed Mixed Integer
Nonlinear Program

MINLP optimization problem with the binary and integer
restrictions relaxed

MIQCP Mixed Integer
Quadratically Constrained
Program

Optimization problem which can contain quadratic
nonlinear terms, but cannot contain other types of
nonlinear terms

McCarl GAMS User Guide95

© 2022 Prof. Bruce McCarl

RMIQCP Relaxed Mixed Integer
Quadratically Constrained
Program

Optimization problem which can contain quadratic
nonlinear terms and has discrete variable requirement
relaxed.

MPEC Mathematical Programs
with Equilibrium
Constraints

A difficult problem type for which solvers are just now
under development and is the subject of a section on
gamsworld.org.

RMPEC Relaxed Mathematical
Program with Equilibrium
Constraints

A difficult problem type for which solvers are just now
under development and is the subject of a section on
gamsworld.org

MCP Mixed Complementarity
Problem

A problem solving a nonlinear system of equations
which contains one to one complementary relationships
between all of an equal number of variables and
equations

CNS Constrained Nonlinear
System

A problem solving a square, possibly nonlinear system
of equations, with an equal number of non-fixed variables
and constraints

MPSGE General Equilibrium Not actually a model type but mentioned for
completeness see MPSGE

EMP Extended Mathematical
Program

A family of mathematical programming extensions.

The exact form of these problem types is discussed in the Model Types and Solvers chapter.

• SCENARIO tells GAMS to use the GUSS scenario handler

• tuplename tells GUSS what to do when activated

Examples:

model.gms , mcp.gms , korcns.gms (from the GAMS model library) , resource.gms and GUSSRISK.gms

Solve warehousel2 using MIP minimizing tcost;

Solve qp6 using MCP;

Solve model1 using cns;

Solve resalloc using lp maximizing profit;

SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ SCENARIO GUSSDICT ;

3.3.4.1 Actions on executing solve

GAMS does not directly solve problems rather other programs are used to solve the problem. However,
GAMS does generate the problem in a form that is ready for the solver. In doing this several things
happen:

• GAMS checks that the model is in fact the type the user thinks it is, and issues explanatory

http://www.gamsworld.org/
http://www.gamsworld.org/
https://www.gams.com/latest/docs/UG_MPSGE_Intro.html

Language Basics 96

© 2022 Prof. Bruce McCarl

error messages if it discovers a model beyond the solution capabilities of the solver to be
used. For example the presence of nonlinear terms in a supposedly LP model.

• A solver is chosen which is either the

� Default solver for that problem type

� One specified on the GAMS command line

� Solver chosen by an option statement.

• Optimization models are checked to see that the objective variable is a scalar (not defined

over any sets) and of the variable type free, and appear in at least one of the equations in the
model.

• MCP models are checked for appropriate complementarity and squareness.

• All equations in the model are checked to insure they have been defined.

• All sets and parameters used in the equations are checked to insure they have had values

assigned.

• The model is translated into the representation required by the solver to be used.

• LIMROW and LIMCOL output is produced and written to the output file (Equation Listing, etc)

as shown in the Standard Output chapter.

• GAMS verifies that there are no errors such as inconsistent bounds, inconsistent equations or

unacceptable values (for example Na or Undf) in the problem. Any errors detected at this
stage cause termination with an execution error reported as discussed in the execution errors
chapter.

• GAMS passes control to the solution subsystem and waits while the problem is solved.

• GAMS collects back information on the solution process from the solver and loads solution

values back into the memory. This causes new values to be assigned to the .l and .m variable
and equation attributes for all individual equations and variables in the model plus the post
solution model attributes. The procedure for loading back in the .l and .m data is controlled by
the solveopt model attribute and option.

• A row by row and column by column listing of the solution is provided unless suppressed by

the solprint model attribute or option.

3.3.4.2 Programs with multiple solve statements

Multiple solve statements can be present in a program.

Example:

(PROLOG.gms , Risk.gms)

solve nortonl using nlp maximizing z;

solve nortonn using nlp maximizing z;

solve nortone using nlp maximizing z;

loop (raps,rap=riskaver(raps);
 solve evportfol using nlp maximizing obj ;

McCarl GAMS User Guide97

© 2022 Prof. Bruce McCarl

 var = sum(stock, sum(stocks,

 invest.l(stock)*covar(stock,stocks)*invest.l(stocks))) ;

 output("rap",raps)=rap;

 output(stocks,raps)=invest.l(stocks);

 output("obj",raps)=obj.l;);

Notes:

• If you have to solve sequences of expensive or difficult models, you should consider using save and

restart to interrupt and continue program execution.

• When more than one solve statement is present, GAMS uses information from the previous solution

to provide a starting point for the next solution (see the Basis chapter for a discussion).

• Multiple solve statements can be used not only to solve different models, but also to conduct

sensitivity tests, or to perform case (or scenario) analysis of models by changing data or bounds
and then solving the same model again (risk.gms).

3.3.4.2.1 Multiple solve management - merge replace

When multiple solves are present one needs to pay attention to the way that GAMS manages solutions.
 In particular, when multiple models are solved GAMS by default merges subsequent solutions in with
prior solution. This is not an issue if all the models operate over the same set of variables. However, if
different variables appear in the solved models (due to recursive procedures, different equation inclusion
or $ conditionals that can eliminate variables) then one should be aware that GAMS permits the user to
modify the solution management procedure. This attribute tells GAMS how to manage the model
solution when only part of the variables are in a particular problem being solved. In particular, the
solution can either be merged with the prior solution for all variables or it can replace "All" old values
associated with a the variables and equations in the model just solved being reset to default values
before new solution values are brought in.

Transport.solveopt =0; (activates solution replace option)
Modelname.solveopt =1; (activates solution merge option -- the default)
Modelname.solveopt =2; (activates solution clear option)

or the option command

option solveopt = replace;
option solveopt = merge; (default)
option solveopt = clear;

The values do the following

· replace (0) causes the solution information for all equations appearing in the model to be
completely replaced by the new model results. Variables are only replaced if they appear
in the final model.

· merge (1) causes the solution information for all equations and variable to be merged into
the existing solution information. This is the default.

Language Basics 98

© 2022 Prof. Bruce McCarl

· clear (2) causes the solution information for all equations appearing in the model to be
completely replaced; in addition, variables appearing in the symbolic equations but
removed by conditionals to be removed (set to zero).

as discussed in the Option Command and Model Attributes chapters.

3.3.4.3 Choosing a solver

GAMS offers a number of choices to solve a model and the user may switch solvers at their discretion
providing they have appropriate licenses. Mechanically, there are several ways to switch

• One can just before the solve use an option command of the form

Option model type = solver name

where model type is the same model type as that used in the Solve statement and solver
name is the name of one of the available solvers.

option lp=bdmlp;
option nlp=conopt;
option MIP=cplex;

• One can call GAMS with the command line parameter

model type = solver name

as in

gams mymodel lp=bdmlp

When using the IDE this is placed in the GAMS command box in the upper right hand corner
as discussed in the Running Jobs with GAMS and the GAMS IDE chapter.

• One can choose the solver using the file/options/solvers dialogue in the IDE.

• One can rerun gamsinst.exe or gamsinst.run at any time and alter the choice of default solver.

• One can generate a list of all solvers and current default solvers in the LST file using the

option Subsystems.

The solvers available depends on the license file.

3.4 Model Types and Solvers

There are a number of model types and solvers in GAMS. Here we define each model type and list the
solvers along with giving a cross reference of which solvers can solve which model types as of Aug 2005.

Model Types

Solver capabilities matrix

Solvers

McCarl GAMS User Guide99

© 2022 Prof. Bruce McCarl

3.4.1 Model Types

GAMS contains a number of model types. Each is explained here.

Linear programs (LP)

Nonlinear program (NLP)

Quadratically constrained program (QCP)

Mixed integer programming (MIP)

Relaxed mixed integer programming (RMIP)

Mixed complementarity problem (MCP)

Mixed integer nonlinear program (MINLP)

Relaxed mixed integer nonlinear program (RMINLP)

Mixed integer quadratically constrained program (MIQCP)

Relaxed mixed integer quad. constrain program (RMIQCP)

Constrained nonlinear systems (CNS)

Nonlinear programming with discontinuous derivatives (DNLP)

Mathematical program with equilibrium constraints (MPEC)

Relaxed mathematical program with equilibrium constraints (RMPEC)

Extended Mathematical Programs (EMP)

3.4.1.1 Linear programs (LP)

Mathematically, the linear programming (LP) Problem looks like:

where

x is a vector of variables that are continuous real numbers;
cx is the objective function;

AX α

L and U are vectors of lower and upper bounds on the variables which are often 0 and infinity.

The LP problem can be solved using a number of alternative solvers in GAMS. For information on the
names of the solvers that can be used on models in the LP class see the section on Solver Model type
Capabilities.

3.4.1.2 Nonlinear program (NLP)

Mathematically, the nonlinear programming (NLP) Problem looks like:

Maximize or Minimize f(x)

subject to g(x) á 0
L < x < U

Language Basics 100

© 2022 Prof. Bruce McCarl

where

x is a vector of variables that are continuous real numbers;
f(x) is the objective function;
g(x) represents the set of constraints;
á is some mixture of <, = and > operators; and
L and U are vectors of lower and upper bounds on the variables.

Both f and g must be differentiable which prohibits ABS, MIN and MAX functions from appearing. (They
can be included in the DNLP alternative below.) For information on the names of the solvers that can be
used on models in the NLP class see the section on Solver Model type Capabilities.

Note NLP models can possibly have the nonlinear terms inactive and in such a case setting the model
attribute TryLinear = 1 causes GAMS to check the model and use the default LP solver if possible.

3.4.1.3 Quadratically constrained program (QCP)

Mathematically, the quadratically constrained programming (QCP) problem looks like:

Maximize or Minimize cx + x'Q x

subject to A
i
x +x' R

i
x α b

i
 for all i

L < x < U

where

x is a vector of variables that are continuous real numbers;
cx is the linear part of the objective function
x'Qx is the quadratic part of the objective function
A

i
x represents the linear part of the ith constraint;

x' R
i
x represents the quadratic part of the ith constraint;

b
i
 is the right hand side if the ith constraint;

α is some mixture of <, = and > operators; and

L and U are vectors of lower and upper bounds on the variables.

For information on the names of the solvers that can be used on models in the QCP class see the
section on Solver Model type Capabilities.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a LP problem.

3.4.1.4 Mixed integer programming (MIP)

Mathematically, the Mixed Integer Linear Programming (MIP) Problem looks like:

McCarl GAMS User Guide101

© 2022 Prof. Bruce McCarl

where the

t variables are continuous real numbers
u variables can only take on integer values bounded above by L

2

v variables can only take on binary values
w variables fall into SOS1 sets exhibiting one nonzero
x variables fall into SOS2 sets exhibiting no more than two, adjacent nonzeros
y variables are semi-continuous being zero or in excess of L

6

z variables are semi-integer being zero or in excess of L
7
 and integer

c
1
t + c

2
u + c

3
v + c

4
w + c

5
x + c

6
y + c

7
z is the objective function,

A
1
t + A

2
u + A

3
v + A

4
w + A

5
x + A

6
y + A

7
z α b represents the set of constraints of various

equality and inequality forms.

For information on the names of the solvers that can be used on models in the MIP class see the
section on Solver Model type Capabilities. Note not all solvers cover all the cases associated with the
SOS and semi variables. Thus, if you have such a problem, you should refer to the MIP capable solver
manuals to discover capability. GAMS will also reject the problem if the solver cannot handle the types
of variables contained.

3.4.1.5 Relaxed mixed integer programming (RMIP)

The relaxed mixed integer programming (RMIP) problem is the same as the mixed integer programming
(MIP) problem in all respects except all the integer, SOS and semi restrictions are relaxed:

This problem type is sometimes helpful when one is having trouble attaining a feasible integer solution.

Language Basics 102

© 2022 Prof. Bruce McCarl

For information on the names of the solvers that can be used on the RMIP problem class see the
section on Solver Model type Capabilities.

3.4.1.6 Mixed complementarity problem (MCP)

Mathematically, the Mixed Complementarity Problem (MCP) looks like:

Solve for Z such that

F
i
(Z) = 0 and L

i
 < Z

i
 < U

i

or

F
i
(Z) > 0 and Z

i
 = L

i

or

F
i
(Z) < 0 and Z

i
 = U

i

where

Z
i
 is a set of variables to be set

F(Z) is a (possibly nonlinear) function
L

i
 and U

i
 are a set of upper and lower bounds on the variables, where L

i
 may be –inf and U

i
 may

be +inf
The number of Z

i
 variables and the number of relations F

i
(Z) is equal.

This problem can be written compactly as

F(Z)- L < Z < U

where the - ("perp") symbol indicates pair-wise complementarity between the function F and the variable

Z and its bounds. This problem does not have an objective function.

A common special case of the MCP that illustrates the basic complementarity nature of the problem.

F(Z) - Z > 0

*Z = 0. In this case, the lower bound on Z implies that F(Z)

binding F(Z) has a zero complementary variable Z) but this can make for a difficult model to solve.

Another special case arises when the bounds L and U are infinite, since Z is always between its bounds.
 In such a case, the function F(Z) will always equal zero and the MCP then reduces to a square but in
general non linear system of equations.

The MCP problem structure imposes particular requirements on specification of the equations F(Z) in the
problem. This implies a couple of things.

• It is always acceptable to write the equations defining the problem with =N= relations. In this

case, the bounds on F(Z) are implied by the equation/variable matching and the variable
bounds.

• If the variable Z matched to F(Z) has lower bounds only (e.g if Z in GAMS terms is a positive

variable) then it is acceptable to write the equation defining F with =G= relations, since this is
consistent with the constraint implied by the lower bound on Z.

McCarl GAMS User Guide103

© 2022 Prof. Bruce McCarl

• A variable bounded only above can be matched with =L= equations.

• Free variables without bounds can be matched with =E= equations.

• If Z has both bounds then the inequality type of the F(Z) equation is indefinite and =N= must

be used.

• You can write the constraints of an LP or NLP when writing down its KKT conditions as an

MCP, as long as you declare the constraint inequalities and the sign restrictions on the dual
multipliers correctly. By convention, the matching between GAMS equations and their .m
values is correct in the sense of MCP for minimization models, while maximization models
need to have the sign of the multiplier reversed.

• Difficulties Can arise with the specification of the complementary relationships when some of

the variables are held at fixed values using the.fx command and the holdfixedmodel attribute is
used. Namley when variables in an MCP are held fixed by a .fx command and the holdfixed
command is employed This causes GAMS to drop those variables from the model passed to
the solver. In turn in this case, a number of equations are also dropped to maintain a square
system and difficulties can arise. Users may need to repair the specification of the
complementary relationship and use of the MCPRHOLDFX option, attribute or command line
parameter results in a list of the dropped equations where the difficulty may have arisen. In
turn, that list helps advanced users revise the complementarity matchup within the MCP.
MCPRHOLDFX can be set using an option statement, a command line parameter, or model
attribute. The default value is zero resulting in no print out of the list and when set to one
such a list is created.

A familiar example of complementary relationship is found in the complementary relationship between
the binding nature of the constraints in a problem and the associated dual multipliers: if a constraint is
non-binding its dual multiplier must be zero (i.e. at bound) while if a dual multiplier is nonzero the
associated constraint must be binding. In fact, the Kuhn Karush Tucker conditions or theoretical
conditions that characterize many model types in economics (especially in the general equilibrium
class) and engineering can be expressed as an MCP. See http://www.neos-guide.org/content/
complementarity-problems for more discussion of this class of problems.

Complementarity problems are easily specified in GAMS. The only additional requirement is the
definition of complementarity pairs as discussed in the Variables, Equations, Models and Solves chapter
or in the NLP and MCP Model Types chapter.

For information on the names of the solvers that can be used on the MCP problem class see the section
on Solver Model type Capabilities.

3.4.1.7 Mixed integer nonlinear program (MINLP)

Mathematically, the mixed integer nonlinear programming (MINLP) problem looks like:

Maximize or Minimize f(x) + d(y)

subject to g(x) + h(y) α 0
L < x < U
y = {0,1,2,..}

where

x is a vector of variables that are continuous real numbers;
f(x) + d(y) is the objective function,
g(x) + h(y) represents the set of constraints.

http://www.neos-guide.org/content/complementarity-problems
http://www.neos-guide.org/content/complementarity-problems

Language Basics 104

© 2022 Prof. Bruce McCarl

α

L and U are vectors of lower and upper bounds on the variables.

For information on the names of the solvers that can be used on the MINLP problem class see the
section on Solver Model type Capabilities. Note SOS and semi variables can also be accommodated by
some solvers as listed above in the MIP section.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a MIP
problem.

3.4.1.8 Relaxed mixed integer nonlinear program (RMINLP)

The relaxed mixed integer nonlinear programming (RMINLP) problem is the same as the mixed integer
nonlinear programming (MINLP) problem in all respects except the integer restriction on y is relaxed:

Maximize or Minimize f(x) + d(y)

subject to g(x) + H(y) α 0
L < x < U
y > 0

This problem type is sometimes helpful when one is having trouble attaining a feasible integer solution.
For information on the names of the solvers that can be used on the RMINLP problem class see the
section on Solver Model type Capabilities.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a RMIP
problem.

3.4.1.9 Mixed integer quadratically constrained program (MIQCP)

Mathematically, the mixed integer quadratically constrained programming (MIQCP) problem looks like:

Maximize or Minimize cx + x'Q x

subject to A
i
x +x' R

i
x α b

i
for all i

L < x < U
y is a subset of x restricted to equal {0,1,2,..}

where

x is a vector of variables that contains continuous and integer members;
y is a subset of x that contains integer members;
cx is the linear part of the objective function
x'Qx is the quadratic part of the objective function
A

i
x represents the linear part of the ith constraint;

x' R
i
x represents the quadratic part of the ith constraint;

b
i
 is the right hand side if the ith constraint;

α

L and U are vectors of lower and upper bounds on the variables.

McCarl GAMS User Guide105

© 2022 Prof. Bruce McCarl

For information on the names of the solvers that can be used on models in the MIQCP class see the
section on Solver Model type Capabilities.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a MIP
problem.

3.4.1.10 Relaxed mixed integer quad. constrain program (RMIQCP)

Mathematically, the relaxed mixed integer quadratically constrained programming (RMIQCP) problem
looks like:

Maximize or Minimize cx + x'Q x

subject to A
i
x +x' R

i
x α b

i
 for all i

L < x < U
y is a subset of x relaxed from integer to continuous

where

x is a vector of variables that contains continuous and integer members;
y is a subset of x that contains relaxed integer members;
cx is the linear part of the objective function
x'Qx is the quadratic part of the objective function
A

i
x represents the linear part of the ith constraint;

x' R
i
x represents the quadratic part of the ith constraint;

b
i
 is the right hand side if the ith constraint;

α

L and U are vectors of lower and upper bounds on the variables.

For information on the names of the solvers that can be used on models in the RMIQCP class see the
section on Solver Model type Capabilities.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a RMIP
problem.

3.4.1.11 Constrained nonlinear systems (CNS)

Mathematically, a constrained nonlinear system (CNS) model looks like:

find x

subject to F(x) = 0
L < x < U
G(x) < b

where

x is a set of variables
F is a set of nonlinear equations.

Language Basics 106

© 2022 Prof. Bruce McCarl

In addition the number of equations and the number of unknown variables x need to be of equal
dimension and the variables x are continuous.

The (possibly empty) constraints L < x < U are not intended to be binding at the solution, but instead are
included to constrain the solution to a particular domain or to avoid regions where F(x) is undefined. The
(possibly empty) constraints G(x) < b are intended for the same purpose.

The CNS model is a generalization of a problem form involving solve for x over a system of equations with
one equation present for each x (a square system) like F(x) = 0. There are a number of advantages to
using the CNS model type (compared to solving as an NLP with a dummy objective, say), including:

• A check by GAMS that the model is really square,

• Solution/model diagnostics are generated by the solver (e.g. singular at solution, locally

unique solution), and

• A potential reduction in solution times, by taking better advantage of the model properties.

For information on the names of the solvers that can be used on the CNS problem class see the section
on Solver Model type Capabilities.

3.4.1.12 Mathematical program with equilibrium constraints (MPEC)

Mathematically, the mathematical program with equilibrium constraints (MPEC) looks like:

Maximize or Minimize f(x,y)

subject to g(x,y) α 0
F(x,y) - Ly

y

L
x
 < x < U

x

where

x and y are vectors of variables that are continuous or discrete where the variables x are often
called the state variables or upper-level variables, while the variables y are called the control or
lower-level variables.
f(x,y) is the objective function.
g(x,y) represents the set of constraints; in some cases, they can only involve the state variables
x.
F(x,y) and the bounds L

y
 and U

y
 define the equilibrium constraints.

Note: If x is fixed, then F(x,y) and the bounds L
y
 and U

y
 define an MCP. From this definition, we see

that the MPEC model type contains NLP and MCP models as special cases of MPEC.

While the MPEC model formulation is very general, it also results in problems that are very difficult to
solve. Work on MPEC algorithms is not nearly so advanced as that for the other model types. As a
result, there is only an experimental MPEC solver included in the GAMS distribution. For more details
see http://gamsworld.org/mpec/index.htm and http://www.neos-guide.org/content/complementarity-
problems.

http://gamsworld.org/mpec/index.htm
http://www.neos-guide.org/content/complementarity-problems
http://www.neos-guide.org/content/complementarity-problems

McCarl GAMS User Guide107

© 2022 Prof. Bruce McCarl

3.4.1.12.1 Nonlinear programming w ith discontinuous derivatives (DNLP)

Mathematically, the nonlinear programming with discontinuous derivatives (DNLP) problem looks like:

Maximize or Minimize f(x)

Subject to g(x) α 0
L < x < U

where

x is a vector of variables that are continuous real numbers,
f(x) is the objective function,

α is a set of inequality and equality operators

g(x) represents the set of constraints
L and U are vectors of lower and upper bounds on the variables.

This is the same as NLP, except that non-smooth functions (abs, min, max) can appear in f(x)

and g(x). However one should note that the solvers may have problems when dealing with the
discontinuities due to the fact that the solvers are really NLP solvers that are used on DNLPs and the
optimality conditions plus the reliance on derivatives may be problematic.

Use of BARON, CBC and DICOPT may alleviate this problem. For information on the names of the
solvers that can be used on the DNLP problem class see the section on Solver Model type Capabilities.

Use of the model attribute TryLinear causes GAMS to see if the problem can be solved as a LP problem.

3.4.1.13 Relaxed mathematical program with equilibrium constraints (RMPEC)

The relaxed mathematical program with equilibrium constraints (RMPEC) is exactly like the MPEC
problem but any integer variables that are present are relaxed to be continuous.

This problem type is sometimes helpful when one is having trouble attaining a feasible integer solution.

3.4.1.14 Extended Mathematical Programs (EMP)

EMP (Extended Mathematical Programming) is an (experimental) framework for automated
mathematical programming reformulations. Models which currently cannot be solved reliably are
reformulated into models of established mathematical programming classes in order to use advanced
solver technology.

Today EMP supports
 Bilevel Programs
 Disjunctive Programs
 Extended Nonlinear Programs
 Embedded Complementarity Systems
 Variational Inequalities

The reformulation is done by the solver JAMS which is the only solver that is capable to handle EMP
models.

Language Basics 108

© 2022 Prof. Bruce McCarl

Examples showing how to use the EMP framework and the solvers JAMS and DE are made available
through the
GAMS EMP Library which is included in the GAMS Distribution.

EMP has been developed jointly by Michael Ferris of UW-Madison, Ignacio Grossmann of Carnegie
Mellon University and GAMS Development Corporation. DE and JAMS come free of charge with any
licensed GAMS system but need a subsolver to solve the generated models.

Discussion on EMP appears in this document

There is a stochastic extension called EMPSP.

3.4.2 Solver capabilities matrix

The solvers capabilities matrix (as obtained and explained in the Using GAMS and the GAMS IDE
chapter) from the IDE and GAMS 22.6 is below. Entries in the cells show where a solver can solve a
problem with an X indicating the default solver and a – indicating a non solving utility. The full and Demo
on the left hand side reflect solver licensing status. The subsystems option command also lists this
information. An updated version of this matrix can be obtained from the GAMSIDE or using the
subsystems option.

See model types and platforms supported by each solver.

3.4.3 Solvers

GAMS Corporation, in general, does not develop software to solve models. Rather they develop
procedures linking to software developed by others and then GAMS automatically links to that software
whenever a model is to be solved. A variety of third party software has been interfaced with GAMS and
can be licensed through the GAMS Corporation. In this section I list the third party software available as
of GAMS version 20.5 giving some of its broad characteristics.

We should note that the solver manuals are the true reference source for each solver and we provide
hyperlinks to the latest version(s) of that documentation available. Before doing this we briefly discuss
licensing and the reasons for and conventions behind the way alternative versions of the same software
item are distributed.

General notes on solver licensing

General notes on solver versions

Available solvers

Choosing a solver

3.4.3.1 General notes on solver licensing

A wide variety of add on solvers are available to be used with GAMS almost all of which are the
product of third party software development groups. The base version of GAMS comes with

https://www.gams.com/latest/docs/UG_EMP.html
https://www.gams.com/latest/docs/S_MAIN.html
https://www.gams.com/latest/docs/T_MAIN.html#GAMS_TOOLS_SUPPORTED_PLATFORMS

McCarl GAMS User Guide109

© 2022 Prof. Bruce McCarl

• A fully implemented version of the BDMLP software which can be used to solve LP, MIP
and RMIP model types.

• A version of MILES that can be used to solve MCP model types.

• Access to the COIN solvers that can solve all of the model types.

• General-purpose utilities such as CONVERT and GAMSCHK.

• Other solvers in demonstration (demo) mode wherein the maximum problem size that can
be fit into the solver is limited.

• The BDMLP, MILES, COIN and other solvers under a demo license exhibit lesser
capability and or reduced speed or reliability relative to the available additional solvers.

• Fully capable versions of the other solvers can be made available by expanding ones
GAMS license by arrangement through GAMS Corporation at mailto:sales@gams.com.

• Certain solvers are available without charge to academic users through academic initiatives
by the solver developers as discussed in https://support.gams.com/
solver:academic_programs_by_solver_partners

• When a license error is encountered the system parameters LicenseLevel and
LicenseLevelText and the functions LicenseLevel and LicenseStatust can be used to
recover messages and indicators.

• A multiplatform license file was introduced as of distribution 23.6 which will work on all
platforms supported by GAMS.

3.4.3.2 General notes on solver versions

Cases exist where GAMS distributes more than one version of the third party solvers. This occurs for
several reasons.

• Alternative solver versions may be available that exploit specialized computer hardware

capability. For example, there are parallel processor versions of CPLEX and XA.

• Alternative solver versions may be available that incorporate enhanced capabilities, but also

involve a higher licensing fee. For example, one may license CPLEX solely for simplex based
linear program solutions or gain access to expanded capability versions which contains an
interior point algorithm and solve mixed integer programming models.

• Alternative solver versions may be available that are capable of solving different problem

classes. For example, there are versions of PATH for solving mixed complementarity
programs. But there are also versions that are applicable to nonlinear programming models.
Similarly, there are versions of OSL specialized for stochastic programming model
extensions.

• Alternative software versions may be available if there are either beta test versions being

distributed or experience has shown there are cases where older versions perform better in

mailto:mailto:sales@gams.com
https://support.gams.com/solver:academic_programs_by_solver_partners
https://support.gams.com/solver:academic_programs_by_solver_partners

Language Basics 110

© 2022 Prof. Bruce McCarl

some cases.

In the face of all of these possible alternative versions a consistent naming convention has been adopted
for a few of the solvers. The following rules apply:

• The base name of the solver does not change (e.g. CPLEX, OSL, CONOPT, ...) and refers to

the current production version.

• Past and beta versions have names derived from the base name generally with a number

appended or letters.

• If you select the base name of a solver you will get the most recent production version of the

solver.

For example, in the release current in March 2002 the system contains CONOPT versions CONOPT1
(past), CONOPT2 (production), and CONOPT3 (future). When a solver with the base name CONOPT is
identified then GAMS uses the current production version or CONOPT2.

3.4.3.3 Available solvers

Now we list the available solvers including a little bit on their capabilities and pedigree
as well as a hyperlink to available documentation.

McCarl GAMS User Guide111

© 2022 Prof. Bruce McCarl

ALPHAECP
BARON
BONMIN
CBC
CONOPT
CONVERT
CPLEX
DE
DECISC
DICOPT
EMP
EMPSP
EXAMINER
GAMSCHK
GLOMIQO
GUROBI
GUSS
IPOPT
JAMS
KESTREL
KNITRO
LGO
LINDOGLOBAL

MILES
MINOS
MOSEK
MPS2GMS
MPSGE
MSNLP
NLPEC
OSICPLEX
OSIGUROBI
OSIMOSEK
OSIXPRESS
OSISOPLEX
PATH
SCENRED
SCIP
SNOPT
SOPLEX
XA
XPRESS

3.4.3.3.1 ALPHAECP

ALPHAECP solves mixed integer non-linear problems. It is an implementation of the Extended
Cutting Plane method by Tapio Westerlund and Toni Lastusilta from Abo Akademi University,
Finland. It use requires the presence of a licensed MIP solver. The solver documentation is at
alphaecp.

The ECP method is an extension of Kelley's cutting plane method which was originally given for
convex NLP problems (Kelley, 1960). The method requires only the solution of a MIP sub problem
in each iteration. The MIP sub problems may be solved to optimality, but can also be solved to
feasibility or only to an integer relaxed solution in intermediate iterations. This makes the ECP
algorithm efficient and easy to implement. Futher information about the underlying algorithm can be
found in Westerlund T. and Pörn R. (2002). Solving Pseudo-Convex Mixed Integer Optimization
Problems by Cutting Plane Techniques. Optimization and Engngineering, 3. 253-280.

3.4.3.3.2 ANTIGONE

The solver ANTIGONE (Algorithms for coNTinuous / Integer Global Optimization of Nonlinear

https://www.gams.com/latest/docs/S_ALPHAECP.html

Language Basics 112

© 2022 Prof. Bruce McCarl

Equations) is a computational framework for deterministic global optimization of nonconvex
MINLP. ANTIGONE performs equivalently to GloMIQO when all nonlinearities in MINLP are
quadratic. ANTIGONE has been developed by Computer-Aided Systems Laboratory at Princeton
University; it was completed in collaboration with the Centre for Process Systems Engineering at
Imperial College.

GAMS/ANTIGONE is available for the 32-bit and 64-bit versions of Windows and Linux.

Usage of GAMS/ANTIGONE requires the presence of a GAMS/CPLEX license and either a
GAMS/CONOPT or a GAMS/SNOPT license.

ANTIGONE can solve MINLP problems plus simplifications thereof.

It is documented commercial part of the solver manual.

3.4.3.3.3 BARON

BARON is a solver that is designed to find globally optimal solutions for nonconvex optimization model
types. Baron was developed by N. Sahinidis, M. Tawarmalani and associates at the University of
Illinois-Urbana-Champaign. Purely continuous, purely integer, and mixed-integer nonlinear model types
can be solved. The BARON acronym stands for the branch and reduce optimization navigator. It derives
its name from its combining of constraint propagation, interval analysis, and duality approaches in a
problem reduction arsenal along with enhanced branch and bound concepts. BARON uses these
procedures to searching for global solutions in the face of the non convex hills and valleys a problem
structure may exhibit.

BARON encompasses:

• A general purpose solver for optimization problems with nonlinear constraints and/or integer

variables.

• Fast specialized solvers for linearly constrained problems.

• Capability to solve LP, MIP, RMIP, NLP, DNLP, RMINLP, and MINLP model types.

The GAMS solver manual for BARON is baron and a more general manual is on http://www.minlp.com/
downloads/docs/baron manual.pdf and a more general discussion of the whole area appears on http://
www.minlplib.org/.

3.4.3.3.4 BONMIN/BONMINH

BONMIN: Bonmin (Basic Open-source Nonlinear Mixed Integer programming) 0.9 is an open-
source solver for mixedinteger nonlinear programming (MINLPs), whereof some parts are still
experimental. The code is developed in a joint project of IBM and the Carnegie Mellon University.
The COIN-OR project leader for Bonmin is Pierre Bonami.

Bonmin implements five different algorithms:

- B-BB: a simple branch-and-bound algorithm based on solving a continuous nonlinear program at
each node of the search tree and branching on variables

https://www.gams.com/latest/docs/S_BARON.html
http://www.minlp.com/downloads/docs/baron manual.pdf
http://www.minlp.com/downloads/docs/baron manual.pdf
http://www.minlplib.org/
http://www.minlplib.org/

McCarl GAMS User Guide113

© 2022 Prof. Bruce McCarl

- B-OA: an outer-approximation based decomposition algorithm

- B-QG: an outer-approximation based branch-and-cut algorithm (by Queseda and Grossmann)

- B-Hyb: a hybrid outer-approximation/nonlinear programming based branch-and-cut algorithm
(default)

- B-Ecp: an ECP cuts based branch-and-cut algorithm a la FilMINT

The algorithms are exact when the problem is convex, otherwise they are heuristics.

An in core link exists and has the solver name BONMIND.

BONMIN was previously named COINBONMIN.

BONMINH is a commerically licensed version that makes available use of the linear solvers MA27,
MA57, and MA86 from the Harwell Subroutines Library (HSL) in IPOPT.

3.4.3.3.5 CBC

CBC (formerly COINCBC) is a free solver for mixed integer nonlinear programs that arises from the
COIN-OR project (Computational Infrastructure - Operations Research). The COIN-OR project releases
open-source software for the operations research community. The GAMS/COIN-OR Link is available in
source and free of charge with any licensed GAMS system. The CBC (COIN Branch and Cut) solver
was developed under the leadership of John Forest at IBM and is documented in a manual authored by
John Forrest and Robin Lougee-Heimer at http://www.coin-or.org/Cbc/cbcuserguide.html. A very brief
GAMS related solver manual is available with more GAMS implementation related details including
procedures to change the integer seeking branch and bound and cuts strategies at https://
www.gams.com/latest/docs/S_CBC.html.

An in core link exists and has the solver name CBCD.

http://www.coin-or.org/
http://www.coin-or.org/Cbc/cbcuserguide.html
https://www.gams.com/latest/docs/S_CBC.html
https://www.gams.com/latest/docs/S_CBC.html

Language Basics 114

© 2022 Prof. Bruce McCarl

3.4.3.3.6 CSDP

CSDP, is a solver that that implements a predictor corrector variant of the semidefinite programming
algorithm of Helmberg, Rendl, Vanderbei, and Wolkowicz. Detailed descriptions of CSDP and its
parallel version can be found in the following papers.

· B. Borchers. CSDP, A C Library for Semidefinite Programming. Optimization Methods
and Software 11(1):613-623, 1999

3.4.3.3.7 CONOPT

CONOPT is a solver for large-scale nonlinear optimization (NLP) developed and maintained by A. Drud,
ARKI Consulting & Development. CONOPT is a feasible path solver based on the generalized reduced
gradient (GRG) method. CONOPT contains extensions to the GRG method such as a special phase 0,
linear mode iterations, and a sequential linear programming component. CONOPT can solve the LP,
RMIP, NLP, CNS, DNLP, and RMINLP model types. The solver manual is in CONOPT and other

material can be found on http://www.conopt.com/.

An alternative version of CONOPT is distributed that is designed to speedup GAMS to solver
communications and is called CONOPTD.

3.4.3.3.7.1 CONOPTD

CONOPTD is an experimental versions of CONOPT that passes information from GAMS to
CONOPT in core without use of temporary files. It is designed to speed up GAMS to solver
communications. It's use also requires use of the command modelname.solvelink=5; before the
solve statement.

3.4.3.3.8 CONVERT

CONVERT developed by GAMS Corporation transforms a GAMS model instance into a format used by
other modeling and solutions systems. CONVERT is designed to achieve three aims:

• Permit users of GAMS to convert a confidential model into a GAMS solvable scalar form with

very little identifying its structure so it can be given to a group for numerical investigation (i.e to
have someone else help with a solution problem while maintaining confidentiality).

• Give a path to solving with other solvers that may not be available in GAMS to test

performance.

• Give a way of sharing test problems.

Currently, CONVERT can translate GAMS models into a AlphaECP, AMPL, AmplNLC, BARON,
CoinFML, CplexLP, CplexMPS, Dict, FixedMPS, GAMS Scalar format, LAGO, LGO, LindoMPI, LINGO,
MINOPT, NLP2MCP or ViennaDag type of problem. In addition Jacobian creates a GDX file containing
the basic model data (matrix, initial point, evaluation of constraints at initial point and bounds).

The translator creates a "scalar model" which consists of

• A model without sets or indexed parameters in the scalar models, that is one that does not

exploit the more advanced characteristics of any modeling system and is easily
transformable.

• A model with a new set of individual variables depicting each variable in the GAMS model

http://euler.nmt.edu/~brian/csdppaper.pdf
https://www.gams.com/latest/docs/S_CONOPT.html
http://www.conopt.com/

McCarl GAMS User Guide115

© 2022 Prof. Bruce McCarl

ending up with potentially 3 variable classes for the positive, integer, and binary variables each
numbered sequentially (i.e. all positive GAMS variables are mapped into n single variables X1 -
Xn thus if we have transport(i,j) and manufacture(k) we would have a set of unindexed scalar
variables X1, X2, ... with i*j+k cases.),

• A model with individual equations depicting each variable in the GAMS model (ie all GAMS

equations are mapped into m constraints E1, E2, ... Em thus if we have demand(j) and
resources(r,k) we would have a new equations E1, E2,... with j+r*k cases),

• The symbolic form of these equations.

• Bounds or starting point values.

Models of the types LP, MIP, RMIP, NLP, MCP, MPEC, CNS, DNLP, RMINLP and MINLP can be
converted. Convert contains the program writeup.

CONVERTD is a faster, in core, experimental version.

3.4.3.3.8.1 CONVERTD

CONVERTD is an experimental version of CONVERT that passes information from GAMS to
CONVERT in core without use of temporary files. It is designed to speed up GAMS to solver
communications.

3.4.3.3.9 CPLEX

CPLEX is a solver for linear, mixed-integer and quadratic programming problems developed by ILOG
(http://www.ilog.com/products/cplex/). CPLEX contains a primal simplex algorithm, a dual simplex
algorithm, a network optimizer, an interior point barrier algorithm, a mixed integer algorithm and a
quadratic capability. CPLEX also contains an infeasibility finder. For problems with integer variables,
CPLEX uses a branch and bound algorithm (with cuts) and supports specially ordered set variables
SOS1, SOS2 as well as semi-continuous and semi-integer variables. Base CPLEX solves LP and RMIP
model types. Additional capabilities of CPLEX can be licensed involving Barrier, MIP and QCP
capability. The write-up for CPLEX is on cplex

A bare bones free version is available as OSICPLEX.

3.4.3.3.9.1 CPLEXD

CPLEXD is an experimental versions of CPLEX that passes information from GAMS to CPLEX in
core without use of temporary files. It is designed to speed up GAMS to solver communications.
It's use also requires use of the command modelname.solvelink=5; before the solve statement.
It currently does not have all of the capabilities of the full CPLEX version.

3.4.3.3.10 DE

DE is a "solver" that accepts EMP models that have been annotated with information about
uncertainty. The DE “solver” reformulates the stochastic model into the extensive form equivalent
with implicit non-anticipativity constraints. The reformulated model is solved with any of the regular
GAMS solvers. All optimization model types (LP, MIP, QCP, MIQCP, NLP, DNLP, and

https://www.gams.com/latest/docs/S_CONVERT.html
http://www.ilog.com/products/cplex/
https://www.gams.com/latest/docs/S_CPLEX.html

Language Basics 116

© 2022 Prof. Bruce McCarl

MINLP) are accepted. This is written up in the EMP SP document at empsp which is also in the
help files of the GAMSIDE under solvers and the title Stochastic Programming (SP) with EMP.

3.4.3.3.11 DEA

DEA is a older contributed solver that dealt with linear and mixed integer Data Envelopment Analysis
(DEA) programs, as well as other linear, mixed integer and simple quadratic slice models. It has been
replaced by GUSS as explained at http://www.gams.com/contrib/gamsdea/dea.htm. .

3.4.3.3.12 DECIS/DECISC/DECISM

DECIS is a system developed by G. Infanger of Stanford University and Infanger Investment Technology
for solving stochastic linear programs. Such programs include parameters (coefficients and right-hand
sides) that are not known with certainty, but are assumed to have known probability distributions. It
employs Benders decomposition and Monte Carlo sampling techniques. DECIS includes a variety of
solution strategies, such as solving the universe problem, the expected value problem, Monte Carlo
sampling within the Benders decomposition algorithm, and Monte Carlo presampling. For solving linear
and nonlinear programs (master and subproblems arising from the decomposition)

DECISC interfaces with CPLEX and thus requires its presence.

DECISM interfaces with MINOS and thus requires its presence.

The manual is in DECIS. DECISC can be used to solve LP model types.

3.4.3.3.13 DICOPT

DICOPT solves mixed-integer nonlinear programming (MINLP) model types. It was developed by J.
Viswanathan and I. Grossmann at Carnegie Mellon University. The models solved involve linear binary
or integer variables and linear and nonlinear continuous variables. Although the algorithm has provisions
to handle non-convexities, it does not necessarily obtain the global optimum.

DICOPT implements extensions of the outer-approximation algorithm for the equality relaxation strategy.
 The DICOPT solution approach involves solving a series of NLP and MIP sub-problems. These sub-
problems can be solved using any NLP or MIP solver that runs under GAMS. This allows one to match
the best algorithms to the problem at hand and guarantees that enhancements in the NLP and MIP
solvers are exploited. It also requires licenses to such solvers. DICOPT solves MINLP model types.
The solver manual is on DICOPT.

3.4.3.3.14 EMP

EMP (Extended Mathematical Programming) is not a solver but an (experimental) framework for
automated mathematical programming reformulations. The idea behind EMP is that new upcoming types
of models which currently cannot be solved reliably are reformulated into models of established math

https://www.gams.com/latest/docs/S_DE.html
http://www.gams.com/contrib/gamsdea/dea.htm
https://www.gams.com/latest/docs/S_DECIS.html
https://www.gams.com/latest/docs/S_DICOPT.html

McCarl GAMS User Guide117

© 2022 Prof. Bruce McCarl

programming classes in order to use mature solver technology. At this stage, EMP supports the
modeling of Bilevel Programs, Variational Inequalities, Disjunctive Programs, Extended Nonlinear
Programs and Embedded Complementarity Systems, but additional features are being added regularly.

It is documented here.

3.4.3.3.15 EMPSP

This solver does Stochastic Programming (SP) with EMP and is an extension of GAMS EMP. It builds
a stochastic model based on a users deterministic model following a users definition of which model
parameters to be uncertain. In turn the GAMS EMP replaces these uncertain parameters with
distributions. The distribution of the random parameters is controlled by the user. .

The documentation and examples are in empsp .

3.4.3.3.16 EXAMINER

EXAMINER is not a solver per se but rather a tool that lets the user examine the merit of a solution
returned by a solver. In short, it checks to see if solutions are satisfactory. Namely given a solution
point reported as optimal by a solver the EXAMINER software investigates primal feasibility, dual
feasibility, and optimality. It is mainly designed to help in solver development, testing, and debugging
but also allows comparison of solutions across solvers or solver settings (e.g. alternative optimality
tolerances and optimality criteria). EXAMINER is distributed with all systems and can run in DEMO
mode. The solver manual is on examiner.

3.4.3.3.17 GAMSCHK

GAMSCHK is a program developed at Texas A&M University that is designed to aid users who wish to
examine empirical GAMS models for possible flaws. GAMSCHK will:

• List coefficients for user selected equations and/or variables.

• List the characteristics of selected groups of variables and/or equations.

• List the characteristics of equation and variable blocks.

• Examine a GAMS model to see whether any variables and equations contain specification

errors.

• Generate schematics depicting the characteristics of coefficients by variable and equation

blocks.

• Generate a schematic for small GAMS models or portions of larger models depicting the

location of coefficients by sign and magnitude.

• Reconstruct the reduced cost of variables and the activity within equations after a model

solution.

• Help resolve problems with unbounded or infeasible models.

GAMSCHK does not actually solve the problem but rather requires other solvers to solve the problem
then saves the basis information. It will work with LP, MIP, RMIP, NLP, MCP, DNLP, RMINLP, and
MINLP model types. The manual is on GAMSCHK.

https://www.gams.com/latest/docs/UG_EMP_SP.html
https://www.gams.com/latest/docs/S_EXAMINER.html
https://www.gams.com/latest/docs/S_GAMSCHK.html

Language Basics 118

© 2022 Prof. Bruce McCarl

3.4.3.3.18 GLOMIQO

GloMIQO (Global Mixed-Integer Quadratic Optimizer) is a numerical solver that solves mixed-
integer quadratically-constrained quadratic programs to ε-global optimality. It was developed by
R. Misener and C. A. Floudas.

It is discussed at http://ares.tamu.edu/GloMIQO/ and the GAMS version is documented in
GloMIQO solver manual.

GloMIQO is available through Princeton University and in a beta version in GAMS as of release
23.8.

3.4.3.3.19 GUROBI

GUROBI is a soon to be fully released solver that provides state-of-the-art simplex-based linear
programming (LP) and mixed-integer programming (MIP) capability. The GUROBI MIP solver
includes shared memory parallelism, capable of simultaneously exploiting any number of processors
and cores per processor. The implementation is deterministic: two separate runs on the same model
will produce identical solution paths. The Gurobi solver is available for the 32-bit and 64-bit versions
of Windows and Linux. Details on GYROBI can be found at http://www.gurobi.com/ .

A bare bones, free version of GUROBI is available as COINGUROBI.

3.4.3.3.20 GUSS

GUSS is a GAMS facility that permits solution of a set of scenarios for a GAMS model
modifying data to run each scenario. GUSS allows the collection of models to be
solved in a single pass without needing repeated solves or a LOOP over multiple
solves. GUSS is not really a solver but rather organizes and passes data to the other
gams solvers for most model types. This is all done in a faster fashion than say when
using multiple solves through the GAMS Loop command and is much faster for small
models.

In particular GUSS runs the model repeatedly over user specified data for model
parameters that collectively define alternative scenarios to be run. In doing this it
repeatedly updates the base model with the altered scenario data, then solves the
updated model for that scenario and saves user chosen results for each scenario.

http://ares.tamu.edu/GloMIQO/
https://www.gams.com/latest/docs/S_GLOMIQO.html
http://www.gurobi.com/

McCarl GAMS User Guide119

© 2022 Prof. Bruce McCarl

GUSS was developed by Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann.
It is documented in http://www.gams.com/modlib/adddocs/gusspaper.pdf and in the
GUSS section of the solver manual.

GUSS is available in all versions of GAMS starting with release 23.7.

Use of GUSS for an existing model requires six steps

1. Definition of scenarios to run
2. Definition of parameters holding scenario specific data for the items in the

model that to be changed
3. Definition of parameters that will hold scenario specific model results for the

items that the user wished to save
4. Definition of a set that tells GUSS the scenarios to run, data to change and

results to save
5. Modification of the solve statement to identify that scenarios will be run
6. Development of code to report the scenario results

Each will be covered below.in the context of the model in risk.gms which originally
solved a model repeatedly for different risk aversion parameters using the code below

loop (raps,rap=riskaver(raps);
 solve evportfol using nlp maximizing obj ;
 var = sum(stock, sum(stocks,
 invest.l(stock)*covar(stock,stocks)
*invest.l(stocks))) ;
 output("rap",raps)=rap;
 output(stocks,raps)=invest.l(stocks);

 output("obj",raps)=obj.l;);

We will now discuss the 6 steps of set up for an example based on the risk model
which we call GUSSRISK.gms.

1. Definition of scenarios to run

The first step in the procedure is to establish a set that covers the scenarios that will be
run. For the risk.gms example the alternative runs are ones for different risk aversion
parameters controlled by the set RAPS. So in GUSSRISK.gms we will define a set of
names for risk aversion parameters and give it the name RAPSCENARIOS in a set
statement as follows

SET RAPSCENARIOS RISK AVERSION PARAMETERS /R0*R25/

2. Definition of parameters holding scenario specific data

The second step in the procedure is to establish scenario dependent values for the
model data items that will be changed across the scenarios that will be run. For the
GUSSRISK.gms example we wish to use scenario dependent risk aversion parameters

http://www.gams.com/modlib/adddocs/gusspaper.pdf

Language Basics 120

© 2022 Prof. Bruce McCarl

defined over the set RAPSCENARIOS. We do this in a parameter statement as
follows

PARAMETER RISKAVER(RAPSCENARIOS) RISK AVERSION
COEFICIENT BY RISK AVERSION PARAMETER
 /R0 0.0000000001, R1 0.00025, R2
0.00050, R3 0.00075,
 R4 0.00100, R5 0.00150, R6
0.00200, R7 0.00300,
 R8 0.00500, R9 0.01000, R10
0.01100, R11 0.01250,
 R12 0.01500, R13 0.02500, R14
0.05000, R15 0.10000,
 R16 0.30000, R17 0.50000, R18
1.00000, R19 2.50000,
 R20 5.00000, R21 10.0000, R22 15.
 , R23 20.
 R24 40. , R25 80./ ;

In general, the parameter storing the data has to have the scenario set in its first index
position. Thus, if one is altering a scalar like RAP in the GUSSRISK.gms example, we
define a one dimensional parameter over the scenario set in this case RISKAVER

(RAPSCENARIOS).

When the scenario analysis involves modifying a more complex parameter like one
named modelparam(i,j,k) one would define a new parameter with a structure like
newmodelparam(scenarioset,i,j,k) where scenarioset is the set of scenarios that will
be handled by GUSS and the i,j,k are the original set definitions in the parameter to be
changed..

Note we could have changed more than one parameter but here this is all we will
modify. For a more complex example see gussexample1.gms.

3. Definition of parameters to hold scenario specific model results

The third step in the procedure is to establish scenario dependent repositories where
the scenario dependent model solution results will be stored. For the GUSSRISK.gms
example, we will store the levels of investment, the objective function value and the
available funds shadow price. A pararamer will be defined to hold each of these items
and those parameters must have the named scenario set in the first index position
plus the other index positions need to contain the full dimension of the solution item to
store. In the GUSSRISK.gms example the scenario set is RAPSCENARIOS and we
define the parameters as follows

PARAMETER

McCarl GAMS User Guide121

© 2022 Prof. Bruce McCarl

STOCKOUTPUT(RAPSCENARIOS,STOCKS) RESULTS FOR
INVEST with VARYING RAP

OBJLEVEL(RAPSCENARIOS) OBJECTIVE FUNCTION WITH
VARYING RAP

INVESTAVshadow(RAPSCENARIOS) FUNDS SHADOW PRICE
WITH VARYING RAP
;

One can also specify a parameter to hold solution status information relative to the
solutions for each scenario. In that case we specify the nature of the information we
want and the array name to hold the information. Again this must have the scenario set
name in the first index position. In the GUSSRISK.gms example this involves the
statements

Set modelattrib model solution information to collect /
modelstat, solvestat, objval /;
PARAMETER solutionstatus(RAPSCENARIOS, modelattrib) Place to
store Solution status reporting
* assign initial values
 / #RAPSCENARIOS.(ModelStat na, SolveStat na,
ObjVal na) /;

Where

· the first line defines a set that contains the names of the model attributes to
store using in this case the attributes for

· model solution status
(modelstat with an
explanation of the
possible numerical
values given here)

· solver solution status
(solvestat with an
explanation of the
possible numerical
values given here)

· the optimal value of the
objective function
(objval)

· Note more items can be
stored and are domusd,
iterusd, objest, nodusd,
numinfes, robj, suminfes,
maxinfes, and meaninfes
as mostly defined in the
list of model attributes

Language Basics 122

© 2022 Prof. Bruce McCarl

here
· the second line defines the parameter in which the values are to be stored
· The fourth line initializes all values to na and if the solves fail then those

values will remain. It also uses the # operator to address all set elements as
discussed here.

4. Definition of a set that tells GUSS what to do

The fourth step in the procedure is to establish a three dimensional tuple that tells GUSS
what you wish to do.

The tuple contains

· the name of the set defining the scenarios
· the names of model parameters to be changed and the name of the

parameters where the scenario dependent data are stored
· the names of model solution parameters to be saved along with

identification of the type of the solution information to save and the name of a
the place where to save it.

· the names of a parameter with options to pass to GUSS along with the name
of the place to store solution attributes

For the GUSSRISK.gms example the statement is as follows.

set GUSSdict / RAPSCENARIOS.scenario . ''
 rap .param .RISKAVER
 INVEST .level .STOCKOUTPUT
 OBJ .level .OBJLEVEL
 INVESTAV .marginal
.INVESTAVshadow
 /;

Here the named set is GUSSDICT and

· the first line identifies the name of the set defining the scenarios
(RAPSCENARIOS)and associates it with the word SCENARIO and a third
entry of ' '

· the second line identifies the name of the data element in the model (rap) to
be changed in running the scenarios and associates it with the word param
and an entry telling where the alternative values are held (RISKAVER)

· the third line identifies the name of a solution output to store (INVEST), its
nature (a level or INVEST.L in this case) and the place to store it
(STOCKOUTPUT)

· the fourth line identifies the name of a solution output to store
(OBJ), its nature (a level or OBJ.L in this case) and the place to

McCarl GAMS User Guide123

© 2022 Prof. Bruce McCarl

store it (OBJLEVEL)
· the fifth line identifies the name of a solution output to store

(INVESTAV), its nature (a marginal or INVESTAV.M in this
case) and the place to store it (INVESTAVshadow)

Note the key words that can be used in the second tuple position are

param Indicating this is an item that provides scenario data for a
model parameter that will be altered

lower Indicating this is an item that provides alternative lower
bounds for model variables or equation RHS's that will be
changed

upper Indicating this is an item that provides alternative upper
bounds for model variables or equation RHS's that will be
changed

fixed Indicating this is an item that provides alternative fixed
bounds for model variables or RHS's that will be changed

level Indicating this is an item that will be used to store solution
levels for model variables or equations

Marginal Indicating this is an item that will be used to store solution
marginals for model variables or equations

opt Indicating the parameter holding GUSS options to use and
where to store model solution attributes

One may also modify multiple input parameters as in the tuple specified in
gussexample1.gms where parameters a and b take on multiple values.

set dict / scenariostorun.scenario .''
 gussoptions .opt .solutionstatus
 a .param .newsupply
 b .param .newdemand
 x .level .resultantx
 /

If one uses the opt command one also needs to specify a parameter that holds options
for GUSS using syntax like

parameter gussoptions options to use in running GUSS
 / UpdateType 1, Optfile 1 /

The available options are discussed in the solver manual in the GUSS section with the
most important ones involving option files to use controlling the option files to use for the
first and subsequent solves, the amount of output in the LOG file, the way the data
update is performed and the type of solution point to restart from.

Language Basics 124

© 2022 Prof. Bruce McCarl

5. Modification of the solve statement to identify that scenarios will be run

The fifth step involves altering the solve statement so it both knows that GUSS is to be
used plus an identification of the name of the tuple that passes instructions on what
GUSS needs to do.

The format of this in the GUSSRISK.gms example is

SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ SCENARIO
GUSSDICT ;

where the solve statement is of the conventional form with the addition of the key word
SCENARIO and name of the tuple from step 4 that tells GUSS what to do. In this case
the name of that tuple is GUSSDICT.

In the gussexample1.gms case the solve statement is

Solve transport using lp minimizing z scenario dict;

where again we have the addition of the key word SCENARIO and DICT is the name
of the tuple that tells GUSS what to do.

6. Development of code to report the scenario results

The sixth step involves implementing post solution instructions to report the scenario
dependent family of solutions to the user. This is done either directly through a display
or through calculation of tables and inclusion in output through display, put files or
passing to other programs as discussed elsewhere in this guide.

In the example in gussexample1.gms we simply display the array

option resultantx:0:1:2;
display resultantx,solutionstatus;

In GUSSRISK.gms we run through a report writing loop placing the scenario dependent
solution information into the model variable levels and shadow prices and then build a
report table

 PARAMETER OUTPUT(*,rapscenarios);
 LOOP (RAPSCENARIOS,RAP=RISKAVER(RAPSCENARIOS);
* LOAD IN SOLUTION INFORMATION
 INVEST.L(STOCKS)=STOCKOUTPUT
(RAPSCENARIOS,STOCKS);
 OBJ.L=OBJLEVEL(RAPSCENARIOS);
 INVESTAV.m=INVESTAVshadow(RAPSCENARIOS);

McCarl GAMS User Guide125

© 2022 Prof. Bruce McCarl

* COMPUTE SOME ITEMS
 INVESTAV.L=SUM(STOCKS,INVEST.L(STOCKS));
 VAR = SUM(STOCK, SUM(STOCKS,
 INVEST.L(STOCK)*COVAR(STOCK,STOCKS)
*INVEST.L(STOCKS))) ;
 OUTPUT("RAP",rapscenarios)=RAP;
 OUTPUT(STOCKS,rapscenarios)=INVEST.L
(STOCKS);
 OUTPUT("OBJ",rapscenarios)=OBJ.L;
 OUTPUT("MEAN",rapscenarios)
 =SUM(STOCKS, MEAN(STOCKS) * INVEST.L
(STOCKS));
 OUTPUT("VAR",rapscenarios) = VAR;
 OUTPUT("STD",rapscenarios)=SQRT(VAR);
 OUTPUT("SHADPRICE",rapscenarios)
=INVESTAV.M;
 OUTPUT("IDLE",rapscenarios)=FUNDS-
INVESTAV.L
);
 DISPLAY OUTPUT,solutionstatus;

Here we loop over the scenarios run (RAPSCENARIOS)and during that loop we load the GUSS
saved investment levels into the original model investment variables using the statement

INVEST.L(STOCKS)=STOCKOUTPUT(RAPSCENARIOS,STOCKS);

along with the saved scenario dependent values of the objective function and the funds shadow
prices.

OBJ.L=OBJLEVEL(RAPSCENARIOS);
 INVESTAV.m = INVESTAVshadow(RAPSCENARIOS);

Finally in the loop a number of calculations are done placing results into a parameter named
OUTPUT and after the loop the result is displayed as is the array holding the solution and model
termination status.

Much more complex setups could be run.

Notes

· GUSS is not a solver and is not activated using normal solver choice methods such as option
LP=GUSS or any such variants. Rather one uses a modification to the solve statement as
discussed above.

· GUSS will cause the problems to be solved with the solver that is currently active in the GAMS
instance. This may be specified using multiple ways as discussed here employing for example

Language Basics 126

© 2022 Prof. Bruce McCarl

OPTION NLP=CONOPT or LP=CPLEX or the like as well as through choice in the IDE or on
the computer.

· GUSS has a number of additional options as discussed in http://www.gams.com/modlib/
adddocs/gusspaper.pdf and in the GUSS section of the solver manual.

3.4.3.3.21 IPOPT/IPOPTH

IPOPT: Ipopt (Interior Point Optimizer) is an open-source solver for large-scale nonlinear programming.
The code has been written primarily by Andreas W"achter, who is the COIN-OR project leader for Ipopt.
GAMS/Ipopt uses MUMPS (http://graal.ens-lyon.fr/MUMPS) as linear solver.

For more information:
-the Ipopt web site https://projects.coin-or.org/Ipopt and
-the implementation paper A. W"achter and L. T. Biegler, On the Implementation of a Primal-Dual Interior
Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Programming
106(1), pp. 25-57, 2006.

A link to the Coin Ipopt (Interior Point OPTimizer, pronounced I-P-Opt) solver for large-scale nonlinear
optimization. COINIPOPT is designed to find (local) solutions of mathematical optimization problems of
the form:

 min f(x)
x in R n̂
s.t. g_L <= g(x) <= g_U

 x_L <= x <= x_U

where

f(x) is a real nonlinear objective function,
g(x) is a set of real nonlinear constraint functions.
g_L is the vector of lower bounds on the g(x) constraints
g_U is the vector of upper bounds on the g(x) constraints
x_L is the vector of lower bounds on the x variables
x_U is the vector of upper bounds on the x variables

An in core link exists and has the solver name IPOPTD.

IPOPT was previously named COINIPOPT.

IPOPTH is a commercially licensed version that uses higher performance (but not Open Source)
linear algebra routines (HSL).

3.4.3.3.22 JAMS

JAMS is a rename of the former solver EMP and handles EMP (Extended Mathematical

Programming) problems.

http://www.gams.com/modlib/adddocs/gusspaper.pdf
http://www.gams.com/modlib/adddocs/gusspaper.pdf
https://projects.coin-or.org/Ipopt

McCarl GAMS User Guide127

© 2022 Prof. Bruce McCarl

JAMS reformulates
Bilevel Programs
Disjunctive Programs
Extended Nonlinear Programs
Embedded Complementarity Systems
Variational Inequalities

into established mathematical programming classes allowing access to existing solvers.

More details on JAMS and the EMP concept and function can be found in http://pages.cs.wisc.edu/
~ferris/talks/focapo08.pdf and in JAMS.

JAMS comes free of charge with any licensed GAMS system but needs a subsolver to solve the
generated models.

3.4.3.3.23 KESTREL

TKestrel is not really a solver but rather a link to external solvers via the NEOS Server from within your
GAMS modeling environment. It also returns a solution that can be processed as with any local solver.

Starting with distribution 23.7 Kestrel is part of the GAMS distribution.

The solve statement using the GAMS/KESTREL solver invokes a client program that sends your
problem to a solver running on one of the NEOS Server’s remote computers. The results from the NEOS
Server are eventually returned through Kestrel to GAMS, where you can view and manipulate them
locally in the usual way.

Further information about KESTREL can be found in the solver manual or at the Kestrel page on the
NEOS Server http://neos.mcs.anl.gov/neos/kestrel.html.

3.4.3.3.24 KNITRO

KNITRO is a solver for finding local solutions of MINLPs and continuous, smooth nonlinear optimization
problems, with or without constraints from Ziena Optimization, Inc. KNITRO implements both interior (or
barrier) and active-set type algorithms, and uses trust regions to promote convergence. KNITRO was
designed for large problems with dimensions running into the hundreds of thousands. It converges
quickly to minimize the number of objective function evaluations, and utilizes second derivative (Hessian)
information to improve performance and robustness.

In terms of its MINLP capability: binary and integer variables are supported. Two algorithms are available,
a non-linear branch and bound method and an implementation of the hybrid Quesada-Grossman method
for convex MINLP. The Knitro MINLP code is designed for convex mixed integer programming and is a

heuristic for nonconvex problems.

The manual is on knitro.

3.4.3.3.25 LGO

LGO - abbreviated from the name Lipschitz Global Optimizer - assists in the formulation and solution of
the broad class of Global Optimization problems. LGO was developed by J. Pintér of Pintér Consulting
Services, Inc. LGO integrates a suite of global and local scope solvers. These include (a) global
adaptive partition and search (branch-and-bound); (b) adaptive global random search; (c) local (convex)

http://pages.cs.wisc.edu/~ferris/talks/focapo08.pdf
http://pages.cs.wisc.edu/~ferris/talks/focapo08.pdf
https://www.gams.com/latest/docs/S_JAMS.html
https://neos-server.org/neos/kestrel.html
https://www.gams.com/latest/docs/S_KNITRO.html

Language Basics 128

© 2022 Prof. Bruce McCarl

unconstrained optimization; and (d) local (convex) constrained optimization. LGO can solve LP, NLP,
DNLP, RMINLP, and RMIP model types. The LGO manual is on LGO.

An in core link exists and has the solver name LGOD

3.4.3.3.26 LINDO/LINDOGLOBAL

LINDOGLOBAL: GAMS/LINDOGlobal finds guaranteed globally optimal solutions to general
nonlinear problems with continuous and/or discrete variables. GAMS/LINDOGlobal supports most
mathematical functions, including functions that are nonsmooth, such as abs(x) and or even
discontinuous, such as floor(x).

The LINDO global optimization procedure (GOP) employs branch-and-cut methods to break an
NLP model down into a list of subproblems. Each subproblem is analyzed and either a) is shown to
not have a feasible or optimal solution, or b) an optimal solution to the subproblem is found, e.g.,
because the subproblem is shown to be convex, or c) the subproblem is further split into two or
more subproblems which are then placed on the list. Given appropriate tolerances, after a finite,
though possibly large number of steps a solution provably global optimal to tolerances is returned.
Traditional nonlinear solvers can get stuck at suboptimal, local solutions. This is no longer the case
when using the global solver.

The documentation for LINDOGLOBAL is at LINDOGLOBAL

3.4.3.3.27 LOGMIP

LogMIP solves linear and nonlinear disjunctive programming problems involving binary variables and
disjunction definitions for models involving discrete choices. LogMIP was been developed by A.
Vecchietti, J.J. Gil and L. Catania at INGAR (Santa Fe-Argentina) and
Ignacio E. Grossmann at Carnegie Mellon University (Pittsburgh-USA). LogMIP comes free of charge
with any licensed GAMS system but needs a subsolver to solve the generated MIP/MINLP models.

For more information see the solver manuals or http://www.logmip.ceride.gov.ar/eng/about/about.htm.

3.4.3.3.28 MILES

MILES is a solver for mixed complementarity problems and nonlinear systems of equations developed by
T. Rutherford, University of Colorado. MILES is freely distributed with GAMS but is of lesser capability
than the other available solvers. The solution procedure is a generalized Newton method with a
backtracking line search. The MILES manual is on MILES.

There are two alternative named MILES versions.

MILESE

MILESOLD

https://www.gams.com/latest/docs/S_LGO.html
https://www.gams.com/latest/docs/S_LINDO.html
http://www.logmip.ceride.gov.ar/
https://www.gams.com/latest/docs/S_MILES.html

McCarl GAMS User Guide129

© 2022 Prof. Bruce McCarl

3.4.3.3.28.1 MILESE

The newest version of MILES and the solver used when the word MILES is used.

3.4.3.3.28.2 MILESOLD

An older now discontinued version of MILES using an older interface.

3.4.3.3.29 MINOS

MINOS is a solver for large-scale nonlinear optimization (NLP) developed by B. Murtaugh and M.
Saunders at Macquarie University and Stanford University. MINOS solves such problems using a
reduced-gradient algorithm combined with a quasi-Newton algorithm. When constraints are nonlinear,
MINOS employs a projected Lagrangian algorithm. This involves a sequence of major iterations, each of
which requires the solution of a linearly constrained subproblem. Each subproblem contains linearized
versions of the nonlinear constraints, as well as the original linear constraints and bounds. MINOS can
solve LP, RMIP, NLP, DNLP, and RMINLP model types. The solver manual is MINOS. MINOSD is an in
core version.

One alternative version is available.

3.4.3.3.29.1 MINOS5

An older version of MINOS.

3.4.3.3.30 MOSEK

MOSEK is a solver for linear, mixed-integer linear, and convex nonlinear mathematical optimization
problems developed by Erling D. Andersen and Knud D. Andersen of MOSEK ApS as described at
http://www.mosek.com/. MOSEK contains several optimization approaches designed to solve large-
scale sparse problems. The current optimizers include:

• Interior-point optimizer for all continuous problems

• Conic interior-point optimizer for conic quadratic problems

• Simplex optimizer for linear problems

• Mixed-integer optimizer based on a branch and cut technology

MOSEK can solve LP, MIP, QCP, RQCP, MIQCP, RMIP, NLP, DNLP, and RMINLP model types. The
NLP components it works on ordinarily should be highly convex as it can get stuck on non convex
problems. The solver manual is Mosek.

A bare bones, free version of MOSEK is available and is called COINMOSEK.
.

3.4.3.3.31 MPSGE

MPSGE is not actually a solver but rather is a preprocessor that aids in the formulation and solution of

https://www.gams.com/latest/docs/S_MINOS.html
http://www.mosek.com/
https://www.gams.com/latest/docs/S_MOSEK.html

Language Basics 130

© 2022 Prof. Bruce McCarl

general equilibrium problems and operates as a subsystem to GAMS developed by T. Rutherford at
University of Colorado. MPSGE is a library of function and Jacobian evaluation routines that generate an
MCP problem that must be solved with a MCP solver. MPSGE, while in GAMS also involves a model
definition language with alternative syntax and conventions that are unlike that used in the rest of GAMS.
 The modeling syntax and conventions are explained in MPSGE and additional material can be found at
http://www.mpsge.org/mainpage/mpsge

3.4.3.3.32 MPS2GMS

GAMS distributes a software tool called MPS2GMS that will convert MPS files to GAMS. This software
is found in the GAMS system directory and when run without arguments will deliver a small write-up.

3.4.3.3.33 MSNLP

MSNLP (Multi-Start NLP) is a stochastic search algorithm from Optimal Methods, Inc for global
optimization problems. Like OQNLP, MSNLP uses a point generator to create candidate starting points
for a local NLP solver. Algorithm performance depends strongly on the starting point generator. MSNLP
implements a generator creating uniformly distributed points and the Smart Random Generator. This
generator uses an initial coarse search to define a promising region within which random starting points
are concentrated. Two variants of Smart Random are currently implemented, one using univariate
normal distributions, the other using triangular distributions. MSNLP also comes the NLP solver LSGRG
and is available as part of the Global Packages. Documentation in found in the MSNLP Manual.

3.4.3.3.34 NLPEC

NLPEC is a solver developed NLPEC is a solver developed jointly by GAMS Corporation and M. Ferris at
UW-Madison that solves MPEC models. NLPEC works by reformulating the MPEC model as an NLP,
solving the NLP using one of the GAMS NLP solvers, and then extracting the MPEC solution from the
NLP solution. All of this happens automatically, although it is possible to access the intermediate NLP
model. The reformulated models NLPEC produces are in scalar form. Many different reformulations
(currently around 20) are supported by the NLPEC solver. MPEC models are notorious for their
difficultly, but the combination of different reformulations and NLP solvers give users a good chance to
solve them. The user guide is nlpec.

3.4.3.3.35 OSICplex

A bare bones, free version of CPLEX that comes free of charge with the GAMS Base system.
General GAMS options (reslim, optcr, nodlim, iterlim) are supported. In addition an option file in the
format required by the solver can be provided.

OSICPLEX was previously named COINCPLEX.

3.4.3.3.36 OSIGurobi

A bare bones, free version of GUROBI that comes free of charge with the GAMS Base system.
General GAMS options (reslim, optcr, nodlim, iterlim) are supported. In addition an option file in the
format required by the solver can be provided.

OSIGUROBI was previously known as COINGUROBI.

https://www.gams.com/latest/docs/UG_MPSGE.html
http://www.mpsge.org/mainpage/mpsge.htm
https://www.gams.com/latest/docs/S_MSNLP.html
https://www.gams.com/latest/docs/S_NLPEC.html

McCarl GAMS User Guide131

© 2022 Prof. Bruce McCarl

3.4.3.3.37 OSIMosek

A bare bones, free version of MOSEK that comes free of charge with the GAMS Base system.
General GAMS options (reslim, optcr, nodlim, iterlim) are supported. In addition an option file in the
format required by the solver can be provided.

OSIMOSEK was previously named COINMOSEK.

3.4.3.3.38 OSIXPRESS

A bare bones, free version of XPRESS that comes free of charge with the GAMS Base system.
General GAMS options (reslim, optcr, nodlim, iterlim) are supported. In addition an option file in the
format required by the solver can be provided.

OSIXPRESS was previously named COINXPRESS.

3.4.3.3.39 OSISOPLEX

OSISoPlex also called SOPLEX is a Linear Programming (LP) solver based on the revised
simplex algorithm. It features preprocessing techniques, exploits sparsity, and offers primal and dual
solving routines. It can be used as a standalone solver reading MPS or LP format files as well as
embedded into other programs via a C++ class library.

OSISoPlex has been implemented as a part of Roland Wunderling's Ph.D. thesis Paralleler und
Objektorientierter Simplex-Algorithmus (in German) and is available in source code. OSISoPlex
is free for academic research and can be licensed for commercial use.

OSISOPLEX is now called SOPLEX in the solver capabilities matrix although both OSISOPLEX
and SOPLEX work as named solvers.

3.4.3.3.40 PATH/PATHNLP

PATH is a MCP, CNS and NLP solver developed by M. Ferris, S. Dirkse and T. Munson at the University
of Wisconsin. For MCP and CNS problems, PATH uses a generalization of Newton's method plus a
linearization solved using a code related to Lemke's method. PATH can be used to solve MCP and CNS
model types. The solver manual on PATH is found on PATH and additional details can be found on
http://www.neos-guide.org/content/complementarity-problems.

There are 2 variants on PATH.

PATHC

PATHNLP

https://www.gams.com/latest/docs/S_PATH.html
http://www.neos-guide.org/content/complementarity-problems

Language Basics 132

© 2022 Prof. Bruce McCarl

3.4.3.3.40.1 PATHC

PATHC is the latest version of PATH and is the one used when the solver named PATH is invoked.

3.4.3.3.40.2 PATHNLP

PATHNLP is a variant of PATH that can solve LP and NLP model types. Essentially, it automatically
reformulates an NLP or LP problem as a complementarity problem and solves this using PATH. PATH
then uses second order information in the solution of the model, which can result in greater solution
efficiency. In addition, the marginal values are sometimes more exact than those provided by first-order
methods. This approach can work better than other solvers on large, sparse models with many
nonlinear variables and degrees of freedom. In these cases, the superbasics limit of other NLP codes
can limit their effectiveness. PATHNLP solver allows the solution of certain previously unsolvable models
(e.g. maximum entropy models). PATHNLP can be used with LP, RMIP, NLP, and RMINLP model
types. The PATHNLP solver manual is essentially the PATH manual PATH but additional
undocumented options exist. The solver manual is PATHNLP .

3.4.3.3.40.3 PATHOLD

PATHOLD is an older, now discontinued, version of PATH.

3.4.3.3.41 SBB

SBB is a solver for mixed integer nonlinear programming models developed by M. Bussieck of GAMS
and A. Drud of ARKI Consulting & Development. It combines the branch and bound method known from
mixed integer linear programming and some of the standard NLP solvers already supported by GAMS.
Currently, SBB can use

CONOPT
CONOPT2
MINOS
PATHNLP
SNOPT

as solvers for sub-models. SBB supports binary, integer, semicont, semiint, SOS1 and SOS2 variables.
 SBB employs a branch and bound algorithmic approach. SBB will solve MINLP model types.

3.4.3.3.42 SCENRED

SCENRED is a tool for the reduction of scenarios in a stochastic programs setting. SCENRED reduces
the random scenario set determining a scenario subset of prescribed cardinality or accuracy and
assigns optimal probabilities to the preserved scenarios. The reduced problem is then solved by a
deterministic optimization algorithm using the GAMS solvers. The solver manual is on scenred.

3.4.3.3.43 SCIP

SCIP is a MIP Solver for the Constrained Integer Programming framework.

The code was developed at the Konrad-Zuse-Zentrum f ur Informationstechnik Berlin (ZIB) and
was written primarily by T. Achterberg as part of the COIN project. It is distributed under the ZIB
Academic License and is available free for academic users. The solver is discussed at the link SCIP

https://www.gams.com/latest/docs/S_PATH.html
https://www.gams.com/mccarlGuide/pathnlp.htm
https://www.gams.com/latest/docs/T_SCENRED.html

McCarl GAMS User Guide133

© 2022 Prof. Bruce McCarl

and in the solver reference manuals.

SCIP was previously known as COINSCIP.

3.4.3.3.44 SNOPT

SNOPT is a NLP solver developed by P. Gill University of California, San Diego along with W. Murray,
and M. Saunders at Stanford University. SNOPT is suitable for large nonlinearly constrained problems
with a modest number of degrees of freedom. SNOPT implements a sequential programming algorithm
that uses a smooth augmented Lagrangian merit function and makes explicit provision for infeasibility in
the original problem and in the quadratic programming sub-problems. SNOPT can solve LP, RMIP, NLP,
DNLP, and RMINLP model types. The solver manual is on SNOPT.

3.4.3.3.45 SOPLEX

SoPlex is an optimization package for solving linear programming problems (LPs) based on the
primal and dual revised simplex algorithms.

More on it appears at https://soplex.zib.de/.

It has been available in GAMS for sometime under the name OSISOPLEX and currently is covered
in the solver guide only under that name.

3.4.3.3.46 XA

XA is a optimizer for solving linear, and mixed-integer problems developed by Sunset Software
Technology http://www.sunsetsoft.com/. XA contains a modified primal simplex algorithm, a dual
simplex algorithm, and an interior point barrier algorithm. For problems with integer variables, XA uses a
branch and bound algorithm (with cuts) and supports specially ordered set variables SOS1, SOS2 as
well as semi-continuous and semi-integer variables. XA solves LP, MIP and RMIP model types. The
solver manual for XA is on XA.

An additional variant of XA exists.

3.4.3.3.46.1 XAPAR

XAPAR is a parallel processor version of XA.

3.4.3.3.47 XPRESS

XPRESS is the XPRESS-MP Optimization Subroutine Library developed by Dash Optimization and
integrates a simplex-based LP solver, a MIP module, a barrier module implementing an interior point
algorithm for LP problems and a quadratic algorithm. XPRESS solves LP, MIP, QCP, RQCP, MIQCP
and RMIP model types. QCP problems are limited to those with quadratic objectives. The solver
manual for XPRESS is on XPRESS.

A free bare bones versions is available as COINXPRESS.

https://www.gams.com/latest/docs/S_SNOPT.html
https://soplex.zib.de/
http://www.sunsetsoft.com/
https://www.gams.com/latest/docs/S_XA.html
http://www.dashoptimization.com/
https://www.gams.com/latest/docs/S_XPRESS.html

Language Basics 134

© 2022 Prof. Bruce McCarl

3.4.3.4 Choosing a solver

GAMS offers a number of choices to solve a model and the user may switch solvers at their discretion
providing they have appropriate licenses. Mechanically, there are several ways to switch as discussed
in the Variables, Equations, Models and Solves chapter.

3.5 Standard Output

The standard output from GAMS contains many components. Here I discuss standard and optional
components of the output file as well as error messages. I will also cover procedures for controlling the
amount of output produced.

This chapter does not cover the output that can be generated by the user through Display or Put
statements. Those topics are covered in the Improving Output via Report Writing and in Output via Put
Commands chapters.

Where is my output? LOG and LST files

GAMS phases and output generated

Compilation phase output

Execution output

Output produced by a solve statement

Managing output pages

Managing output volume

Adding slack variables to the output

Sending messages to the LOG file

3.5.1 Where is my output? LOG and LST files

When GAMS runs an output file is automatically generated. That output file has the file extension LST.
The first part of the LST file name is the first part of the name of the GAMS input file. Thus, if the file
myfile.gms is the file run through GAMS the output will be on myfile.LST. This output file is an ASCII
text file in the courier font that can be loaded into a text editor. GAMS also generates a LXI file (in this
case myfile.LXI that contains navigation information that is used by the IDE in moving generating the
navigation window that permits around the LST file.

Output also appears on the LOG file particularly if one is using the IDE. That output summarizes the run
results and also can serve as a navigation aid when using the IDE. The LOG file does contain
information relevant to the solution and error status. It is named using the same practice as with the
LST file but the file extension is LOG i.e. myfile.LOG. It also is reproduced in the process window of the
IDE.

3.5.2 Output overview and navigation

When GAMS runs it automatically opens the LST file and a navigation window as identified in the red
box below. By clicking on lines in the lst file navigation window you can access program output both in
general and at particular locations.

McCarl GAMS User Guide135

© 2022 Prof. Bruce McCarl

The positioning of the cursor in the LST file is determined by the type of line you click on. A list of types
of lines typically in the LST file is given below and the contents of this will be defined below..

Language Basics 136

© 2022 Prof. Bruce McCarl

Name of Line
in LST File
Navigation
Window

Function and Destination When Clicked.

Compilation Jumps to top of echo print in LST file

Error
Messages

Jumps to list of error messages when compilation messages incurred

Equation
listing

Jumps to list of equation contents as illustrated.in the output section

Equation Expandable allowing jump to beginning of list of contents for each individual equation
block with contents as shown.in the output section

Variable
listing

Jumps to list of variable contents as illustrated.in the output section

Variable Expandable allowing jump to beginning of list of contents for each individual equation
block with contents as shown.in the output section

Model
statistics

Jumps to model statistics part of LST file as illustrated.in the output section

Solution
Report

Jumps to model summary solution report

SolEQU Expandable allowing jump to beginning of list of solution for each individual equation
block with contents as shown.in the output section

SolVAR Expandable allowing jump to beginning of list of solution for each individual variable
block with contents as shown.in the output section

Execution Jumps to beginning of post solve execution

Display Expandable allowing jump to displays of specific parameters and other items

The width of the LST file navigation window is controlled by the user and can be narrowed as it has been
above.

The data for this is stored in a LXI file that will be resident in your project directory with the same root as
the associated LST file.

McCarl GAMS User Guide137

© 2022 Prof. Bruce McCarl

3.5.3 GAMS phases and output generated

When asked to run, GAMS passes through a program file several times. The main passes it makes are
the

• Compilation phase where the LST file is written containing an echo print of the source file

possibly containing error messages, along with lists of GAMS objects, and cross reference
maps.

• Execution phase where output containing displays and execution error messages is added to

the LST file.

• Generation phase where output containing listings of equations and variables along with

generation execution error messages is added to the LST file.

• Solution phase where an external solver program deals with the model and creates output

relative to the solution process is added to the LST file.

• Post solution phase where output on the model solution and other user created displays is

added to the LST file.

3.5.4 Compilation phase output

During the compilation phase GAMS lists back the original program including line numbers, incorporates
a marking of and explanation of any errors detected, creates object lists and a cross reference map.

Echo print of the input file

Symbol reference map

Symbol listing

Unique element list

Unique element cross reference

3.5.4.1 Echo print of the input file

The echo print of the program is always the first part of the output file. It is just a listing of the input with
lines numbers added. An echo print of the file shortmodel.gms follows:

 2 *Example of a comment

 Comments in $On/off text are not given line numbers

 6 SET PROCESS PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE TYPES OF RESOURCES /plantcap,salecontrct/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 Yield(process) yields per unit of the process

 11 /Makechair 2 ,maketable 6 ,makelamp 3/

 12 PRODCOST(PROCESS) COST BY PROCESS

 13 /Makechair 10 ,Maketable 6, Makelamp 1/

 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 15 /plantcap 10 ,salecontrct 3/;

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

Language Basics 138

© 2022 Prof. Bruce McCarl

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

 20 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 21 VARIABLES PROFIT TOTALPROFIT;

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28 MODEL RESALLOC /ALL/;

 29 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

 34 display solprod;

Notes:

• The line number refers to the input file physical line number of each statement starting with line 1.

However, this is not true if other files are incorporated using the commands for file inclusion or
saves and restarts. In those cases the line numbers are sequential starting from 1 in the first file
with line numbers added at points of inclusion for the full file.

• Some lines are left out of the LST file echo print. In particular, any $directives inserted in the source

file are not listed even though the line number count is advanced for their presence. These will only
be listed if a directive to list them is enabled ($Ondollar), or if they contain errors. Thus, since in the
shortmodel.gms example the source file has a $ command in line 1 then the above listing begins
with line 2. $Offdollar stops echo print of dollar command options in LST file.

• GAMS does not echo back line numbers for entries enclosed in $Ontext and $Offtext. Thus, since

the shortmodel.gms example source file contains such commands in lines 3 and 5 with comments
inserted between (line 4) the LST file contains the comment in the echo print output but the line
numbers are suppressed and the dollar commands skipped resulting in the line numbering
skipping from line 2 to line 6.

• The $Offlisting directive will turn off the echo print of any lines appearing after it in the input file and

$Onlisting will turn the echo print back on. Thus, since shortmodel.gms has such commands in
line 30 and 33, the line numbers skip from line 29 to line 34 and the lines in between are not
shown.

• Lines in the echo print can be caused to be double spaced using $double and then reset to single

spacing using $single.

• Include files are ordinarily copied into the echo print but can be suppressed using $Offinclude.

They can be subsequently reactivated using $Oninclude.

3.5.4.1.1 Compilation phase error messages

During the compilation phase GAMS carefully checks the input file for consistency with GAMS syntax
and semantics. In turn, GAMS provides feedback and suggestions about how to correct errors or avoid
ambiguities as discussed in the Compiler Errors chapter.

Several hundred different types of errors can be detected during compilation. Most of the errors will be
caused by simple mistakes: forgetting to declare an identifier, putting indices in the wrong order, leaving
out a necessary semicolon, or misspelling a label. For errors that are not caused by mistakes, the
explanatory error message text will help you diagnose the problem and correct it as shown in the

McCarl GAMS User Guide139

© 2022 Prof. Bruce McCarl

Compiler Errors chapter.

When a compilation error is discovered a line is inserted in the echo print marked with four asterisks
'****'. Also in that line a $-symbol is inserted followed by a number which cross references to a list of
error conditions followed by a brief explanation of the nature of the error. This $ is inserted immediately
below the place in the line where the error arose (usually to the right). If more than one error is
encountered on a line the $-signs may be suppressed and error numbers squeezed together. GAMS will
not list more than 10 errors on any one line. The IDE also provides help in locating errors as discussed
in the GAMS Usage chapter.

When errors are present, the LST file contains a list of all the different types of errors encountered by
error number just after the end of the echo print listing. That list which includes a description of the
probable cause of each error. The error messages are generally self-explanatory and will not be listed
here. However, I do provide a list of the most common ones and their cause in the Compiler Errors
chapter. These messages can be repositioned as discussed below.

Example:

The example shorterr.gms illustrates the general reporting format for compiler errors. The part of shorterr.LST
relevant to errors is:

 6 SET PROCESS PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE TYPES OF RESOURCES /plantcap,salecontrct/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 Yield(process) yields per unit of the process

 11 /Makechair 2 ,maketable 6 ,makelamp 3/

 12 PRODCOST(PROCESS) COST BY PROCESS

 13 /Makechair 10 ,Maketable 6, Makelamp 1/

 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 15 /plantcap 10 ,salecontrct 3/;

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

 20 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 21 VARIABLES PROFIT TOTALPROFIT;

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $96 $2 $195 $96

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

**** $409

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28 MODEL RESALLOC /ALL/;

 29 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $257

 32 solprod(PROCESS)= PRODUCTION.l(PROCESS);

**** $141

Language Basics 140

© 2022 Prof. Bruce McCarl

 34 display solprod;

Error Messages

 2 Identifier expected

 96 Blank needed between identifier and text

 (-or- illegal character in identifier)

 (-or- check for missing ';' on previous line)

141 Symbol neither initialized nor assigned

 A wild shot: You may have spurious commas in the explanatory

 text of a declaration. Check symbol reference list.

195 Symbol redefined with a different type

257 Solve statement not checked because of previous errors

409 Unrecognizable item - skip to find a new statement

 looking for a ';' or a key word to get started again

**** 7 ERROR(S) 0 WARNING(S)

Notes:

• The lines containing the **** mark the errors encountered and also contain numbered error

message references.

• The $ insertions cross reference the error messages to the listing of descriptions of the conditions

at the end of the echo print while also indicating the placement of the error in the input file. In
particular the lines

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $96 $2 $195 $96

show that error 96 has occurred in line 24

Blank needed between identifier and text

(-or- illegal character in identifier)

 (-or- check for missing ';' on previous line)

at the position of the $ markers. The first error $96 occurs at the position of the .. in the line above
and the associated message shows GAMS is expecting something different. In this case the
problem arises because of the line before as the third line of the error message suggests. Namely
the line before was not ended with a semicolon.

• The example shows one of the common findings when dealing with compilation errors. Namely

one error typically proliferates throughout the code causing may other errors. In this case the only

error in the code is the omission of a semicolon (;) at the end of line 23.

23 AVAILABLE(RESOURCE) RESOURCES;

Typically many more compilation errors are marked than truly exist and can often be traced back to
just one specific omission or error in the GAMS input.

• The almost certain proliferation of errors caused by early errors in the GAMS program means it is

always advisable to check carefully from the top of the echo print finding and repairing the cause of

McCarl GAMS User Guide141

© 2022 Prof. Bruce McCarl

the first few errors in the code if one can figure them out then rerunning.

• The example also shows an error may not be detected until the statement following its occurrence,

where it may produce a number of error conditions with baffling explanations.

• One very common error is the omission of a semi colon.

• One can insert their own error messages using $abort or $error. The **** marker can be changed

using $Stars.

3.5.4.1.1.1 Repositioning error messages

It is possible to reposition where the explanation of the errors appears. In particular, the explanation
location can be altered so the error messages appear just below the place the error is found mixed in
with the source listing. This is done by using the option errmsg=1 in the GAMS command line. This
can be imposed in a couple of ways.

• One can call GAMS with the command line parameter errmsg=1

gams mymodel errmsg=1

When using the IDE this is placed in the GAMS command box in the upper right hand corner
as discussed in the Gamside chapter or if wanted for all models in the file option choice under
the execute tab in the box for additional GAMS parameters.

• One can alter the system level defaults as discussed in the Customizing GAMS chapter by

entering this line in the file gmsprm95.txt on basic windows machines. That file is called
gmsprmnt.txt on NT machines and gmsprmun.txt on Unix/Linux machines. The resultant file
looks something like

* GAMS 2.50 Default Parameterfile for Windows NT *

* Gams Development Corp. *

* Date : 20 Mar, 1998 *

* entries required by CMEX, put in by gams.exe:

* SYSDIR

* SCRDIR

* SCRIPTNEXT

* INPUT

errmsg=1

ps=9999

optfile=1

In turn, the output looks like the following

 6 SET PROCES PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE TYPES OF RESOURCES /plantcap,salecontrct/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

**** $120

Language Basics 142

© 2022 Prof. Bruce McCarl

**** 120 Unknown identifier entered as set

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 PRODCOST(PROCESS) COST BY PROCESS

 11 /Makechair 10 ,Maketable 6, Makelamp 1/

**** $361

**** 361 Values for domain 1 are unknown - no checking possible

 12 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 13 /plantcap 10 ,salecontrct 3/;

 14 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

**** $362

**** 362 Values for domain 2 are unknown - no checking possible

 15 Makechair Maketable Makelamp

 16 plantcap 3 2 1.1

 17 salecontrct 1 -1;

 18 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 19 VARIABLES PROFIT TOTALPROFIT;

 20 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 21 AVAILABLE(RESOURCE) RESOURCES AVAILABLE;

 22 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $140

**** 140 Unknown symbol

3.5.4.2 Symbol reference map

The next part of the GAMS output is the symbol cross reference map. This lists the named items (Sets,
Parameters, Variables, Equations, Models, Files, Acronyms) in alphabetical order, identifies them as to
type, shows the line numbers where the symbols appear, and classifies each appearance.

The symbol reference map for the shortmodel.gms example is

SYMBOL TYPE REFERENCES

AVAILABLE EQU declared 23 defined 26 impl-asn 29

 ref 28

OBJT EQU declared 22 defined 24 impl-asn 29

 ref 28

ite ACRNM declared 36 defined 36

PRICE PARAM declared 8 defined 9 ref 24

PROCESS SET declared 6 defined 6 ref 8

 10 12 16 20 2*24 2*25

 26 27 control 24 26

PRODCOST PARAM declared 12 defined 13 ref 25

PRODUCTION VAR declared 20 impl-asn 29 ref 25

 27

PROFIT VAR declared 21 impl-asn 29 ref 24

 29

putfile FILE declared 37 defined 38

RESALLOC MODEL declared 28 defined 28 impl-asn 29

 ref 29

RESORAVAIL PARAM declared 14 defined 15 ref 27

RESOURCE SET declared 7 defined 7 ref 14

McCarl GAMS User Guide143

© 2022 Prof. Bruce McCarl

 16 23 26 27 control 26

RESOURUSE PARAM declared 16 defined 16 ref 26

solprod PARAM ref 34 38

Yield PARAM declared 10 defined 11 ref 24

The symbol column is an all inclusive alphabetical list of all named items in the GAMS program. The
type column gives a categorical classification of the basic nature of the symbol using abbreviation codes
as follows

TYPE Type of GAMS item

ACRNM Acronym

EQU Equation

FILE Put file

MODEL Model

PARAM Parameter (also Table, Scalar)

SET Set

VAR Variable

The symbol map also contains a line number indexed list of references to the items, grouped by type of
reference which are abbreviated as below

Language Basics 144

© 2022 Prof. Bruce McCarl

Reference Description

DECLARED This identifies lines where the named item is declared in a Set, Parameter,
Table, Scalar, Variable, Equation, Acronym, File or Model command. This will
be the first appearance.

DEFINED This identifies the line number where explicit data are entered (in a table or a
data list between slashes) or in the case of an equation where the ..
specification begins.

ASSIGNED This identifies lines where this item has data put into it by being on the left hand
side of an assignment statement.

IMPL-ASN This identifies lines where an equation or variable has data put into it by the
results of a solve statement.

CONTROL
This identifies lines where this set is used as the driving index either in an

assignment, equation, loop or other indexed operation (sum, prod, smin or

smax).

REF
This identifies lines where this item is used either on the right hand side of an

assignment, in a display, in an equation, in a model, in a put

statement or in a solve statement.

Notes:

• The symbol cross reference map does not always appear. In particular, it is suppressed by default

in the IDE and, if desired, needs to be requested by using the command 6.

• In GAMS Dos and Unix the reference map always appears and if one wishes to suppress it one

uses $Offsymxref.

• The reference map is often large and not always useful given the capabilities of today's text editors.

It is usually suppressed in most models (with $Offsymxref).

• This map can be useful in model development, documentation preparation, and to make sure you

do not have items that are present but never used (insuring all items have ref, impl-asn, or control
entries present).

3.5.4.3 Symbol listing

The next output item is called the "symbol listing" and contains a classified list of all the named items
along with their explanatory text. The classification is by the main object types (Sets, Parameters,
Equations, Variables, and Models) is a useful way of obtaining information on item definitions provided
explanatory names and explanatory text has been used as argued in the Writing Models and Good
Modeling Practices chapter.

The symbol listing for the shortmodel.gms example is

SETS

McCarl GAMS User Guide145

© 2022 Prof. Bruce McCarl

 PROCESS PRODUCTION PROCESSES

 RESOURCE TYPES OF RESOURCES

ACRONYMS

 ite test an acronym

PARAMETERS

 PRICE PRODUCT PRICES BY PROCESS

 PRODCOST COST BY PROCESS

 RESORAVAIL RESOURCE AVAILABLITY

 RESOURUSE RESOURCE USAGE

 solprod report of production

 Yield yields per unit of the process

VARIABLES

 PRODUCTION ITEMS PRODUCED BY PROCESS

 PROFIT TOTALPROFIT

EQUATIONS

 AVAILABLE RESOURCES AVAILABLE

 OBJT OBJECTIVE FUNCTION (PROFIT)

MODELS

 RESALLOC

FILES

 putfile test a file statement

Notes:

• The symbol list does not always appear. In particular, it is suppressed in the IDE and, if desired,

needs to be requested by using the command $Onsymlist.

• In GAMS runs outside the IDE the symbol list always appears and if one wishes to suppress it one

uses $Offsymlist.

• The symbol list is useful in model comprehension and documentation preparation.

• The capitalization in the symbol list is controlled by the rules explained in the Rules for Item

Capitalization and Ordering chapter.

• Again long explanatory names and explanatory text really improve the utility of this list (see the

Writing Models and Good Modeling Practices chapter for more on this point).

3.5.4.4 Unique element list

The next output item is the "Unique Element List" which contains a list of all set element known to the
GAMS program in the order and capitalization style in which they will appear in the output. All unique
elements are first listed in the entry order (as discussed in the Rules for Item Capitalization and Ordering
chapter) and then in sorted order.

The lists for the shortmodel.gms example are:

Unique Elements in Entry Order
 1 makechair maketable makelamp plantcap salecontrct

Unique Elements in Sorted Order

Language Basics 146

© 2022 Prof. Bruce McCarl

 1 makechair makelamp maketable plantcap salecontrct

Notes:

• The unique element list does not appear unless requested. If desired, it needs to be requested by

using the command $Onuellist. $Offuellist removes the unique element listing from LST file.

• The capitalization and order of the UELs in the list and in all GAMS output is controlled by the rules

explained in the Rules for Item Capitalization and Ordering chapter.

• The UEL list is probably only useful to check capitalization and ordering in an effort to improve

output appearance and make sure nothing is omitted.

3.5.4.5 Unique element cross reference

The next output item is the unique element cross reference map that identifies the line numbers where
all unique set elements in the GAMS program are declared and referenced.

ELEMENT REFERENCES

makechair declared 6 ref 9 11 13 17

makelamp declared 6 ref 9 11 13 17

maketable declared 6 ref 9 11 13 17

plantcap declared 7 ref 15 18

salecontrct declared 7 ref 15 19

Notes:

• The declared entry shows the first place the name appears.

• The ref entry shows where the set element is used.

• The UEL map is probably only useful to make sure nothing is omitted and to make sure you do not

have items that are present but never used (insuring all items have ref entries present).

• The capitalization of the UEL's in the map and in all GAMS output is controlled by the rules explained

in the Rules for Ordering and Capitalization chapter.

• The unique element cross reference map does not appear unless requested. If desired, it needs to

be requested by using the command $Onuelxref. $Offuelxref removes unique element cross
reference from LST file.

3.5.5 Execution output

GAMS provides output to the LST file while executing (performing data manipulations) from display
statements and execution errors. Only brief discussion of displays are presented here. More coverage
is given in the Report writing chapter.

Display output

Execution error output

Symptoms of the presence of an execution error

McCarl GAMS User Guide147

© 2022 Prof. Bruce McCarl

3.5.5.1 Display output

Users can employ display to create an entry in the LST file with the nonzero data for program items.
The output from the display statement on line 34 for the shortmodel.gms example is shown below. The
format of the display statement output can be altered as discussed in the Report writing chapter.

---- 34 PARAMETER solprod report of production

maketable 5.000

3.5.5.2 Execution error output

If errors are detected because of illegal data operations, GAMS will generate error messages. During
GAMS usage one can encounter execution errors.

Generally these occur either during GAMS execution due to GAMS limits or math problems and are
marked in the LST file with ****. The Fixing Execution Errors chapter shows how to find and fix these.

3.5.5.3 Symptoms of the presence of an execution error

When a job runs and execution errors are present the first indication is in the contents of the run
summary sent to the screen, the LOG file and the IDE process window. For the example executcl.gms
the LOG file appears as follows

--- Starting compilation

--- EXECUTCL.GMS(12) 1 Mb

--- Starting execution

--- EXECUTCL.GMS(11) 1 Mb 1 Error

*** Exec Error 10 at line 11

 Illegal arguments in ** operation

--- EXECUTCL.GMS(11) 1 Mb 2 Errors

*** Exec Error 0 at line 11

 Division by zero

--- EXECUTCL.GMS(12) 1 Mb 2 Errors

*** Status: Execution error(s)

showing the presence of two types of execution errors. The Fixing Execution Errors chapter shows how
to find and fix these.

3.5.6 Output produced by a solve statement

When a Solve statement is executed another set of output is included in the LST file. This consists of a
model generation error listing, equation listing, variable listing, model characteristics statistics output,
model generation time report, solve summary report, solver report, and a variable and equation solution
listing.

Model generation error listing

Equation listing

Variable listing

Model characteristics statistics

Language Basics 148

© 2022 Prof. Bruce McCarl

Model generation time

Solve summary

The variable and equation solution listing

Ranging analysis

Final execution summary

Report summary

File summary

3.5.6.1 Model generation error listing

The GAMS output next contains execution errors found during model generation. These are numerical
calculation or model structure errors. The Fixing Execution Errors chapter shows how to find and fix
these.

Numerical calculation errors involve improper exponentiation (such as raising a negative number to a real
power), logs of negative numbers, or division by zero. Model structure errors involve equations
improperly set up i.e. ones that are inherently infeasible or the wrong solver is being used.

Discovery of execution errors is sometimes very straight forward, but can, at other times, be fairly
involved. Namely an error in the middle of a multi-dimensional equation block and/or in a multi-
dimensional equation term within a block, can be difficult. The most practical way of finding such errors
is to use the LIMROW/LIMCOL option commands.

Consider the example executmd.gms.

sets elems /s1*s25/

parameter data1(elems) data to be exponentiated

 datadiv(elems) divisors

 datamult(elems) x limits;

data1(elems)=1;

data1("s20")=-1;

datadiv(elems)=1;

datadiv("s21")=0;

datamult(elems)=1;

datamult("s22")=0;

positive variables x(elems) variables

variables obj;

equations objr objective with bad exponentiation

 xlim(elems) constraints with bad divisor

 nonlin nonlinear constrint in LP;

objr.. obj=e=sum(elems,data1(elems)**2.1*x(elems));

xlim(elems).. datamult(elems)/datadiv(elems)*x(elems)=e=1;

nonlin.. sum(elems,sqr(x(elems)))e=1;

model executerr /all/

option limrow=30; option limcol=30;

solve executerr using lp maximizing obj;

When this is run through GAMS I find execution errors where the LOG file contains

--- Generating model EXECUTERR

McCarl GAMS User Guide149

© 2022 Prof. Bruce McCarl

--- EXECUTMD.GMS(16) 134 Kb

*** ExecError 10 at Line 16

 ILLEGAL ARGUMENTS IN ** OPERATION

--- EXECUTMD.GMS(17) 134 Kb 1 Errors

*** ExecError 0 at Line 17

 DIVISION BY ZERO

*** ExecError 28 at Line 17

 EQUATION INFEASIBLE DUE TO RHS VALUE

--- EXECUTMD.GMS(20) 134 Kb 3 Errors

*** SOLVE aborted

*** Status: Execution error(s)

and the LST file

**** EXECUTION ERROR 10 AT LINE 16 .. ILLEGAL ARGUMENTS IN ** OPERATION

---- OBJR =E= objective with bad exponentiation

OBJR.. - X(s1) - X(s2) - X(s3) - X(s4) - X(s5) - X(s6) - X(s7) - X(s8)

 - X(s9) - X(s10) - X(s11) - X(s12) - X(s13) - X(s14) - X(s15) - X(s16)

 - X(s17) - X(s18) - X(s19) + UNDF*X(s20) - X(s21) - X(s22) - X(s23)

 - X(s24) - X(s25) + OBJ =E= UNDF ; (LHS = UNDF, INFES = UNDF ***)

**** EXECUTION ERROR 0 AT LINE 17 .. DIVISION BY ZERO

**** EXECUTION ERROR 28 AT LINE 17 .. EQUATION INFEASIBLE DUE TO RHS VALUE

**** INFEASIBLE EQUATIONS ...

---- XLIM =E= constraints with bad divisor

XLIM(s22).. 0 =E= 1 ; (LHS = 0, INFES = 1 ***)

In this example there are execution errors:

• in the objective function for the "S20" element where the code is exponentiating a negative

constant to a real power (because of the assignment in line 9);

• in the XLIM "S22" constraint where the code is setting zero equal to one which results in an

infeasible constraint (because of the assignment in line 15).

• in the XLIM constraint associated with element "S21" where the code is dividing by zero

(because of the assignment in line 11); but this example does not at first display the divide by
zero error. To get it you have to fix the infeasibility and run again. Then you get

 XLIM(s21).. UNDF*X(s21) =E= UNDF ; (LHS = UNDF, INFES = UNDF ***)

3.5.6.2 Equation listing

The next output item is the equation listing, which is marked with that subtitle on the output file and is

Language Basics 150

© 2022 Prof. Bruce McCarl

controlled by Option Limrow. Once you succeed in building an input file devoid of compilation errors,
GAMS is able to generate a model. The question remains -- and only you can answer it -- does GAMS
generate the model you intended? The equation listing is a device for studying this extremely important
question (as are many of the features of GAMSCHK). This component of the LST file shows specific
equations generated within the model when the current values of the sets and parameters are plugged
into the general algebraic form of the model. For the shortmodel.gms example it is

---- OBJT =E= OBJECTIVE FUNCTION (PROFIT)

OBJT.. - 3*PRODUCTION(makechair) - 12*PRODUCTION(maketable)

 - 0.5*PRODUCTION(makelamp) + PROFIT =E= 0 ; (LHS = 0)

---- AVAILABLE =L= RESOURCES AVAILABLE

AVAILABLE(plantcap).. 3*PRODUCTION(makechair) + 2*PRODUCTION(maketable)

 + 1.1*PRODUCTION(makelamp) =L= 10 ; (LHS = 0)

AVAILABLE(salecontrct).. PRODUCTION(makechair) - PRODUCTION(maketable) =L= 3

 ; (LHS = 0)

Notes:

• The equation listing shows the cases of each constraint, variables that appear, numerical values of

the individual coefficients and the equation type.

• The constant term on the right-hand-side value collapses all constants in the equation with

appropriate sign alterations.

• The equation listing for each equation block is set off with four dashes ---- to facilitate mechanical

searching.

• The coefficients are shown with four decimal places if needed, but trailing zeroes following the

decimal point are suppressed. E-format is used to prevent small numbers being displayed as zero
and to allow large numbers.

• The default output is a maximum of three index cases for each equation block. To change the

default, insert an option statement prior to the solve statement: option limrow = r ; where r is the
desired number of equation cases in a block to be displayed. Equations that are infeasible at the
starting point are marked with three asterisks (***) as in the NLP listing just below.

• The order in which the equations and equation cases are listed depends on the form of the model

statement. If /all/ was used then the order is determined by the entry order of the equations and the
placement of set elements in the unique element list as discussed in the Rules for Item
Capitalization and Ordering chapter. On the other hand if the equations are explicitly listed in the
model statement, then the listing will be in the order in that list with elements listed according to the
unique element list.

• Nonlinear terms are also included here but are marked and are local evaluations. Namely,

nonlinear coefficients are enclosed in parentheses, and the value of the coefficient depends on the
level attributes (.l values) of the variables. The listing shows the partial derivative of each variable
evaluated at their current level values and there is an implicit unlisted constant involved with the
function evaluations. For the example simpnlp.gms with the equation

McCarl GAMS User Guide151

© 2022 Prof. Bruce McCarl

Eq1.. 2*sqr(x)*power(y,3) + 5*x - 1.5/y =e= 2;

At the starting point

x.l = 2; y.l = 3 ;

The equation listing contains

Eq1.. (221)*x + (216.1667)*y =2= ; (lhs = 225.5 ***)

For further discussion see the NLP and MCP chapter.

3.5.6.3 Variable listing

The next output section is the variable listing and is controlled by option Limcol. This lists the individual
coefficients for each variable. For the shortmodel.gms example it is

---- PRODUCTION ITEMS PRODUCED BY PROCESS

PRODUCTION(makechair)

 (.LO, .L, .UP = 0, 0, +INF)

 -3 OBJT

 3 AVAILABLE(plantcap)

 1 AVAILABLE(salecontrct)

PRODUCTION(maketable)

 (.LO, .L, .UP = 0, 0, +INF)

 -12 OBJT

 2 AVAILABLE(plantcap)

 -1 AVAILABLE(salecontrct)

PRODUCTION(makelamp)

 (.LO, .L, .UP = 0, 0, +INF)

 -0.5 OBJT

 1.1 AVAILABLE(plantcap)

---- PROFIT TOTALPROFIT

PROFIT

 (.LO, .L, .UP = -INF, 0, +INF)

 1 OBJT

Notes:

• The variable listing shows each case of each variable including the equations in which appears,

and the numerical values of the individual coefficients.

• The listing also shows the lower bound (.lo), upper bound (.up) and current level (.l) values for each

variable.

• The listing for each variable block is set off with four dashes ---- to facilitate mechanical searching.

• The numerical entries are formatted with up to four decimal places if needed, but trailing zeroes

Language Basics 152

© 2022 Prof. Bruce McCarl

following the decimal point are suppressed. E-format is used to prevent small numbers being
displayed as zero and to allow display of large numbers.

• The default output is a maximum of three set index cases for each generic variable. To change the

default, insert an option statement prior to the solve statement: option limcol = r ; where r is the
desired number of variable cases to be displayed under each variable block.

• The order in which the variable cases and the variable blocks are listed is determined by the entry

order of the variables and the placement of set elements in the unique element list as discussed in
the Rules for Item Capitalization and Ordering chapter.

• Nonlinear terms are included here but are marked. Namely, nonlinear coefficients are enclosed in

parentheses, and the value of the coefficient depends on the activity levels (.l values) of the
variables. The listing shows the partial derivative of each variable evaluated at their current level
value attribute and there is an implicit unlisted constant involved with the function evaluations. For
the example simpnlp.gms with the equation

Eq1.. 2*sqr(x)*power(y,3) + 5*x - 1.5/y =e= 2;

At the starting point

x.l = 2; y.l = 3 ;

The variable listing contains

---- x

x

 (.LO, .L, .UP = -INF, 2, 10)

 (221) eq1

---- y

y

 (.LO, .L, .UP = -INF, 3, 10)

 (216.1667) eq1

3.5.6.4 Model characteristics statistics

The next item of output is the model size statistics. For the shortmodel.gms example it is

MODEL STATISTICS

BLOCKS OF EQUATIONS 2 SINGLE EQUATIONS 3

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 4

NONZERO ELEMENTS 9

While for the example simpnlp.gms it is

MODEL STATISTICS

BLOCKS OF EQUATIONS 1 SINGLE EQUATIONS 1

McCarl GAMS User Guide153

© 2022 Prof. Bruce McCarl

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 2

NONZERO ELEMENTS 2 NON LINEAR N-Z 2

DERIVATIVE POOL 6 CONSTANT POOL 11

CODE LENGTH 54

This output provides details on the size and nonlinearly of the model.

The block counts refer to GAMS equations and variables, the single counts to individual rows and
columns in the problem generated. The NONZERO ELEMENTS entry refers to the number of nonzero
coefficients in the problem matrix.

There are several entries that provide additional information about nonlinear models.

• The NON LINEAR N-Z entry refers to the number of nonlinear coefficient entries in the model.

• The CODE LENGTH entry reports on the complexity of the nonlinearly of the model and is

really telling how much code GAMS passes to the nonlinear solver which describes all the
nonlinear terms in the model.

• The DERIVATIVE POOL and CONSTANT POOL provide more information about the nonlinear

information passed to the nonlinear solver.

3.5.6.5 Model generation time

GAMS reports CPU or clock time usage and memory usage are next as follows

GENERATION TIME = 0.010 SECONDS 1.4 Mb WIN200-121

The generation time is the time used since compilation finished. This includes the time spent in
generating the model. The measurement units are ordinary clock time on personal computers, and
central processor usage (cpu) time on other machines. Memory use is given in megabytes.

3.5.6.6 Solve summary

The next piece of output contains details about the solution process. It is divided into two parts, the first
being common to all solvers, and the second being specific to a particular one.

3.5.6.6.1 Common solver report

The section of the solve summary that is common for all solvers is shown below.

 S O L V E S U M M A R Y

 MODEL RESALLOC OBJECTIVE PROFIT
 TYPE LP DIRECTION MAXIMIZE
 SOLVER BDMLP FROM LINE 29

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 60.0000

 RESOURCE USAGE, LIMIT 0.070 1000.000

Language Basics 154

© 2022 Prof. Bruce McCarl

 ITERATION COUNT, LIMIT 2 10000

This can be found mechanically by searching for S O L V E. This has a number of parts

• Name of the model being solved,

• Name of the variable optimized (objective),

• Problem type

• Direction of optimization

• Solver name

• Line number where the solve statement appears.

• An indication of the solver and model status. As discussed in the Model Attributes chapter.

• The objective value.

• Resource usage - the amount of cpu time (in seconds) taken by the solver, as well as the

time limit allowed for the solver.

• The iteration count, and the iteration upper limit.

• In a non linear model one also gets counts of evaluation errors providing the number of

numerical errors encountered by the solver, as well as the upper limit allowed. These errors
result due to numerical problems like division by 0.

3.5.6.6.2 Solver report

The next section in the LST file is the part of the solve summary that is particular to the solver program
that has been used. This section normally begins with a message identifying the solver and its authors:
BDMLP was used in the example here. There will also be diagnostic messages if anything unusual was
detected, and specific performance details as well, some of them technical. The solver manuals will
help explain these.

The solver report from the example is

BDMLP 1.3 Mar 21, 2001 WIN.BD.NA 20.0 056.043.039.WAT

 Originally developed by

 A. Brooke, A. Drud, and A. Meeraus,

 World Bank, Washington, D.C., U.S.A.

 Work space allocated -- 0.02 Mb

 EXIT -- OPTIMAL SOLUTION FOUND.

In case of serious trouble, the GAMS LST file will contain additional messages printed by the solver.
This may help identify the cause of the difficulty. If the solver messages do not help, a perusal of the
solver manual or help from a more experienced user is recommended. This information can be
standardly included by entering a line containing the statement Option sysout = on ; in the program
above the solve statement.

McCarl GAMS User Guide155

© 2022 Prof. Bruce McCarl

3.5.6.7 The variable and equation solution listing

The next section of the LST file is an equation by equation then variable by variable listing of the solution
returned to GAMS by the solver. Each individual equation and variable is listed by case under each
block of equations and variables. The order of the equations and variables are the same as in the
symbol listing described before.

---- EQU AVAILABLE RESOURCES AVAILABLE

 LOWER LEVEL UPPER MARGINAL

plantcap -INF 10.000 10.000 6.000

salecontrct -INF -5.000 3.000 .

---- VAR PRODUCTION ITEMS PRODUCED BY PROCESS

 LOWER LEVEL UPPER MARGINAL

makechair . . +INF -15.000

maketable . 5.000 +INF .

makelamp . . +INF -6.100

 LOWER LEVEL UPPER MARGINAL

---- VAR PROFIT -INF 60.000 +INF .

 PROFIT TOTALPROFIT

The columns associated with each entry have the following meaning,

• Block separator ----

• Equation or Variable identifier

• Lower bound (.lo)

• Level value (.l)

• Upper bound (.up)

• Marginal (.m)

Notes:

• For variables the values in the lower and upper columns refer to the lower and upper bounds. For

equations they are obtained from the (constant) right-hand-side value and from the relational type of
the equation. These relationships are described in the Variables, Equations, Models and Solves
chapter.

• The numbers are printed with fixed precision, but the values are returned within GAMS have full

machine accuracy.

Language Basics 156

© 2022 Prof. Bruce McCarl

• The single dots '.' represent zeros.

• If present EPS is the GAMS extended value that means very close to but different from zero.

• It is common to see a marginal value given as EPS, since GAMS uses the convention that

marginals are zero for basic variables, and nonzero for others.

• EPS is used with non-basic variables whose marginal values are very close to, or actually, zero, or

in nonlinear problems with superbasic variables whose marginals are zero or very close to it.

• For models that are not solved to optimality, some items may additionally be marked with the

following flags.

Flag Description

Infes The item is infeasible. This mark is made for any entry whose level
value is not between the upper and lower bounds.

Nopt The item is non-optimal. This mark is made for any non-basic entries
for which the marginal sign is incorrect, or superbasic ones for which
the marginal value is too large.

Unbnd The row or column that appears to cause the problem to be
unbounded.

• This section of the listing file can be turned off by entering a line containing the statement option

Solprint = off ; in the program above the solve statement.

3.5.6.7.1 Including slacks in the output

GAMS, unlike the rest of the mathematical programming world, includes equation "levels" in its output,
not slacks. An equation level for the equation AX < b is the term AX whereas a slack is b-AX. Users
desiring slacks can get them by inserting the command below anywhere before the solve statement as
is done in the example resource.gms. This is illustrated later in this chapter.

option solslack=1;

3.5.6.8 Ranging analysis

Some users are interested in getting ranging output in the form of LP cost and right hand side ranging
results. Unfortunately, the base version of GAMS does not yield such information. The user wishing
such information has two alternatives. First, one may cause the model to be repeatedly solved under a
set of values for the key parameter using the procedures discussed in the Doing a Comparative Analysis
with GAMS chapter but this is cumbersome if a lot of parameters are involved. Second, one can use
solver dependent features of GAMS (which currently work with OSL or CPLEX) and retrieve the ranging
information following the procedures discussed next. In turn the ranging information is included in the
LST file and can be retrieved into a GAMS parameter.

There is a document on the GAMS web page called Sensitivity Analysis, with GAMS/CPLEX and
GAMS/OSL at https://www.gams.com/latest/docs/S_CPLEX.html#CPLEX_SensitivityAnalysis which
gives instructions on how to get ranging analyses from the OSL or CPLEX solvers. Use of this approach
requires one to implement a solver options file telling the solver to generate all possible or selected
ranging information. There is also an option one can use which causes the ranging information to be

https://www.gams.com/latest/docs/S_CPLEX.html#CPLEX_SensitivityAnalysis

McCarl GAMS User Guide157

© 2022 Prof. Bruce McCarl

saved in an auxiliary file importable by GAMS, subject to some potential small editing changes.

The steps to using this procedure are as follows

I. When solving an LP type of problem make sure you are using either OSL or CPLEX as the LP
solver through the solver selection procedures discussed in the Variables, Equations, Models
and Solves chapter.

II. Define an option file of one of two forms

� If you wish all the variables and equations to be subjected to ranging then place the
following lines in the option file for CPLEX

objrng all
rhsrng all

or for OSL use

objrng
rhsrng

� If you wish only selected items to be ranged enter the commands

objrng variablename1,variablename2
rhsrng equationname

in both OSL and CPLEX where variablename and equationname are named variables and
equations in your GAMS model.

• These options can be repeated to specify ranging for more than one variable or
equation.

• One cannot nominate individual cases of a variable or equation.

III. Add lines just before the solve statement that tell GAMS to activate an options file and write a
dictionary file

transport.OptFile=1;
transport.DictFile = 4;

IV. One may wish to include these items in the GAMS parameter so they may be used in
calculations or report writing. A file that may be included into GAMS is automatically
generated if one adds a line to the options file of the form

rngrestart filename

where filename is the name of the include file.

Example:

Suppose we take the problem resource.gms and set it up to do include ranging analysis. To do this we add
the colored lines as below between the model statement and the solve statement creating the file
ranging.gms.

Language Basics 158

© 2022 Prof. Bruce McCarl

 MODEL RESALLOC /ALL/;

 option lp=cplex;

 FILE OPT Cplex option file / cplex.OPT /;

 PUT OPT;

 PUT 'objrng all '/

 'rhsrng all '/;

 PUTCLOSE OPT;

 resalloc.optfile=1;

 resalloc.dictfile=4;

 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

These lines choose the solver, write the options file using the procedure discussed in the Solver Option files
chapter, activate the options file and write the dictionary file.

In turn the LST file output is augmented with the ranging information as follows

EQUATION NAME LOWER CURRENT UPPER

------------- ----- ------- -----

OBJT -INF 0 +INF

AVAILABLE(SMLLATHE) 95.6204 140 151.333

AVAILABLE(LRGLATHE) 83.9286 90 112.705

AVAILABLE(CARVER) 103.093 120 +INF

AVAILABLE(LABOR) 97.9317 125 175.453

VARIABLE NAME LOWER CURRENT UPPER

------------- ----- ------- -----

PRODUCTION(FUNCTNORM) -3.92507 0 27.8421

PRODUCTION(FUNCTMXSML) -INF 0 11.2991

PRODUCTION(FUNCTMXLRG) -INF 0 4.07934

PRODUCTION(FANCYNORM) -4.97175 0 4.42299

PRODUCTION(FANCYMXSML) -INF 0 8.39683

PRODUCTION(FANCYMXLRG) -4.29115 0 14.7057

PROFIT 1.33227e-015 1 +INF

In our example adding the line

rngrestart rngfile.gms

to the options file (rangeinc.gms) causes the file rngfile.gms to be generated that contains the ranging results
in parameters. These parameters are named with the variable and equation names with the letters RNG
appended. They have the same basic set dependency but with an additional set (RNGLIM) added. That set is
assumed to be defined by the user and has the elements lo and up for the upper and lower ranges. In this
case the file looks like

PARAMETER OBJTRNG(RNGLIM) /

LO -INF

UP +INF

/;

PARAMETER AVAILABLERNG(RESOURCE,RNGLIM) /

McCarl GAMS User Guide159

© 2022 Prof. Bruce McCarl

SMLLATHE.LO 95.62037037

SMLLATHE.UP 151.3333333

LRGLATHE.LO 83.92857143

LRGLATHE.UP 112.7045827

CARVER.LO 103.0926264

CARVER.UP +INF

LABOR.LO 97.93170732

LABOR.UP 175.4526316

/;

PARAMETER PRODUCTIONRNG(PROCESS,RNGLIM) /

FUNCTNORM.LO -3.925065963

FUNCTNORM.UP 27.84210526

FUNCTMXSML.LO -INF

FUNCTMXSML.UP 11.29905545

FUNCTMXLRG.LO -INF

FUNCTMXLRG.UP 4.079341865

FANCYNORM.LO -4.971748151

FANCYNORM.UP 4.422993062

FANCYMXSML.LO -INF

FANCYMXSML.UP 8.3968312

FANCYMXLRG.LO -4.291153846

FANCYMXLRG.UP 14.70565635

/;

PARAMETER PROFITRNG(RNGLIM) /

LO 1.33226763e-015

UP +INF

/;

Notes:

• The cost ranges for the variables for all but the variable maximized will always be centered on zero.

This occurs because the model is of the form

Max Z + 0X

Z – CX =0

AX < b

as discussed in the Quick Start Tutorial chapter.

• The parameter file of ranging results may be included immediately in the program using the GAMS

to GAMS calling procedure as discussed in the Links to Other Programs Including Spreadsheets
chapter or as implemented below (rangeinc.gms , incmyranges.gms)

 MODEL RESALLOC /ALL/;
 option lp=cplex;

 FILE OPT Cplex option file / cplex.OPT /;

 PUT OPT;

$setglobal filename rngfile.gms

 PUT 'objrng all '/

 'rhsrng all '/

 'rngrestart %filename%'/;

Language Basics 160

© 2022 Prof. Bruce McCarl

 PUTCLOSE OPT;

 resalloc.optfile=1;

 resalloc.dictfile=4;

 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

Set rnglim /lo,up/;

PARAMETER OBJTRNG(RNGLIM)

PARAMETER AVAILABLERNG(RESOURCE,RNGLIM)

PARAMETER PRODUCTIONRNG(PROCESS,RNGLIM)

PARAMETER PROFITRNG(RNGLIM) ;

execute_unload 'passtorange.gdx',resource,process,rnglim;

execute 'GAMS incmyranges --filename=%filename%'

execute_load 'passtorange.gdx',OBJTRNG,

 AVAILABLERNG,

 PRODUCTIONRNG,

 PROFITRNG;

where a couple of tricks are used

� the file name with the ranges are passed using a control variable established with a
setglobal, referenced with %varnam% and the – command line parameter as discussed in
the Conditional Compilation chapter.

� The sets defining the items are unloaded into a GDX file for inclusion into the GAMS program
we will call to create a GDX file of results. Use of GDX commands is discussed in the Using
GAMS Data Exchange or GDX Files chapter.

� GAMS is executed and the program executed is as follows

set resource,

 process,

 rnglim;

$gdxin passtorange.gdx

$Load resource process rnglim

$include "%filename%"

execute_unload 'passtorange.gdx',OBJTRNG,

 AVAILABLERNG,

 PRODUCTIONRNG,

 PROFITRNG;

where filename is passed though the – parameter in the execution
the names of the range containing parameters must be known and the

appropriate unload commands issued.

� The resultant range containing parameter names are loaded in.

• In a more complex model one may wish to only range parts of the model as illustrated by the option

file below that is implemented in the context of the file agreste.gms by the file rangag.gms.

objrng xcrop,xlive,sales

rhsrng labc,landb

McCarl GAMS User Guide161

© 2022 Prof. Bruce McCarl

3.5.6.9 Final execution summary

The final execution summary appears next which has the results of any post solution displays plus a
report on the final execution time and memory use.

Users can employ display to crate an entry in the LST file with the nonzero data for program items. The
output from the display statement on line 34 of the LST file for the shortmodel.gms example is shown
below. The format of the display statement output can be altered as discussed in the Improving Output
via Report Writing chapter.

---- 34 PARAMETER solprod report of production

maketable 5.000

3.5.6.10 Report summary

The final section of the solution listing is more timing information and the report summary, marked with
four asterisks (as are All important components of the output).

The time display is in the same format as that discussed above and for the example is

EXECUTION TIME = 0.110 SECONDS 1.4 Mb WIN200-121

The report summary shows the count of rows or columns that have been marked infes, nopt, or unbnd in
the solution listing section. The sum of infeasibilities will be shown if it the reported solution is
infeasible. A domain error count is only shown if the problem is nonlinear.

**** REPORT SUMMARY : 0 NONOPT

 0 INFEASIBLE

 0 UNBOUNDED

 1 PROJECTED

The projected entry indicates the number of variable and equation levels that are set to bounds when
their numerical value falls below the tolerance (tolproj) and their levels are set to their lower (often to
zero) or upper bound.

3.5.6.11 File summary

The last piece of the LST file gives the names of files used. If work files (save or restart) have been used,
they will be named here as well.

**** FILE SUMMARY

INPUT C:\GAMS\GAMSPDF\SHORTMODEL.GMS

OUTPUT C:\GAMS\GAMSPDF\SHORTMODEL.LST

3.5.7 Managing output pages

Pages may be managed adding titles, ejecting pages, and managing width and length.

Language Basics 162

© 2022 Prof. Bruce McCarl

Page width and height

New pages

Adding an output title to each page

3.5.7.1 Page width and height

Users may wish to exercise control over page width and length. The default page length is 60 lines.
This often causes longer files to contain a lot of GAMS headers in inconvenient spots. One can
respecify page size in several ways.

• Job specific page characteristics are specified on the GAMS call using the general syntax

GAMS modelname ps=n1 pw=n2

where ps gives the page length and can be as small as 30 or as big as 9999 and pw the page
width which must be between 72 and 32767.

More specifically

GAMS trnsport ps=9999 pw=100

• The default page length and width can be customized by editing a file in the GAMS source

directory as discussed in the Customization chapter. In particular on Windows 95/98
machines the file is called GMSPRM95.txt (Note on NT and UNIX/LINUX machines it has a
slightly different name -- gmsprmnt.txt and gmsprmun.txt respectively). In this file one defines
the page length with a line ps followed by a space and a number

ps 1000

and page width with

pw 100

• In the IDE job specific page characteristics are specified in the GAMS execution parameter

box in the upper right hand corner adding

ps=9999 pw=100

where ps gives the page length and can be as small as 30 or as big as 9999 and pw the page
width which must be between 72 and 32767.

• In the IDE characteristics for all jobs are specified using the file options menu choice under

the output tab in the boxes for page width and page height (same as page size above). The
page height and can be as small as 30 or as big as 9999 and the page width which must be
between 72 and 32767.

3.5.7.2 New pages

Users may wish to cause new pages in the echo print to begin unilaterally or if there are only a few lines
left on the page using the commands

$Eject Dollar command which starts a new page in LST file
$Lines Dollar command which starts new page if less than n lines are left on a

page

McCarl GAMS User Guide163

© 2022 Prof. Bruce McCarl

3.5.7.3 Adding an output title to each page

A title and subtitle can be placed on each and every page using

$Stitle Defines subtitle for LST file
$Title Defines LST file title

For example in the Model library file co2mge.gms at various points the following appear

$TITLE Carbon-Related Trade Model (static) (CO2MGE,SEQ=142)

$stitle: CARBON-RELATED TRADE MODEL - BENCHMARK REPLICATION

$stitle:CARBON-RELATED TRADE MODEL - OECD ABATEMENT WITH HIGH LEAKAGE

which results in every page of the LST file being started with the line

Carbon-Related Trade Model (static) (CO2MGE,SEQ=142)

and pages after the $stitle having pages that start with

Carbon-Related Trade Model (static) (CO2MGE,SEQ=142)

: CARBON-RELATED TRADE MODEL - BENCHMARK REPLICATION

until the next stitle where the page heading becomes

Carbon-Related Trade Model (static) (CO2MGE,SEQ=142)

:CARBON-RELATED TRADE MODEL - OECD ABATEMENT WITH HIGH LEAKAGE

3.5.8 Managing output volume

Sometimes the GAMS output volume can be overwhelmingly large. There are several actions one can
undertake to limit the output. These are listed below:

Eliminate model listing

Eliminate cross reference map

Eliminate symbol list

Eliminate solution output

Eliminate echo print

Restrict output just to a few displays

3.5.8.1 Eliminate model listing

To limit the model listing obtained set Limrow and Limcol to zero as follows

Option Limrow=0;
Option Limcol=0;

Language Basics 164

© 2022 Prof. Bruce McCarl

3.5.8.2 Eliminate cross reference map

To eliminate the cross-reference map use the command

$Offsymxref

Note that this is eliminated by default in the IDE.

3.5.8.3 Eliminate symbol list

To eliminate the alphabetic listing of the symbol table use the command.

$Offsymlist

Note that this is eliminated by default in the IDE.

3.5.8.4 Eliminate solution output

To eliminate the solver generated solution output use the command

Option Solprint=off;

3.5.8.5 Eliminate echo print

To eliminate listing of segments of code use the command $Offlisting. Note anything placed between
the following two commands will not be copied to the LST file

$OFFLISTING
text in between will not appear in the LST file
$Onlisting

3.5.8.6 Restrict output just to a few displays

One can also use a save restart strategy where the LST file just contains the desired display
statements. This allows one to only concentrate on a narrow set of output while remaining capable of
generating a lot more output. This strategy is discussed in the Saves and Restarts chapter.

3.5.9 Adding slack variables to the output

By default GAMS output contains equation levels. An equation level is the activity on the left-hand side
of an equation. Most people are not taught such a concept but rather expect to see slack variables.
GAMS will replaces the equation levels with slack variables in the output if one uses the option
command:

Option solslack=1

Without this command when solving slack.gms the equation part of the solution is

McCarl GAMS User Guide165

© 2022 Prof. Bruce McCarl

---- EQU AVAILABLE RESOURCES AVAILABLE

 LOWER LEVEL UPPER MARGINAL

Land -INF 800.000 800.000 118.700

Spring Labor -INF 3114.000 4800.000 .

Fall Labor -INF 3300.000 3300.000 4.600

but with it

 LOWER SLACK UPPER MARGINAL

Land -INF . 800.000 118.700

Spring Labor -INF 1686.000 4800.000 .

Fall Labor -INF . 3300.000 4.600

3.5.10 Sending messages to the LOG file

A message may be sent to the LOG file using the command $LOG. It is employed using the syntax

$LOG text to send

or by using Put commands as discussed in the Output via Put Commands chapter.

3.6 Writing Models and Good Modeling Practices

The style with which one formats ones GAMS model is a matter of both needed adherence to language
requirements and individual preference. In this chapter I discuss the individual preference aspects. In
particular, I will assert the virtues of my preferences but obviously others can choose their own practices.

Formatting models - my recommendations

3.6.1 Formatting models - my recommendations

Users have many options on how they could present a GAMS model. Over more than 15 years of
GAMS experience including the relative frequently event where I need to work with models that others
have constructed I have arrived at a number of practices I try to follow.

In general I feel that it is in a modelers hands as to how much self-documentation a piece of GAMS code
contains. I do feel there are purposeful actions that can improve documentation and will explain a
number of practices that could be followed here. The extent to which such practices are followed often
determines how easy it is to reuse or repair a model at a later time or how easily a colleague (or in my
case a consultant) can work with that code.

The main categories of actions that are possible are

• Use longer names and descriptions

• Include comments on procedures and nature and sources of data

• Include as much raw data as possible as opposed to externally calculated data

• Don't use an * as a set specification for input data

• Use sets to aid in readability

• Format files to improve model readability

Language Basics 166

© 2022 Prof. Bruce McCarl

• Use some other possible conventions

Below I cover each of these.

3.6.1.1 Use longer names and descriptions

One can radically affect the readability of a piece of GAMS code by using longer self explanatory names
of parameters, sets etc. in that code. To illustrate the difference this might make let us look at the
example robert.gms from the GAMS model library. A part of that model is reproduced below

Variables x(p,tt) production and sales

 s(r,tt) opening stocks

 profit

 Positive variables x, s;

 Equations cc(t) capacity constarint

 sb(r,tt) stock balance

 pd profit definition ;

 cc(t).. sum(p, x(p,t)) =l= m;

 sb(r,tt+1).. s(r,tt+1) =e= s(r,tt) - sum(p, a(r,p)*x(p,tt));

 pd.. profit =e= sum(t, sum(p, c(p,t)*x(p,t))

 - sum(r, misc("storagec",r)*s(r,t)))

 + sum(r, misc("resvalue",r)*s(r,"4"));

 s.up(r,"1") = misc("max-stock",r);

After an hour of so of looking at the model I reformatted it as follows (good.gms)

 Variables production(process,Quarters) production and sales

 openstock(rawmateral,Quarters) opening stocks

 profit ;

 Positive variables production, openstock;

 Equations capacity(quarter) capacity constarint

 stockbalan(rawmateral,Quarters) stock balance

 profitacct profit definition ;

 capacity(quarter)..

 sum(process, production(process,quarter)) =l= mxcapacity;

 stockbalan(rawmateral,Quarters+1)..

 openstock(rawmateral,Quarters+1) =e=

 openstock(rawmateral,Quarters)

 - sum(process, usage(rawmateral,process)

 *production(process,Quarters));

 profitacct.. profit =e=

 sum(quarter,

 sum(process, expectprof(process,quarter)

 *production(process,quarter))

 - sum(rawmateral, miscdata("store-cost",rawmateral)*

 openstock(rawmateral,quarter)))

 + sum(rawmateral, miscdata("endinv-value",rawmateral)

 *openstock(rawmateral,"winter"));

 openstock.up(rawmateral,"spring") = miscdata("max-stock",rawmateral);

McCarl GAMS User Guide167

© 2022 Prof. Bruce McCarl

Note these two models do the same thing but different longer names are used in the second. Also note
that for example instead of using the set name tt I use Quarters and instead of calling the variables x I
call it production. The question is which tells you more and which would you want to face in 5 years?

Lets look at some more from robert.gms. Another segment of code is

Sets p products / low, medium, high /

 r raw materials / scrap, new /

 tt long horizon / 1*4 /

 t(tt) short horizon / 1*3 /

Table a(r,p) input coefficients

 low medium high

 scrap 5 3 1

 new 1 2 3

Table c(p,t) expected profits

 1 2 3

 low 25 20 10

 medium 50 50 50

 high 75 80 100

This can be reformatted to become (good.gms)

 Sets process production processes available

 / low uses a low amount of new materials,

 medium uses a medium amount of new materials,

 high uses a high amount of new materials/

 rawmateral source of raw materials / scrap, new /

 Quarters long horizon / spring, summer, fall ,winter /

 quarter(Quarters) short horizon / spring, summer, fall /

 Table usage(rawmateral,process) input coefficients

 low medium high

 scrap 5 3 1

 new 1 2 3

 Table expectprof(process,quarters) expected profits

 spring summer fall

 low 25 20 10

 medium 50 50 50

 high 75 80 100

Here I use longer names for the set elements, the sets themselves along with explanatory text
documenting the definition of the set elements. So again the question is which one makes more sense
to you? I obviously feel the latter.

3.6.1.1.1 Basic point

One can increase documentation be lengthening the names used in GAMS code. In particular

• GAMS allows 63 character long names and 255 characters of explanatory text defining each

Language Basics 168

© 2022 Prof. Bruce McCarl

of the following items: sets, parameters, variables, scalars, acronyms, equations, models and
files.

I feel users should exploit this and use descriptive 63 character names.

X is a wonderful name in theory, yet lousy in practice, as is A(i,j).

Type a little more and reap the rewards in being able to figure out models later. More
typing always helps and it is just not that hard.

More than half the models in the GAMS model library have such failings.

• Let no item go undefined. Enter explanatory text or comments containing units, sources and

descriptions.

• Check for completeness in the symbol listing with $Onsymlist making sure all names are

somewhat apparent and all items have explanatory text as illustrated in the Standard Output
chapter.

• Associate text with set element definitions and use the up to 63 character set element name

capability. (Note that names longer that 10 characters do not work well in multi column
displays.)

Remember only You can cause your GAMS code to be self documenting.

3.6.1.2 Include comments on procedures and data nature and sources

Procedures for documentation and clarity may also be employed in setting up the model and the data
therein. Questions I ask when looking at a set of model data are:

• Why was a constraint set up in the way it is implemented?

• What are the units on the variables and equations?

• Where did the data come from?

• What are the characteristics of the data such as units, and year of applicability?

Such questions often apply to segments of GAMS code. Frequently it's nice to add in descriptions
identifying assumptions, intent of equation terms, data sources including document name, page number,
table number, year of applicability, units, URL etc. You can do this with comments (* in column 1)
statements, $Ontext $Offtext sequences or inline comments as illustrated in commentdol.gms or as
discussed in the Including Comments chapter as follows

* this is a one line comment that could describe data

$Ontext

My data would be described in this multiline comment

This is the second line

$Offtext

*I could tell what the equation below is doing

x = sum(I,z(i)) ; # this is an end of line comment

x = sum(I,z(i)) ; { this is an inline comment } r=sum(I,z(i)) ;

Note inline comments must be enabled with the commands $inlinecom or $eolcom as in the following
two statements

McCarl GAMS User Guide169

© 2022 Prof. Bruce McCarl

$eolcom #

$inlinecom {}

3.6.1.3 Entering raw versus calculated data

Modelers often face two choices with respect to data.

• Enter raw data into GAMS and transform it to the extent needed inside GAMS.

• Externally process data entering the final results in GAMS.

The latter choice is often motivated by the availability of the raw data in a spreadsheet where those data
could be manipulated before being put into GAMS.

My recommendation (as one who often updates models and needs to figure out the embodied
assumptions) is put data in as close to the form it is collected into GAMS and then manipulate that data
in the GAMS code.

Why? Over time spreadsheets and other data manipulation programs change, or get lost. Also often
internal documentation in such programs is weak. Putting it in GAMS keeps it all together.

3.6.1.4 Avoiding use of * in input data set specification

One can use an * to allow the universal set to be employed in an input data set position as done in the
GAMS library code robert.gms as follows

Table misc(*,r) other data

 scrap new

 max-stock 400 275

 storage-c .5 2

 res-value 15 25

...

pd.. profit =e= sum(t, sum(p, c(p,t)*x(p,t))

 - sum(r,misc("storage-c",r)*s(r,t)))

 + sum(r,misc("res-value",r)*s(r,"4"));

This tells GAMS anything goes in the first index position of misc suppressing domain checking.
However, if we mistyped "res-value" as "res-val" GAMS compiles and executes without error but I have
lost my data and perhaps created a garbage result as in robert2.gms.

pd2.. profit =e= sum(t, sum(p, c(p,t)*x(p,t))

 - sum(r,misc("storage-c",r)*s(r,t)))

 + sum(r,misc("res-value",r)*s(r,"4"));

I can fix this by entering another set and altering the table definition

Set miscitem misc. input items

/res-value, .../;

 Table misc(miscitem,r) other data

Language Basics 170

© 2022 Prof. Bruce McCarl

where GAMS with the code in Robert2.gms now included in robert3.gms gives error messages for the
misspelling.

So don't use * for set references in input data specifications. I learned this at the school of hard knocks
when a research associate used such an input strategy and had some small typing errors that caused
important data to be ignored.

3.6.1.5 Making sets work for you

Sets are used to address a family of similar items. You need to decide when to use a single versus
multiple sets. There are cases when it is convenient to have an element in such a family and cases
when it is not.

Suppose we have three grades of oil and three processes to crack it. Should we have one set with nine
entries or make the item two-dimensional. I would do the latter. Suppose we have a budget using
fertilizer, seed, labor by month and water by month. Do we have a set with 26 items or two sets one
with fertilizer, seed, labor and water and the other with month names plus the label annual. I would do
the latter. I err on the side of being more extensive with set definitions.

Sets should contain items treated similarly in the problem (i.e., resources like fertilizer, seed, and
energy), but when there are two items crossed (i.e., monthly availability of land, labor, and water involves
month and resource) one should have two sets.

3.6.1.6 Making subsets work for you

One other set definition consideration involves the use of subsets. Sometimes it is desirable to have
items that can be treated simultaneously in some places, but separately elsewhere. For example, when
entering crop budgets one might wish to enter yield along with usage of inputs, land, labor, and water, in
one spot yet treat those differently elsewhere (i.e., where variable inputs might be in one equation, yield
balance in another, with water and labor availability in yet a third and fourth equation). Subsets allow
this. Consider two models

In the Egypt.gms model from the GAMS model library we have yields and input costs in two tables
some 50 lines apart

Table yield (c,r) yield for different commodites

 u-egypt m-egypt e-delta m-delta w-delta

* ton ton ton ton ton

 wheat 1.29 1.36 1.39 1.404 1.36

 barley 1.41 1.26 1.33 .984 .96

Table cropdat(c,*) seed protein starch misc costs and pestic data

 protein starch seed misc pest n-fer p-fer

* % % ton le le ton ton

wheat .1 23.3 .075 12.0 0.054 0.015

barley .1 23.3 .060 8.0 0.045 0.015

In my ASM model (asmall10.gms, asmcrop10.gms) I have

McCarl GAMS User Guide171

© 2022 Prof. Bruce McCarl

TABLE CCCBUDDATA(ALLI,SUBREG,CROP,WTECH,CTECH,TECH) REGIONAL CROP BUDGET

 northeast.corn.DRYLAND.BASE.0

corn 115.87

CROPLAND 1.00

LABOR 4.34

nitrogen 24.69

potassium 15.17

phosporous 7.34

Where everything for a crop budget is together in concurrence with practices in data sources. We use
subsets (asmsets10.gms) to unravel the data

SET ALLI ALL BUDGET ITEMS

 / corn , soybeans ,

 cropland , pasture , labor,

 nitrogen , potassium , phosporous, trancost /

set PRIMARY(ALLI) PRIMARY PRODUCTS

 / cotton , soybeans /

set INPUT(ALLI) NATIONAL INPUTS

 / nitrogen , potassium , trancost , phosporous/

set LANDTYPE(ALLI) LAND TYPES

 / cropland , pasture /

Use of subsets and a general set like ALLI allow one to both organize the input according to
convenience with data sources and then deal with it efficiently in the model and report writer statements.
 You can also avoid the * in the input data sets.

3.6.1.7 Formatting the typing of files to improve model readability

I think there are things you can do to improve the readability as you type. A list of such practices
follows:

• Enter the code in a fixed order by the following sections and keep the section together such

as follows

� Data related sets

� Data definitions organized by type of data possibly intermixed with calculations

� Variable and equation definitions

� Algebraic equation definitions

� Model and solve

� Report writing sets and parameter definitions

� Report writer calculations

� Report writer displays

• Keep the sections together

Language Basics 172

© 2022 Prof. Bruce McCarl

• Format the code for readability using spacing and indents as illustrated below

� Align item names, descriptions and definitions

� Indent in sums, loops and ifs to delineate terms. Through indentation, and closing
parentheses formatting you can reveal structure.

� Use blank lines to set things off

� Don't split variables between lines in equations, but rather keep them together with all
their index positions.

By follow such typing practices you can make a file more readable using spacing, indents, and set
labels

Case A (badtype.gms)

Sets products available production process / low uses low new materials

medium uses medium new materials, high uses high new materials/

rawmateral source of raw materials / scrap, new /

Quarters long horizon / spring, summer, fall ,winter /

quarter(Quarters) short horizon / spring, summer, fall /

Scalar mxcapacity maximum production capacity/ 40 /;

Variables production(products,Quarters) production and sales

openstock(rawmateral,Quarters) opening stocks, profit ;

Positive variables production, openstock;

Equations capacity(quarter) capacity constraint,

profitacct.. profit =e= sum(quarter, sum(products, expectprof(

products,quarter) *production(products,quarter))-sum(

rawmateral,miscdata("store-cost",rawmateral)*openstock(rawmateral

 ,quarter)))+ sum(rawmateral, miscdata("endinv-value",rawmateral) *openstock(rawmateral,"winter"));

Case B (better.gms)

Sets products available production process

 / low uses a low amount of new materials,

 medium uses a medium amount of new materials,

 high uses a high amount of new materials/

 rawmateral source of raw materials / scrap, new /

 Quarters long horizon / spring, summer, fall ,winter /

 quarter(Quarters) short horizon / spring, summer, fall /

 Variables production(products,Quarters) production and sales

 openstock(rawmateral,Quarters) opening stocks

 profit ;

 Positive variables production, openstock;

 Equations capacity(quarter) capacity constarint

 stockbalan(rawmateral,Quarters) stock balance

 profitacct profit definition ;

 profitacct..

 profit =e=

 sum(quarter,

McCarl GAMS User Guide173

© 2022 Prof. Bruce McCarl

 sum(products, expectprof(products,quarter)

 *production(products,quarter)

)

 -sum(rawmateral, miscdata("store-cost",rawmateral)*

 openstock(rawmateral,quarter)

)

)

 +sum(rawmateral, miscdata("endinv-value",rawmateral)

 *openstock(rawmateral,"winter")

)

 ;

You may like case A, I don't. I find B much more readable. This matters when you have 1000 lines or
more. (asmmodel.gms)

3.6.1.8 Other possible conventions

In addition one may develop a number of other conventions. Paul Leiby at Oak Ridge National
Laboratory sent me the following

• Establish some convention (any convention) on the use of upper and lower case letters.

GAMS may be case insensitive, but it will preserve your use of case for documentation
purposes. I usually use lower case for text, comments, and variable descriptors, and upper
case for GAMS reserved words and variable and parameter names.

• In declaring variables and parameters, always indicate the units in the variable descriptor: ie

instead of

PARAMETER VEHSALES(r) REGIONAL VEHICLE SALES

use

PARAMETER VEHSALES(r) "Regional vehicle sales ($ millions/yr)"

This will cause the units to be shown with every DISPLAY statement for that parameter or
variable, and can be a time-saver when interpreting results or entering data.

• Make a habit of always surrounding the explanatory text with quotes

Allowing the use of special characters, such as "$", "-" or "&"

Applying a distinct separator for the Descriptor field, demarking it and emphasizing that it
is a text string

• Maintain a file modification log at the top of each file (Modification date, version number,

modification made, and by whom.

With respect to the last suggestion above such a log can be entered in GAMS statements as is done in
the FASOM model using a set specified like

 version(*,*,*,*)

and accompanied by commands in the code like

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/FASOM.html

Language Basics 174

© 2022 Prof. Bruce McCarl

version("filename","may","19","2002")=yes;

then in final model I display the set version so it shows me the time of alterations in the various model
components and allows me to make sure my version is synchronized with others.

display version;

One other suggestion

• In assigning item names consider adopting a convention starting all sets with s_, all data with

d_, all variables with v_, all equations with e_ etc.

4 Changing licenses

During the installation process you may have been prompted to point to a license file and if this was
done successfully then skip this step.

4.1 Licenses on IDE

If a new license is obtained or you have alternative license files you can use operating system or IDE
facilities to update your license. In the IDE choose the file options choice then the Licenses tab. There
point to the License file desired using the box with three buttons in it and choose the file nominally
called gamslice.txt that is located somewhere else on your computer. However a word of caution is in
order. This does not copy the license file to the GAMS system directory and it is inadvertently moved or
deleted in the other location it will no longer provide a license. It is thus advised that you do not use this
procedure for your base license and rather copy it to the proper spot as discussed immediately below.

4.2 Licenses outside of IDE—Windows and Unix/Linux

License files do need to be updated and sometimes altered as solvers are added and maintenance paid.
 While this usually involves installation of a newer version of GAMS there are times when that will not be
the case. In order to install a newly obtained license file one should recognize that

• This file is ordinarily named gamslice.txt

• The file needs to be copied into the GAMS system directory wherever that might be. On PCs

today this is C:\program files\.GAMS227 but maybe another location dependent on GAMS
vintage, country and users installation.

In turn given the contents then one needs to create and save or copy that file into the GAMS system
directory with the name gamslice.txt.

This is a crucial file as it identifies what solvers the user has access to and allows upgrading of versions
as long as the expiration date on the license file is after the release date of a newer version of GAMS.
Note a procedure called Checkver available from GAMS Corporation allows one to check on license file
status and possible updates.

https://www.gams.com/latest/docs/UG_License.html#GAMS_Licenses

McCarl GAMS User Guide175

© 2022 Prof. Bruce McCarl

5 Running Jobs with GAMS and the GAMS IDE

GAMS is a two pass program. One first uses an editor to create a file nominally with the extension
GMS which contains GAMS instructions. Later when the file is judged complete one submits that file to
GAMS. In turn, GAMS executes those instructions causing calculations to be done, solvers to be used
and a solution file of the execution results to be created.

Two alternatives for submitting the job are discussed herein: the traditional command line approach and
the IDE approach.

Basic approaches to GAMS usage

Running GAMS from the command line

Steps to using IDE

Material is then presented on use of the IDE approach.and a number of features of the IDE

IDE concept and usage

Selected techniques for use of the IDE

Unraveling complex files: Refreader

Finding out more through help

Accessing documentation outside the IDE

Saving and Using a Script

When is it not worth using?

Employing command line parameters

A difficulty you will have using IDE

Finally some material is presented on GAMS and IDE installation

IDE Installation

5.1 Basic approaches to GAMS usage

GAMS was developed well before widespread availability of graphical interfaces like Windows.
Consequently, GAMS was designed to run from an operating system command line. Today GAMS may
also be run on Windows machines using the so called IDE or Integrated Development Environment.
Here we cover both.

5.2 Running GAMS from the command line

The basic procedure involved for running command line GAMS is to create a file (nominally with the
extension gms nominally myfilename.gms where myfilename is whatever is a legal name on the
operating system being used) with a text editor and when done run it with a DOS or UNIX or other
operating system command line instruction like

GAMS tranport

where tranport.gms is the file to be run. Note the gms extension may be omitted and GAMS will still
find the file.

Running Jobs with GAMS and the GAMS IDE 176

© 2022 Prof. Bruce McCarl

GAMS would then run the job and in turn create a LST file (tranport.LST in this case) of problem results.
 One would then edit the LST file to find any error messages, solution output, report writing displays etc
and reedit the gms file if there were need to fix anything or alter the model contents.

The basic command line GAMS call also allows a number of arguments as illustrated below

GAMS TRNSPORT pw=80 ps=9999 s=mysave

which sets the page width to 80, the page length to 9999 and saves work files. The full array of possible
command line arguments is discussed in the GAMS Command Line Parameters chapter.

5.3 IDE concept and usage

Today with the average user becoming oriented to graphical interfaces it was a natural development to
create the IDE. The IDE is a GAMS Corporation product providing an Integrated Development
Environment that is designed to provide a Windows graphical interface to allow for editing, development,
debugging, and running of GAMS jobs all in one program. Specifically the IDE

• Contains a fully featured text editor.

• Has knowledge of some GAMS syntax changing the color of displays to reveal aspects of

GAMS statements.

• Has a direct interface to GAMS permitting one to run jobs from within the IDE.

• Has error discovery procedures addressing exact places in source files where compilation

errors arise.

• Has a facility to automatically open the GAMS LST, LOG, PUT, and GDX output files.

• Allows customization of GAMS command line options either on a one time basis or for all jobs

run with the IDE.

• Facilitates some installation and maintenance tasks.

• Allows one to view GDX files as discussed int the Using GAMS Data Exchange or GDX Files

chapter.

The remaining part of this chapter is devoted to introducing users to IDE usage and features.

Steps to using IDE

Working with your own file

Fixing compilation errors

Selected techniques for use of the IDE

Finding out more through help

Unraveling complex files: Refreader

Employing command line parameters

A difficulty you will have using IDE

When is it not worth using?

McCarl GAMS User Guide177

© 2022 Prof. Bruce McCarl

5.3.1 Steps to using IDE

The use of the IDE after installation involves a multi-step process:

I. Create a project by going to the file selection in the upper left corner.

II. Define a project name and location.

III. Create or open an existing file of GAMS instructions.

IV. Prepare the file so you think it is ready for execution.

V. Run the file with GAMS by clicking the run button or pressing F9.

VI. Open and navigate around the output.

Each of these steps is discussed below assuming you have first opened the IDE through the icon, start
menu or Explorer.

5.3.1.1 Create a project

Open the File menu choice. Select Project and New project (Later you will use your previous projects).

What is a project? The IDE employs a "Project" file for two purposes.

• The project location determines where all saved files are placed (to place files elsewhere use

the save as dialogue) and where GAMS looks for files when executing.

• The project saves file names and program options associated with the effort in a file called

projectname.gpr.

It is a good idea to define a new project every time you wish to change the file storage directory.

5.3.1.1.1 Defining a project name and location.

Locate the project in a directory you want to use. All files associated with this project will be saved in
that directory.

Running Jobs with GAMS and the GAMS IDE 178

© 2022 Prof. Bruce McCarl

In the "File name" area enter in a name for the project file you wish to use. This defines the directory
where for the most part the files you wish to access (those specified without full file path names) are
located. If we were doing this for a project on hydropower, we would go to a suitable subdirectory and
create a subdirectory called hydropower and name the project hydropower. In turn, a file called
hydropower.gpr will be created in that directory and will store all project information. The extension gpr
stands for GAMS project.

5.3.1.1.2 Creating or opening an existing GMS file

Now we want to work with an input file. Several cases are possible for the source of this file

• You can create a new file

• You can open an existing file using the file open dialogue

• You can open a GAMS model library file using the file Model library dialogue

McCarl GAMS User Guide179

© 2022 Prof. Bruce McCarl

The last is the simplest and the one we illustrate first. Select a model like trnsport.gms by scrolling
down or typing the name trnsport in the search box until it is the chosen one

In turn this file will be automatically saved in your project directory (this is the directory where the project
file is located). Note outside the IDE this is done using the command line instruction gamslib
modelname or in this case gamslib trnsport.

5.3.1.2 Preparing file for execution

When using model library trnsport.gms should now appear as part of your IDE screen.

Running Jobs with GAMS and the GAMS IDE 180

© 2022 Prof. Bruce McCarl

The IDE contains a full-featured editor. Go through the file and change what you want. All of the
commands for the editor are documented in the help option of the IDE while some selected ones are
highlighted below.

5.3.1.3 Select default IDE functions

The IDE allows one to personalize its function to user desires. Here we cover a few such options.

5.3.1.3.1 Page size and LST file opening

You can use the File and Options dialogue to set default page width and length. Namely select File and
Options then the Output tab where you can set the page length (I use 9999). You can also use the File
and Options Execute tab to cause to automatically open the LST file by making sure there is a check in
the box for update process window.

McCarl GAMS User Guide181

© 2022 Prof. Bruce McCarl

5.3.1.3.2 Make IDE the default GMS file processor

When one clicks on a file in the explorer or in this document it only will open up a file if a default program
is associated with it. You can make the IDE the file that is activated when you click on a GMS ,LST ,
LOG or PUT. You do this by starting up the File and Options dialogue and select the File Extensions
tab

then you enter GMS in small box on the right and click on Add or press the Defaults button which will
add GMS, GDX, LOG and LST files.

5.3.1.4 Run GAMS by clicking the run button

Now how do we run GAMS. We do this by either clicking with the mouse on the button that contains a

red arrow or pressing the F9 key.

Running Jobs with GAMS and the GAMS IDE 182

© 2022 Prof. Bruce McCarl

In turn this causes GAMS to run and also causes the so-called process window to appear which gives a
LOG (actually containing the LOG file) of the steps GAMS goes through in running the model.

One may also have to do some housekeeping to get the process window so it does not obscure the LST
file. I recommend narrowing it and pulling it off to the right as shown below, but users may place it at the
bottom, maximize it or do whatever appeals.

McCarl GAMS User Guide183

© 2022 Prof. Bruce McCarl

5.3.1.5 Open and navigate around the output

There are two ways to do this first one may use the process window (on the right below outlined in pink)
or one may use the LXI navigation aid (on the left below outlined in red) that is attached to the LST file.

Using the Process Window

Running Jobs with GAMS and the GAMS IDE 184

© 2022 Prof. Bruce McCarl

Using the LST file navigation window

5.3.1.5.1 Using the process w indow

By double clicking on lines in the process window you can access program output both in general and at
particular locations.

The positioning of your access is determined by the color of the line you double click on

McCarl GAMS User Guide185

© 2022 Prof. Bruce McCarl

Color of Line in Process
Window

Function and Destination When Double Clicked.

Blue line Jumps to the line in LST file corresponding to the blue line in process
window. Blue lines also open put and other files created by the run.

Non-bolded black line Jumps to location of last previous Blue Line in the LST file.

Red line Identifies errors in source file. When you click on a red line the cursor
jumps into the source (GMS) file at the location of the code that
caused the error. Error description text appears in the process
window and in the LST file that is not automatically addressed. When
the shift key is held down you will go to the corresponding spot in the
LST file.

We can navigate as we would with an editor or word processor, as we are automatically in the LST file
(when clicking on a blue or black line) or GMS file when clicking on a red line in the IDE text editor.

The file is frequently partially obscured by the process window. Is yours? You might want to narrow the
process window to the side as in the picture above.

5.3.1.5.2 Using the LST file navigation w indow

By clicking on lines in the lst file navigation window you can access program output both in general and
at particular locations.

Running Jobs with GAMS and the GAMS IDE 186

© 2022 Prof. Bruce McCarl

The positioning of the cursor in the LST file is determined by the type of line you click on. A list of types
of lines typically in the LST file is given below.

McCarl GAMS User Guide187

© 2022 Prof. Bruce McCarl

Name of Line
in LST File
Navigation
Window

Function and Destination When Clicked.

Compilation Jumps to top of echo print in LST file

Error
Messages

Jumps to list of error messages when compilation messages incurred

Equation
listing

Jumps to list of equation contents as illustrated.in the output section

Equation Expandable allowing jump to beginning of list of contents for each individual equation
block with contents as shown.in the output section

Variable
listing

Jumps to list of variable contents as illustrated.in the output section

Variable Expandable allowing jump to beginning of list of contents for each individual equation
block with contents as shown.in the output section

Model
statistics

Jumps to model statistics part of LST file as illustrated.in the output section

Solution
Report

Jumps to model summary solution report

SolEQU Expandable allowing jump to beginning of list of solution for each individual equation
block with contents as shown.in the output section

SolVAR Expandable allowing jump to beginning of list of solution for each individual variable
block with contents as shown.in the output section

Execution Jumps to beginning of post solve execution

Display Expandable allowing jump to displays of specific parameters and other items

The width of the LST file navigation window is controlled by the user and can be narrowed as it has been
above.

The data for this is stored in a LXI file that will be resident in your project directory with the same root as
the associated LST file.

Running Jobs with GAMS and the GAMS IDE 188

© 2022 Prof. Bruce McCarl

5.3.1.5.2.1 Finding the Active Location

When one is working in the LST file it is sometimes desirable to figure out where one is relative to
the LST file navigation window. One does this by pressing control-mouse click on a LST file
location. In particular suppose in a model an item is displayed more than once as in the case of the
parameter c in the model whereinidelst.gms where one wishes to know which display statement is
the one being viewed

Then if one presses control-click when the mouse is located at the point for which the location is
desired then the IDE provides a gray background shade aound the associated item in the LST file
navigation window.

McCarl GAMS User Guide189

© 2022 Prof. Bruce McCarl

5.3.2 Working with your own file

Now you are ready to work with your own files. You may already have a file or you may need to create
one. There are two principal ways to do this:

• Open an existing GMS file. Then with the file menu save as dialogue change it's name. Now

modify the contents to what you want. You may cut and paste as in other Windows
programs.

• Open the file menu and use the new option. You will then get a file called noname which you

may type GAMS instructions into

when you are finished save that file with whatever name you want. Note by default it will be
assigned the extension .GMS.

Running Jobs with GAMS and the GAMS IDE 190

© 2022 Prof. Bruce McCarl

5.3.3 Fixing compilation errors

(tranerr.gms)

No one is perfect, errors occur in everyone's GAMS coding. The IDE can help you in finding and fixing
those errors. Let's use the example tranerr.gms to illustrate how this occurs. A run of it yields the
process window below

McCarl GAMS User Guide191

© 2022 Prof. Bruce McCarl

wherein the red lines mark errors. To see where the errors occurred lets double click on the top one. A
double-click takes you to the place in the source where the error was made. The tip here is always start
at the top of the process window when doing this so you find the first error as explained in the error
proliferation section of the Compilation Errors chapter.

Running Jobs with GAMS and the GAMS IDE 192

© 2022 Prof. Bruce McCarl

In this case the error is the spelling of source as sorce and note the IDE cursor as represented by the
vertical line in the red box above is placed just at that spot.

5.3.4 Selected techniques for use of the IDE

Now suppose we cover a few powerful but sometimes overlooked aspects of the IDE.

5.3.4.1 Ways to find and/or replace text strings

The dialogs for finding text within the IDE involve use of the flashlight and the search window or the
typing of the Keyboard command control F. The flashlight and search window involves the three icons
with a flashlight in them and the box just to the right (that has the entry pdf in this case).

To find text you type the text string you are after in the search widow. In turn, clicking on the

 icon finds the first occurrence of what you want in the current file, while clicking on the icon

 finds the next occurrence in the current file. Finally, clicking on the icon finds all occurrences

McCarl GAMS User Guide193

© 2022 Prof. Bruce McCarl

in a specified group of files as discussed below.

You can also access search and replace through the search menu or by typing the keyboard shortcuts
control f or control r. That dialogue allows access to more options and will search for the text under the
current placement of the cursor.

5.3.4.1.1 Search menu and f ind in f iles

The search menu contains a number of options including IDE contains a useful find in files option. When
you open this dialogue with control f you a window opens as follows

In that window the box gives the text to search for and one may use the boxes and buttons to influence
the search direction, case sensitivity, scope etc.

When you open the find in files tab you see

Running Jobs with GAMS and the GAMS IDE 194

© 2022 Prof. Bruce McCarl

In using this, a double click on the box with three dots to the right of File path lets you browse for a path
and the file mask lets you choose the file types to search. You can also exclude some files from the
search using the lowest box. You then search for the text in the text to find box. After a search you get
a box as follows.

You may now navigate using this box. Clicking on a red line opens the file identified. Clicking on a
black line opens the file and moves the cursor to the particular line.

5.3.4.2 Matching parentheses

(tranport.gms)

The IDE provides a way of checking on how the parentheses match up in GAMS code. This feature will

McCarl GAMS User Guide195

© 2022 Prof. Bruce McCarl

also match up { } or []. This involves usage of the button containing the symbol from the menu

bar or typing the F8 key coupled with appropriate cursor positioning. In particular positioning the cursor
just after an open or close parenthesis and pressing the button or F8 jumps to the matching close or
open parenthesis. For example, suppose we have a line of GAMS code like

and we position the cursor right after the first open parenthesis where the vertical line appears. Then
clicking on the parenthesis matching button will jump the cursor to the position right after the matching
ending parentheses as show below where the vertical line indicates the resultant cursor position. This
will work whether it be 1, 100, or 1000+ lines away and vice versa. (Note it is not smart enough to ignore
parentheses in comment statements so be sure any of those match up.) If a matching one is not found
the cursor does not move.

Equivalently positioning the cursor right after an closing parenthesis and clicking on the button
repositions the cursor right after the matching opening parenthesis. If a matching one is not found the
cursor does not move.

5.3.4.3 Moving column blocks

The IDE allows one to move text conventionally through standard Windows copy, cut and paste
operations. It also allows one to operate over column blocks of text. This again employs standard
Windows copy, cut and paste operations. However in order to do this the column block must be
designated. This is done by identifying the column block of text with the mouse or the keyboard by
holding alt and shift down then moving the mouse or the cursor with the arrow keys.

In turn copy, cut, and paste can be done with the Edit menu or with control c, x and v respectively as in
normal windows. Control insert also pastes.

5.3.4.4 Altering syntax coloring

A feature in the IDE is GAMS related syntax coloring. The IDE recognizes a subset of the GAMS
syntax and reflects this in the display colors. Note in the display below that commands, explanatory
text and set elements are differentially colored.

Running Jobs with GAMS and the GAMS IDE 196

© 2022 Prof. Bruce McCarl

One can alter these syntax colors (as I have) through choices on the options menu under the colors tag

5.3.5 Finding out more through help

The IDE encompasses several paths to getting help on various GAMS related items and includes
procedures for entering your own help content. When a user chooses Help the dialogue below appears

McCarl GAMS User Guide197

© 2022 Prof. Bruce McCarl

This allows access to help on several items.

5.3.5.1 Help on the IDE

When a user chooses Help Topics one gets information on the IDE through the the dialogue that is
captured below

that contains such things as

Running Jobs with GAMS and the GAMS IDE 198

© 2022 Prof. Bruce McCarl

This and the other choices listed above are your real guide to the IDE, read it thoroughly.

5.3.5.2 Help on GAMS

The IDE has a tie in to documentation. In particular suppose we wish to look at this reference guide on
line. If we choose help and McCarl Guide

then provided Adobe Acrobat or another pdf reader is installed we get

McCarl GAMS User Guide199

© 2022 Prof. Bruce McCarl

while choice of

brings up the older User Guide

Running Jobs with GAMS and the GAMS IDE 200

© 2022 Prof. Bruce McCarl

5.3.5.3 Accessing help on solvers

Using the Solver Manual choice allows us to get any of the available solver manuals

as shown below:

McCarl GAMS User Guide201

© 2022 Prof. Bruce McCarl

which is a set of clickable links to pdf files documenting each of the available solvers.

5.3.5.4 Adding your own documentation

Users can augment the help menus by adding their own materials. In my classes I include a number of
items under the choice mccarl and gamspdf we include the total mix of files composing this document.
But users can add their own files (generally pdf or Html) that will appear on the help command (as in the
mccarl entry above). Generally it is recommended that one put the additions in a subdirectory so the
menu remains short. These are placed in the docs subdirectory under the GAMS system directory
(Nominally in c:\program files\gams22.7\docs). In turn when one accesses help under the docs choice
one gets a list of all the files placed therein.

Running Jobs with GAMS and the GAMS IDE 202

© 2022 Prof. Bruce McCarl

5.3.5.5 Accessing documentation outside the IDE

Much of the documentation on GAMS and solvers discussed above is also accessible in other
applications by navigating to the docs subdirectory of the GAMS system and opening the PDF files in
the subdirectories thereof. The mccarl Guide is accesses through the /docs/userguides/mccarl
subdirectory of the GAMS system directory (nominally c:\program files\gams22.7) and the file
gams2002pdf.pdf or the file mccguide.html. Material on use of the guide is also in the file.

5.3.6 Unraveling complex files: Refreader

GAMS Modelers sometimes have to deal with complex implementations that

• Use include statements to incorporate numerous files.

• Have been developed by others.

• Have a complex structure with definitions and uses of items widely spread in a file or files.

• Contain items that are defined but never used.

• Were developed some time ago but are not extensively documented.

When faced with such cases one often asks

• Are there items defined in the program that are not used and if so what are they and where are

they.

• Given an item in what files is it defined, declared and used in.

To resolve these questions a program called Refreader is included in the GAMSIDE.

5.3.6.1 Basic output

When Refreader runs it creates a window as follows

The tags in this window and their contents are

McCarl GAMS User Guide203

© 2022 Prof. Bruce McCarl

Symbol a list of items that are declared or that are not used anywhere in the model
Files used a list of the files included into the model
Sets a list of the sets that exist in the program and the names of files in which they

appear
Parameters a list of the parameters (items defined in scalar, parameter or table statements)

and the files in which they appear.
Variables a list of the variables in the program and the names of files in which they appear
Equations a list of the equations in the program and the names of files in which they

appear
Models a list of the models that exist in the program and the names of files in which

they appear
Unused a list of items that are declared or that are not used anywhere in the model

5.3.6.1.1 Symbol Tab

The symbol tab causes the output to appear as follows (for asmall10.gms)

This shows all symbols in the program. The columns give the symbol name(ID), it's type(TYPE), the
sets over which it is dimensioned (DOMAIN) and the explanatory text used in it's declaration (TEXT).

5.3.6.1.2 Files used Tab

The files used tab causes the output to appear as follows (again for the asmall10.gms example)

Running Jobs with GAMS and the GAMS IDE 204

© 2022 Prof. Bruce McCarl

This gives the names of the files included in the program with their full path references.

5.3.6.1.3 Sets, Parameters etc. Tabs

Refreader contains 5 tabs that give information for sets, parameters etc. This display lists all items
falling in a class (for all things that are sets or parameters etc.) one gets output as follows (for the
equations in this case)

In this output the entries tell the names of the files in which certain things happen relative to the
identified items. The categories of things include where items are

Declared places where the named item is declared in a Set, Parameter, Table, Scalar,
Variable, Equation, Acronym, File or Model command. This will be the first
appearance.

Defined places set elements or data are explicitly entered. For equations this tells
where the .. specification begins.

Assigned places where items appear on left hand side of an assignment statement
Ref places where item is on left hand side of assignment statement or in a model

McCarl GAMS User Guide205

© 2022 Prof. Bruce McCarl

equation
Control places where set is used in controlling a sum or defining an equation
Impl-Assn places where an equation or variable has data put into it by the results of a

solve statement.

Double clicking on a file name opens that file within the IDE and generally indexes forward to the first
reference of that type of the item named in the ID column in the file in that context (some exceptions
occur when statements are spread over multiple lines particularly data definitions where the location of
the / in parameter statements can cause problems).

5.3.6.1.4 Unused Tab

The unused tab identifies items that are declared (in set parameter etc statements) but are never used
on the right hand side of an assignment (=) statement or in a model equation. The output for the model
asmall10.gms is as follows

which shows

ID names of items that are declared but unused
Type item type (Parameter, set, variable, etc)
File Name of file in which the item is declared.

Double clicking in the file column causes the IDE to open (if the IDE is the registered item to open
GAMS files) to the spot in the file where the an item with the spelling of the name in the ID column
appears in the context (declared, defined, referenced etc.) which generally will be the place where the
declaration appears. For example if we double click in the file column associated with the
AGPRODUCT row the IDE opens as follows

Running Jobs with GAMS and the GAMS IDE 206

© 2022 Prof. Bruce McCarl

With AGPRODUCT highlighted.

5.3.6.2 Steps to Using Refreader

Refreader will only work after a particular "reference file" has been created by a GAMS run. The file is
generated by adding the rf option to the command line call of GAMS. The general form of this is to
either run

GAMS mymdel rf=filename.ref

or enter a command in the command line box of the IDE as follows

The run of GAMS with the rf option places the name of the ref file in blue in the GAMS log file and double
clicking on that line causes the refreader program to run and create its output. Several notes about the
run

McCarl GAMS User Guide207

© 2022 Prof. Bruce McCarl

• The rf= command specifies the name of the file refreader will use. Generally refreader expects

it to have the extension .ref. Typically we use list.ref.

• The rf file should be cleared out before the program is run as the rf command appends and

does not overwrite.

• The rf file only covers the program components in a run and does not include any information

from restart files. In general it is best to explicitly use all the files in one program without use
of save and restart.

• It is often useful to just generate the reference file without any execution on behalf of the

GAMS program. This is done by including the a=c option on the command line or in the
command parameter IDE box.

Once the file has been run with the rf option the logfile is augmented with the blue line identifying the ref
file name as below

Double clicking on this opens the refreader window as discussed above.

5.3.6.3 Saving the Refreader output

The refreader program includes an option to save the output for inclusion in a program documentation or
for other usages. This is done by right clicking in the reference file window whereupon a button that if
pressed starts a write csv file dialogue as follows

Running Jobs with GAMS and the GAMS IDE 208

© 2022 Prof. Bruce McCarl

Clicking on that button will cause the refreader program to prompt for the name of a csv file in which the
output will be saved. In turn, one may import that into other programs and eventually make tables for
inclusion into application program documentations. Note if one reads the CSV into Excel and then
pastes the tables in Excel into Word that Word tables will automatically be created.

5.3.7 Differencing files

The IDE has now an integrated Text differencing feature that will compare two files in text or gms
format and report on any found differences.

This is done through the GAMSIDE file menu using Utilities menu and the feature Diff Textfiles.

In turn one gets the window

McCarl GAMS User Guide209

© 2022 Prof. Bruce McCarl

where one can specify the two files using the input file 1 and input file 2 boxes 1 and open 2 to
choose the two files to compare.

Once that is done then selecting the OK button causes the files to be line by line compared.

The result for the comparison of example files filetocompare1.gms and filetocompare2.gms is given
in the following window. When lines are identical in both files they appear with a white background.
 Green lines identify those with differences in similar lines. Reddish lines identify new lines in left
hand file while blue identifies new content that appears in the right hand file.

In the near future this will move to the Utilities menu and will also remember the names of previous
file comparisons (the release notes indicate this has happened but it has not in any release available
as of this writing).

One can also doing this using the posix utility Diff as follows filecompare.gms

*get location of GAMS system directory
$setglobal root "%gams.sdir%"
*figure location or Expanded GAMS user guide files
$setglobal mccarlguide "%root%docs\bigdocs\gams2002\"

Running Jobs with GAMS and the GAMS IDE 210

© 2022 Prof. Bruce McCarl

*identify name of first file to compare
$setglobal f1 %mccarlguide%filetocompare1.gms
*identify name of second file to compare
$setglobal f2 %mccarlguide%filetocompare2.gms

*show the control variables so you can check names are
right
$show

*invoke the difference note the root and gbin parts
tell where the diff file is
$call '"%root%gbin\diff.exe" %f1% %f2%'

5.3.8 Spell checking in files

The IDE contains spell checking features. One accesses this either through the Edit window or by
performing a right mouse click in a file window for files other than LST files. In turn one selects
spelling then can choose

• Configure causing a configuration screen to appear where one chooses the dictionary
language along with having access to settings regarding items that will be checked and the
degree of automatic correction.

• Check causing the whole document to be spell checked.

• Check comments where only comments are spell checked.

• Check strings where only explanatory text is spell checked.

5.3.9 Saving and Using a Script

The IDE has a facility to allow one to run a set of pre specified commands though the Utilities>script
menu choice, A script can be a set of pre specified commands stored in a text file and can be built
either manually or by recording commands much as one can do with spreadsheet macros.

The most important commands that can be used in a script are as follows

Fileopen - Opens a GAMS job

Filerun - Runs a GAMS job

Filewait - Waits until a running GAMS job is complete

The general format of these commands is

Fileopen;filename;

Filerun;filename;command line parameters

Filewait;filename;

where
filename gives the name of the file to be run which is proceeded by %ProjDir% if it is in the

project directory and otherwise needs the full path specified.

McCarl GAMS User Guide211

© 2022 Prof. Bruce McCarl

command line parameters gives any command line parameters that are to be associated with
the GAMS job.

Example

One could manually prepare a script file (script.txt) as follows

fileopen;%ProjDir%trandata.gms;
filerun;%ProjDir%trandata.gms; s=r1
filewait;%ProjDir%trandata.gms;
fileopen;%ProjDir%trandata.gms;
filerun;%ProjDir%tranmodl.gms; r=r1 s=r2
filewait;%ProjDir%tranmodl.gms;
fileopen;%ProjDir%trandata.gms;
filerun;%ProjDir%tranrept.gms; r=r2
filewait;%ProjDir%tranrept.gms;

which implements the save restart example from above.

One cam also use the command

Message;text to put in message box;

that inserts a yes no message box to inform the user but note this requires a mouse click answer and
stops the job until it gets that answer.

Example (script1.txt)

*GAMSIDE script V1
filerun;%ProjDir%trandata.gms; s=r1
filewait;%ProjDir%trandata.gms;
message;Data job done ;
filerun;%ProjDir%tranmodl.gms; r=r1 s=r2
filewait;%ProjDir%tranmodl.gms;
message;Model job done ;
filerun;%ProjDir%tranrept.gms; r=r2
filewait;%ProjDir%tranrept.gms;
message;Whole job done ;

Notes

• The script is run by using utilities>script>play and then giving the name of the script file and

pressing open.
• The script file itself must be saved before use if it is any different for the copy on the disk

• When the script begins all the files but the script file itself if open are saved so the GMS files

will be updated
• Lines beginning with an * in column1 are treated as comments and ignored.

• When the filerun is performed the model is run with the run history placed in the process

window and the LST file is automatically opened afterwards.
• The scripting is tricky to use and not very well supported in error messages so it is best to

record the steps using the utilities>scropt>record dialogue then going through the steps with
the mouse to encompass all one wants to do followed by a utilities>script>stop recording.
The script is then placed in a text file and can be edited if needed.

• A number of other scripting commands are allowed as in the table below

Running Jobs with GAMS and the GAMS IDE 212

© 2022 Prof. Bruce McCarl

Command Function

ViewClose;fileidentifier; Closes a file

FileClose;fileidentifier; Closes a file

FileSave;fileidentifier; Saves a file

FileSaveAll;fileidentifier; Saves all files

FileCompile;fileidentifier;Command line parameters Compiles a GAMS job

5.3.10 When is it not worth using?

There are costs and benefits of these approaches. The IDE is much easier for simple models but is
currently limited to PCs. The DOS/command line approach is generally better for models in customized
environments. A development strategy for more complex implementations

• Use the IDE to get it right.

• Debug components of large models using save and restart.

• Then if more comfortable use DOS/UNIX with batch files such as

 GAMS mymodel -codex 1 -lo 0 -s ./t/save1

 call myprogram.exe

GAMS moremod -lo 0 -r ./t/save1

5.3.11 Employing command line parameters

Experienced DOS or UNIX based GAMS users are used to having command line parameters associated
with their GAMS execution commands. In the IDE a box is available just to the right of the execute
button where we can associate a set of execution time parameters with a file. In turn note the IDE will
remember these whenever the file is opened in this project in the future.

The IDE saves this file specific parameter information in the project file. This is particularly useful for
save and restart parameters as once they are defined they are associated with every subsequent use of
the file provided you're using the right project and have not changed the restart information.

McCarl GAMS User Guide213

© 2022 Prof. Bruce McCarl

5.3.12 A difficulty you will have using IDE

When using and teaching the IDE, I find that IDE project location in interaction with file placement gives
almost everyone fits at some point or another. I have a rule of thumb to avoid problems.

• Make sure that you are working on files located in the same directory location as the project

is located.

• This means making sure the path lines match up in the two dark blue locations in the screen

shot below.

You do not have to follow this rule but deviations are the same as asking for trouble. When GAMS
executes a file in a different directory it will look for options files, GCK files, include files etc in the
directory where the project is located.

Another rule of thumb is also relevant.

• Whenever you need to work in a new directory define a new project.

5.3.13 Installation

Before beginning discussion of GAMS usage it is worthwhile to mention installation. Installation involves
a number of tasks. There are

Install GAMS and on Windows machines the IDE

On Windows machines make IDE icon

Changing licenses

On Linux/Unix run Gamsinst

Choosing solvers

Unpacking software on Windows machines

5.3.13.1 Install GAMS and on Windows machines the IDE

The IDE is automatically installed when GAMS is installed. To install both GAMS and the IDE on a
windows machine (There are also more technical instructions in pdf files for Windows and Unix/Linux)

• Place the GAMS CD into your machine or download a new GAMS version that you have

license rights to from the GAMS Corporation.

• Start the installation using the Windows Explorer or on non widows platforms find the

lnxgams.sfx self extracting archive and run it. On windows machines go into the systems

https://www.gams.com/latest/docs/gamside/installationnotes.htm
https://www.gams.com/latest/docs/UG_UNIX_INSTALL.html

Running Jobs with GAMS and the GAMS IDE 214

© 2022 Prof. Bruce McCarl

subdirectory called win then double click on setup.exe

5.3.13.2 On Windows machines make IDE icon

If you desire a desktop icon, then in the Windows Explorer right click on the GAMSide.exe in the GAMS
system directory (C:\program files\gams22.7 today), then choose to create a shortcut and place that on
your desktop) yielding

5.3.13.3 On Linux/Unix run Gamsinst

On Linux and Unix machines one then runs gamsinst.out that permits one to choose solvers and
otherwise finalize the installation. This should be found in the GAMS system directory.

5.3.13.4 Choosing solvers

You may choose your default solvers using the IDE. In particular under the file options choice and the
solvers tab you get a table like the following. This permits you to you revise the solver defaults at the
local, project or system scope where the scope is specified by a selection in the box at top left of the
screen shot below. In using this X means this is the default solver choice for scope of activities. You
should make sure you have X's in this table for the models you wish to run. You obtain these by clicking
on any of the small squares ordinarily for solvers that reflect full license status (as identified in the
second column on the left). Note if all the solvers reflect Demo status then your license file is likely not
properly installed.

McCarl GAMS User Guide215

© 2022 Prof. Bruce McCarl

5.3.13.4.1 Solver choice outside of IDE

To revise solver choice on a non-windows machine you can

• Run Gamsinst from the GAMS system directory which will prompt for choice

• Employ the customization features as discussed in the options as discussed in Customizing

GAMS chapter

• Edit (carefully) the file GmscmpXX.txt (where the XX depends on operating system Unix/

Linux -gmscmpun.txt; Windows 95/98 Gmscmp95.txt; Windows NT Gmscmpnt.txt) from the
GAMS system directory changing the lines at the bottom specifying solver choice which
appear just below

DEFAULTS

LP BDMLP

MIP BDMLP

RMIP BDMLP

NLP CONOPT

MCP MILES

CNS CONOPT

DNLP CONOPT

RMINLP CONOPT

MINLP DICOPT

Running Jobs with GAMS and the GAMS IDE 216

© 2022 Prof. Bruce McCarl

5.3.13.5 Unpacking software on Windows machines

Sometimes one may obtain new software from GAMS off sites like Rutherford's in packed or zipped
format. One can unpack this in the IDE using the update button that appears on the file options dialogue
under the execute tab just to the right of the executable name box. This will allow unpacking of all zip or
pck files in the GAMS system directory, but the user is prompted with a list before this happens.

6 Fixing Compilation Errors

The execution of a GAMS program passes through a number of stages, the first of which is the
compilation step. Users watching the execution of a program are sometimes dismayed to get the
message: COMPILATION ERRORS with the message indicating some large number of errors. These
notes cover the process of finding and fixing GAMS compilation errors.

Don't bark up the wrong tree

Finding errors: ****

Finding errors: $

Repositioning error messages: Errmsg

Improperly placed semi colons - error A

Error message proliferation

Commonly found errors and their cause

Other common errors

6.1 Don’t bark up the wrong tree

Before beginning a discussion of compilation error repair one thing needs mention. GAMS frequently
marks compilation problems in latter parts of the code that are not really errors, but rather the messages
are caused by errors in the earlier code. Case may occur where an omitted or extra semicolon or
parenthesis in otherwise perfectly coded GAMS programs have caused hundreds of error messages.
One should start fixing errors from the top and after fixing several errors rather than puzzling over
obscure and often improper messages, rerun the compilation to find out if those repairs took to care of
later marked errors. It is hardly ever desirable to try to fix all errors pointed out in one pass.

6.2 Finding errors: ****

When the screen or LOG shows compilation errors are present users should edit the .LST file directly or
be guided through it by the IDE and look for the cause of the errors. Errors are marked by lines, which
begin with 4 asterisks (****).

For example errsemic.gms one may find lines in the .LST file like the following

 3 SET PERIODS TIME PERIODS /T1*T5/;

 4 ELAPSED ELAPSED TIME /1*12/ ;

**** $140 $36

 5 PRODUCTS LIST OF PRODUCTS /WHEAT,STRAWBERRY/;

**** $140 $36

http://www.mpsge.org/inclib/tools.htm

McCarl GAMS User Guide217

© 2022 Prof. Bruce McCarl

which indicates errors were found in the 4th and 5th lines of the input file.

6.3 Finding errors: $

The **** GAMS compilation error line contains information about the nature of the error. Error messages
are numbered and placed below the place in the line they were encountered and begin with a $. In the
example above, error number 140 occurred in line 4 and was caused by GAMS finding the word
ELAPSED when it was looking for an instruction. In addition, a number 36 error was caused by the
second incidence of the word ELAPSED and these errors were generated again by the same problem in
line 5. GAMS also includes a list of the error message numbers encountered and a brief description of
the error at the bottom of the .LST file. In the case above the following appears at the bottom of the LST
file:

Error Messages

 36 '=' or '..' operator expected - rest of statement ignored

108 Identifier too long

140 Unknown symbol .

Messages also appear in the LOG file and in the IDE the content of the LOG file is used as a navigation
aid. Also in the IDE procedures are used to reveal exactly where in the source file the errors arise along
with the offering up of the source file indexed to that position and ready for editing.

6.4 Repositioning error messages: Errmsg

It is possible to reposition where the error explanation appears. In particular, the location can be altered
so the error message explanations appear just below the place the error is found mixed in with the
source listing. This is done by using the option errmsg=1 in the GAMS command line. This can be
imposed one of three ways.

• One can call GAMS with the command line parameter

gams mymodel errmsg=1

• When using the IDE this is placed in the GAMS command box in the upper right hand corner

or if wanted for all models in the file option choice under the execute tab in the box for GAMS
parameters.

• One can change the system level defaults by following the customization procedures entering

this line in the file gmcprm95.txt on basic windows machines, which is also called
gmsprmnt.txt on NT machines and gmsprmun.txt on Unix and Linux machines. The
resultant file looks something like

* GAMS 2.50 Default Parameterfile for Windows NT *

* Gams Development Corp. *

* Date : 20 Mar, 1998 *

Fixing Compilation Errors 218

© 2022 Prof. Bruce McCarl

* entries required by CMEX, put in by gams.exe:

* SYSDIR

* SCRDIR

* SCRIPTNEXT

* INPUT

errmsg=1

ps=9999

optfile=1

In turn the output looks like the following

 6 SET PROCES PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE TYPES OF RESOURCES /plantcap,salecontrct/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

**** $120

**** 120 Unknown identifier entered as set

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 PRODCOST(PROCESS) COST BY PROCESS

 11 /Makechair 10 ,Maketable 6, Makelamp 1/

**** $361

**** 361 Values for domain 1 are unknown - no checking possible

 12 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 13 /plantcap 10 ,salecontrct 3/;

 14 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

**** $362

**** 362 Values for domain 2 are unknown - no checking possible

 15 Makechair Maketable Makelamp

 16 plantcap 3 2 1.1

 17 salecontrct 1 -1;

 18 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 19 VARIABLES PROFIT TOTALPROFIT;

 20 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 21 AVAILABLE(RESOURCE) RESOURCES AVAILABLE;

 22 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $140

**** 140 Unknown symbol

6.5 Improperly placed semi colons - error A

What is wrong in the example above? The cause is what is probably the most common GAMS error for
new users -- the placement of semi colons. GAMS commands should be terminated with a semi colon

(;). However, commands can occupy more than one line. In the above case the original input looked

like the following. (errsemic.gms)

SET PERIODS TIME PERIODS /T1*T5/;
 ELAPSED ELAPSED TIME /1*12/ ;

McCarl GAMS User Guide219

© 2022 Prof. Bruce McCarl

 PRODUCTS LIST OF PRODUCTS /WHEAT,STRAWBERRY/;

This SET command is meant to continue for several lines, but the semi colon at the end of the first line
terminates it. In turn, GAMS is looking for a command phrase in the second line and does not
recognize the word ELAPSED, so it says UNKNOWN SYMBOL. The error is repeated at the end of the
second line with yet another semi colon. There are two ways of fixing this. One may get rid of the semi
colons in the first 2 lines only leaving a semi colon at the actual end of the SET declaration (i.e., the end
of the third line) or one may enter the word SET on the second line and third lines.

Note GAMS does not strictly require a semicolon at the end of each command. In particular when the
next line begins with one of the recognized GAMS keywords (SET, PARAMETER, EQUATIONS etc.)
then a semicolon is assumed. However, it is good practice to terminate all commands with a
semicolon. Certainly the lines before all calculations and equation specifications (.. lines) must have a
semicolon.

6.6 Error message proliferation

The example also points out another common occurrence. GAMS usually generates multiple error
messages as the consequence of a mistake. Once an error is encountered numerous messages may
appear as the compiler disqualifies all further usages of the item in question and/or becomes confused.
In the case above, subsequent references to the ELAPSED or PRODUCTS sets would cause errors and
the SOLVE statement would be disqualified. Thus, users should fix the errors starting from the
beginning and skip later errors if in doubt of their validity.

6.7 Commonly found errors and their cause

A number of errors are commonly found in GAMS that frequently confuse new users. Here I present a
table of those errors with a brief indication of cause and a hyperlink cross-reference to longer sections
that follow on common causes of such error messages. In using this table, readers should also look at
the GAMS error message text as it may indicate additional causes.

GAMS
Error Message

Potential Causes Discussion Common Cause of Error

8 H Mismatched parentheses-too many "(" found

36 I Missing elements in equation definition

37 I
Missing equation type ("=L=", "=E=" "=G=") in
equation specification

51-60 J Illegal nonlinear specification

66 K
Item which has not been given numerical data appears in
equation

71 I
Equation has been declared, but not algebraically
specified with ".." statement

Fixing Compilation Errors 220

© 2022 Prof. Bruce McCarl

96 B
A statement ended and another began but no ; was
included.

120 C, L
Cannot find a set with this name -- often a set element is
referenced without properly being enclosed in "

125 F Set is already in use in a sum or an equation definition

140 C, K , M
GAMS looking for a keyword or declared element and
cannot find it. Check spelling and declarations.

141 K
Parameter without data used, or SOLVE does not
proceed .L, and .M references

148 E
Item referenced with more or less indexed sets than in
declaration

149 G, L
The set identified is not indexed either in a sum or an
equation definition

170 C, D
Set element referred to cannot be found in set defined for
this index position, check for misspelling, omissions,
and references to wrong set

171 E, L, O
A domain error, Wrong set being referenced for this
index position

195 N
Name used here duplicates that of an already defined
item

198 P Using ORD on a set that is not ordered

256 I, J, K
Something wrong with model specification. Look for
other error messages immediately after solve statement

257 A-N
Solver not checked. Happens in conjunction with any
GAMS error

340 L
Quotes likely forgotten around a specific set reference

408 H
Mismatched parentheses-too many ")" found

1The entry below indicates when one gets error 8 a common cause of that error is discussed under the common
error H section below.

6.8 Other common errors

Many types of errors are possible in GAMS. I cannot cover each one. Thus, I list a set of common
errors as well as an indication of what types of GAMS error messages they cause.

McCarl GAMS User Guide221

© 2022 Prof. Bruce McCarl

Excess or insufficient semi colons - error B

Spelling mistakes - error C

Omitted Set elements - error D

Indexing problems - error E

Summing over sets already indexed - error F

Neglecting to deal with sets - error G

Mismatched parentheses - error H

Improper equation ".." statements - error I

Entering improper nonlinear expressions - error J

Using undefined data - error K

Improper references to individual set elements - error L

No variable, parameter, or equation definition - error M

Duplicate names - error N

Referencing item with wrong set - error O

6.8.1 Excess or insufficient semi colons - error B

Too few or too many ;'s have been specified. The insufficient case is illustrated above. The example
shorterr.gms provides a case where a semi colon has been omitted where the immediate first error
message appears as below

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $96 $2 $195 $96

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

**** $409

Error Messages

96 Blank needed between identifier and text

 (-or- illegal character in identifier)

 (-or- check for missing ';' on previous line)

Normally this error is associated with GAMS error message $96.

6.8.2 Spelling mistakes - error C

Named sets, parameters, equations etc. may be referenced with a different spelling than in their
declaration (i.e., the set CROPS is later referred to as CROP). GAMS identifies set name
misspellings with message $120, set element misspellings with $170 and other misspellings with
$140. The example shorterr05.gms provides a case where the set PROCESS (PROCES), one of its
elements (salecontrt) and RESOURCEUSE (RESOURUS) are misspelled.

 7 SET PROCEsS PRODUCTION PROCESSES /makechair,maketable,makelamp/

 8 RESOURCE TYPES OF RESOURCES /plantcap,salecontrct/;

 9 PARAMETER PRICE(PROCES) PRODUCT PRICES BY PROCESS

Fixing Compilation Errors 222

© 2022 Prof. Bruce McCarl

**** $120

 10 /makechair 6.5 ,maketable 3, makelamp 0.5/

 11 Yield(process) yields per unit of the process

 12 /Makechair 2 ,maketable 6 ,makelamp 3/

 13 PRODCOST(PROCESS) COST BY PROCESS

 14 /Makechair 10 ,Maketable 6, Makelamp 1/

 15 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 16 /platcap 10 ,salecontrct 3/;

**** $170

 17 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 18 Makechair Maketable Makelamp

 19 plantcap 3 2 1.1

 20 salecontrt 1 -1;

**** $170

 21 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 22 VARIABLES PROFIT TOTALPROFIT;

 23 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 24 AVAILABLE(RESOURCE) RESOURCES AVAILABLE;

 25 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 26 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 27 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUS(RESOURCE,PROCESS)

**** $140

Error Messages

120 Unknown identifier entered as set

140 Unknown symbol

170 Domain violation for element

6.8.3 Omitted Set elements - error D

One can forget to include elements in set declarations. In turn, when these elements are referenced
then an error arises (i.e., an error would occur if the element maketable was omitted from the declaration
of set PROCESS but used when data were defined under the PARAMETER PRICE(PROCESS)) and
subsequent sets. GAMS identifies such errors with message $170. The example shorterr06.gms
provides a case where the element maketable is omitted from the set PROCESS.

 6 SET PROCESS PRODUCTION PROCESSES /makechair,makelamp/

 7 RESOURCE RESOURCES /plantcap capacity ,salecontrct contract/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

**** $170

 10 Yield(PROCESS) yields per unit of the process

 11 /Makechair 2 ,maketable 6 ,makelamp 3/

**** $170

 12 PRODCOST(PROCESS) COST BY PROCESS

 13 /Makechair 10 ,maketable 6, Makelamp 1/

**** $170

 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 15 /plantcap 10 ,salecontrct 3/;

McCarl GAMS User Guide223

© 2022 Prof. Bruce McCarl

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

**** $170

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

Error Messages

170 Domain violation for element

6.8.4 Indexing problems - error E

Parameters, variables, and equations are specified with a particular index order. Errors can be made
where one inadvertently alters that order in subsequent references (i.e., RESOURUSE
(RESOURCE,PROCESS) is referred to as RESOURUSE(PROCESS,RESOURCE)). One can also use
too many [(RESOURUSE(RESOURCE,PROCESS,resource)] or too few [RESOURUSE(RESOURCE)]
indices. Cases where the order of sets are changed are marked with message $171. Cases where
more or less indices are used are marked with messages $148. The example shorterr07.gms provides
cases, where permutations of the RESOURUSE(RESOURCE,PROCESS) are entered and the
errmsg=1 option is used to reposition the messages.

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

 20 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 21 VARIABLES PROFIT TOTALPROFIT;

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(PROCESS,RESOURCE)

**** $171 $171

**** 171 Domain violation for set

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28 scalar x;

 29 x=sum((resource,process),RESOURUSE(RESOURCE,PROCESS,process));

**** $148

**** 148 Dimension different - The symbol is referenced with more/less

**** indices as declared

30 x=sum(resource,RESOURUSE(RESOURCE));

**** $148

**** 148 Dimension different - The symbol is referenced with more/less

**** indices as declared

6.8.5 Summing over sets already indexed - error F

Errors occur when one treats the same SET more than once [(i.e., process is summed over twice in the
expression

sum((resource,process),SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)));]

Fixing Compilation Errors 224

© 2022 Prof. Bruce McCarl

or where an equation is defined over a set and one tries to sum over it. For example in the following
case RESOURCE defines the equation and is summed over

resource2(resource,process)=sum(process,RESOURUSE(RESOURCE,PROCESS));

Such errors are marked with message $125. The example shorterr08.gms illustrates such errors under
the use of the errmsg=1 option which repositions the error message explanatory text.

 26 AVAILABLE(RESOURCE).. SUM((PROCESS,RESOURCE),RESOURUSE(RESOURCE,PROCESS)

**** $125

**** 125 Set is under control already

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28 scalar x;

 29 x=sum((resource,process),SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)));

**** $125

**** 125 Set is under control already

 30 parameter resource2(resource,process);

 31 resource2(resource,process)=sum(process,RESOURUSE(RESOURCE,PROCESS));

**** $125

**** 125 Set is under control already

6.8.6 Neglecting to deal with sets - error G

Errors occur when one does not sum or index over a set referenced within an equation (i.e., in the
example shorterr09.gms the set Process is used occurs but is not summed over or used in defining the
equations). This is marked with message $149.

 26 AVAILABLE(RESOURCE).. RESOURUSE(RESOURCE,PROCESS)

**** $149

**** 149 Uncontrolled set entered as constant

 27 *PRODUCTION(PROCESS) =L= RESORAVAIL(RESOURCE);

**** $149

**** 149 Uncontrolled set entered as constant

 28 scalar x;

 29 x=sum(resource,RESOURUSE(RESOURCE,PROCESS));

**** $149

**** 149 Uncontrolled set entered as constant

 30 parameter resource2(resource);

 31 resource2(resource)=RESOURUSE(RESOURCE,PROCESS);

**** $149

**** 149 Uncontrolled set entered as constant

6.8.7 Mismatched parentheses - error H

Parentheses must match up in expressions. An excess number of open "(" parentheses are marked
with $8 while excess closed ")" parentheses are marked with $408 [i.e., cases like SUM (I,X(I); or SUM
(I,X(I))); generate errors] and but other errors can enter. The example shorterr10.gms illustrates such
errors under the use of the errmsg=1 option which repositions the error message explanatory text.

McCarl GAMS User Guide225

© 2022 Prof. Bruce McCarl

 OBJT.. PROFIT=E= SUM(PROCESS,((PRICE(PROCESS)*yield(process)

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

**** $8

**** 8 ')' expected

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 27 *PRODUCTION(PROCESS))) =L= RESORAVAIL(RESOURCE);

**** $37,408$409

**** 37 '=l=' or '=e=' or '=g=' operator expected

**** 408 Too many),] or }

**** 409 Unrecognizable item - skip to find a new statement

**** looking for a ';' or a key word to get started again

 28 scalar x;

 29 x=sum((resource,process),RESOURUSE(RESOURCE,PROCESS)));

**** $408

**** 408 Too many),] or }

 30 x=sum((resource,process),(RESOURUSE(RESOURCE,PROCESS));

**** $8

**** 8 ')' expected

Two error prevention strategies are possible when dealing with parentheses.

• Many editors, including the one in the IDE, contain a feature that allows one to ask the

program to identify the matching parentheses with respect to the parenthesis that is sitting
underneath the cursor. It is highly recommended that GAMS users employ this feature during
model coding to make sure that parentheses are properly located for the end of sums, if
statements, loops etc.

• Alternative characters can be used in place of parentheses. In particular, the symbols { } or []

can be used instead of the conventional (). GAMS is programmed to differentially recognize
these symbols and generate compile errors if they do not match up. Thus a statement such
as

x = sum(j, ABS (TTS (j)));

can be restated as

x = sum[j, ABS { TTS(j) }];

Such a restatement would provide a visual basis for examining whether the parentheses were
properly matched. It would also generate errors if one did not use the alternative parenthesis
forms in the proper sequence. For example, the following statement would stimulate compiler
errors:

x = sum[j, ABS { TTS(j}]);.

6.8.8 Improper equation ".." statements - error I

Each declared equation must be specified with a statement, which contains certain elements. Omitting
the ".." causes error $36. Omitting the equation type ("=L=", "=E=", or "=G=") causes error $37.

Fixing Compilation Errors 226

© 2022 Prof. Bruce McCarl

Omitting the specification of a declared equation is marked with messages $71 and $256. The example
shorterr11.gms illustrates the first two such errors under the use of the errmsg=1 option which
repositions the error message explanatory text.

 25 OBJT PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

**** $36

**** 36 '=' or '..' or ':=' or '$=' operator expected

**** rest of statement ignored

 26 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 27 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 28 *PRODUCTION(PROCESS)) = RESORAVAIL(RESOURCE);

**** $37

**** 37 '=l=' or '=e=' or '=g=' operator expected

while the example shorterr12.gms illustrates the last two

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE

 24 notthere one i forgot ;

 25 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 26 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 27 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 28 *PRODUCTION(PROCESS)) =l= RESORAVAIL(RESOURCE);

 29 MODEL RESALLOC /ALL/;

 30 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $71,256

**** 71 The symbol shown has been declared as an equation, but no

**** Symbolic equation (..) was found. hint - look for commas in the

**** Documentation text for the equations. use quotes around the

**** Text or eliminate the commas.

**** 256 Error(s) in analyzing solve statement. More detail appears

**** Below the solve statement above

**** The following LP errors were detected in model RESALLOC:

**** 71 notthere is an undefined equation

6.8.9 Entering improper nonlinear expressions - error J

One gets messages $51-$60 and $256 containing the word ENDOGENOUS when the equations contain
nonlinear terms beyond the capability of the solver being used (i.e., nonlinear terms do not work in LP
solvers). The example shorterr13.gms illustrates the first two such errors under the use of the
errmsg=1 option which repositions the error message explanatory text.

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 27 *sqr(PRODUCTION(PROCESS))) =L= RESORAVAIL(RESOURCE);

 28 MODEL RESALLOC /ALL/;

 29 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $51,256

**** 51 Endogenous function argument(s) not allowed in linear models

McCarl GAMS User Guide227

© 2022 Prof. Bruce McCarl

**** 256 Error(s) in analyzing solve statement. More detail appears

**** Below the solve statement above

**** The following LP errors were detected in model RESALLOC:

**** 51 in equation AVAILABLE .. VAR argument(s) in function

6.8.10 Using undefined data - error K

When data items are used which have not been declared (in a TABLE, PARAMETER or SCALE
statement) one gets told they are an unknown symbol via error $140 simply stating GAMS doesn't
know what they are. In addition, when declared items are used which have not received
numerical values, one gets either: 1) message $141 when the items are used in calculations, or
2) messages $66 and $256 when the items are used in model equations. One can also get
message $141 when referring to optimal levels of variables (i.e., X.L or X.M) when a SOLVE has not been
executed. The example shorterr14.gms illustrates the first two such errors under the use of the
errmsg=1 option which repositions the error message explanatory text. This example also shows how
$141 errors occur for all uses of .L and .M commands when GAMS stops and the actions
undertake by solve are not checked because of earlier compiler errors.

 6 SET PROCESS PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE RESOURCES /plantcap ,salecontrct ;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 Yield(process) yields per unit of the process

 11 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 12 /plantcap 10 ,salecontrct 3/;

 13 parameter RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 14 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 15 VARIABLES PROFIT TOTALPROFIT;

 16 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 17 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

 18

 19 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 20 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

**** $140

**** 140 Unknown symbol

 21 scalar x;

 22 x=sum(PROCESS,Yield(process));

**** $141

**** 141 Symbol neither initialized nor assigned

**** A wild shot: You may have spurious commas in the explanatory

**** text of a declaration. Check symbol reference list.

 23 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 24 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 25

 26 MODEL RESALLOC /ALL/;

 27 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $257

**** 257 Solve statement not checked because of previous errors

 30 solprod(PROCESS)= PRODUCTION.l(PROCESS);

**** $141

Fixing Compilation Errors 228

© 2022 Prof. Bruce McCarl

**** 141 Symbol neither initialized nor assigned

**** A wild shot: You may have spurious commas in the explanatory

**** text of a declaration. Check symbol reference list.

while shorterr15.gms illustrates what happens when items without numerical value are used in
equations.

 16 parameter RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE;

 17 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 18 VARIABLES PROFIT TOTALPROFIT;

 19 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 20 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

 21

 22 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 23 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 24 scalar x;

 25 x=sum(PROCESS,Yield(process));

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28

 29 MODEL RESALLOC /ALL/;

 30 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $66,256

**** 66 The symbol shown has not been defined or assigned

**** A wild shot: You may have spurious commas in the explanatory

**** text of a declaration. Check symbol reference list.

**** 256 Error(s) in analyzing solve statement. More detail appears

**** Below the solve statement above

**** The following LP errors were detected in model RESALLOC:

**** 66 RESOURUSE has no data

and shorterr15.gms shows what happens when a solve statement is not present and .L or .M variable
or equation attributes are used in calculations.

 29 MODEL RESALLOC /ALL/;

 32 solprod(PROCESS)= PRODUCTION.l(PROCESS);

**** $141

**** 141 Symbol neither initialized nor assigned

**** A wild shot: You may have spurious commas in the explanatory

**** text of a declaration. Check symbol reference list.

6.8.11 Improper references to individual set elements - error L

Individual set elements are referenced by entering their name surrounded by quotes. When the quotes
are not entered one gets message $120 and when the item is in the set relevant to this place
without m quotes one gets $340 (i.e., if I have defined X(CROP) with CORN as an element in CROP,
then X(CORN) is wrong, but X("CORN") is right). One also gets errors assuming this is a new set
indicating it has not been dealt with $149 and this is not the set the item is defined over $171 (a
domain error). The example shorterr16.gms illustrates such errors under the use of the errmsg=1

McCarl GAMS User Guide229

© 2022 Prof. Bruce McCarl

option which repositions the error message explanatory text.

 6 SET PROCESS PRODUCTION PROCESSES /makechair,maketable,makelamp/

 7 RESOURCE TYPES OF RESOURCES /plantcap capacity ,salecontrct

 contract/;

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 Yield(process) yields per unit of the process

 11 /Makechair 2 ,maketable 6 ,makelamp 3/

 12 PRODCOST(PROCESS) COST BY PROCESS

 13 /Makechair 10 ,Maketable 6, Makelamp 1/

 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 15 /plantcap 10 ,salecontrct 3/;

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

 20 scalar x;

 21 x=price(makechair);

**** $120,340$149,171

**** 120 Unknown identifier entered as set

**** 149 Uncontrolled set entered as constant

**** 171 Domain violation for set

**** 340 A label/element with the same name exist. You may have forgotten

**** to quote a label/element reference. For example,

**** set i / a,b,c /; parameter x(i); x('a') = 10;

6.8.12 No variable, parameter, or equation definition - error M

When a variable, parameter, or equation is used which has not been declared one gets error $140.
The example shorterr17.gms illustrates such errors under the use of the errmsg=1 option which
repositions the error message explanatory text.

 20 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 21 VARIABLES PROFIT TOTALPROFIT;

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 ;

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 26 AVAILABLE(RESOURCE).. SUM(PROCESS,RESOURUSE(RESOURCE,PROCESS)

**** $140

**** 140 Unknown symbol

 27 *PRODUCTION(PROCESS)) =L= RESORAVAIL(RESOURCE);

 28 MODEL RESALLOC /ALL/;

6.8.13 Duplicate names - error N

Multiple declarations of items with the same name will cause message $195. The example
shorterr18.gms illustrates such errors under the use of the errmsg=1 option which repositions the error

Fixing Compilation Errors 230

© 2022 Prof. Bruce McCarl

message explanatory text.

 8 PARAMETER PRICE(PROCESS) PRODUCT PRICES BY PROCESS

 9 /makechair 6.5 ,maketable 3, makelamp 0.5/

 10 Yield(process) yields per unit of the process

 11 /Makechair 2 ,maketable 6 ,makelamp 3/

 12 PRODCOST(PROCESS) COST BY PROCESS

 13 /Makechair 10 ,Maketable 6, Makelamp 1/

 14 RESORAVAIL(RESOURCE) RESOURCE AVAILABLITY

 15 /plantcap 10 ,salecontrct 3/;

 16 TABLE RESOURUSE(RESOURCE,PROCESS) RESOURCE USAGE

 17 Makechair Maketable Makelamp

 18 plantcap 3 2 1.1

 19 salecontrct 1 -1;

 20 POSITIVE VARIABLES PRODUCTION(PROCESS) ITEMS PRODUCED BY PROCESS;

 21 VARIABLES PROFIT TOTALPROFIT;

 22 EQUATIONS OBJT OBJECTIVE FUNCTION (PROFIT)

 23 RESORAVAIL(RESOURCE) RESOURCES AVAILABLE ;

**** $195

**** 195 Symbol redefined with a different type

6.8.14 Referencing item with wrong set - error O

When an item is reference over a different set than it is defined over and that set is not a subset of the
original set one gets a domain error $171. The example shorterr19.gms illustrates such errors under the
use of the errmsg=1 option which repositions the error message explanatory text.

 23 AVAILABLE(RESOURCE) RESOURCES AVAILABLE ;

 24 OBJT.. PROFIT=E= SUM(PROCESS,(PRICE(PROCESS)*yield(process)

 25 -PRODCOST(PROCESS))*PRODUCTION(PROCESS)) ;

 26 AVAILABLE(process).. SUM(resource,RESOURUSE(RESOURCE,PROCESS)

**** $171

**** 171 Domain violation for set

 27 *PRODUCTION(PROCESS)) =L= 10;

 28 MODEL RESALLOC /ALL/;

 29 SOLVE RESALLOC USING LP MAXIMIZING PROFIT;

**** $257

**** 257 Solve statement not checked because of previous errors

 30

 31 parameter solprod(process) report of production;

 32 solprod(resource)= RESORAVAIL(RESOURCE);

**** $171

**** 171 Domain violation for set

6.8.15 ORD on an unordered set - error P

When ORD is used on a set that is not ordered one receives error 198. Ordered sets typically are
ones with explicit set elements. Unordered sets generally refer to cases where set elements are
calculated or elements appear in different order across different sets. The last case is illustrated in

McCarl GAMS User Guide231

© 2022 Prof. Bruce McCarl

the following two examples errorwithord.gms

In the first example we define a set that uses elements that have already been defined in another set
that has some of the elements in the first one but is a more extensive set

set a a couple of the elements /r2,r3/;

set b more elements /r1*r4/;

scalar count counter /0/;

loop(b$(ord(b) gt 3),count=count+1);

display count;

In this case if one printed out b it would be
 r2 r3 r1 r4
and GAMS will produce the error. To fix this one could just reorder the two set definitions defining
b before a.

In the second example we define a set that uses elements that have already been defined in another
set but in a different order.

 set a1a all the elements /r1*r10/;

 set a1b elements in different order /r3,r1/;

 loop(a1b$(ord(a1b) gt 3),count=count+1);

 display count;

To fix this one must always specify the elements in set 1b in the same order as in 1a. This is required
because of the Unique Element List and associated ordering employed within GAMS.

7 More Language Basics
This section covers a slightly advanced set of GAMS language elements. The coverage is organized
by chapter with the chapters covering:

Rules for Item Names, Element Names and Explanatory Text

Including Comments

Calculating Items

Improving Output via Report Writing

Rules for Item Capitalization and Ordering

Conditionals

Control Structures

More Language Basics 232

© 2022 Prof. Bruce McCarl

7.1 Rules for Item Names, Element Names and Explanatory Text

There are rules imposed in GAMS relative to the maximum size and composition of item names, set
element names and explanatory text. They are discussed below by category.

Item name rules

Element name rules

Explanatory text rules

7.1.1 Item name rules

The statements declaring sets, scalars, parameters, tables, files, acronyms, variables, equations and
models all name items. The names for these items must follow a set of rules. The name of any item

• Can be up to 63 characters long, if not using MPSGE.

• Must start with an alphabetic character.

• Can contain both alphabetic and numeric characters.

• Cannot contain spaces.

• Cannot contain special characters excepting an _ (underscore).

• Can be typed and referenced in a case insensitive manner but the case structure used in the

first occurrence of the name will be the way it is printed out.

• Should in my opinion for readability and definition be long enough so that the names are

explanatory as argued in the Writing Models and Good Modeling Practices chapter.

• MPSGE is limited to 10 character set names. Also if you use a set to index subsets in an

CES function, the limit if 4 characters.

Examples:

Below the item names are in red (namerules.gms)

Variable A6item;

Set shoes /tennis,dress/;

Parameter here_is_a_long_name /1/;

Equation Wheredidiputmy(shoes);

Acronym Monday, a6data, a7_it;

7.1.2 Element name rules

Set or Sets statements declare names for individual set elements. These element names must follow a
set of rules. An element name

• Can be up to 63 characters long.

• Should try to attain unique identification in the first 10 characters since longer names will be

truncated to 10 characters in certain displays.

• May be quoted or unquoted where:

McCarl GAMS User Guide233

© 2022 Prof. Bruce McCarl

� In unquoted elements

• Must start with an alphabetic or numeric character.

• Spaces are not allowed.

• The only special characters allowed are +,-,_

• Cannot be the same as a GAMS reserved words (set, table, variable, parameter,
etc.) are not allowed.

� In quoted elements

• Spaces are allowed.

• Any special characters are allowed (including international ones if charset=1 option
used).

• Must have quotes that begin and end each element name.

• Use either the symbol " or ' for the quotes.

• GAMS reserved words are allowed in quotes.

� Quoted and unquoted elements can be mixed.

• Is case sensitive in subsequent references but case structure used in the first occurrence of

the name will be the way it is printed out.

• Will be referred to in quotes in assignments or equations if an individual element is to be

addressed.

Examples:

Here the element names are in blue. Note for ease of understanding, each element is on a separate line
(namerules.gms)

Set mshoes / tennis

has+special-characters

an_underscore

3

3number /;

Set shoes2 / "variable"

"*starts_with_*"

"has a space"

'has "quotes" in it'

'contains,a comma' /;

Set shoes3 / tennis

"has spaces" /;

 x("Tennis")=3;

y('an_underscore')=1;

7.1.3 Explanatory text rules

The statements declaring sets, scalars, parameters, tables, files, acronyms, variables, equations and
models all can contain explanatory text. These explanatory text entries must follow a set of rules.
Namely they

More Language Basics 234

© 2022 Prof. Bruce McCarl

• Are optional

• Can be up to 255 characters long

• May be quoted or unquoted

• May contain spaces

• Must all be entered on one line along with the item name

• In unquoted text

� Can only contain the special character _ (underscore).

� Cannot contain GAMS reserved words (variable, parameter, etc.).

• In quoted elements

� Any special characters are allowed (including international ones if charset=1 option
used)

� Must have matching quotes at the beginning and end of each element name.

� May use either " or ' but the usage of these must match up.

� May contain GAMS reserved words are allowed in quotes.

� Can nest quiotes with oly the outer quotes being of concern to GAMS i.e. they could
contain "A nested 'quote' like this"

• Should not be treated as optional for named items since will appear in the Symbol List as

argued in the Writing Models and Good Modeling Practices chapter.

Note the explanatory text for set elements is only accessible through the .te put file command

Examples:

Below the explanatory text for item names in green and the explanatory text for set element names in blue.

Note for ease of understanding, each example has a separate line for each element (namerules.gms)

Set shoess "my test"

 /tennis here i can tell you what this is

 dress 'special characters if needed /*+-'/

Set kshoes with underscore_;

Set kshoes3 "with special characters * / ? , ";

Set kshoes4 "with 'quotes' like in can't and won't "

Parameter data3 THIS IS explanatory text /1/;

Variable A6item "***** look at this one";

Equation Wh(shoes) Model equation;

Model notexthere /all/;

7.2 Including Comments

GAMS code can have comments inserted within it in several ways. A description of each follows.

McCarl GAMS User Guide235

© 2022 Prof. Bruce McCarl

Blank lines

Single line comments

Multiple line comments

End of line comments

In line comments

Outside margin comments

Hidden comments

7.2.1 Blank lines

One can freely enter blank lines to set off certain sections and enhance readability. For example in
commentdol.gms I have 2 blank lines.

set a /a1,a2/;

set b /a2,c2/;

set c /a3,d3/;

parameter d(a,b,c);

d(a,b,c)=1.234567;

option d:1;display d;

option eject;

7.2.2 Single line comments

Users may insert a single line comment (or a group thereof) on any line by placing an asterisk in column
1 followed by any text whatsoever. The commented text is completely ignored by the GAMS compiler.
It can contain GAMS reserved words, messages or any other content.

Uses can cause GAMS to recognize a character other than an asterisk as the column 1 delimiter. This
is done by using the $ command $Comment c where the character c replaces * as the comment
delimiter. For example

$comment !

changes the character to a !. An example follows and is in commentdol.gms

*normal comment
*next line is deactivated GAMS statement
* x=sum(I,z(i));
$comment !
!comment with new character

Notes:

• Comments may be intermixed with other GAMS instructions and may be used anywhere in the

GAMS code.

More Language Basics 236

© 2022 Prof. Bruce McCarl

• The * or other character must appear in column 1 or it (the *) will be treated as a multiplication

symbol.

• The character used in redefinition of the * comment identifier must be chosen carefully as that

character is thereafter prohibited from ever appearing in column 1.

• A multiplication symbol can never appear in column 1 while * is the comment beginning character.

• One line comments appear in the echo print as numbered lines.

7.2.3 Multiple line comments

While one can enter a series of comments beginning with an * in column 1, there are cases where it is
most convenient to incorporate a multi line text comment without the need for an * in each line. This is
done by using the paired $ commands $Ontext and $Offtext. $Ontext causes all lines after it to be
treated as comments regardless of content. $Offtext terminates the comment begun by a $Ontext
making subsequent lines regular GAMS statements. The lines in between constitute the comment.

Example:

(commentdol.gms)

$ontext

Here is a file showing how to use

various types of comments

valid GAMS statements can also be in the

comment but will not be compiled

set a /1*11/;

$offtext

set a /a1,a2/;

set b /a2,c2/

set c /a3,d3/;

Notes:

• Lines in the $ontext $offtext sequence are copied through to the echo print listing but without line

numbers.

• These items can be used to rapidly deactivate large sections of code that one does not wish to

execute or compile as in speed or memory use searches.

7.2.4 End of line comments

Comments may be included on the end of lines containing GAMS code. This involves both activation
and specification.

• Activation - while GAMS accommodates such statements it must be told to do so. This is

done by using the command $Oneolcom.

• Specification -- end of line comments are set off through the entry of the delimiting character

string !! that renders the remaining part of the statement as a comment.

McCarl GAMS User Guide237

© 2022 Prof. Bruce McCarl

• One can change the activating character string using the command $eolcom.

Example:

(commentdol.gms)

$oneolcom

x=x+1; !! eol comment

x = x !! eol comment in line that continues on

 +1;

$eolcom &&

x=x+1; && eol comment with new character

Notes:

• Before end of line comments can be used a $oneolcom activating statement must appear.

• End of line comments are copied through to the echo print listing on the appropriate lines.

• The lines on which end of line comments appear must be fully valid GAMS statements but the

comment can appear on intermediate lines of a statement that terminates later.

• The ability to add an end of line comment can be terminated by entering the command $Offeolcom.

• One can redefine the activating characters from !! to some other choice using the command

$Eolcom cc where cc is the new character string delimiting beginning of a comment as illustrated
above.

7.2.5 In line comments

Comments may be included intermixed with instructions in a line of GAMS code. This involves both
activation and specification.

• Activation -- while GAMS accommodates such statements it must be told to do so. This is

done by using the command $Oninline.

• Specification -- in line comments are set off through the entry of the character string /* before

the comment and */ after the string which renders all the characters within these delimiters as
a comment.

• Activating characters can be changed with the command $inlinecom.

Example:

(commentdol.gms)

$oninline

x=x /* in line comment*/ +1;

x = x /* in line comment in line

 that continues on */

 +1;

$inlinecom /& &/

x=x /& eol comment with new character &/ +1;

More Language Basics 238

© 2022 Prof. Bruce McCarl

Notes:

• Before in line comments can be used a $Oninline activating statement must appear.

• In line comments must be set off before and after with the initiating (/*) and terminating delimiters

(*/).

• In line comments are copied through to the echo print listing on the appropriate lines.

• The lines in which in line comments appear must be fully valid GAMS statements, but the comment

can appear on intermediate lines of a statement that terminates later.

• In line comments once begun may span multiple lines before the terminating character appears.

• The ability to add an in line comment can be terminated by entering the command $Offinline.

• One can redefine the initiating and terminating characters from /* and */ to some other choice using

the command $Inlinecom cc dd where cc and dd are the new delimiting character strings
designating beginning and end of a comment as illustrated above.Inline comments may be allowed
to be nested using $Onnestcom.

7.2.6 Outside margin comments

Comments may also be included on the front and back of lines with GAMS code. This is done by first
defining the columns where the active GAMS instructions appear. Subsequently one enters comments
immediately preceding or succeeding the active code columns. In particular, one can specify the first
and last columns on a page of GAMS code that are active GAMS code and thereby both

• A leading area of each line can be set off so that the GAMS compiler will ignore it. This is

specified by setting the left most column where valid GAMS instructions can occur using the
command $Mincol cc. There cc is the first active column where GAMS code appears. In
turn, anything to the left of that column is treated as a comment.

• A trailing area of each line can be set off so that the GAMS compiler will ignore it. This is

specified by setting the right most column where valid GAMS instructions can occur using the
command $Maxcol cc. There cc is the last active column where GAMS code appears. In
turn anything to the right of that column is treated as a comment.

Example:

(margin.gms)

$ontext

 1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890
$offtext

$mincol 20 maxcol 45
Now I have set i plant /US, UK/ This defines I
turned on the scalar x / 3.145 / A scalar example.
margin marking. parameter a, b; Define some
parameters.

$offmargin

Only the black section of the statements are active since they appear between columns 19 and 45, and

McCarl GAMS User Guide239

© 2022 Prof. Bruce McCarl

anything before 19 column or after column 45 is treated as a comment.

Notes:

• Before comments set off by margins can be used either a $mincol or $maxcol statement must be

used.

• Mincol defaults to 1 and is not specified through a $mincol command means there will be no

beginning inactive content on GAMS lines.

• Maxcol defaults to the maximum line length currently 32767and if not specified through a $maxcol

command means there will not be trailing inactive content on GAMS lines.

• Setting Maxcol to 0 causes GAMS to set it to the maximum allowable number of columns.

• The full content of the lines are copied through to the echo print listing including the area below the

mincol and above the maxcol.

• The GAMS statement components falling within the specified columns mincol through maxcol must

be fully valid GAMS statements.

• Delineators setting off the margins are entered through the use of $Onmargin and can be removed

through $Offmargin. An example appears there.

7.2.7 Hidden comments

Users may insert a hidden single line comment (or a group thereof) at any point in the code by placing a
$Hidden command followed by comment text on the same line. The commented text is completely
ignored by the GAMS compiler, but is not copied to the echo print component of the LST file. It can
contain GAMS reserved words, messages or whatever. An example follows and is in commentdol.gms

$hidden a comment I do not want in LST file

set a /a1,a2/;

set b /a2,c2/

set c /a3,d3/;

7.3 Calculating Items

Calculations are inherent in GAMS replacement statements and in equation specification (..)
commands.

Basic components of calculations

Operations over set dependent items

Items that can be calculated

Cautions about calculations

Potential other components in calculations

Including conditionals

7.3.1 Basic components of calculations

Calculations contain basic components in terms of algebraic specification and in terms of operators that

More Language Basics 240

© 2022 Prof. Bruce McCarl

act over sets.

Operators

=

.. statements

Basic arithmetic + - * / **

Arithmetic hierarchy

Changing hierarchy using parentheses

7.3.1.1 Operators

The basic operators in equations are the

• = equal sign,

• .. equation definition

• +, -, *, / and ** operators that allow addition, subtraction, multiplication, division and

exponentiation and

• (, { and [which are code grouping parentheses.

These are discussed below plus their hierarchy in calculation.

=

.. statements

Basic arithmetic + - * / **

Arithmetic hierarchy

Changing hierarchy using parentheses

7.3.1.1.1 =

All replacement (also called assignment) statements in GAMS contain an = sign. The basic format is
(calculate.gms)

x=4;
Z(i)=12;
Y(i)$z(i)=z(i);
Q(i)=yes;

where the scalar or set dependent item on the left hand side is set equal to the scalar or expression on
the right hand side. The term on the left hand side must always be a single scalar, parameter or set
item potentially indexed over sets. The term can also contain a conditional. The term on the right hand
side is a constant, expression, acronym or special value.

7.3.1.1.2 .. statements

Calculations can appear in .. statements as discussed in the Variables, Equations, Models and Solves
chapter.

McCarl GAMS User Guide241

© 2022 Prof. Bruce McCarl

Eq1[I].. zZ(i)=e=12+x;
Eq2[I].. zZ(i)=e=12-x;

7.3.1.1.3 Basic arithmetic + - * / **

Commonly it is desirable to add, subtract, multiply, divide or exponentiate items in replacement
statements. This is done employing the symbols + - * / **. Examples follow (calculate.gms)

x=4+6+sqrt(7);
Z(i)=12+x;
Eq1[I].. zZ(i)=e=12+x;
Y(i)=+z(i);
x=x-3-sqrt(7);
Z(i)=12-x;
Eq2[I].. zZ(i)=e=12-x;
Y(i)=-z(i);
x=x-3-sqrt(7);
Z(i)=12*x;
Eq3[I].. zZ(i)=e=12*x;
Y(i)=44*z(i);
x=x-3/sqrt(7);
Z(i)=12/x;
Eq4[I].. zZ(i)=e=12/x;
Y(i)=1/z(i);
x=3**sqrt(7);
Z(i)=12.0**x;
Y(i)$(z(i)-1 gt 0)=z(i)**0.5;
Y(i)=14*x**2/4-3+2;

A + - * / or ** cannot go on the left hand side unless it is in the numerical evaluation of a Conditional.

These operators may be used with sets as described below or in the set arithmetic part of the Sets
chapter.

7.3.1.1.4 Arithmetic hierarchy

Within GAMS replacement statements are evaluated in a three-step hierarchy (unless they are enclosed
in parentheses). That hierarchy is

Operator Description Priority

** exponentiation 1

* / multiplication and division 2

+ - addition and subtraction 3

The priority 1 items are done before the priority 2 and then the 3. However, items in parentheses or
brackets are always resolved first. But within the parentheses the above hierarchy is followed. When

More Language Basics 242

© 2022 Prof. Bruce McCarl

multiple items appear of the same priority resolution is from left to right. Calculation hierarchy also
involves logical conditions as fully specified in the Conditional notes.

7.3.1.1.5 Changing hierarchy using parentheses

Items within parentheses or brackets are resolved before doing numerical calculations and the innermost
parentheses are resolved first. Furthermore, any of the pairs () {} or [] can be used. For example, in the
following

Z{I}=+{34/(11+12)}+11;
eq[i].. zZ{I}=l=10*[3+2]**{34/(11+12)}+11-1;

the 11+12 is computed first then the other parentheses or brackets surrounded terms.

7.3.2 Operations over set dependent items

Numerical operations can involve sets either operating over them or doing operations with them.
Fundamentally these involve sums, finding the biggest or smallest number in a set, multiplying elements
and doing calculations involving set elements. It is also worthwhile discussing forms of set referencing in
these items.

= replacement or .. statements

Sum , Smax, Smin, Prod

Alternative set addressing schemes

7.3.2.1 = replacement or .. statements

When statements like

x(i)=4;
Eq4[I].. zZ(i)=e=12/x(i);

are included in a GAMS code all of the cases associated with each and every element in I are
computed. The order that the calculations or done in terms of the elements of the sets depends on the
order of the set elements as discussed in the Rules for Item Capitalization and Ordering chapter.

7.3.2.2 Sum , Smax, Smin, Prod

Frequently in a program one wishes to compute items over the set elements associated with
parameters.

7.3.2.2.1 Sum

One might wish to sum items as follows

r=sum(I,y[I]);
r=sum((I,j),y(i)+w(j));
eq5[I].. zz[I]=e=sum[j,zz[i-1]+zq[j]];

McCarl GAMS User Guide243

© 2022 Prof. Bruce McCarl

Here the sum is computed over all of

the elements in I for the first equation
the elements in I and j for the second equation
the elements in j for the third equation

Notes:

• The general syntax is sum(settovary,expression) where

� The settovary is the name of the sets or sets that will be varied

� When more than one set is to be varied they are enclosed in parentheses – sum((i,j),x(i,j)).

� Expression is a generally a function of the set in the sum

� A (occurs just after the word sum and matches with a) at the end of the sum.

• In replacement statements parameters, and scalars can freely appear. Variables and equations

can only be present if attributes of them are being addressed.

• In model equation specification statements parameters, scalars and variables can freely appear.

• The expression after the comma is fully computed and then applied to the sum as if the term were

in parentheses.

7.3.2.2.2 Smin Smax

One might wish to find the largest or smallest values over a set. This is done using

r=smax(I,y[I]);
r=smax((I,j),y(i)+w(j));

Here the maximum element from the set is returned back over all of

the elements in I for the first equation
the elements in I and j for the second equation

Use of the syntax smin will find the smallest element across the set.

r=smin(I,y[I]);
r=smin((I,j),y(i)+w(j));

Notes:

• The general syntax is smax(settovary,expression) where

� the settovary is the name of the sets or sets that will be varied

� When more than one set is to be varied they are enclosed in parentheses – smin((i,j),x(i,j)).

More Language Basics 244

© 2022 Prof. Bruce McCarl

� expression is a generally a function of the set in the smax

� a (occurs just after the word smax/smin and matches with a) at the end of the smax/smin.

• In replacement statements only parameters, scalars, and table data may freely appear. Variables

and equations can only be present if attributes are being addressed.

• You cannot generally use smin and smax in equations for models unless you are dealing with a

DNLP type of model.

• The expression after the comma is fully computed and then applied to the calculation as if the term

were in parentheses.

7.3.2.2.3 Prod

One might also wish to compute the product of items across a set as follows

r=prod(I,y[I]);
r=prod((I,j),y(i)+w(j));
eq5[I].. zz[I]=e=prod[j,zz[i-1]+zq[j]];

Here the product is computed over all of

the elements in I for the first equation
the elements in I and j for the second equation
the elements in j for the third equation

Notes:

• The general syntax is prod(settovary,expression) where

� the settovary is the name of the sets or sets that will be varied

� When more than one set is to be varied they are enclosed in parentheses – prod((i,j),x(i,j)).

� an expression is a generally a function of the set in the prod

� a (occurs just after the word prod and matches with a) at the end of the prod.

• In replacement statements only parameters, scalars, and table data may appear. Variables can

only be present if attributes of them are being addressed.

• In model equation specification statements all the data items plus variables can appear.

• The expression after the comma is fully computed and then applied to the product as if the term

were in parentheses.

7.3.2.3 Alternative set addressing schemes

Sometimes it is not desirable to sum etc. over all the members of a set but only selected items.

7.3.2.3.1 Avoiding set domain errors

When summing etc over sets one must control all the sets in the expression or a domain error arises.

McCarl GAMS User Guide245

© 2022 Prof. Bruce McCarl

Sets are controlled in some mixture of the following four ways (calculate.gms).

• Sets may be completely operated over by the sum, prod etc.

mZ=sum(I,mr(i)*xvar.l(i));

Obj.. z22=e= sum(I,mr(i)*xvar(i));

• Sets may be operated over by the equation definition

mX(Zzz)=sum(I,ar(zzz,i)*ma(i));

Resource(j).. z2(j)=e= sum(I,jr(I,j)*xvar(i));

• Sets may be operated over by Control Structures (loop, for, etc.)

Loop(zzz, z22=z22+sum(I,ar(zzz,i)*mr(i)));

• Specific set elements may be specified.

Z22=sum(I,ar('z1',i)*mr(i));

7.3.2.3.2 Multiple sets

Operations indexing sets may involve multiple sets. In such a case one can write the function in
multiple ways. For example the sum over the sets I and J of c(I,J)*v(I,J)) can be written as either
(calculate.gms)

R=sum((I,J),c(I,J)*v(I,J));

or

R=sum(I,sum(J,c(I,J)*v(I,J)));

Notes:

• Note how the parentheses match up.

• When multiple sets are addressed they need to be enclosed in parentheses.

• PROD, SMIN and SMAX indices are handled just as the SUM is above.

7.3.2.3.3 Conditionals to restrict set coverage

In sums, minimums, maximums and products it is not always desirable to operate over all the members
of a set. One accomplishes this by adding a conditional or addressing over a tuple or subset as
discussed below. Such a conditional can take on a number of forms.

Examples:

(calculate.gms)

Examples using a relatively simple conditional on the numerical value of a parameter are

mA(i)$xvar.l(i)=mr(i);

mA(i) =mr(i) $xvar.l(i);

r=sum(i$xvar.l(i),mr(i));

More Language Basics 246

© 2022 Prof. Bruce McCarl

r=smin(i$xvar.l(i),mr(i));

r=prod(i$xvar.l(i),mr(i));

Eq7(i)$ma(i).. zZ{I}=l=10*[3+2]**{34/(11+12)}+{11-1};

Eq8(j)$w(j).. z2(j)=e= sum(I$ma(i),jr(I,j)*xvar(i)) ;

Notes:

• A fuller discussion of these topics appears in the conditional and sets chapters.

• The equations with the conditionals on the left hand side operate significantly different from those

with the conditional on the right hand side as discussed below.

7.3.2.3.4 Tuples and subsets to restrict set coverage

In sums, minimums, maximums and products it is not always desirable to sum etc. over the all the
members of a set. One accomplishes this by adding a conditional as discussed immediately above or
addressing over a multiple dimensional set (a tuple) or a subset. Such addressing can take on a
number of forms.

Examples:

(calculate.gms)

mA(i)$mysubset(i)=mr(i);

ma(mysubset(i))=mr(i);

mA(i) =mr(i) $mysubset(i);

mA(i) =sum(atuple(I,j),v(I,j));

v(i,j)$atuple(i,j)=3;

v(atuple(i,j))=3;

v(atuple)=3;

r=sum(mysubset,mr(mysubset));

r=sum(mysubset(i),mr(i));

r=sum(mysubset(i),mr(mysubset)+mr(i));

r=sum(atuple(I,j),v(I,j));

r=smin(i$mysubset(i),mr(i));

r=smax((I,j)$atuple(I,j),v(I,j));

r=smax(atuple(I,j),v(I,j));

Eq11(i)$mysubset(i).. zZ{I}=l=10*[3+2]**{34/(11+12)}+{11-1};

Eq12(mysubset).. zZ{mysubset}=l=10*[3+2]**{34/(11+12)}+{11-1};

Eq13(mysubset(i)).. zZ{I}=l=sum(atuple(I,j),ord(i)+ord(j));

Eq14(atuple(i,j)).. 1=e= twovar(i,j) ;

Eq15(I,j)$atuple(i,j).. 1=e= twovar(i,j) ;

eq16(j).. 1=e=sum(atuple(I,j),v(I,j)*twovar(i,j));

Notes:

• Additional discussion of these topics appears in the conditional and sets notes.

• Equations with the conditionals on the left hand side operate significantly different from those with

the conditional on the right hand side as discussed below.

McCarl GAMS User Guide247

© 2022 Prof. Bruce McCarl

• Use of the tuple as the set summed over results in the component sets being varied as in sum

(atuple(I,j),v(I,j)) where both I and j are varied. But the only cases of I and j that are considered are
those that are jointly in the tuple.

• Use of the tuple in an equation defined over some of the sets in the tuple results in the component

sets not in the equation definition being varied as in mA(i) =sum(atuple(I,j),v(I,j)) where the j case
that are in the tuple associated with the particular I case that is being computed are varied.

• Use of the subset and the superset name in the sum gives access to both in an equation as in

r=sum(mysubset(i),mr(mysubset)+mr(i)); where both the sets I and mysubset are accessible.

• When all items in a tuple are to be acted over one can use syntax like v(atuple)=3; which will work

even if v is defined over multiple sets as long as the tuple is defined over those same sets.

7.3.3 Items that can be calculated

When calculating one can compute sets, data, items in equations or acronyms. I discuss each below.

Sets

Data

Equation calculations

Acronyms

7.3.3.1 Sets

Set elements may be calculated as discussed in the Sets chapter. This involves setting elements of
subsets to

• Yes to activate them

• No to remove them

• Using set arithmetic to form unions, intersections, complements etc.

The most common calculation involves definition of subset elements. For example to make every
element of a superset appear in a subset one would use the command (calculate.gms)

Subset(superset)=yes;

while removing all is done using

Subset(superset)=no;

Tuples are also commonly computed based on data as illustrated below:

Cantravel(origin,destination)

$(distance(origin,destination) gt 0)=yes;

7.3.3.2 Data

Data calculations refer to the case where elements of a parameter or scalar are computed in a

More Language Basics 248

© 2022 Prof. Bruce McCarl

statement involving an = as illustrated above. Note these calculations are static in that the calculation is
only performed at the point it appears in the code and is not updated when any input data are changed.
For example consider the case below (calculate.gms)

r=1;

s=2*r;

Display 'one',s;

r=2;

display 'two',s;

Note in this case the value of s is unchanged between display one and display two even though the r
parameter is changed. This means one needs to reissue the calculations if one is to update
calculations when the input data to that calculation is revised. More will be said about this in the section
on static/dynamic calculations below.

7.3.3.3 Equation calculations

Equation calculations refer to the case where terms in a model equation are computed in a statement
involving a .. command for a named equation. Note these calculations are "dynamic" being updated
every time a Solve statement is executed. More will be said about this in the section on static/dynamic
calculations below.

7.3.3.4 Acronyms

Assignment statements can involve acronyms.

Examples:

(acronym.gms)

acronyms nameforit,nextone;

acronym acronym3

acronym doit

parameter textstrings(i)

 /i1 nameforit, i2 nextone, i3 acronym3/ ;

parameter textstring(i)

 /i1 doit, i2 1, i3 doit/ ;

display textstrings ;

parameter zz(i);

zz(i)= textstring(i) ;

display zz;

Notes:

• Assignment statements involving acronyms can only set other items equal to acronyms or other

parameters containing acronyms.

• Numerical operations (+ - * / **) cannot be done.

• Numbers can be mixed in with acronyms in a data item but cannot be subsequently manipulated

McCarl GAMS User Guide249

© 2022 Prof. Bruce McCarl

numerically.

• Acronyms cannot be used in numerical terms in equation specification (..) commands excepting

where they appear in conditionals.

7.3.4 Cautions about calculations

GAMS treats calculations in three distinctly different ways.

Dynamic

Static

Repeated static

Cautions about dynamic /static calculations

7.3.4.1 Dynamic

Dynamic calculations repeated every time the model is generated. Only calculations in the model ..
statements are dynamic

Obj.. ObjF=E=SUM(Crop,Acres(CROP)*

 (Price(CROP)*Yield(CROP)-Cost (CROP)));

7.3.4.2 Static

Calculations executed once only at the place the GAMS instruction appears in the code.

Revenue (Crop)= Price(Crop)*Yield(Crop)-Cost(Crop);

x.up(crop,region)=(1+flex)*baseacre(crop,region);

x.scale(crop,region)=scalefac(crop);

7.3.4.3 Repeated static

These are calculations within a repeatedly executed GAMS control structures (loop, for, while) but are
static within that control structure such as

LOOP (LANDCHANGE,

 LAND=LAND*

(1+VALUE(LANDCHANGE)/100.);

 solve farm using lp maximizing income)

7.3.4.4 Cautions about dynamic /static calculations

The types of calculations are very important for 2 reasons

• When static or repeated static calculations are present and some of the calculation input data

are revised between the point where the calculations executed in the model solve statement
appears then you must repeat the static calculations if you want the results to be current

• When you have repeated static calculations then the data changes may buildup and you may

need to reset the data to base levels if you want your data always to revert back to the base

More Language Basics 250

© 2022 Prof. Bruce McCarl

case

Examples:

(nondyn.gms)

Below the first two solves are identical even though the Price parameter is altered. Why? The answer is
because the calculation for Revenue is not updated after the Price change. The repeated Revenue calculation
and second solve corrects this.

set crop /corn/

parameter price(crop),yield(crop),cost(crop),revenue(crop);

Price(Crop) = 2.00;

Yield(Crop) = 100;

Cost(Crop) = 50;

Revenue (Crop) = Price(Crop)*Yield(Crop)-Cost(Crop);

Equations

obj objective function

Land Land available;

Positive Variables Acres(Crop) Cropped Acres

Variables Objf Objective function;

obj.. objf=E=Sum(Crop, Revenue(Crop)*Acres(Crop));

Land.. Sum(Crop, Acres(Crop))=L=100;

Model FARM/ALL/

SOLVE FARM USING LP Maximizing objf;

Price ("corn")=2.50;

SOLVE FARM USING LP Maximizing objf;

Revenue (Crop)= Price (CROP)*Yield(Crop)-Cost(Crop);

Solve FARM Using LP Maximizing objf;

One can revise the model so it contains a dynamic calculation that eliminates the problem. Namely,
computing revenue in the objective function corrects this. (see the bottom of nondyn.gms)

Obj.. ObjF=E=SUM(Crop,(Price(CROP)*Yield(CROP)

 -Cost (CROP))Acres(CROP);

Note one can go too far with this making a model too complex.

Another example is also in order on data preservation/cumulative data changes in the case of repeated static
calculations. (repstatic.gms)

GAMS lives for the moment, when a calculation is issued then all prior values are overwritten for calculated
items.

SCALAR LAND /100/;

PARAMETER SAVELAND;

SAVELAND = LAND;

SET LANDCHANGE SCENARIOS FOR CHANGES IN LAND

/R1,R2,R3/

PARAMETER

McCarl GAMS User Guide251

© 2022 Prof. Bruce McCarl

VALUE(LANDCHANGE) PERCENT CHG IN LAND

 /R1 +10 , R2 + 20 , R3 +30/

LOOP (LANDCHANGE,

 LAND = LAND * (1 + VALUE (LANDCHANGE) / 100.)

 display "without reset" ,land);

Running this model yields

---- 9 without reset

---- 9 PARAMETER LAND = 110.000 = 100*1.1

---- 9 PARAMETER LAND = 132.000 = 100*1.2*1.1

---- 9 PARAMETER LAND = 171.600 = 100*1.3*1.2*1.1

Here I see cumulative changes and need to ask if they are intended.

If you want to revert to the original values then you have to instruct GAMS to do that. Replace the loop with
(repstatic.gms)

LOOP (LANDCHANGE,

 LAND=saveLAND*(1+VALUE (LANDCHANGE) / 100.)

 display "based on saveland" ,land);

or
LOOP (LANDCHANGE,

 land=saveland;

 LAND = LAND * (1 + VALUE (LANDCHANGE) / 100.)

 display "with saveland reset", land);

Both yield

---- 12 PARAMETER LAND = 110.000 = 100*1.1

---- 12 PARAMETER LAND = 120.000 = 100*1.2

---- 12 PARAMETER LAND = 130.000 = 100*1.3

Generally if you are changing items between solves, then reset them to base values to avoid accumulating
changes.

7.3.5 Potential other components in calculations

Calculations can contain a variety of GAMS items that are not parameters or numbers. Here I review the
possibilities for inclusion of logical expressions, functions, special values, variable attributes, model
attributes and sets intermixed with numbers.

Mixing logical expressions, sets and numbers

Functions

Special values

Model and optimal solution items

7.3.5.1 Mixing logical expressions, sets and numbers

One can mix logical expressions and sets with numerical calculations. Namely, if a logical item is

More Language Basics 252

© 2022 Prof. Bruce McCarl

included in a numerical calculation, it takes on a value of one if the result is true and zero if it is false.
Similarly a set is treated as a logical item and returns a 1 if an element is defined and zero otherwise.
Items that are Sets can also be equated to numbers and get a yes value if the item is nonzero and no
otherwise. The following example illustrates (mixlogical.gms)

X=1;
z = 100*(x < 4) + (3 < 3);
set j(i);
j(i)=x+1;
parameter zz(i);
zz(i)=j(i)*100;

Note z evaluates to 100 since only the logical condition on the left is true. Note that this is different from
the assignment below,

z = (x < 4) or (3 < 3);

where z evaluates to 1 due to the or operator behaving as explained in the conditional notes.

7.3.5.2 Functions

There are a number of functions available in GAMS. The built-in (intrinsic) functions and the extrinsic
functions which can be imported from an external library into a GAMS model.

Intrinsic functions
Extrinsic functions

7.3.5.2.1 Intrinsic Functions

Intrinsic Functions are functions provided by GAMS.
There are commonly used standard functions, mathematical functions, logical functions, time and
calendar functions, GAMS utility and performance functions and string manipulation functions.

Common mathematical functions
Other mathematical functions
Logical functions
Time and calendar functions
GAMS utility and performance functions
String manipulation functions: Ord, Ordascii, Ordebcdic
String manipulation functions: Card
Computer Characteristic functions

7.3.5.2.1.1 Common mathematical functions

A number of mathematical functions can be used in numerical expressions.

Abs

McCarl GAMS User Guide253

© 2022 Prof. Bruce McCarl

Execseed

Exp

Ifthen

Log, Log10, Log2

Max , Min

Prod

Round

Smin , Smax

Sqr

Sqrt

Sum

Expressions can contain a function that calculates the absolute value of an expression or term
(function.gms).

X=abs(tt);
X=abs(y+2);
Eq1.. z=e=abs(yy);

This function is not continuous and not smooth. It can be used on data during GAMS calculation or in
models on variables or parameters. It's use in .. equation specifications on terms involving variables

requires the model type be DNLP, CNS, MCP or some other form that accepts nonsmooth functions.

Expressions can be used to reset and save the seed for the random number generator. Setting a scalar
quantity to the function

cc=execseed;

saves the random number seed that will be used to generate the next random number. In the process, it
also re-initializes the random number generator using this seed value.

Setting the function to a scalar quantity (that must be integer)

execseed=round(cc,0);

resets the random number seed.

This item should be used very infrequently on the right hand side of a replacement statement as this
forces a re-initialization of the seed for the random number generator.

Expressions can contain a function that calculates the exponentiation eq of an expression or term

(function.gms).

X=exp(t);
X=exp(y+2);
Eq2.. z=e=exp(yy);

More Language Basics 254

© 2022 Prof. Bruce McCarl

This function is continuous and smooth. It can be used on data during GAMS calculation or in models
on variables or parameters. It's use in .. equations in terms that involve variables requires the model type
be NLP or one of the other types that handles nonlinear functions.

Expressions can contain a function that take on different values depending on a condition.

X=ifthen(condition,expressioniftrue,expressioniffalse);

where if the condition is true then the function equals expressioniftrue and otherwise equals
expressioniffalse. For example (function.gms) below if tt=2 then x will be set to 3 otherwise x=4+y.

X=ifthen(tt=2,3,4+y);

This function can be used on data during GAMS calculation and also in .. equations. When used in ..
equations it requires the model type to be DNLP and it is not supported by all available solvers.

Expressions can contain a function that calculates the natural logarithm or logarithm base 10 of an
expression or term (function.gms).

X=log(tt);
X=log(y+2);
Eq3.. z=e=log(yy);
X=log10(tt);
X=log10(y+2);
Eq4.. z=e=log10(yy);

These functions are continuous and smooth. They can be used on data during GAMS calculation or in
models. It's use in .. equations in terms that involve variables requires the model type be NLP or one of
the other types that handles nonlinear functions.

Expressions can contain a function that calculates the maximum or minimum of a set of expressions or
terms. (function.gms)

X=max(y+2,t,tt);
Eq3.. z=e=max(yy,t);
X=min(y+2,t,tt);
Eq4.. z=e= min (yy,t);

These functions are not continuous and are not smooth. They can be used on data during GAMS
calculation or in models. It's use in .. equations in terms that involve variables requires the model type

be DNLP, CNS, MCP or some other form that accepts nonsmooth functions.

Expressions can contain a function that calculates the product of set indexed expressions or terms
(function.gms).

X=prod(I, a(i)*0.2-0.5);

McCarl GAMS User Guide255

© 2022 Prof. Bruce McCarl

Eq7.. z=e= prod(I, a(i)*0.2-0.5);

This function is continuous and smooth. It can be used on data during GAMS calculation or in models.
It's use in .. equations in terms that involve variables requires the model type be NLP or one of the other
types that handles nonlinear functions More on prod can be found here.

Data calculation expressions can contain a function that rounds the numerical result of an expression or
term. There are 2 variants of the rounding function. The first (function.gms)

X=round(q);
X=round(12.432);

Rounds the result to the nearest integer value.

The second (function.gms)

X=round(q,z);
X=round(12.432,2);

rounds the result to the number of decimal points specified by the second argument.

This function may be used on data during GAMS calculations. It cannot be used in models.

Expressions can contain a function that calculates the minimum or maximum of set indexed
expressions or terms (function.gms)

X=smin(I, a(i)*0.2-0.5);
Eq8.. z=e= smin(I, va(i)*0.2-0.5);
X=smax(I, a(i)*0.2-0.5);
Eq9.. z=e= smax(I, va(i)*0.2-0.5);

This function is not continuous and not smooth. It can be used on data during GAMS calculation or in
models on variables or parameters. It's use in .. equations in terms that involve variables requires the
model type be DNLP or one of the other types that handles nonsmooth functions. More on Smin and
Smax can be found here.

Expressions can contain a function that calculates the square of an expression or term. (function.gms)

X=sqr(t);
X= sqr (y+2);
Eq10.. z=e= sqr (yy);

This function is continuous and smooth. It can be used on data during GAMS calculation or in models
on variables or parameters. It's use in .. equations in terms that involve variables requires the model type
be NLP or one of the other types that handles nonlinear functions.

Expressions can contain a function that calculates the square root of an expression or term.

More Language Basics 256

© 2022 Prof. Bruce McCarl

(function.gms)

X=sqrt(a('i1'));
X=sqrt(y+2);
Eq11.. z=e= sqrt(yy);

This function is continuous and smooth. It can be used on data during GAMS calculation or in models.
It's use in .. equations in terms that involve variables requires the model type be NLP or one of the other
types that handles nonlinear functions.

Expressions can contain a function that calculates the sum of set indexed expressions or terms
(function.gms)

X=sum(I,a(i));
Eq7.. z=e= sum(I,va(i));

This function is linear. It can be used on data during GAMS calculation or in models on variables or
parameters. More on Sum can be found here.

7.3.5.2.1.2 Other Mathematical functions

In the following table the Endogenous Classification (second column) specifies in which models the
function can legally appear with endogenous (non-constant) arguments. In order of least to most
restrictive, the choices are any, NLP, DNLP or none.
The following conventions are used for the function arguments:
Lower case indicates that an endogenous variable is allowed. Upper case indicates that a constant
argument is required. The arguments in square brackets can be omitted optional and otherwise default
values will be used. Those default values are specified in the function description.

Function Endog
enous

Classifi
cation

Description

arccos(x)
NLP returns the inverse cosine of the argument x where x is a real

number between -1 and 1 and the output is in radians, see
MathWorld

arcsin(x)
NLP returns the inverse sine of the argument x where x is a real

number between -1 and 1 and the output is in radians, see
MathWorld

arctan(x)
NLP returns the inverse tangent of the argument x where x is a real

number and the output is in radians, see MathWorld

arctan2(y,x)
NLP four-quadrant arctan function yielding arctangent(y/x) which is the

http://mathworld.wolfram.com/InverseCosine.html
http://mathworld.wolfram.com/InverseSine.html
http://mathworld.wolfram.com/InverseTangent.html

McCarl GAMS User Guide257

© 2022 Prof. Bruce McCarl

angle the vector (x,y) makes with (1,0) in radians

Beta(x,y)
DNLP beta function as discussed in MathWorld

betaReg(x,y,z)
NLP regularized beta function, see MathWorld

binomial(n,k)
NLP

ceil(x)
DNLP returns the smallest integer number greater than or equal to x

centropy(x,y[,Z])
NLP cross entropy: x*ln((x+Z) / (y+Z)), default setting: Z = 1e-20

cos(x)
NLP returns the cosine of the argument x where x must be in radians,

see MathWorld

cosh(x)
NLP returns the hyperbolic cosine of x where x must be in radians,

see MathWorld

cvPower(X,y)
NLP

div(dividend,divisor)
NLP returns dividend/divisor, undefined for divisor = 0

div0(dividend,divisor)
NLP returns dividend/divisor, returns 1e299 for divisor = 0

eDist(x1[,x2,x3,...])
NLP Euclidean or L-2 Norm, see MathWorld, default setting: x2,x3,... =

0

entropy(x)
NLP

entropy: -x*ln(x)

errorf(x)
NLP calculates the integral of the standard normal distribution from

negative infinity to x, see MathWorld

fact(X)
any returns the factorial of X where X is an integer

floor(x)
DNLP returns the greatest integer number less than or equal to x

frac(x)
DNLP returns the fractional part of x

gamma(x)
DNLP gamma function as discussed in MathWorld

gammaReg(x,a)
NLP regularized gamma function, see MathWorld

logBeta(x,y)
NLP log beta function: log(B(x, y))

http://mathworld.wolfram.com/BetaFunction.html
http://mathworld.wolfram.com/RegularizedBetaFunction.html
http://mathworld.wolfram.com/Cosine.html
http://mathworld.wolfram.com/HyperbolicCosine.html
http://mathworld.wolfram.com/L2-Norm.html
http://mathworld.wolfram.com/StandardNormalDistribution.html
http://mathworld.wolfram.com/GammaFunction.html
http://mathworld.wolfram.com/RegularizedGammaFunction.html

More Language Basics 258

© 2022 Prof. Bruce McCarl

logGamma(x)
NLP log gamma function as discussed in Mathworld

mapVal(x)
none Function that returns an integer value associated with a numerical

result that can contain special values. Possible values are:

· 0 for all regular numbers

· 4 for UNDF which means undefined

· 5 for NA which means not available

· 6 for INF which means plus infinity

· 7 for -INF which means minus infinity

· 8 for EPS which means very close to zero but different from zero

mod(x,y)
DNLP returns the remainder of x divided by y

ncpCM(x,y,Z)
NLP function that computes a Chen-Mangasarian smoothing equaling:

x - Z*ln(1+exp((x-y)/Z)

ncpF(x,y[,Z])
NLP function that computes a Fisher smoothing equaling: sqrt(x 2̂ +

y 2̂ + 2*Z) - x - y

ncpVUpow(r,s[,MU])
NLP NCP Veelken-Ulbrich smoothed min:

ï
ï

î

ï
ï

í

ì

++-×-+

³
-+

=

otherwise

tt
sr

tif
tsr

ncpVUpow

,
2

)3)(6)((
8

||,
2

||

24

mm

m

m

where t=r-s, default setting: MU = 0

ncpVUsin(r,s[,MU])
NLP

NCP Veelken-Ulbrich smoothed min:

ï
ï

î

ï
ï

í

ì

++×-=

³
-+

=

otherwise

sr

tif
tsr

ncpVUSin

,
2

))
2

3

2
sin(

2
(

||,
2

||

m
p

m

p

p

m

m

where t=r-s, default setting: MU = 0

normal(MEAN,STDDEV)
none generates a random number with normal distribution with mean

MEAN and standard deviation STDDEV, see MathWorld

http://mathworld.wolfram.com/LogGammaFunction.html
http://mathworld.wolfram.com/NormalDistribution.html

McCarl GAMS User Guide259

© 2022 Prof. Bruce McCarl

pi
any value of π = 3,141593...

poly(x,A0,A1,A2
[,A3,A4,...])

NLP computes a polynomial over scalar x, result = A0+A1*x+A2*x 2̂...,
this has a maximum of 6 arguments, default setting: A3,A4,.. = 0

power(x,Y)
NLP returns x^Y where Y must be an integer

randBinomial(N,P)
none generates a random number with binomial distribution where n is

the number of trials and p the probability of success for each trial,
see MathWorld

randLinear
(LOW,SLOPE,HIGH)

none generates a random number between LOW and HIGH with linear
distribution, SLOPE must be greater than 2/(HIGH-LOW),

randTriangle
(LOW,MID,HIGH)

none generates a random number between LOW and HIGH with
triangular distribution, MID is the most probable number, see
MathWorld

rPower(x,y)
NLP

apply. This function is equal to the arithmetic operation 'x**y'.

sigmoid(x)
NLP sigmoid function as discussed in MathWorld

sign(x)
DNLP sign of x, returns 1 if x > 0, -1 if x < 0 and 0 if x = 0

signPower(x,Y)
NLP

sin(x)
NLP returns the sine of the argument x where x must be in radians,

see MathWorld

sinh(x)
NLP returns the hyperbolic sine of x where x must be in radians, see

MathWorld

slexp(x[,SP])
NLP smooth (linear) exponential function, SP means smoothing

parameter,

default setting: SP = 150

sllog10(x[,SP])
NLP smooth (linear) logarithm base 10, SP means smoothing

parameter,

default setting: SP = 10 -̂150

slrec(x[,SP])
NLP smooth (linear) reciprocal, SP means smoothing parameter,

default setting: SP = 10 -̂10

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/SigmoidFunction.html
http://mathworld.wolfram.com/Sine.html
http://mathworld.wolfram.com/HyperbolicSine.html

More Language Basics 260

© 2022 Prof. Bruce McCarl

sqexp(x[,SP])
NLP smooth (quadratic) exponential funtion, SP means smoothing

parameter,

default setting: SP = 150

sqlog10(x[,SP])
NLP smooth (quadratic) logarithm base 10, SP means smoothing

parameter,

default setting: SP = 10 -̂150

sqrec(x[,SP])
NLP smooth (quadratic) reciprocal, SP means smoothing parameter,

default setting: SP = 10 -̂10

tan(x)
NLP returns the tangent of the argument x where x must be in radians,

see MathWorld

tanh(x)
NLP returns the hyperbolic tangent of x where x must be in radians,

see MathWorld

trunc(x)
DNLP truncation, removes decimals from x

uniform(LOW,HIGH)
none generates a random number between LOW and HIGH with uniform

distribution, see MathWorld

uniformInt(LOW,HIGH)
none generates an integer random number between LOW and HIGH

with uniform distribution, see MathWorld

vcPower(x,Y)
NLP

7.3.5.2.1.3 Logical Functions

In the following table the Endogenous Classification (second column) specifies in which models the
function can legally appear with endogenous (non-constant) arguments. In order of least to most
restrictive, the choices are any, NLP, DNLP or none.

All arguments are in lower case which indicates that an endogenous variable is allowed.

Function Endogeno
us
Classificat
ion

Description

bool_and(x,y) DNLP boolean and: returns 0 if x = 0 or y = 0, else returns 1,
another possible command is 'x and y'

bool_eqv(x,y) DNLP boolean equivalence: returns 0 if exactly one argument is 0,
else returns 1,

http://mathworld.wolfram.com/Tangent.html
http://mathworld.wolfram.com/HyperbolicTangent.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html

McCarl GAMS User Guide261

© 2022 Prof. Bruce McCarl

another possible command is 'x eqv y'

bool_imp(x,y) DNLP
another possible command is 'x imp y'

bool_not(x) DNLP boolean not: returns 1 if x = 0, else returns 0, another possible
command is 'not x'

bool_or(x,y) DNLP boolean or: returns 0 if x = y = 0, else returns 1,
another possible command is 'x or y'

bool_xor(x,y) DNLP boolean xor: returns 1 if exactly one argument is 0, else returns
0,
another possible command is 'x xor y'

ifThen(cond,iftrue,else) DNLP first argument contains a condition (e.g. x > y). If the condition
is true, the function returns 'iftrue' else it returns 'else'.

rel_eq(x,y) DNLP relation equal: returns 1 if x = y, else returns 0,
another possible command is 'x eq y'

rel_ge(x,y) DNLP
another possible command is 'x ge y'

rel_gt(x,y) DNLP relation greater than: returns 1 if x > y, else returns 0,
another possible command is 'x gt y'

rel_le(x,y) DNLP
another possible command is 'x le y'

rel_lt(x,y) DNLP relation less than: returns 1 if x < y, else returns 0,
another possible command is 'x lt y'

rel_ne(x,y) DNLP
another possible command is 'x ne y'

7.3.5.2.1.4 Time and Calender functions

GAMS contains a number of functions that may be used to do things involved with times and dates. The
fundamental measurement of time in GAMS is the sequential day number since January 1, 1900, where
the integer part of this number contains a unique number for each day while the fractional part contains
information about hour, minute, second etc. The day numbers are based on the Gregorian calendar.

In the following table the Endogenous Classification (second column) specifies in which models the
function can legally appear. In order of least to most restrictive, the choices are any, NLP, DNLP or
none. Note that constant arguments are required.

Function Endogeno
us

Classificat
ion

Description

gday(SDAY)
any returns Gregorian day from a serial day number date.time,

where Jan 1, 1900 is day 1

More Language Basics 262

© 2022 Prof. Bruce McCarl

gdow(SDAY)
any returns Gregorian day of week from a serial day number

date.time, where Jan 1, 1900 is day 1

ghour(SDAY)
any returns Gregorian hour of day from a serial day number

date.time, where Jan 1, 1900 is day 1

gleap(SDAY)
any returns 1 if the year that corresponds to a serial day number

date.time, where Jan 1, 1900 is day 1, is a leap year, else
returns 0

gmillisec(SDAY)
any returns Gregorian milli second from a serial day number

date.time, where Jan 1, 1900 is day 1

gminute(SDAY)
any returns Gregorian minute of hour from a serial day number

date.time, where Jan 1, 1900 is day 1

gmonth(SDAY)
any returns Gregorian month from a serial day number date.time,

where Jan 1, 1900 is day 1

gsecond(SDAY)
any returns Gregorian second of minute from a serial day number

date.time, where Jan 1, 1900 is day 1

gyear(SDAY)
any returns Gregorian year from a serial day number date.time,

where Jan 1, 1900 is day 1

jdate
(YEAR,MONTH,DAY)

any returns a serial day number, starting with Jan 1, 1900 as day 1

jnow
none returns the current time as a serial day number, starting with

Jan 1, 1900 as day 1

jstart
none returns the time of the start of the GAMS job as a serial day

number, starting with Jan 1, 1900 as day 1

jtime(HOUR,MIN,SEC)
any returns fraction of a day that corresponds to hour, minute and

second

Example:

(mycalendar.gms)

todaydate = jstart;

now = jnow;

year = gyear(todaydate);

month = gmonth (todaydate);

day = gday (todaydate);

McCarl GAMS User Guide263

© 2022 Prof. Bruce McCarl

hour = ghour(todaydate);

minute = gminute(todaydate);

second = gsecond(todaydate);

dow = gdow (todaydate);

leap = gleap(todaydate);

display todaydate,now, year, month, day, hour, minute, second, dow, leap;

date = jdate(year,month,day);

time = jtime(hour,minute,second);

display date,time;

scalar plus200days;

todaydate = jstart+200;

year = gyear(todaydate);

month = gmonth (todaydate);

day = gday (todaydate);

display todaydate,year, month, day;

7.3.5.2.1.5 GAMS utility and performance functions

A number of functions can be used to withdraw information on GAMS internal matters. These are
addressed as

scalar=functionname;

In the following table the Endogenous Classification (second column) specifies in which models the
function can legally appear. In order of least to most restrictive, the choices are any, NLP, DNLP or
none. Note that constant arguments are required.

Function Endogeno
us

Classificat
ion

Description

errorLevel
none error code of the most recently used command

execError
none number of execution errors, may either be read or assigned to

gamsRelease
none returns the version number of the current GAMS release, for

example 23.8

gamsVersion
none returns the current gams version, for example 238

handleCollect(HANDLE)
none tests if the solve of the problem identified by the argument

HANDLE is done and if so loads the solution into GAMS. In
particular it returns:

More Language Basics 264

© 2022 Prof. Bruce McCarl

· 0 if the model associated with HANDLE had not yet finished
solution or could not be loaded

· 1 if the solution has been loaded

handleDelete(HANDLE)
none deletes the grid computing problem identified by the HANDLE

argument and returns a numerical indicator of the status of the
deletion as follows:

· 0 if the the model instance has been removed

· 1 if the argument HANDLE is not a legal handle
· 2 if the model instance is not known to the system
· 3 if the deletion of the model instance encountered errors

A nonzero return indicates a failure in the deletion and causes
an execution error.

handleStatus(HANDLE)
none tests if the solve of the problem identified by the calling

argument HANDLE is done and if so loads the solution into a
GDX file. A numerical indication of the result is returned as
follows:

· 0 if a model associated with HANDLE is not known to the
system

· 1 if the model associaed with HANDLE exists but the
solution process is incomplete

· 2 if the solution process has terminated and the solution is
ready for retrieval

· 3 if the solution process signaled completion but the solution
cannot be retrieved

An execution error is triggered if GAMS cannot retrieve the
status of the handle.

handleSubmit(HANDLE)
none resubmits a previously created instance of the model identified

by the HANDLE for solution. A numerical indication of the result
is returned as follows:

· 0 if the model instance has been resubmitted for solution
· 1 if the argument HANDLE is not a legal handle
· 2 if a model associated with the HANDLE is not known to the

system
· 3 if the completion signal could not be removed
· 4 if the resubmit procedure could not be found
· 5 if the resubmit process could not be started

In case of a nonzero return an execution error is triggered.

heapFree
none allocated memory which is no more in use but not freed yet

heapLimit
none interrogates the current heap limit (maximum allowable memory

McCarl GAMS User Guide265

© 2022 Prof. Bruce McCarl

use) in Mb and allows it to be reset

heapSize
none returns the current heap size in Mb

jobHandle
none returns the Process ID (PID) of the last job started

jobKill(PID)
none sends a kill signal to the running job with Process ID PID;

returns 1 if this was succesful, otherwise 0

jobStatus(PID)
none checks for the status of the job with the Process ID PID,

possible return values are:

· 0: error (input is not a valid PID or access is denied)

· 1: process is still running
· 2: process is finished with return code which could be

accessed by errorlevel
· 3: process not running anymore or was never running, no

return code available

jobTerminate(PID)
none sends an interrupt signal to the running job with Process ID

PID; returns 1 if this was succesful, otherwise 0

licenseLevel
any returns an indicator of the type of license:

· 0: demo license, limited to small models

· 1: full unlimited developer license
· 2: run time license, no new variables or equations can be

introduced besides those inherited in a work file
· 3: application license, only works with a specific work file

which is locked to the license file

licenseStatus
any returns a non zero when a license error is incurred

maxExecError
none maximum number of execution errors, may either be read or

assigned to

ReadyHandle
(handleParameter [,
maxWait])

none
can be used to wait until a model solution is finished and ready
to be collected. This can be used with Async Threads and grid
computing.
Possible return values are
· 0: (one of) the requested job(s) finished solving and ready to

load
· 1: there is no active job that GAMS needs to wait for
· 2: no valid handle was provided
· 3: the handle provided was invalid
· 4: user specified time-out when using a SolveLink = %

solveLink.Async Threads% handle
· 5: user specified time-out when using a SolveLink = %

solveLink.Async Grid% handle

More Language Basics 266

© 2022 Prof. Bruce McCarl

· 8: unknown error (should not happen)

sleep(SEC) none execution pauses for SEC seconds

timeClose none returns the model closing time

timeComp none returns the compilation time in seconds

timeElapsed none returns the elapsed time in seconds since the start of a GAMS
run

timeExec none returns the execution time in seconds

timeStart none returns the model start time since last restart

function.gms illustrates the use of assorted functions

7.3.5.2.1.6 String manipulation functions: Ord, Ordascii, Ordebcdic

When called with a string the ord command returns the ASCII code number of a character in a position
in a string and is referenced as

Ord(string,place);

or

namedscalar=Ord(string,place);

where the strings are just the same as in Card above. The place entry is optional defaulting to one if
omitted but otherwise identifying the character position within the text string (1 for the first, 2 for the
second etc.) to be examined. The alternative command ordascii may be used in place of ord to return
ASCII codes while ordebcdic may be used to return EBCDIC codes.

Example:

(string.gms)

$oneolcom

set id namedset /i1 i have explanatory text,ifour,a/;

scalar ii;

ii=Card(id.ts); !! length of symbol test string

display 'length of text string for symbol', ii;

loop(id,

 ii=Card(id.tl) !! length of label id (id must be driving)

 display 'length of set element string', ii;

McCarl GAMS User Guide267

© 2022 Prof. Bruce McCarl

 ii=Card(id.te) !! length of label text (id must be driving)

 display 'length of set explanatory text string', ii;

);

 ii= Card('xxx') !! length of 'xxx'

 display 'length of string', ii;

parameter rdd abcdefghijklmnopqrstuvwxyz;

scalar j;

for (j=1 to 27 by 1 ,

 io=Ord(rdd.ts, j); !! char number

 ia=Ordascii(rdd.ts, j); !! char number

 ie=Ordebcdic(rdd.ts, j); !! char number

display 'ords of text string for symbol',j, io,ia,ie;);

7.3.5.2.1.7 String manipulation functions: Card

GAMS possesses a few string manipulation functions. These are built on top of Ord and Card. When
called with a string the Card command returns the number if characters in the string and is addressed as
follows

Card(string);

or

namedscalar=card(string);

where string may be

itemname.ts to get the length of the explanatory text associated with the named
item itemname

setname.tl to get the length of the element name associated with the referenced
element of the set setname

setname.te to get the length of the explanatory text associated with the
referenced element of the set setname

"atextstring" to get the length of the text in a quoted text string

7.3.5.2.1.8 Computer Characteristic Functions

There is currently only one function in this group.

The function numCores returns the number of logical cores on the computer being used.

Ths function can be used at compile time using the syntax

$eval myCores numCores

which places the number of cores into the control variable mycores.

More Language Basics 268

© 2022 Prof. Bruce McCarl

An example of its usage is

$eval myCores numCores
$eval halfCores ceil(%myCores%/2)
$log Your system has %myCores% logical processors. GAMS will use %halfCores%.
option threads=%halfCores%;

At execution time GAMS one can set a scalar to the number of cores using the sytax

 s=numcores;

7.3.5.2.2 Extrinsic Functions

Users can program their own functions and bring them into GAMS for use in a model. In particular
functions can be imported from a user created external library into GAMS then used in a GAMS model.
Apart from the commands to cause the import to happen and a naming step, the imported functions can
be used in the same way as an internal GAMS functions including in model equations.

Function libraries are imported and made available using the $ command FuncLibIn as follows:

$FuncLibIn <InternalLibName> <ExternalLibName>

where the

InternalLibName is the name of the function containg library inside the GAMS

code.

ExternalLibName is the name that the library has on the disk drive possibly

including its file path.

By default GAMS will look for the library in the GAMS system directory.

To access a library that is not located in the GAMS system directory then the ExternalLibName name
must include the absolute path of the library's location.

When processing the $FuncLibIn directive, GAMS will validate the library, make the included functions
available for use, and add a table of the included functions to the listing file.

Before using individual functions you must declare them using the Function syntax :

Function <InternalFuncName> /<InternalLibName>.<FuncName>/;

where
InternalFuncName is the name of the function inside the

GAMS program

InternalLibName is the name of the loaded library of

functions and needs to match the name specified in

a $FuncLibIn command

FuncName is the name of the function within the

McCarl GAMS User Guide269

© 2022 Prof. Bruce McCarl

loaded library

Example: (extrinsic.gms)

Here we replace the existing Cosine, sine and pi functions with alternatives.

$eolcom //

$set SLASH \

$if %system.filesys% == UNIX $set SLASH /

$FuncLibIn trilib testlib_ml%SLASH%tridclib // Make the library available.

 // trilib is the internal name being created now.

 // tridclib is the external name.

 // With no path, GAMS will look for tridclib in

 // the GAMS system directory.

* Declare each of the functions that will be used.

* myCos, mySin and MyPi are names being declared now for use in this model.

* Cosine, Sine and Pi are the function names from the library.

* Note the use of the internal library name.

Function myCos /trilib.Cosine/

 mySin /trilib.Sine/

 myPi /trilib.Pi/;

scalar i, grad, rad, intrinsic;

for (i=1 to 360,

 intrinsic = cos(i/180*pi);

 grad = mycos(i,1);

 abort$round(abs(intrinsic-grad),4) 'cos', i, intrinsic, grad;

 rad = mycos(i/180*pi);

 abort$round(abs(intrinsic-rad) ,4) 'cos', i, intrinsic, rad;);

variable x;

equation e;

e.. sqr(mysin(x)) + sqr(mycos(x)) =e= 1;

model m /e/;

x.lo = 0; x.l=3*mypi

solve m min x using nlp;

Comments:

GAMS allows extrinsic function libraries that do not have features to return first derivatives and/or

More Language Basics 270

© 2022 Prof. Bruce McCarl

Hessian values. GAMS approximates these using finite differences. There are GAMS options that allow
users to influence the numerical derivative calculations as discussed here. This uses option FDDelta to
control step size and FDOpt to control derivative and hessian calculation method and scaling. More is in
the McCarl Guide and the release notes.

An example without derivatives can be found in library file trilib which implements a Sine function without
derivatives leaving their calculation to GAMS.

The listing file will contain a description of all library's loaded.

FUNCLIBIN trilib tridclib

Function Library trilib

Mod. Function Description

Type

NLP Cosine(x[,MODE]) Cosine: mode=0 (default) -> rad, mode=1 -> grad

NLP Sine(x[,MODE]) Sine : mode=0 (default) -> rad, mode=1 -> grad

any Pi Pi

There are a few libraries which come ready to use with the GAMS system and also serve as coding
examples.

· FITPACK-a collection of FORTRAN programs for curve and surface fitting with splines
and tensor product splines developed by P. Dierckx as discussed here at http://
nalag.cs.kuleuven.be/research/topics/fitpack.shtml .This does one and two dimensional
spline interpolation. An example appears in the GAMS Test Library model fitlib01 the
function data needs to be stored in a GDX file fit.gdx which contained a three dimensional
parameter fitdata to which the fit will be applied. The first argument of that parameter
contains the function index, the second argument is the index of the supporting point and
the last one needs contain w (weight), x (x-value), y (y-value) or z (z-value).

· Piecewise Polynomial Library - pwpcclib: This library can be used to evaluate piecewise
polynomial functions. The functions which should be evaluated need to be defined and
stored in a GDX file like it is done in the GAMS Test Library model pwplib01:

· Stochastic Library - stodclib: which provides random deviates, probability density
functions, cumulative density functions and inverse cumulative density functions for certain
distributions. The included distributions are Beta, Cauchy, ChiSquare, F, Gumbel, Inverse
Gaussian, Laplace, Logistic , Log Normal, Normal, Pareto, Rayleigh, Student's t,
Triangular, Uniform and Weibull plus the discrete distributions Binomial, Geometric,
Hypergeometric, Logarithmic, Negative Binomial, Poisson and Uniform Integer. For each
there is the capability to generates a random number, a probability density function, a
cumulative distribution function and an inverse cumulative distribution function. These can
be used in model equations passed to solvers as discussed here or in generating random
numbers as discussed here.

· LINDO Sampling Library lsadclib which provides samples of random numbers for certain
distributions. It will generate correlated random variables for continuous distributions Beta,
Cauchy, Chi-Squared, Exponential, F, Gamma, Gumbel, Laplace, Logistic, Log Normal,
Normal, Pareto, Student's t, Triangular , Uniform and Weibull. Also for discrete

http://nalag.cs.kuleuven.be/research/topics/fitpack.shtml
http://nalag.cs.kuleuven.be/research/topics/fitpack.shtml

McCarl GAMS User Guide271

© 2022 Prof. Bruce McCarl

distributions Binomial, Hypergeometric , Logarithmic, Negative Binomial and
Poisson.These can be used in model equations passed to solvers as discussed here or in
generating random numbers as discussed here. A LINDO license is needed to employ
these.

· A library that yields PDFs and CDFs for the univariate, bivariate and trivariate normal
distributions - cppcclib or cpp is included. This library can automatically compute exact
first and second derivatives for the function values being computed. The testlib models
cpplib01 and cpplib02 use this.

· A generic approach to interfacing ones own library using trigonometry examples . These
are embedded in the examples tricclib, tridclib, trifclib: which have associated source
code written in C, Delphi and Fortran.

· One may alternatively use the GAMS =x= features.

More details on the preprogrammed functions appear in the GAMS User's Guide (see
appendix J) and here. Further instructions for connecting a specialized library to GAMS can be
gained by contacting support@gams.com

In addition, the following examples from the GAMS Test Library can be referred to:

· stolib01: Uses the stochastic library which comes with the GAMS system

· trilib01: Uses trigonometric function from a library written in C, comes with C source
code

· trilib02: Uses trigonometric function from a library written in Delphi, comes with Delphi
source code

· trilib03: Uses trigonometric function from a library written in Fortran, comes with
Fortran source code

· pwplib01: Uses a library for piecewise polynomial functions which comes with the
GAMS system

· fitlib01: Uses FITPACK from P. Dierckx which was packaged in a way that it works
with this facility and comes with the GAMS system

7.3.5.2.2.1 Probability Distribution Function use in models

GAMS has the ability to include probability density functions and cumulative density functions plus

inverse probabilities in models (only the continuous ones) and calculations via use of some provided

extrinsic libraries. The continuous distributions across all of these are Beta, Cauchy, ChiSquare,

Exponential, F, Gamma, Gumbel, Inverse Gaussian, Laplace, Logistic , Log Normal, Normal,

https://www.gams.com/latest/docs/
mailto:support@gams.com
http://www.gams.com/testlib/libhtml/stolib01.htm
http://www.gams.com/testlib/libhtml/trilib01.htm
http://www.gams.com/testlib/libhtml/trilib02.htm
http://www.gams.com/testlib/libhtml/trilib03.htm
http://www.gams.com/testlib/libhtml/pwplib01.htm
http://www.gams.com/testlib/libhtml/fitlib01.htm

More Language Basics 272

© 2022 Prof. Bruce McCarl

Pareto, Rayleigh, Student's T, Triangular, Uniform and Weibull plus the discrete distributions

Binomial, Geometric, Hypergeometric, Logarithmic, Negative Binomial, Poisson and Uniform

Integer.

This involves use of the extrinsic library stodclib. When using these one prefixes the distribution

name with

PDF if the probability of a point from the probability density function is needed

CDF if the cumulative probability up to a point from the cumulative density function is

needed

ICDF if the value associated with a particular cumulative probability is needed

In addition when prefixing with PDF or CDF one uses a first argument which is the value of the point

to be associated with the probability. When using ICDF one uses the probability as the first

argument.

A list of the continuous distributions included and their parameters including a link to a Wolfram

Mathworld description of the distribution follows

Beta(ALPHA,BETA) Beta distribution with parameters ALPHA and BETA

Cauchy(MEDIAN,HALFWIDTH) Cauchy distribution with parameters MEDIAN and HALFWIDTH

ChiSquare(DF) Chi-squared distribution with the parameter degrees of freedom DF

Exponential(LAMBDA) Exponential distribution with rate of change parameter LAMBDA

F(DF1,DF2) F-distribution with parameters for degrees of freedom DF1 and

DF2

Gamma(ALPHA, THETA) Gamma distribution with parameters ALPHA and THETA

Gumbel(ALPHA,BETA) Gumbel distribution with parameters ALPHA and BETA

InvGaussian(MU,LAMBDA) Inverse Gaussian distribution with parameters MU and

LAMBDA

Laplace(MU,BETA) Laplace distribution with parameters MU and BETA

Logistic(MU,BETA) Logistic distribution with parameters MU and BETA

LogNormal(MU,SIGMA) Log Normal distribution with parameters MU and SIGMA

http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogNormalDistribution.html

McCarl GAMS User Guide273

© 2022 Prof. Bruce McCarl

Normal(MEAN,STD DEV) Normal distribution with parameters MEAN and STD DEV

Pareto(K,ALPHA) Pareto distribution with parameters K which gives the min value

of the input item and ALPHA the shape parameter

Rayleigh(SIGMA) Rayleigh distribution with parameter SIGMA

StudentT(DF) Student's t-distribution with parameter degrees of freedom DF

Triangular(LOW,MODE,HIGH) Triangular distribution with parameters telling it falls between

LOW and HIGH with MODE being the most probable number

Uniform(LOW,HIGH) Uniform distribution with parameters telling it falls between

LOW and HIGH

Weibull(ALPHA,BETA) Weibull distribution with parameters ALPHA and BETA

These are used first by activating the functions and giving them a local name. For a use involving a
mixture of pdfs, cdfs and icdf for the normal, beta, Cauchy and lognormal distributions this is as
follows (extrinsicstoc.gms).

$funclibin stolib stodclib
function cdfnorm /stolib.cdfnormal /
 icdfnorm /stolib.icdfnormal /
 pdfnorm /stolib.pdfnormal /
 cdfbeta /stolib.cdfbeta /
 icdfbeta /stolib.icdfbeta /
 cdfcauchy /stolib.cdfcauchy /
 icdfcauchy /stolib.icdfcauchy /
 cdflognorm /stolib.cdflognormal /;

Where for example the function CDFNORMAL that gives the probability up to a specific point in a
normal distribution with a given mean and standard deviation is given the local name cdfnorm. In
turn statements like

normalx(i,"cdf")=cdfnorm(normalx(i,"xval"),5,2);
where the function is evaluated giving the cumulative probability of the normal distribution from minus

infinity to the specified point normalx(i,"xval") in a normal distribution with a mean of 5 and a

standard deviation of 2.

Examples involving alternative distributions are given below where the first case shows use in a

model equation and the rest in calculations (extrinsicstoc.gms).

http://mathworld.wolfram.com/NormalDistribution.html
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/TriangularDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html

More Language Basics 274

© 2022 Prof. Bruce McCarl

totcost.. totalcost=e=costtostock*inventory
 +shortfallcost
 *sum(k,(inventory+del(k)-inventory)
 *(pdfnorm((inventory+del
(k)),meandemand,stddevdemand)));

lognormalx(i,"cdf")
 =cdflognorm(lognormalx
(i,"xval"),lognorm_m,lognorm_s);
normalx(i,"cdf")=cdfnorm(normalx(i,"xval"),10,2);
xvals(i,"val")=icdfnorm(xvals
(i,"prob"),meandemand,stddevdemand);
shouldbepoint5=cdfbeta(xmedian,alpha,beta);
xmedian=icdfcauchy(0.5,median,halfwidth);
x=cdfcauchy(xmedian,median,halfwidth);

Note in this case a statement like icdfcauchy(0.5,median,halfwidth) finds the x value from a

Cauchy distribution with parameters median and halfwidth that has a cumulative probability of

50% of the observations below it. Also pdfnorm(inventory,meandemand,stddevdemand) returns

the probability of the point inventory from the normal distribution with a mean of meandemand and a

standard deviation of stddevdemand.

When these used in model equations the model needs to be of the type DNLP. Also note the

GLOBAL solvers cannot deal with models that contain such functions.

One can also use discrete distributions but only in calculations. A list of the discrete distributions

included and their parameters including a link to a Wolfram Mathworld description of the distribution

follows

The discrete distributions included are (Note these cannot be used in model .. equations)

Binomial(N,P) Binomial distribution with parameters for number of trials N and

success probability P in each trial

Geometric(P) Geometric distribution with parameter giving success probability

P in each trial

HyperGeo(TOTAL,GOOD,TRIALS) Hypergeometric distribution with parameters giving total number

of elements TOTAL, number of good elements GOOD and

number of trials TRIALS

Logarithmic(THETA) Logarithmic distribution with parameter THETA, also called log-

series distribution

http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/GeometricDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Log-SeriesDistribution.html

McCarl GAMS User Guide275

© 2022 Prof. Bruce McCarl

NegBinomial(FAILURES,P) Negative Binomial distribution with parameters for the number of

failures until the experiment is stopped FAILURES and the

success probability P in each trial. The number generated by

PDF and CDF or input to ICDF describes the number of

successes before the de?ned number of failures

Poisson(LAMBDA) Poisson distribution with mean LAMBDA

UniformInt(LOW,HIGH) Integer Uniform distribution with parameters telling that the

distribution falls between LOW and HIGH values.

Again these are referenced with the PDF, CDF and ICDF prefixes. In addition when prefixing with

PDF or CDF one uses a first argument which is the value of the point to be associated with the

probability. When using ICDF one uses the probability as the first argument.

Use of these is not allowed in model equations and when attempted causes an execution error.

7.3.5.2.2.2 Random Numbers from Functions

Capabilities have been introduced to generate random numbers from a variety of distributions again

via extrinsic functions. To do this one can use variants of the functions just discussed (those from the

Stochastic Library stocldib) or ones from the Lindo Sampling Library (lsadclib) although use of

the Lindo ones requires a license for GAMS/Lindo. (Without a license only a demo version is

available which is restricted to the Normal and the Uniform distribution and no more than 10 sample

points.)

Using the Stochastic Library stocldib

In terms of the Stochastic Library the usable continuous and discrete distributions are those listed in

the tables above. When using that library one again needs to activate the library and give the

function a local name. Here to generate random numbers the distribution name is prefixed with a d.

Thus, for example, to generate numbers from the Cauchy, Binomial, Normal and LogNormal one

would use code like the following (randnumbers.gms)

$funclibin stolib stodclib
function randnorm /stolib.dnormal /
 randbin /stolib.dbinomial /
 randcauchy /stolib.dcauchy /
 randlognorm /stolib.dlognormal /;
set i /i1*i20/
set j /norm,binomial,cauchy,lognorm/
parameter randx(i,j) numbers from distributions;

http://mathworld.wolfram.com/NegativeBinomialDistribution.html
http://mathworld.wolfram.com/PoissonDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html

More Language Basics 276

© 2022 Prof. Bruce McCarl

randx(i,"norm")=randnorm(5,2);
randx(i,"binomial")=randbin(10,0.5);
randx(i,"cauchy")=randcauchy(5,1);
randx(i,"lognorm")=randlognorm(1.2,0.3);
display randx;

That code first activates the stoclib library then gives the desired functions local names.

Subsequently the functions are used in this case generating 20 random numbers for each of the 4

distributions with the desired parameters.

One can also reset the random number seed using a function SetSeed(SEED) as follows

function setseedh /stolib.SetSeed /;
scalar x;
x=setseedh(99883);

where a local function name is again defined and then the seed is set by setting a scalar equal to the

function with a user defined value that when this is set to the same value between runs will cause the

random numbers to always follow a particular sequence.

Using the Lindo Sampling Library lsadclib

In terms of the Lindo Sampling Library, one can generate random numbers for many of the same

distributions with a few additional ones as listed below. In addition one has the capability to

introduce correlations and exercise control over the random number process. Note these cannot be

used in model equations.

The continuous distributions included and their parameters including a link to a Wolfram Mathworld

description of the distribution are listed in the table below. Here note that the parameters here also

include

· the sample size (SAMSIZE) telling how many numbers to generate

· an optional parameter (VARRED)that allows one to alter the sampling procedure variance
reduction method (0=none, 1=Latin Hyper Square, 2=Antithetic) with Latin Hyper Square
Sampling being the default.

Beta(ALPHA,BETA,SAMSIZE[,VARRED]) Beta distribution with parameters ALPHA

and BETA

Cauchy(MEDIAN,HALFWIDTH,SAMSIZE[,VARRED]) Cauchy distribution with parameters

MEDIAN and HALFWIDTH

http://en.wikipedia.org/wiki/Variance_reduction
http://en.wikipedia.org/wiki/Variance_reduction
http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/CauchyDistribution.html

McCarl GAMS User Guide277

© 2022 Prof. Bruce McCarl

ChiSquare(DF,SAMSIZE[,VARRED]) Chi-squared distribution with the parameter

degrees of freedom DF

Exponential(LAMBDA,SAMSIZE[,VARRED]) Exponential distribution with rate of change

parameter LAMBDA

F(DF1,DF2,SAMSIZE[,VARRED]) F-distribution with parameters for

degrees of freedom DF1 and DF2

Gamma(ALPHA, THETA,SAMSIZE[,VARRED]) Gamma distribution with parameters

ALPHA and THETA

Gumbel(ALPHA,BETA,SAMSIZE[,VARRED]) Gumbel distribution with parameters

ALPHA and BETA

InvGaussian(MU,LAMBDA,SAMSIZE[,VARRED]) Inverse Gaussian distribution with

parameters MU and LAMBDA

Laplace(MU,BETA,SAMSIZE[,VARRED]) Laplace distribution with parameters

MU and BETA

Logistic(MU,BETA,SAMSIZE[,VARRED]) Logistic distribution with parameters

MU and BETA

LogNormal(MU,SIGMA,SAMSIZE[,VARRED]) Log Normal distribution with

parameters MU and SIGMA

Normal(MEAN,STD DEV,SAMSIZE[,VARRED]) Normal distribution with parameters

MEAN and STD DEV

Pareto(K,ALPHA,SAMSIZE[,VARRED]) Pareto distribution with parameters K

which gives the min value of the input

item and ALPHA the shape parameter

Rayleigh(SIGMA,SAMSIZE[,VARRED]) Rayleigh distribution with parameter

SIGMA

StudentT(DF,SAMSIZE[,VARRED]) Student's t-distribution with parameter

degrees of freedom DF

Triangular(LOW,MODE,HIGH,SAMSIZE[,VARRED]) Triangular distribution with parameters

http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/ExponentialDistribution.html
http://mathworld.wolfram.com/F-Distribution.html
http://mathworld.wolfram.com/GammaDistribution.html
http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/LogNormalDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://en.wikipedia.org/wiki/Pareto_distribution
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/Studentst-Distribution.html
http://mathworld.wolfram.com/TriangularDistribution.html

More Language Basics 278

© 2022 Prof. Bruce McCarl

telling it falls between LOW and HIGH

with MODE being the most probable

number

Uniform(LOW,HIGH,SAMSIZE[,VARRED]) Uniform distribution with parameters

telling it falls between LOW and HIGH

Weibull(ALPHA,BETA,SAMSIZE[,VARRED]) Weibull distribution with parameters

ALPHA and BETA

The discrete distributions included and their parameters including a link to a Wolfram Mathworld

description of the distribution are listed in the table below. Here note that the parameters also

include

· the sample size (SAMSIZE) telling how many numbers to generate

· an optional parameter (VARRED)that allows one to alter the sampling procedure variance
reduction method (0=none, 1=Latin Hyper Square, 2=Antithetic) with Latin Hyper Square
Sampling being the default.

Binomial(N,P,SAMSIZE[,VARRED]) Binomial distribution with parameters

for number of trials N and success

probability P in each trial

HyperGeo(TOTAL,GOOD,TRIALS,SAMSIZE[,VARRED]) Hypergeometric distribution with

parameters giving total number of

elements TOTAL, number of good

elements GOOD and number of

trials TRIALS

Logarithmic(THETA,SAMSIZE[,VARRED]) Logarithmic distribution with

parameter THETA, also called log-

series distribution

NegBinomial(SUCCESS,P,SAMSIZE[,VARRED]) Negative Binomial distribution with

parameters for the number of

successes (SUCCESS) to be

achieved and the probability of

http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html
http://en.wikipedia.org/wiki/Variance_reduction
http://en.wikipedia.org/wiki/Variance_reduction
http://mathworld.wolfram.com/BinomialDistribution.html
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://mathworld.wolfram.com/Log-SeriesDistribution.html
http://mathworld.wolfram.com/NegativeBinomialDistribution.html

McCarl GAMS User Guide279

© 2022 Prof. Bruce McCarl

success in each trial (P). The

generated random number describes

the number of failures until we

reached the specified number of

successes. Note that the Lindo

sampling library version is equivalent

to the use of the one from the

stochastic library when the

probability there is 1-P here.

Poisson(LAMBDA) Poisson distribution with mean

LAMBDA

Table J.6: LINDO sampling functions

When using the Lindo Sampling Library one again needs to activate the library and give the functions

to be used a local name where here the distribution name is prefixed with SampleLS. For example,

to generate 25 numbers from the Cauchy, Binomial, Normal and LogNormal using the default

variance reduction method, one would use code like the following (randnumbers.gms). In that code

we first activate the library and give the items local names then in the Lindo Sampling case must set

a scalar pointer to the function with the distribution arguments and sample size. This returns a

pointer to a location identifying where the random numbers are stored. In turn then we use a loop

statement to load in the random numbers using a local version of another function getSampleValues

referencing the scalar pointer that sequentially returns each of the values in the sample when called.

In turn these need to be stored into a GAMS parameter (randnumbers.gms).

$funclibin lsalib lsadclib
function normalSample /lsalib.SampleLSnormal /
 lognormalSample /lsalib.SampleLSlognormal /
 cauchySample /lsalib.SampleLScauchy /
 binomialSample /lsalib.SampleLSbinomial /
 getSampleVal /lsalib.getSampleValues /;

scalar d,h,k,k1,k2;
set is /value01*value12/;
parameter sv(is,j);
k = normalSample(5,2,12);
loop(is, sv(is,"normal") = getSampleVal(k););
h = lognormalSample(1.2,0.3,12);
loop(is, sv(is,"lognormal") = getSampleVal(h););
k1 = binomialSample(10,0.5,12);
loop(is, sv(is,"binomial") = getSampleVal(k1););
k2 = cauchySample(5,1,12);
loop(is, sv(is,"binomial") = getSampleVal(k2););

http://mathworld.wolfram.com/PoissonDistribution.html

More Language Basics 280

© 2022 Prof. Bruce McCarl

One can also cause items to be correlated using the functions setCorrelation and

induceCorrelation. The parameters for this are

setCorrelation(POINTER1,POINTER2,COR) Causes subsequent calls involving the samples

identifies by POINTER1 and POINTER2 to

have the correlation COR when next loaded

using the getSampleVal function.

induceCorrelation(TYPE) This controls the type of correlation that is being

specified where TYPE is 0 for Pearson, 1 for

Kendall or 2 for Spearman. It must be used

after setcorrelation.

Coding to make this happen follows. Again we activate the procedures and give them local names

then generate the random numbers for two same sized samples. Afterwards we reference set the

correlation with arguments of the pointers to the two series then the correlation coefficient and its

form. Finally the loop statement is used again to draw out the values.

function setCor /lsalib.setCorrelation /
 indCor /lsalib.induceCorrelation /;
k = normalSample(5,2,12);
h = lognormalSample(1.2,0.3,12);
d=setCor(h,k,-1);
d=indCor(1);
loop(is,sv2(is,"aftercorr","normal") = getSampleVal
(k););
loop(is,sv2(is,"aftercorr","lognormal") = getSampleVal
(h););

There are also function alternatives to set the random number seed and the type of random number
generation process

setSeed(SEED) the SEED arguments resets the random number generator according to a

user defined value

setRNG(RNG) The parameter RNG identifies the random number generator to use with

possible values of -1 (free), 0 (system), 1 (lindo1), 2 (lindo2), 3 (lin1), 4

(mult1), 5 (mult2) and 6 (mersenne).

McCarl GAMS User Guide281

© 2022 Prof. Bruce McCarl

Using the Stochastic Library CPP (cppcclib)

A library variously called CPP and cppcclib contains provisions to generate probability density
function values and cumulative probability density function values from univariate and multivariate
normal distributions. The distributions are assumed to have a mean of zero and a variance of one.

Function Description Solver requirement

cdfUVN(x) cdf value giving cumulative probability up to
the point x (ie x standard deviations from the
mean) from univariate normal with mean zero
and variance 1

 Nonlinear requiring
NLP

pdfBVN(x,y,r) Pdf value giving the bivariate normal
probability for the point x, y (ie x and y
standard deviations from the mean) where
there is correlation r between x and y. This is
from a bivariate normal with mean at zero for
x and y and variance of 1 for all

 Nonlinear requiring
NLP

cdfBVN(x,y,r) Cdf value giving the bivariate normal
cumulative probability up to the point x, y (ie
x and y standard deviations from the mean)
where there is correlation r between x and y.
 This is from a normal with mean at zero for x
and y and variance of 1 for all

 Nonlinear requiring
NLP

pdfTVN
(x,y,z,r21,r31,r32)

Pdf value giving the trivariate normal
probability for the point x, y, z (ie x , y and z
standard deviations from the mean) where
there is correlation r21 between x and y, r31
between x and z and r32 between y and z.
This is from a trivariate normal with mean at
zero for x, y, z and variance of 1 for all

 Nonlinear requiring
NLP

cdfTVN
(x,y,z,r21,r31,r32)

cdf value giving the trivariate normal
probability up to the point x, y, z (ie x , y and
z standard deviations from the mean) where
there is correlation r21 between x and y, r31
between x and z and r32 between y and z.
This is from a trivariate normal with mean at
zero for x, y, z and variance of 1 for all

 Nonlinear requiring
NLP

More on this is found in the GAMS user guide Appendix J on intrinsic functions under the topic

CPP Library

More Language Basics 282

© 2022 Prof. Bruce McCarl

7.3.5.2.2.3 Defining an Extrinsic Function

Some users may wish to define their own custom extrinsic library. In doing this several steps are

recommended.

· Read appendix J of the GAMS user guide to get some idea of basic functionality.

· Identify a function that you wish to be able to use from within GAMS and GAMS solves
(excepting the global ones that cannot use extrinsic functions). In doing this insure that you
cannot implement the function as a macro or batinclude file as those implementations would
be much simpler. One may alternatively use the GAMS =x= features.

· If you want to use the function in a model sent to a solver (ie within an equation) with
endogenous variables as arguments, make sure you know how to compute first and second
derivatives with respect to all the variables.

· Choose a programming language. Obvious candidates for a programming language are C, C
++, Delphi, or Java, as GAMS makes examples available in these languages. These are
available in association with the trigonometric library (trifclib) and the GAMS test library
contains examples and source codes. If you download using the IDE library manager note
that the manager will place the source zip code including a make file in your project file area.

· Using the demonstration models from the test library, make sure you can exercise the entire
process of building and testing the extrinsic function shared library as now done for trifclib in
the language of your choice. For example, if you're using C++, look at the testlib model
trilib01 or cpplib01. If you're using Fortran, start with trilib03.

· Assemble and test some code that evaluates your function and its derivatives. Note when
called the fist parameter tells whether to return the function evaluation, its first derivative or its
second derivative.

· Integrate your code into the example code from GAMS using the source files provided for
the demo library as a template. This will involve modifying the .spec file to describe the
function you are creating and creating the API files based on the .spec file, and corresponding
edits to the source code actually implementing the function.

· Optionally, if this seems like a big step, start small. Implement a simple function (e.g. sqr(sum
of x)) for which you know the gradients and Hessians, and get the interface to do this right.
Then substitute the real function of interest.

· Do some rigorous, extensive testing of your function. Many examples exist in testlib for doing
this, e.g. cpplib01 * cpplib05. The tests might involve pre-computing input arguments and
known function values in another language and storing these values in a GDX file for
comparison. Consider testing very small or very large values, and testing how errors in the
function will be handled.

· The extrinsic functions are limited to 20 scalar arguments and return a scalar value.

This requires substantial programming ability and one may need to get tips from

https://spot.colorado.edu/~markusen/teaching_files/GAMS_undergraduate/GAMSUsersGuide.pdf

McCarl GAMS User Guide283

© 2022 Prof. Bruce McCarl

support@gams.com .

7.3.5.3 Special values

GAMS uses special symbols to handle missing data, the results of undefined operations, small nonzero
results, and the representation of bounds that solver systems regard as 'infinite.' The special symbols
are listed below with a brief explanation of the meaning of each.

Inf, -Inf

Na

Eps

Undf

Yes/No

7.3.5.3.1 Inf, -Inf

These values are plus and minus infinity. Inf is a very large positive number. –Inf is a very large in
absolute value negative number. They may be used in an assignment as follows (specval.gms)

z$y=x/y;

if(y =0,z=inf);

z$y=-x/y;

if(y =0,z=-inf);

through such mechanisms one can reflect cases where infinite results arise.

7.3.5.3.2 Na

This value indicates a result is not available. Note any operation that uses the value NA will produce the
result NA. This may be used in an assignment as follows (specval.gms)

z$y=x/y;

if(y =0,z=na);

7.3.5.3.3 Eps

This value indicates a result is very close to zero, but is different from zero. This may be used in an
assignment as follows (specval.gms)

z$y=x/10000000000000;

if(y < 0.00001,z=EPS);

7.3.5.3.4 Undf

This value indicates a result is undefined. A user may not use this in an assignment unless the $onundf
command has been used. GAMS will assign it in undefined cases such as the one below.

z=x/0;

mailto:support@gams.com

More Language Basics 284

© 2022 Prof. Bruce McCarl

display z;

7.3.5.3.5 Yes/No

These values are used to assign elements to subsets as discussed in the sets chapter in the element
defined by calculation section.

7.3.5.4 Model and optimal solution items

Information may be defined relative to variables, equations and models that pass back and forth between
GAMS and solvers. These items can be computed or used in computations as discussed below.

7.3.5.4.1 Attributes of variables and equations

Variables and equations have attributes that are passed to solvers, are passed back from solvers or are
used in scaling the model. These may be used in computations or have values assigned to them
through computations.

L

M

Lo

Up

Fx

Scale

Prior

7.3.5.4.1.1 L

Variables and equations have what is known as a level value that is the current solution value for that
variable or equation. The level value for a variable is the current solution value after a solution and the
starting point for that variable before solution plus it helps provide a basis for the model. The level value
for an equation is sum of the endogenous terms in the equation evaluated at the current level value for
the variables after a solution and in general is not defined before solution. The attribute is addressed
using .L as follows

Variable level is variablename.L(setdependency)

Equation level is equationname.L(setdependency)

These are commonly used in calculations to do one of three things

• Variable levels are set at non zero levels pre solution to provide a starting point that can be

very important in NLP problems.

• Variable levels are set at nonzero values pre solution to provide an advanced basis.

• Variable and equation levels are used post optimality in report writing (Note in this

circumstance $Ondotl may be used to automatically add the .l items to variable names
appearing on the right hand side of calculations).

McCarl GAMS User Guide285

© 2022 Prof. Bruce McCarl

Example:

(varmodatt.gms)

X.l(j)=1;

Move.l(source,sink)=historicmove(source,sink);

solve transport using lp minimizing cost;

Totalcost=sum((source,sink),

 costtomove(source,sink)*Move.l(source,sink));

Note:

• The level values receives new values after a solve statement is executed.

• One can use $ondotl to add .l to variable names automatically.

7.3.5.4.1.2 M

Variables and equations have what is known as a marginal value that is the current shadow price or
reduced cost for that item. The marginal value for a variable is the current reduced cost after a solution
plus it helps provide a basis for the model. The marginal value for an equation is the shadow price for the
equation and in general is not defined before solution but if present helps provide a basis for the model.
The attribute is addressed using .M as follows

Variable marginal is variablename.M(setdependency)
Equation marginal is equationname.M(setdependency)

These are commonly used in calculations to do one of two things

• Variable marginals are set at nonzero values pre solution to provide an advanced basis.

• Variable and equation marginals are used post optimality in report writing.

incoming(destinaton,"Marg Cost of","meeting needs"," ","Total") =

demandbal.m(destinaton);

Example:

(varmodatt.gms)

sinkdemand.M(sink)=1;

sourcesupply.M(source)=1;

solve transport using lp minimizing cost;

shadowprices("demand",sink)=sinkdemand.M(sink);

shadowprices("supply",source)=sourcesupply.M(source);

Note:

• The marginal values receives new data after a solve statement is executed.

More Language Basics 286

© 2022 Prof. Bruce McCarl

7.3.5.4.1.3 Lo

Variables and equations have a lower bound. The lower bound for a variable is the smallest value that
the variable can take on. The lower bound for an equation is the right hand side for a greater than or
equal to and equality constraint. It is minus infinity for a less than or equal to constraint. The attribute
is addressed using .Lo as follows

Variable lower bound is variablename.lo(setdependency)
Equation lower bound is equationname.lo(setdependency)

These are commonly used in calculations pre solution to specify or revise the bound.

Example:

(varmodatt.gms)

Move.lo(source,sink)=0.1;

solve transport using lp minimizing cost;

display sinkdemand.Lo;

Notes:

• The lower bound is also changed when the fx attribute for a variable is set.

• The lower bound defaults to 0 for positive variables or –inf for other unrestricted or negative

variables.

• The lower bound defaults to -inf for less than or equal to equations.

7.3.5.4.1.4 .range

Variables and equations have an upper and lower bounds. The range for a variable is
the difference between these bounds.

Variable range is variablename.range (setdependency)
Equation range is equationname.range (setdependency)

These can be used in calculations to see if a variable is fixed revise the bound.

Example:

(varmodatt.gms)

display move.range;

Notes:

• The range becomes zero when the .fx attribute for a variable is set.

McCarl GAMS User Guide287

© 2022 Prof. Bruce McCarl

•

• This provides a convenient way to see if a variable is fixed

7.3.5.4.1.5 Up

Variables and equations have an upper bound. The upper bound for a variable is the largest value a
variable can take on. The upper bound for an equation is the right hand side for a less than or equal to
and an equality constraint. It is plus infinity for a greater than or equal to constraint. The attribute is
addressed using .Up as follows

Variable upper bound is variablename.up (setdependency)
Equation upper bound is equationname. up (setdependency)

These are commonly used in calculations pre solution to specify or revise the bound.

Example:

(varmodatt.gms)

Move.up(source,sink)=1000.1;

solve transport using lp minimizing cost;

display sinkdemand.up;

Notes:

• The upper bound is also changed when the .fx attribute for a variable is set.

• The upper bound defaults to +inf for positive and unrestricted variables and 0 for negative variables.

• The upper bound defaults to +inf for greater than or equal to equations.

7.3.5.4.1.6 Fx

Variables can be fixed at a value. In turn GAMS sets the lower and upper bound to that value. The
attribute is addressed using .Fx as follows

Variable fixed level is variablename.fx (setdependency)

These are commonly used in calculations pre solution to specify or revise the value.

Example:

(varmodatt.gms)

Move.fx("boston","seattle")=1.;

solve transport using lp minimizing cost;

display move.lo,move.fx;

More Language Basics 288

© 2022 Prof. Bruce McCarl

Notes:

• The upper and lower bound are changed when the Fx attribute for a variable is set to the value of the

Fx attribute.

• Fixed variables can subsequently be freed by changing the lower .lo and upper .up bounds.

• Fx attributes are not defined for equations.

• One cannot use the Fx attribute in the expression in an equation or on the right hand side of a

replacement statement.

7.3.5.4.1.7 Scale

Variables and equations have a scale attribute. The scale attribute for a variable is a number that all
coefficients associated with that variable are multiplied by. The scale attribute for an equation is a
number that all coefficients associated with that equation are divided by. The attribute is addressed
using .Scale as follows

Variable scale factor is variablename.scale(setdependency)
Equation scale factor is equationname.scale(setdependency)

These are commonly used in calculations pre solution to specify or revise the scaling factors.

Example:

(varmodatt.gms)

Transport.scaleopt=1;

Move.scale("boston","seattle")=10.;

Notes:

• The scale factors only work if the modelname.scaleopt is set to a non zero value.

• Scaling is discussed in the Scaling GAMS Models chapter.

• Scaling factors default to one.

7.3.5.4.1.8 Prior

Variables in mixed integer programs can have a priority attribute. The user can use this parameter to
specify an order for picking variables to branch on during a branch and bound search for MIP model
solution. Without priorities, the MIP algorithm will determine the variable most suitable to branch on.
One must also tell GAMS statement to use priorities by entering

modelname.prioropt = 1 ;

where modelname is the name of the model specified in the model statement. The default value is 0 in
which case priorities will not be used. Using the .prior attribute sets the priorities of the individual

McCarl GAMS User Guide289

© 2022 Prof. Bruce McCarl

variables. Priorities can be set to any real value. The default value is 1.0. As a general rule of thumb,
the most important variables should be given the highest priority which implies they should have the
lowest nonzero values of the .prior attribute. The attribute is addressed using .Prior as follows

Variable priority is variablename.prior(setdependency)

These are commonly used in calculations pre solution to specify or revise the priority factors.

Example:

Move.prior("boston","seattle")=1.;

Notes:

• The prior factors only work with integer variables.

• The prior factors require that modelname.prioropt be set to a non zero value.

7.3.5.4.2 Attributes of models

Model attributes contain information relative to model solution procedures and results passed back and
forth between GAMS and solvers.

There are two fundamental types of model attributes:

• Attributes mainly used before a solve statement to provide information to GAMS or the solver link.

• Attributes mainly used after a solve statement to retrieve information about the last solve.

For details see Model Attributes

7.3.6 Including conditionals

Calculations can include conditionals as extensively covered in the conditionals chapter. One very
important distinction needs to be bought out regarding conditional placement and equation result. This
involves the distinction between a right and left hand side conditional.

Right and left hand side conditionals

7.3.6.1 Right and left hand side conditionals

Conditionals may be used on either the right or left hand side of assignment statements but the
operation is very different.

• A conditional on the left-hand side specifies the condition under which a statement is

executed. Thus, no assignment is made unless the conditional is satisfied.

• A conditional on the right-hand side specifies the condition under which a term is computed.

Thus, the assignment is always made but the term is zero unless the conditional is satisfied.

This means that with a conditional on the left hand side of an assignment the previous contents of the
parameter will remain unchanged for conditionals that are not satisfied.

More Language Basics 290

© 2022 Prof. Bruce McCarl

For example in the GAMS code below (leftright.gms)

Y=2;

Z=2;

X=0;

Y$X=4;

Z=4$X;

Y will end with a value of 2 but Z will equal zero since the Y calculation with the left hand side conditional
will not be executed since X=0. But the Z calculation is always done and the right hand side conditional
4$X term will be zero since X is zero.

Analogous conditions hold for models where

• A conditional on the left-hand side of the .. specifies the condition under which an equation is

defined. Thus, the constraint equation is not present unless the conditional is satisfied.

• A conditional on the right-hand side after the .. specifies the condition under which a term is

computed in the equation. Thus, the equation is defined but the term is zero unless the
conditional is satisfied.

This means that with a left hand side conditional the equation is not entered into the model.

• For example in the GAMS code below (leftright.gms)

C1$x.. YY=e=4;

C2.. YY=e=4$X;

YY will not be constrained by C1 since it has a left hand side conditional and will not be
defined as an equation since X=0. But the C2 equation is always defined and the YY will be
set equal to zero since the right hand side conditional 4$X term becomes zero since X is zero.

7.4 Improving Output via Report Writing

Generally, the GAMS model solution output is not adequate for conveying solution information to the
modeler or associated decision-makers. Report writing coupled with item displays can help. However
that is sometimes is not in a satisfactory format and further efforts may be necessary. Here I discuss
these topics.

Adding report writing

Using displays

Formatting pages and lines

Output via put commands

Reordering set order in output

Preprogrammed table making utility: Gams2tbl

Output to other programs

Obtaining graphical output

Sorting output

McCarl GAMS User Guide291

© 2022 Prof. Bruce McCarl

7.4.1 Adding report writing

GAMS permits one to do calculations using solution information to improve the information content of the
output and display the calculated items. This exercise is commonly called report writing.

The basic report writing approach involves three phases:

• Design of a tabular format for presentation of model study results.

• Calculation of entries for which presentation based on a mixture of raw and model solution

data.

• Display of that information.

I will not cover the first of these three points as their use depends on the study but will cover the second
two.

Basics of solution based report writing calculations

Adding a report

Notes on indefinite sets in parameter statements

7.4.1.1 Basics of solution based report writing calculations

Information relative to the variable, equation and model solution is passed to GAMS from solvers. These
information are used in report writing computations (see the Calculating Items chapter for further
discussion).

Variables and equations have attributes that contain the optimal level and marginal values for them in the
current solution.

• The level value attribute for a variable is the current optimal value in the solution. The attribute

is addressed using .L as follows

Variablename.L(setdependency)

This may also be done implicitly using $Ondotl.

• The level value attribute for an equation is the endogenous terms in the equation evaluated at

the current solution value for the variables after a solution. The attribute is addressed using .L
as follows:

 Equationname.L(setdependency)

• The marginal attribute for a variable is the current reduced cost to force a variable in the

solution. The attribute is addressed using .M as follows

 Variablename.M(setdependency)

• The marginal value attribute for an equation is the dual value or shadow price for the equations

after a solution. The attribute is addressed using .M as follows:

More Language Basics 292

© 2022 Prof. Bruce McCarl

 Equationname.M(setdependency)

The numerical values of these parameters are generally redefined every time a solve is executed. In
general, these items can be used in calculations just like any other parameter once a solve has been
completed.

Note model solution attributes like modelname.modelstat can also be used to indicate whether an
optimal solution was attained as discussed in the Model Attributes chapter.

7.4.1.2 Adding a report

Now suppose I add a report. Lets do this in a simple transportation model. First, let me briefly design
it. Lets suppose for each destination I wish to know where the goods came from, how much the
marginal cost of meeting demand is and what is the total shipment cost to that location. I will do this in
a rather quick and dirty fashion using a five dimensional parameter defined over unspecified set elements
employing the universal set concept discussed below or in the Sets chapter.

I do this in the transportation model calcoutp.gms by computing a parameter called incoming. There I

• Define a parameter called incoming as a 5 dimensional entity with unspecified set elements.

• Place the incoming shipment levels (transport.l(source,destinaton)) into that parameter with

appropriate labeling.

• Place the marginals from the demand rows demandbal.m(destinaton) into that parameter

with appropriate labeling.

• Compute a total cost of shipping by multiplying per unit cost times the volume shipped and

summing over all incoming routes.

• Compute total shipments from a place and total cost of shipping adding up the data already

in the incoming parameter with appropriate labeling.

• Display the result using the formatting options described below.

The added code to do this is

parameter incoming(*,*,*,*,*) incoming shipment report;

incoming(destinaton,"shipments","in cases","from",source)

=transport.l(source,destinaton);

incoming(destinaton,"Marg Cost of","meeting needs"," ","Total")

=demandbal.m(destinaton);

incoming(destinaton,"Cost of","shipping"," ","total") =sum(source,

trancost(source,destinaton)*transport.l(source,destinaton));

incoming("total","shipments","in cases","from",source)

 =sum(destinaton,

 incoming(destinaton,"shipments","in cases","from",source));

incoming("Total","Cost of","shipping"," ","total")

 =sum(destinaton,

 incoming(destinaton,"Cost of","shipping"," ","total"));

option incoming:0:3:2;display incoming;

McCarl GAMS User Guide293

© 2022 Prof. Bruce McCarl

This results in the following report with the results color coded to the originating statement.

---- 79 PARAMETER INCOMING incoming shipment report

 from from

 Seattle San Diego Total

New York.Shipments .in cases 50 275

New York.Cost of .shipping 81250

New York.Marg Cost of.meeting needs 250

Chicago .Shipments .in cases 300

Chicago .Cost of .shipping 53400

Chicago .Marg Cost of.meeting needs 178

Topeka .Shipments .in cases 275

Topeka .Cost of .shipping 41525

Topeka .Marg Cost of.meeting needs 151

Total .Shipments .in cases 350 550

Total .Cost of .shipping 176175

7.4.1.3 Notes on indefinite sets in parameter statements

Parameter statements do not always have to have definitive set assignments. If one enters an * in an
index position, then anything at all can be placed in that position. In above example, I use this allowing
the inclusion of both existing sets and other items in these positions. For example, in the first position
of the incoming parameter I am using both the set destination and the element text "total".

incoming(destinaton,"shipments","in cases","from",source)
incoming("total","shipments","in cases","from",source)

• Note one should not use an * in declarations in place of set names when inputting table or

parameter data. Only use it for output data and then infrequently.

• This is discussed more fully in the Sets chapter.

Use of named sets in the specifications allows GAMS to check to make sure you're not misspelling
anything.

7.4.2 Using displays

One may display any GAMS parameter, set, variable attribute, equation attribute or model attribute as
well as quoted text using the GAMS display statement. Note: Display will not print out items that are
zero leaving blanks or skipping items where entire rows or columns are zero. Generally the display is of
the format

DISPLAY ITEM1,ITEM2,ITEM3;

where the items are either

• Quoted strings in single or double quotes such as

Display 'here it is', "hello";

More Language Basics 294

© 2022 Prof. Bruce McCarl

• Parameter or set names without any referencing to setdependency. Thus in dispord.gms

while the parameter data is defined over 4 sets

parameter data(index1,index2,index3,index4);

I simply say

display data;

• Variable, equation or model attributes with the item name and attribute desired specified

Display x.l, x.scale, modelname.solstat;

• Multiple items can be listed in a display statement separated by commas.

• When displaying a more than 2 dimensional item one can expand the width of the labels

printed out beyond 10 using the command option dispwidth=number; where number can
range up to 31.

Abort

Controlling displays

7.4.2.1 Abort

The abort command can also be used to display data but once encountered causes the program to stop
with an execution error. The command syntax is just like that for a display command with the same
syntax excepting the word abort replacing display. Abort usage is illustrated in abort.gms and its use
is discussed in the Conditionals chapter.

7.4.2.2 Controlling displays

GAMS displays can be enhanced in terms of form, and content.

7.4.2.2.1 Formatting display decimals and layout

Users may not find the GAMS display style consistent with what they want. The GAMS OPTION
statement permits one to alter this. In particular, an option statement of the form

OPTION THISITEM:DECIMAL:ROWitems:COLUMNitems

can modify the display formatting. Use of this option will cause all subsequent displays of the item
named THISITEM to follow rules specified by the three numbers following the colons which are

DECIMAL number of decimal places to be included
ROWitems number of indices displayed within rows
COLUMNitems number of indices displayed within columns

McCarl GAMS User Guide295

© 2022 Prof. Bruce McCarl

For DATA(A,B,C) I could have rowitems:columnitems values of 2:1, 1:2, 0:3 or 1:1. The first (2:1) would
have A&B varied in the rows with C defined in the columns. The second (1:2) would have A in the rows
with the B&C in the columns. The third (0:3) would list everything in columns. The fourth (1:1) would
have a table for each A element that contained B in rows and C in the columns.

Column label width can be expanded beyond the default of 10 using option dispwidth=n where n can
go up to 31.

Example:

(dispord.gms)

Suppose I have a four-dimensional array, each dimension of which has two elements. An ordinary display of
this would yield:

INDEX 1 = index11

 index41 index42

index21.index31 2.000 2.000

index21.index32 2.000 2.000

index22.index31 2.000 2.000

index22.index32 2.000 2.000

INDEX 1 = index12

 index41 index42

index21.index31 2.000 2.000

index21.index32 2.000 2.000

index22.index31 2.000 2.000

index22.index32 2.000 2.000

Use of the option statement could manipulate it into number of different forms including

option data:0:1:3;display data;

---- 8 PARAMETER DATA

 index21 index21 index21 index21 index22

 index31 index31 index32 index32 index31

 index41 index42 index41 index42 index41

index11 2 2 2 2 2

index12 2 2 2 2 2

 + index22 index22 index22

 index31 index32 index32

 index42 index41 index42

index11 2 2 2

index12 2 2 2

option data:0:3:1;display data;

More Language Basics 296

© 2022 Prof. Bruce McCarl

 index41 index42

index11.index21.index31 2 2

index11.index21.index32 2 2

index11.index22.index31 2 2

index11.index22.index32 2 2

index12.index21.index31 2 2

index12.index21.index32 2 2

index12.index22.index31 2 2

index12.index22.index32 2 2

option data:0:0:4;display data;

index11.index21.index31.index41 2, index11.index21.index31.index42 2

index11.index21.index32.index41 2, index11.index21.index32.index42 2

index11.index22.index31.index41 2, index11.index22.index31.index42 2

index11.index22.index32.index41 2, index11.index22.index32.index42 2

index12.index21.index31.index41 2, index12.index21.index31.index42 2

index12.index21.index32.index41 2, index12.index21.index32.index42 2

index12.index22.index31.index41 2, index12.index22.index31.index42 2

index12.index22.index32.index41 2, index12.index22.index32.index42 2

option data:0:2:2;display data;

 index31 index31 index32 index32

 index41 index42 index41 index42

index11.index21 2 2 2 2

index11.index22 2 2 2 2

index12.index21 2 2 2 2

index12.index22 2 2 2 2

Notes:

• If one specifies less dimensions in the option than the number of sets i.e. indicating two by one with

a item defined over 4 sets, then the extra dimensions will be used by the earliest sets in the
specification and a different table will be output for each set element in those early sets. Thus when
the option command

option data:0:2:1;display data;

specifying placement of 3 sets in the rows and columns is used on the example where the
parameter is defined over 4 sets I get

INDEX 1 = index11

 index41 index42

index21.index31 2 2

index21.index32 2 2

index22.index31 2 2

McCarl GAMS User Guide297

© 2022 Prof. Bruce McCarl

index22.index32 2 2

INDEX 1 = index12

 index41 index42

index21.index31 2 2

index21.index32 2 2

index22.index31 2 2

index22.index32 2 2

If the sum of the items to be placed in rows and columns exceeds the full dimensionality of the
parameter in terms of number of sets, then a GAMS error arises. Thus in the 4 dimensional case
one could not have the sum of items in rows plus columns being any greater than 4.

• The decimal control will be discussed below.

• If one is not happy with the way the indices appear then:

� If there is dissatisfaction with the order of the sets this can only be changed by reordering the
way the set indices appear by using replacement statement copying the sets into a differently
defined parameter such as that below

parameter data2(index2,index4,index1,index3);

data2(index2,index4,index1,index3)

= data(index1,index2,index3,index4);

� If dissatisfied with the order the set elements appear or their capitalization then one needs to
understand the rules for these items and manipulate them or trick GAMS as discussed in the
Rules for Item Capitalization and Ordering chapter.

7.4.2.2.2 Taking control of display decimals

A potential frustration with GAMS display output involves numerical formatting. Consider the example
dispnum.gms. There I define the table DATA with rather disparate numbers. A resultant display of
DATA yields

---- 8 PARAMETER DATA

 index21 index22

index11 1.000000E-5 1.000000E+7

index12 3.720 200.100

In that display GAMS mixes together numbers in exponential and normal format with the default being a
print out of three decimal places. If such a display is unsatisfactory, there are several ways of altering
its appearance.

• One can alter the number of decimals using the item specific option (dispnum.gms)

option data:1:1:1;

which displays this item with one decimal place, yielding

 ---- 10 PARAMETER DATA

More Language Basics 298

© 2022 Prof. Bruce McCarl

 index21 index22

 index11 1.000000E-5 10000000.0

 index12 3.7 200.1

Here, GAMS overrides the decimals choice to insure the small number does not become
zero, but I don't get the exponential display for the large number as it fits.

• One can alter the number of decimals using a global option statement to change the default

decimals in all subsequent displays not subject to the specific option command just
discussed. For example, the following alters the default display and all subsequent displays
to 2 decimal places but would not alter the display of the item called data as it already was
subject to an item specific display formatting option command. (dispnum.gms)

option decimals=2;

---- 13 PARAMETER data2

 index21 index22

index11 1.000000E-5 10000000.00

index12 3.72 200.10

Note, GAMS still overrides the decimals choice to insure the small number does not become
zero.

• One can suppress small numbers in the display manually. For example, using

(dispnum.gms)

data2(index1,index2)$(data2(index1,index2) lt 0.01)=0;

sets all numbers to zero which are less than 0.01, yielding

---- 14 PARAMETER DATA2

 index21 index22

index11 _____ 10000000.0

index12 3.7 200.1

Note one needs to employ absolute value if negative numbers are present i.e. using a
command like:

data2(index1,index2)
$(abs(data2(index1,index2) lt 0.01))=0;

• Users may wish to cap the value of large numbers. I can cause the output to have the entry

infinity for anything greater than the number 10,000 using (dispnum.gms)

data2(index1,index2)
$(data(index1,index2) gt 10000)=inf;

McCarl GAMS User Guide299

© 2022 Prof. Bruce McCarl

yielding

---- 18 PARAMETER DATA2

index21 index22

index11 1.000000E-5 +INF

index12 3.720 200.100

• Users may wish to round numbers using syntax like (dispnum.gms)

data2(index1,index2)=round(data(index1,index2),0);

• Users may desire a report of percentage changes. These first need to be calculated in a

manner such as

data4(index1,index2)$data2(index1,index2)=
 100*(data3(index1,index2)/data2(index1,index2)-1);

data4(index1,index2)

 $(abs(data4(index1,index2)) lt 0.1)=0;

data4(index1,index2)$(data2(index1,index2) eq 0)= na;

Here I set small percentage changes to zero but are careful to use absolute values so
negative changes are not zeroed out. I also report numbers that would report percentage
changes from a base of zero with the coding "na". The result is (dispnum.gms)

---- 29 PARAMETER DATA4

index21 index22

index11 NA

index12 80.6 1.5

7.4.2.2.3 Controlling item ordering

GAMS often orders things in a fashion that one dislikes. The basic rule is first in first out, so if you wish
the order to be different reorder the first appearance of the item or set element. The Rules for Item
Capitalization and Ordering chapter discusses the practices followed and how to change things.

7.4.2.2.4 Controlling item capitalization

GAMS users are sometimes frustrated with the capitalization of set elements or item names. The basic
rule is first appearance in terms of capitalization is the scheme that will be used. Thus you wish the
capitalization to be different fix up the first appearance of the item or set element so it is as desired. The
chapter on Rules for Item Capitalization and Ordering discuss the rules GAMS follows.

7.4.3 Formatting pages and lines

A number of commands discussed in the Dollar Commands chapter can be used to format pages or
lines. These are listed below with a brief explanation

$Double Starts double spacing listing of subsequent echo print lines in LST file
$Eject Start a new page in LST file
$Lines Start new page if less than n lines are left on a page

More Language Basics 300

© 2022 Prof. Bruce McCarl

$Single Start single space listing of subsequent echo print lines in LST file
$Stitle Define subtitle for LST file
$Title Define LST file title

7.4.4 Output via put commands

Users can find that GAMS displays are inadequate for output presentation. A more customized output
can be created using GAMS put commands. However, with this control comes a cost. Put commands
involve an increased degree of technical programming. Put commands are fully discussed in the
chapter Output via Put Commands.

7.4.5 Reordering set order in output

Sometimes one needs to reorder the data. Here I do it using an order set and put files in the example
reorder.gms

Set I /1*4/;

set j /a1*a3

 a4 this is element 4

 a5 has a crummy name/;

set newnames(j) /a1 nuts

 a2 bolts

 a3 cars

 a4 trucks

 a5/;

table data(i,j) data to be put

 a1 a2 a3 a4 a5

1 11 12

2 14 15

3 1 1

4 2 4.10 ;

put // 'Data as originally ordered' / @29

loop(j,put newnames.te(j):12 ' '); put /;

loop(i, put i.te(i):20 ' ';

 loop(j,if((not sameas(j,'a4')),put data(i,j):12:0 ' ';);

 if(sameas(j,'a4'),put data(i,j):12:4 ' ';)); put /);

set iwantord /o1*o100/;

set ordit(iwantord,j) / o1.a4,o2.(a1,a3),o3.a4/;

put // 'Data as reordered' / @29

loop(ordit(iwantord,j),put newnames.te(j):12 ' ');put /;

loop(i, put i.te(i):20 ' '

loop(ordit(iwantord,j),

if((not sameas(j,'a4')),put data(i,j):12:0 ' ';);

if(sameas(j,'a4'),put data(i,j):12:4 ' ';));put /);

Data as originally ordered

 Nuts Bolts Cars Trains a5

1 11 12 0 0.0000 0

McCarl GAMS User Guide301

© 2022 Prof. Bruce McCarl

2 0 0 14 15.0000 0

3 1 0 0 0.0000 1

this one is 4 0 2 0 4.1000 0

Data as reordered (note I dropped a5 on purpose)

 Trains Nuts Cars Trains

1 0.0000 11 0 0.0000

2 15.0000 0 14 15.0000

3 0.0000 1 0 0.0000

this one is 4 4.1000 0 0 4.1000

7.4.6 Preprogrammed table making utility: Gams2tbl

Rutherford has developed a preprogrammed table making utility using put commands called
Gams2tbl.gms that he documents and distributes through http://www.mpsge.org/inclib/gams2tbl.htm
Gams2tbl is a gms file that users can include in their program through a Libinclude or Batinclude that
contains numerous formatting options. Gams2tbl and some of its formatting capabilities are illustrated
in the following example (canput.gms)

set columns / a Horses,b Cows,c Chickens/

set rows /r1 Housing,r2 Land,r3 Feed/

table data (rows,columns) Table with default formatting

 a b c

r1 1 14.8233 12.99

r2 2 12 2.2

r3 3 11 3.2;

file ruthput ; put ruthput ;

$libinclude GAMS2tbl

$libinclude GAMS2tbl data

parameter roworder(rows) /r1 3,r2 1,r3 2/;

parameter colorder(columns) /a 2,b 3, c 1/ ;

$setglobal row_order roworder

$setglobal col_order colorder

$setglobal title "Table 2 where item ordering is controlled"

$libinclude GAMS2tbl data

$setglobal row_label rows

$setglobal col_label columns

$setglobal title "Table 3 where labels for sets are used"

$libinclude GAMS2tbl data

parameter decimals(columns) /a 0,b 4 ,c 1/ ;

$setglobal c_decimals decimals

$setglobal title "Table 4 where decimals are controlled"

$libinclude GAMS2tbl data

Yields the resultant output

http://www.mpsge.org/inclib/gams2tbl.htm

More Language Basics 302

© 2022 Prof. Bruce McCarl

Table 1 with default formatting

 a b c

r1 1.00 14.82 12.99

r2 2.00 12.00 2.20

r3 3.00 11.00 3.20

Table 2 where item ordering controlled

 c a b

r2 2.20 2.00 12.00

r3 3.20 3.00 11.00

r1 12.99 1.00 14.82

Table 3 where labels for set items used

 Chickens Horses Cows

Land 2.20 2.00 12.00

Feed 3.20 3.00 11.00

Housing 12.99 1.00 14.82

Table 4 where decimals are controlled

 Chickens Horses Cows

Land 2.2 2 12.0000

Feed 3.2 3 11.0000

Housing 13.0 1 14.8233

Tables can be made in regular text, HTML or Latex formats.

7.4.7 Output to other programs

There are cases where one wishes to save things to other programs. This is generally done using Put
files as discussed in the Output via Put Commands and the Links to Other Programs Including
Spreadsheets chapter.

7.4.8 Obtaining graphical output

Statements may be entered into a GAMS program that permit graphical displays of data computed
during a GAMS run directly in a window on a PC using Rutherford's Gnuplot or Uwe Schneider's
gnuplotxyz. To graph data in a GAMS program I need to do three basic things.

• Download Schneider's gnuplotxyz or Rutherford's Gnuplot software getting both the gms and

windows Gnuplot executable.

• Fill an internal array. In the gnuplotxyz example simplegr.gms I fill graphdata describing two

lines where first dimension is name of line, second number of point on line, and third the x and
y data. Such statements appear below.

LINES Lines in graph /A,B/

POINTS Points on line /1*10/

ORDINATES ORDINATES /X-AXIS,Y-AXIS/ ;

TABLE GRAPHDATA(LINES,POINTS,ORDINATES)

 X-AXIS Y-AXIS

A.1 1 1

A.2 2 4

A.3 3 9

A.4 5 25

A.5 10 100

B.1 1 2

B.2 3 6

B.3 7 15

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/gnuplot/
http://www.mpsge.org/gnuplot

McCarl GAMS User Guide303

© 2022 Prof. Bruce McCarl

B.4 12 36;

• Then given the data call gnuplotxyz which I achieve through the GAMS statement

$LIBINCLUDE gnuplotxyz GRAPHDATA Y-AXIS X-AXIS

where the first argument after gnuplotxyz gives the array name, the second name of a set
element in the third array position which contains the data coordinates for the y axis and the
third the name of a set element in the third array position which contains the data coordinates
for the x axis.

In turn when I run I get two new windows that automatically open in front of the IDE

The window labeled Gnuplot graph is the graph of the data and the window labeled Gnuplot results from
the execution of the source Gnuplot program. Use of such graphing is more extensively discussed and
illustrated in the Links to Other Programs Including Spreadsheets chapter.

7.4.9 Sorting output

Suppose you are solving a model which is generates some output you would like to have in sorted order
(arrayed from high to low). This can be done either directly in GAMS or by using Rutherford and van der
Eijk's RANK libinclude procedure.

More Language Basics 304

© 2022 Prof. Bruce McCarl

Sorting in GAMS

Rank

7.4.9.1 Sorting in GAMS

GAMS code maybe employed to sort output as follows. (sorted.gms)

set i /a1*a6/;

alias(i,j);

parameter unsort(i)/a1 22,a2 33,a3 12,a4 15,a5 47,a6 22/;

set asord /1*1000/;

parameter gg(i);

gg(i)=sum(j$(unsort(j)>unsort(i)),1);

set orddat(asord,i);

orddat(asord,i)$(ord(asord)=(gg(i)+1))=yes;

file sorted;

put sorted;

loop(asord,

 if(sum(orddat(asord,i),1)=1,

 put 'In place ' asord.tl:0 ' with a value of '

 loop(orddat(asord,i),

 put unsort(i):0:0 ' is item ' @42 i.tl:0/))

 if(sum(orddat(asord,i),1)>1,

 put 'In place ' asord.tl:0 ' with a value of '

 smax(orddat(asord,i),unsort(i)):0:0 ' are items '

 loop(orddat(asord,i),put @42 i.tl:0 ' ' /);));

The result

In place 1 with a value of 47 is item a5

In place 2 with a value of 33 is item a2

In place 3 with a value of 22 are items a1

 a6

In place 5 with a value of 15 is item a4

In place 6 with a value of 12 is item a3

This code counts the number of entries that have a larger value than the current one and then orders
items in decreasing order using another dimension that gives their relative position.

7.4.9.2 Rank

One may also use Rutherford and van der Eijk 's RANK libinclude procedure to obtain an array giving the
relative sorted position of elements. This procedure implements an O(nlog(n)) algorithm for ranking one-
dimensional numeric data within a GAMS program. The routine uses the GDX facility and an external
program to sort the data.

The syntax for using rank is

http://www.mpsge.org/gdxrank/index.html

McCarl GAMS User Guide305

© 2022 Prof. Bruce McCarl

$LIBINCLUDE rank arraytosort setofelements rankofitem optionalpercentile

The first three arguments are required. The last is optional. These are defined as following:

arraytosort Name of one dimensional parameter of values to be ranked which
defined over the set setofelements

setofelements Name of one-dimensional set which is the domain of array
arraytosort.

Rankofitem Name of one dimensional parameter that after execution will contain
integers giving the rank order of each element ranking from smallest
to largest.

optionalpercentile Name of one dimensional parameter that after execution will contain
linearly interpolated percentiles.

Example:

GAMS code implementing RANK appears at the bottom of sorted.gms and is as follows

$LIBINCLUDE rank unsort i rankdata

put // 'After rank which sorts low' //;

loop(asord,

 loop(i$(rankdata(i)=ord(asord)),

 put 'In place ' asord.tl:0 ' with value of ' unsort(i):0:0 ' is item '

@42 i.tl:0/));

display r;

The resultant output is

After rank which sorts low

In place 1 with a value of 12 is item a3

In place 2 with a value of 15 is item a4

In place 3 with a value of 22 is item a6

In place 4 with a value of 22 is item a1

In place 5 with a value of 33 is item a2

In place 6 with a value of 47 is item a5

Notes:

Rutherford and van der Eijk state:

• RANK only works for numeric data. You cannot sort sets.

• The first invocation must be outside of a loop or if block. This routine may be used within a loop or if block

only if it is first initialized with blank invocations.

• The names rank_tmp, rank_u, and rank_p are used within these routines and may not be used in the calling

program:

• This routine returns rank values and does not return sorted vectors, however rank values may be used to

produce a sorted array. This can be done using computed "leads" and "lags" in GAMS' ordered set syntax,
as illustrated in their examples.

http://www.mpsge.org/gdxrank/index.html

More Language Basics 306

© 2022 Prof. Bruce McCarl

7.5 Rules for Item Capitalization and Ordering

GAMS follows fixed procedures with respect to output formatting and ordering which can be expressed
as rules. Knowledge of these rules allows the user to better control the capitalization and ordering
attributes of the output. The topics I cover here involve

Item capitalization

Set element order

Reviewing set element ordering: $Onuellist

7.5.1 Item capitalization

When using GAMS, the capitalization format used it will employ for an item in the output is identical to
the first capitalization structure seen for that item in the GAMS program. Thus, if a program
contained "Total", "TOTAL" and "total", whichever of these appeared first would be the one used in the
output. Inside GAMS alternative capitalizations are all identical. Available("WATER") is same as
available("water") or availAble("wateR").

Examples:

Given the instructions (dispset2.gms)

Set A /Total,LINE,newone,next/;

Set b /TOTAL,LINE,NEWONE,NEXT,UNIQUETOhere/;

Scalar tT /1/;

Display b,tt;

The output is

---- 11 SET b

Total , LINE , newone, next , UNIQUETOhere

---- 4 PARAMETER tT = 1.000

where the capitalization within the set b is not as typed in defining b for any of the elements previously
appearing earlier (in the set A in this case).
Similarly, the capitalization of the parameter name for tT is as it appears in the first occurrence of that name.

Notes:

• One can alter the capitalization aspects of any set element or item name in GAMS by making sure

that the first entry is capitalized as desired.

• These style rules apply to all GAMS displays through display statements or put commands involving

the names of set elements, sets, parameters, scalars, tables, variables, equations, models and
anything else.

7.5.1.1 Reviewing capitalization: $Onsymlist and $Onuellist

Finally, one should be aware that item capitalization may be reviewed at any point by using two $
conditions. Namely typing the command

McCarl GAMS User Guide307

© 2022 Prof. Bruce McCarl

$Onsymlist

beginning in column 1 gives a list of all symbols in the program and they as they are capitalized. This is
illustrated (with some additional formatting) for the dispset2.gms example below

SETS

 A

 b

PARAMETERS

 tT

Similarly, using the command in the dispset2.gms example

$Onuellist

beginning in column 1 gives all of the set element entries GAMS has found in the order and
capitalization they will appear in the output as illustrated below.

Unique Elements in Entry Order

 1 Total LINE newone next UNIQUETOhere

7.5.2 Set element order

GAMS operates on a first in first out basis. The order of output items is always controlled by the first
time something is seen. Many users are frustrated with the ordering of set elements in the output. This
can be changed.

It is worthwhile knowing the rules that ordering follows. GAMS uses something called the unique
element list (UEL) to store set elements. This is a single list of all set elements. The elements enter
that list in the order of their appearance and that is the order in which they will appear in the output i.e.
first in first out.

This means if I have the sets ONE and TWO with the elements below (dispset.gms)

set ONE /A,C,B,Total,8/;

Set TWO /D,A,F,TOTAL/;

Set items1through10 /1*10/;

Parameter item(two) /D 1,A 3, F 5/;

item("total")=sum(two$(not sameas(two,"total")),item(two));

display item,items1through10;

Then the display output will appear as follows. Note in the display of the parameter item that the output
appears with the set element Total in the second position even though it was typed in the last position
of the set called TWO and the parameter item is defined over that set.

---- 6 PARAMETER item

 A 3.000, Total 9.000, D 1.000, F 5.000

More Language Basics 308

© 2022 Prof. Bruce McCarl

---- 6 SET items1through10

8 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 9 , 10

This occurs because Total was seen before D and F in the sets because it was seen first in set ONE,
even though it was listed last in set TWO.

Similarly, look what has happened in the display of the set items1through10. Here 8 appears first then
1-7 and 9-10. This happens because the set element 8 appeared in the set ONE before 1-7 and 9-10
were seen.

Notes:

There are three ways of fixing such problems.

• One could change the name of the "total" item in the set named "two" so it was a name not seen before and

8 in the set "one" to new8 so it will not be seen again. For example I could utilize the commands
(dispset1.gms)

set ONE /A,C,B,Total,new8/
Set TWO /D,A,F,TOTAL2/
Parameter item(two) /D 1,A 3, F 5/;
Item("total2")=sum(two$(not sameas(two,"total2")),item(two));

yielding

A 3.000, D 1.000, F 5.000 TOTAL2 9.000

and

1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10

where use of total2 which had not been seen before and new8 which will not be seen again, restores the
desired ordering.

• One could define a set at the top of the program which contains all elements in the order desired using set

definitions as follows (dispset3.gms)

 set UELORDER /A,B,C,D,F,Total,1*20/
 set ONE /A,C,B,Total,8/
 Set TWO /D,A,F,TOTAL2/
 Set items1through10 /1*10/;

In turn the displays would always have "Total" at the end and the 1-10 in the desired order.

• One can employ an ordering set. Yet another approach can be used adding another dimension to the item

of interest and employing an ordering set (dispset4.gms). In such a case, I add new set as the first index
and put in a set that I know the order of. Then, by judiciously defining the first dimension I control the order.

Consider the following example where I want to better control appearance of the data in the table "items" on
output

set one /A,B,C,D,F,Average,ITEMS/;

Set PQ /Price,Quantity/;

Table Items(one,PQ)

 Price Quantity

McCarl GAMS User Guide309

© 2022 Prof. Bruce McCarl

 A 2 9000

 B 6 3000

 C 2.5 4000

 D 2.1 3000

 F 2.4 1.90;

items("Average",PQ)= SUM(one,items(one,pq))

 /sum(one,1$items(one,pq));

display items;

In turn the display output is

---- PARAMETER ITEMS

 Price Quantity

 A 2.000 9000.000

 B 6.000 3000.000

 C 2.500 4000.000

 D 2.100 3000.000

 F 2.400 1.900

 Average 3.000 3800.380

But suppose I wanted average first. I do this by adding the set numberordr with values r1 through
r100. Also I define items1 which is a new parameter with dimension one greater than items which has the
numberordr set defining it in the first index position. Then I insure the items I want first have lower values in the
numberordr place. (dispset4.gms). I also experiment with another ordering in the parameter items2.

Set numberordr /r1*r100/

set one /A,B,C,D,F,Average/

Set order2(numberordr,one)

 /r3.(A,D,F),r2.Average,r1.(C,B)/

Set PQ /Price,Quantity/

Table Items(one,PQ)

 Price Quantity

A 2 9000

B 6 3000

C 2.5 4000

D 2.1 3000

F 2.4 1.90;

items("Average",PQ)=

SUM(one,items(one,pq))/sum(one,1$items(one,pq));

parameter items1(numberordr,one,pq) ordered first way;

items1("r2",one,pq)$(not sameas(one,"average"))

=items(one,pq);

items1("r1","average",pq)=items("average",pq);

parameter items2(numberordr,one,pq) ordered second way;

items2(numberordr,one,pq)

=sum(order2(numberordr,one),items(one,pq));

display items,items1,items2;

More Language Basics 310

© 2022 Prof. Bruce McCarl

In turn the output is

----PARAMETER ITEMS1

 Price Quantity

r1.Average 3.000 3800.380

r2.A 2.000 9000.000

r2.B 6.000 3000.000

r2.C 2.500 4000.000

r2.D 2.100 3000.000

r2.F 2.400 1.900

---- 18 PARAMETER ITEMS2

 Price Quantity

r1.B 6.000 3000.000

r1.C 2.500 4000.000

r2.Average 3.000 3800.380

r3.A 2.000 9000.000

r3.D 2.100 3000.000

r3.F 2.400 1.900

where note by manipulating the association of items in the numberordr set with the things I wish
reordered I can rearrange the output.

7.5.3 Reviewing set element ordering: $Onuellist

Finally, item ordering can be reviewed at any point by typing the command

$Onuellist

beginning in column 1. This causes GAMS to list all of the set element entries it has found in the order
they will appear in the output as follows (dispset.gms)

Unique Elements in Entry Order

1 A C B Total 8 D

7 F 1 2 3 4 5

13 6 7 9 10

7.6 Conditionals

Frequently GAMS modelers need to be able to write expressions that operate over less than full sets or
incorporate various model features conditionally depending on data. Such tasks are accomplished in
GAMS using conditionals.

Basic forms of conditionals

Conditional placement and program execution speed

Forms of conditional / logical true false statements

Nesting logical conditions

The conditional alternative – the tuple

7.6.1 Basic forms of conditionals

There are four types of run time conditionals (for compile time conditionals see the Conditional
Compilation chapter).

• The GAMS $ condition

McCarl GAMS User Guide311

© 2022 Prof. Bruce McCarl

• The If statement

• The While statement

• The Repeat statement

Each is covered below.

7.6.1.1 $ conditionals

A $ condition is placed in GAMS statements and causes an action to occur if the conditional is true.
The basic $ conditional form is

term$logical condition

which says include the item term only if the logical condition is true. The forms of logical conditions are
reviewed below. For now I will use a conditional that a named item be nonzero for illustration

X$(y gt 0) = 10;

In this case the conditional says set X=10 if the scalar y is greater than zero.

7.6.1.1.1 Ways $ conditionals are employed

$conditionals appear in a number of ways in models. Fundamentally, they are used to:

• Control whether an item is calculated-- causing calculations to occur only if certain conditions are true.

• Control the inclusion of terms in equations -- causing terms to be included only if certain conditions

are true.

• Control the elements of a set that are referenced in an expression so that less than the full set of

elements enters into the calculation and those that do enter only if certain conditions are true.

• Control whether equations are defined in a model -- causing selected constraint equations to only

appear in the model passed to a solver only if certain conditions are true.

• Control the incidence of displays -- causing displays to occur only things only if certain conditions are

true.

• Abort a program if desired.

7.6.1.1.1.1 Suppressing calculation of items (left hand side)

GAMS replacement statements involve an item to change in value on the left hand side and a set of
terms that constitute the new value on the right hand side. One may cause the items to be changed
only if certain conditions are met. This is controlled with conditionals. $conditionals are used to do this
and may control whether the replacement calculation is done alt all or whether selected cases of it are
done (only if the left hand side is defined over set elements) on a case by case basis. The general
format for such a case is

More Language Basics 312

© 2022 Prof. Bruce McCarl

namedparameter$logical condition=term;

or

namedparameter(setelementdependency)$logical condition=term;

and specifies that the namedparameter is set equal to the term only if the logical condition is true.

Examples:

(conditional.gms)

X$(qq gt 0)=3;

qq $(sum(I,q(i)) gt 0)=4;

qq $ (sum(i,abs(a(i))) gt 0)=1/sum(i,a(i));

a(i) $(qq gt 0) = q(i)+a(i);

a(i) $a(i) = q(i)/a(i);

All say implement this replacement statement changing the value of this parameter or its specific case only if
the logical condition is true. Thus after the first statement above if X started with a value of 7 and qq was
negative causing a false evaluation of the logical condition then X would finish that statement with a value of 7.
On the other hand, if qq was positive then X would finish that statement with a value of 3.

Notes:

• In these cases the namedparameter value will be altered only if the logical condition is true.

Otherwise, if the logical condition is false, the value of the item namedparameter will retain it's
original value (or the default value of zero).

• This is known in GAMS terminology as a conditional on the left hand side.

• Many other logical condition forms are possible as explained below.

• The third and fifth assignments contain a common procedure where a division is done only if the

denominator is non-zero.

• When the $ is on the left hand side, the equation is only computed if the logical condition is true

potentially making the program faster.

• The first four cases cause the replacement statement to be entirely skipped if the conditional is

false. The last conditional operates on a case specific basis since the replacement is done for the
elements of i and the conditional is also dependent on i with its truth dependent upon the choice of
i. Thus in the last statement a(i) is calculated only when it has a non zero value.

• The conditional in the next to last case does not include terms dependent on i so none of the a(i)

will be replaced if the conditional fails.

7.6.1.1.1.2 Suppressing terms in equations (right hand side)

GAMS replacement statements involve an item to change in value on the left hand side and a set of
terms that constitute the new value on the right hand side. The terms on the right hand side may be
conditionally included. $conditionals are used to do this and may act on the term for all cases or on a
case by case basis (only if the conditional is set element dependent). They may occur in replacement
statements or in model equation specification statements (.. statements). The general format for such a
case is

McCarl GAMS User Guide313

© 2022 Prof. Bruce McCarl

Namedparameter = term1+term$logical condition

or

Namedequation.. term1+term$logical condition =L= other terms;

and specifies that the term is added into the calculation of namedparameter or the namedequation only if
the logical condition is true.

Example:

(conditional.gms)

qq = qq+1$(x gt 0);

qq = 1$(x gt 0);

q(i) = a(i)+1$(a(i) gt 0);

q(i) = a(i)$(a(i) gt 0);

X = sum(I,q(i))$(qq gt 0)+4;

Eq4.. xvar+yvar$(qq gt 0)=e=3;

Eq5(i).. ivar(i)$(a(i) gt 0)+yvar$(qq gt 0)=e=3;

All say include this term only if the logical condition is true.

Notes:

• In these cases the term will be included only if the logical condition is true.

• The third fourth and last cases include terms differentially depending on the set element I being

referenced.

• The term may be the only one in a replacement as in the second case. In such a situation the

expression is treated as if it were qq = 0 + 1$(x gt 0); where the item on the left hand side
becomes zero if the condition on the right hand side fails.

• This is known in GAMS terminology as a conditional on the right hand side.

• Many other logical condition forms are possible as explained below.

• When the $ is placed outside a sum then the sum is only computed if the logical condition is true

potentially making the program faster.

• Right hand side conditionals do not stop replacements from occurring, but left hand side ones do

as elaborated on in the Calculating chapter.

7.6.1.1.1.3 Controlling indices in sums etc

It is common in algebra to want to do an operation not over all elements of a set but only over certain
ones. For example if one wishes to add up ai only when ai is positive one would want a condition on the
elements included in the sum as follows

More Language Basics 314

© 2022 Prof. Bruce McCarl

$Conditionals can be used to incorporate such restrictions. Namely they can be used to restrict the
elements of a set that will be explicitly entered into a sum, loop, or other set operation (e.g. prod,
smax,smin). Inclusion is controlled by a logical condition. Generally this logical condition will
incorporate set element dependent terms. The general format in a SUM context is

sum(namedset$set dependent logical condition, term)

where the above example is written as

X=sum(I$(q(i) gt 0),a(i));

where instead of sum you could use any other set operator like smin, smax or loop.

Examples:

(conditional.gms)

X=sum(I$(q(i) gt 0),a(i));

Loop((I,j)$(cost(I,j) gt 0),X=x+cost(I,j));

X=smin(I$(q(i) gt 0),q(i));

X=sum(I$(q(i) gt 0),1));

eq6(i).. sum(j$(cost(i,j) gt 1),cost(i,j)*tran(i,j))=e=1;

All include a set element dependent case in the sum or loop or smin only if the logical condition is true. In the
cases involving q(i) element I will be considered only if the data from the q parameter associated with set
element I is positive.

Notes:

• The general form is that the set operator appears then the target set (or sets) is identified and then

a $ appears followed by a logical condition then a term to be included in the calculation which is
usually dependent on the target set(s).

• The $ only allows a term associated with an element of the set to be added or otherwise

considered in the calculation if the logical condition is true.

• Many other logical condition forms are possible as explained below.

7.6.1.1.1.4 Suppressing model equations (left hand side)

Occasions occur where constraints should only be included in a model if particular conditions are met.
This again can be accomplished using $conditionals. The general format for such a case is

equation name$logical condition.. equation specification;

and specifies that the named equation is defined as that given in the equation specification only if the
logical condition is true.

McCarl GAMS User Guide315

© 2022 Prof. Bruce McCarl

Examples:

(conditional.gms)

Eq1$(qq gt 0).. xvar=e=3;

Eq2$(sum(I,q(i)) gt 0).. yvar=l=4;

Eq3(i)$(a(i) gt 0).. ivar(i)=g= -a(i);

Eq7(i)$(qq gt 0).. sum(j,ijvar(I,j))=g= -a(i);

All say define this equation only if the logical condition is true.

Notes:

• In these cases, the whole named equation (see the Eq1 case above) or cases thereof when

defined over a set (see the Eq3 case above) will be entered into the model only if the logical
condition is true.

• The last condition on Eq7 will suppress all the cases of the equation since the conditional is not

dependent on the set element i.

• This is also known in GAMS terminology as a conditional on the left hand side. This is essentially

identical to the suppressing calculation of items in a replacement context as discussed above.
Here the constraint will not be defined unless the conditional is true whereas above the execution of
a replacement was determined by the conditional.

• Many other logical condition forms are possible as explained below.

• When the $ is on the left hand side the equation is only formed if the logical condition is true

potentially making the program faster.

7.6.1.1.1.5 Conditionally displaying information

Conditionals may be used to cause the display of information if certain conditions are met. In such
cases one usually employs a conditional in conjunction with the display command (Note the display
command discussed in the Report Writing chapter). One of two forms of the command generally
appear. The first involves the if syntax as discussed below where a display is executed if a particular
condition is found to be true. Second, one can have the word display followed by a $condition. Therein
the display will only occur if the $condition is true.

The general format for a these conditional display commands is

display$condition listofitems;
if(condition, display listofitems);

as illustrated just below (conddisp.gms)

scalar x /0/,y /10/;

display$(x+y le 0) "display when sum of x and y le 0",x,y;

x=2;

if(x gt 0,

 display "X and y here if x is positive",x,y;

More Language Basics 316

© 2022 Prof. Bruce McCarl

);

display$(x > -1) "display with display$ at second place",x;

if((x+y > 2),

 display "X and y at first place if x+y is greater than 2",x,y;

);

if(x gt 0,display "X and y at first place if x is positive",x,y;);

All of these displays will only occur if the condition is true.

7.6.1.1.1.6 Terminating a program: Abort

Conditionals may be used to cause the execution of the program to be terminated. In such cases one
employs a conditional in conjunction with the abort command. The abort command operates just like a
display command with the same syntax excepting the word abort replacing display but halts the
program after it's execution. The general format for a conditional abort command is

if(condition,abort listofitems);

or

abort$condition listofitems;

An example is given below (abort.gms)

scalar x /0/;

if(x > 0,abort "i stopped at first place",x;);

*note next command is redundant to above

abort$(x > 0) "i stopped with abort$ at first place",x;

display "i got past first place" ,x;

x=2;

abort$(x > 0) "i stopped with abort$ at second place",x;

*note will not get to next line

if(x > 0,abort "i stopped at second place",x;);

When encountered the abort command causes the job to stop with an execution error and displays the
information in the command.

Abort can also be used unconditionally to stop a job just inserting the line

abort listofitems;

in the program.

7.6.1.2 If, Else, and Elseif

Another way of imposing conditionals involves use of the if statement syntax. Such statements may
also involve use of else and elseif statements. In general, if statements that are not in equation
specification statements can be written as $ conditions, but the use of if can make GAMS code more
readable. If statements are covered in the Control Structures chapter.

McCarl GAMS User Guide317

© 2022 Prof. Bruce McCarl

7.6.1.3 While

Another way of imposing conditionals involves use of the while statement. In general, the while allows
one to repeatedly execute a block of statements until a logical condition is satisfied. While statements
are covered in the Control Structures chapter.

7.6.1.4 Repeat

Another way of imposing conditionals involves use of the repeat statement. In general, the repeat syntax
causes one to execute a block of statements over and over until a logical condition is satisfied. Repeat
statements are covered in the Control Structures chapter.

One can exit or jump to the end of a Repeat statement using break or continue as discussed in the
context of a Loop here.

7.6.2 Conditional placement and program execution speed

As discussed above $ conditionals can be employed to cause calculations to not be done potentially
causing faster executing code. For example the statement (conditional.gms)

X=sum(I,a(i)) $qq;
Eq5(i)$qq.. sum(j,ijvar(I,j))=g= -a(i);

will generally be faster than

X=sum(I$qq,a(i));
Eq6(i).. sum(j,ijvar(I,j)) $qq =g= -a(i) $qq;

because some work is avoided. In general, conditionals are important tools to speed up execution. The
Speeding up GAMS chapter elaborates.

7.6.3 Forms of conditional / logical true false statements

Above we used a very limited set of conditionals. A much broader set can be used. Conditionals can
involve numerical relationships, the presence of numbers, sets, or acronyms. Each is slightly different
and will be discussed separately.

Numerical comparisons

Data existence

Set comparisons

Acronym comparisons

7.6.3.1 Numerical comparisons

Conditionals can be formed employing logical conditions which compare two numerical expressions to
see if they are equal, unequal, or if one or the other is larger. The general form is

More Language Basics 318

© 2022 Prof. Bruce McCarl

Term$(terma operator termb)

The operators are as follows:

Relation GAMS operator Explanation

Equality Eq or = Does terma = termb
Not Equal Ne or <>
Greater than GT or > Is terma > termb
Greater or = GE or >= Is terma > termb
Less than LT or < Is terma < termb
Less or = LE or <= Is terma < termb

Each is discussed below.

7.6.3.1.1 Eq: =

One may wish to do conditional processing dependent upon whether two numerical expressions are
equal or not. The form of the syntax that can be employed in such a case is

Terma eq termb

or

Terma = termb

where eq or = can be used interchangeably. Examples from formconditional.gms

If(x eq 2, z=2);

Eq1$(x=2).. zz=e=3;
Loop(I$(sqrt(x)+1 = y+2),z=z+1)

7.6.3.1.2 Ne:<>

One may wish to do conditional processing dependent upon whether two numerical expressions are
unequal or not. The form of the syntax that can be employed in such a case is

Terma ne Termb

or

Terma <> Termb

where ne or <> can be used interchangeably. Examples from formconditional.gms

If(x ne 2, z=2);

Eq2$(x<>2).. zz=e=3;
Loop(I$(sqrt(x) <> y+2),z=z+1)

McCarl GAMS User Guide319

© 2022 Prof. Bruce McCarl

7.6.3.1.3 Gt: >

One may wish to do conditional processing dependent upon whether one numerical expression is
greater than another or not. The form of the syntax that can be employed in such a case is

Terma gt Termb

or

Terma > Termb

where gt or > can be used interchangeably. Examples from formconditional.gms

If(x gt 2, z=2);

Eq3$(x>2).. zz=e=3;
Loop(I$(sqrt(x) > y+2),z=z+1)

7.6.3.1.4 Lt: <

One may wish to do conditional processing dependent upon whether one numerical expression is less
than another or not. The form of the syntax that can be employed in such a case is

Terma lt Termb

or

Terma < Termb

where Lt or < can be used interchangeably.

Examples from formconditional.gms

If(x Lt 2, z=2);

Eq4$(x<2).. zz=e=3;
Loop(I$(sqrt(x) < y+2),z=z+1)

7.6.3.1.5 Ge: >=

One may wish to do conditional processing dependent upon whether one numerical expression is
greater than or equal to another or not. The form of the syntax that can be employed in such a case is

Terma ge Termb

or

Terma >= Termb

More Language Basics 320

© 2022 Prof. Bruce McCarl

where ge or >= can be used interchangeably.

Examples from formconditional.gms

If(x ge 2, z=2);

Eq5$(x>=2).. zz=e=3;
Loop(I$(sqrt(x) >= y+2),z=z+1)

7.6.3.1.6 Le: <=

One may wish to do conditional processing dependent upon whether one numerical expression is less
than or equal to another or not. The form of the syntax that can be employed in such a case is

Terma le Termb

or

Terma <= Termb

where Le or <= can be used interchangeably.

Examples from formconditional.gms

If(x Le 2, z=2);

Eq6$(x<=2).. zz=e=3;
Loop(I$(sqrt(x) <= y+2),z=z+1)

7.6.3.1.7 Eqv: <=> Imp: ->

One may wish to do conditional processing dependent upon whether one numerical expression has a
particular logical equivalence relationship to another or not. The form of the syntax that can be
employed in such a case is

item1 opr item2

where opr is

Eqv for logical equivalence

or

<=> for logical equivalence

and

Imp for logical implication

McCarl GAMS User Guide321

© 2022 Prof. Bruce McCarl

or

-> for logical implication

These operate with results as follows

Result of imp condition Result of eqv condition

item1 -> item2 item1 <=> item2

item1 item1 item1 imp item2 item1 eqv item2

 0 0 1 1

 0 1 1 0

 1 0 0 0

 1 1 1 1

Example:

(impeqv.gms)

LOOP(CASE,

 result(case,"isimp")=0;

 result(case,"isimp")=0;

 result(case,item)=data(case,item);

 IF(DATA(case,"a") imp data(case,"b")

 ,result(case,"isimp")=1;);

 IF(DATA(case,"a") eqv data(case,"b"),

 result(case,"iseqv")=1;);

);

7.6.3.2 Data existence

Conditionals can be formed employing logical conditions which are true if a data item exists with
existence defined as the presence of a nonzero value or if a numerical expression exists (again with
existence being defined as the expression result being nonzero).

7.6.3.2.1 Existence/nonzero data item or result

One may wish to do conditional processing dependent upon whether the numerical value of a scalar
item, set indexed parameter or calculation result is nonzero or not. The form of the syntax that can be
employed in such a case is

Action$Term

or

If(Term, statements);

or

While(Term, statements);

Examples from dataconditional.gms

Z=z+2$x;

More Language Basics 322

© 2022 Prof. Bruce McCarl

If(x, z=2);

Eq5$doiwantconstraint.. zz=e=3;

Loop(I$(q(i)+q(i)**2),z=z+1)

While(x*x-1, z=z+2;x=x-1);

all of which will be executed if the item being tested in the conditional is nonzero.

This all could be expressed as $(Term <> 0) but this syntax is often utilized because it is more
compact.

7.6.3.2.2 Computation over a set

One may wish to do conditional processing dependent upon whether the numerical value of a sum, prod,
smax or smin over a set is nonzero or not. The form of the syntax that can be employed in such a case
is

Action$Sum(set,expression)

or

If(Smin(set,expression), statements);

or

While(Smax(set,expression), statements);

Examples:

(dataconditional.gms)

Z=z+2$sum(I$q(i),1);

If(smin(I,q(i)), z=2);

Eq5$prod(I,q(i)).. zz=e=3;

Eq6(j)$sum(I,abs(data(I,j))).. zz=e=3;

Loop(I$sum(j,abs(data(I,j))),z=z+1)

While(prod(I,q(i)), z=2;q(i)=q(i)-2);

Notes:

• In these cases the term subject to the conditional will be evaluated or the calculation will be

executed if the final result of the set dependent expression is nonzero.

• This all could be expressed as $(Term ne 0) but the syntax $(Term) is often utilized because it is

more compact.

• The conditional as in the expression sum(I$q(i),1) reveals a commonly used GAMS trick for seeing

whether there is any nonzero data in an item (by counting it where the count will be zero when all the
data in the vector are zero).

• Including the conditional expression $sum(j,abs(data(I,j)) is a common GAMS trick for seeing

whether there is any nonzero data across all the j alternatives in a row I of data(I,j).

McCarl GAMS User Guide323

© 2022 Prof. Bruce McCarl

7.6.3.3 Set comparisons

Conditionals can be formed employing logical conditions which depend on set elements in terms of the
relative placement of the element being worked on, the contents of the text for a set element or whether
an item falls in a subset or tuple. The forms follow.

7.6.3.3.1 Element position: Ord and Card

One may wish to do conditional processing dependent upon the relative position of an element within a
set. The Ord and Card functions as discussed in the sets chapter can be used in conditionals. Ord
(setelement) returns the number of the element being referenced relative to the total number of elements
in the set. Card(setname) gives the total number of elements in the named set. These numerical values
can be subjected to any of the numerical comparisons above.

Examples:

(setconditional.gms)

If one wishes to do special things with respect to the first, last and intermediate elements in a set one could
use code like

FIRSTBAL(period)$(ord(period) eq 1)..

 SELL(period) + STORE(period) =L= INVENTORY;

INTERBAL(PERIOD)

 $(ORD(period) GT 1 and ORD(period) lt CARD(period))..

 SELL(PERIOD) =L= STORE(PERIOD-1) - STORE(PERIOD);

LASTBAL(PERIOD)$(ORD(period) eq CARD(period))..

 SELL(PERIOD)=L= STORE(PERIOD-1);

or
loop(period

 $(ORD(period) GT 1 and ORD(period) lt CARD(period)),

Z=z+1;);

Notes:

• Ord does not work with sets that contain calculated elements or are otherwise unordered, only sets

with a priori explicitly specified values.

• Ord refers to the relative position of each element in the set not necessarily the order in which they

are typed. In particular, the order may be different as determined by the rules for set ordering as
discussed in the Rules for Item Capitalization and Ordering chapter.

• Card works with any sets whether they contain calculated elements or not.

• Testing for Ord(i) = 1 looks to see if one is on first element.

• Testing for Ord(i) = Card(i) looks to see if one is on last element.

7.6.3.3.2 Element text comparison: Sameas and Diag

One may wish to do conditional processing dependent upon the text defining a name of a set element
matching the text for a particular text string or matching up with the text for a name of a set element in

More Language Basics 324

© 2022 Prof. Bruce McCarl

another set. This can be done in GAMS using the sameas or diag commands. SAMEAS returns a
value of true or false using the syntax

SAMEAS(setelement,othersetelement)

or

sameas(asetelement,"texttotest")

where the first sameas is true if the name of setelement is the same as the name of othersetelement
and is false otherwise. Similarly, sameas(asetelement,"texttotest") is true if name of asetelement is
the same as the texttotest and false otherwise.

DIAG works identically but returns numerical values of one if the text matches and zero otherwise.

Diag(setelement,othersetelement)

or

Diag(asetelement,"text")

Examples:

(setconditional.gms)

The following red uses of sameas and diag will only permit the case of I and j to be part of the sum where the
elements for both the same and in this case will only work for the element named Boston and do not require
the sets to be subsets of each other. The blue cases will only operate for the element of I which has the name
"new york".

Set cityI / "new york", Chicago, boston/;

Set cityj /boston/;

Scalar ciz,cir,cirr;

ciZ=sum(sameas(cityI,cityj),1);

ciR=sum((cityI,cityj)$ sameas(cityI,cityj),1);

ciRR=sum(sameas(cityI,"new york"),1);

ciZ=sum((cityi,cityj)$diag(cityI,cityj) ,1);

ciRR=sum(cityi$diag(cityI,"new york"),1);

7.6.3.3.3 Subset or tuple membership

One may wish to do conditional processing dependent upon whether a set element is defined in a
particular subset or tuple. The form of the syntax that can be employed in the subset case is

Action$subset(setelement)

or

If(subset("quotedsetelement"), Action);

or

While(subset("quotedsetelement"), Action);

or in the tuple case is

McCarl GAMS User Guide325

© 2022 Prof. Bruce McCarl

Action$tuplename(setelement, set2element)

or

If(tuplename(setelement, set2element), Action);

or

While(tuplename(setelement, set2element), Action);

where in both setelement is a set name which must be controlled within the action or earlier in a Loop
statement and quotedsetelement is a particular set element name encased in quotes.

Examples:

(setconditional.gms)

ciZ=sum((allcity,cityj) $cityi(allcity),1);
ciZ$cityi("boston")=sum(allcity,1);
loop((allcity,cityj) $ tuple(allcity,cityj),
 ciz=ciz+ord(allcity)+ord(cityj)*100);
if(cityj("boston"),ciz=1);
if(tuple("orlando","boston"),ciz=1);

7.6.3.4 Acronym comparisons

Conditionals can be formed employing logical conditions which are based on acronyms, which are
character string values, but many only involve the eq , = , ne , or <> operators. The forms are as
follows:

Logical conditions. The syntax is

If(paramcontainingacronym op acronym ,action);

or

Action$(paramcontainingacronym op acronym)

where op is one of the eq , = , ne , or <> operators.

You must do comparisons with other acronyms not with text strings.

Examples:

(acronym.gms)

acronyms nameforit,nextone;

acronym acronym3

acronym doit

parameter textstrings(i)

 /i1 nameforit

 i2 nextone

 i3 acronym3/ ;

loop(i,

More Language Basics 326

© 2022 Prof. Bruce McCarl

 if(textstrings(i)=nameforit,put 'Something special'););

aa(i)$(textstrings(i) =doit).. 3*x(i)=e=1;

7.6.4 Nesting logical conditions

Conditionals can be formed employing more than one logical condition. This is called nesting.

Nesting operators

Nested $ conditionals

7.6.4.1 Nesting operators

Sometimes it is desirable to use complex logical conditions where several things are simultaneously
true or at least one of several things. This can be done by combining conditions using logical operators
or complex (nested) $ conditions. The logical operators are And, Or, Xor and Not along with nested $
conditions.

And - perform an action if two or more conditionals are true simultaneously
Or perform an action if at least one of two or more conditionals are true
Xor perform an action if only one of two or more conditionals are true
Not do something when a conditional is not true
Nested $ statements can involve multiple $ conditions

Each is discussed below.

7.6.4.1.1 And

When one wishes to perform an action if two or more conditionals are true simultaneously one can join
them with an and operator. This involves using syntax like

Action$(logical condition 1 and logical condition 2 and
 Logical condition 3)

or

If((logical condition 1 and logical condition 2 and
 Logical condition 3), Action);

or

While((logical condition 1 and logical condition 2 and
 Logical condition 3), Action);

Examples:

(complexcond.gms)

u(k)$(s(k) and t(k)) = a(k);

u(k)$(s(k) and u(k) and t(k)) = a(k);

loop(k,if(s(k) lt 0 and t(k), u(k) = a(k)));

McCarl GAMS User Guide327

© 2022 Prof. Bruce McCarl

Notes:

• All of the logical conditions must be simultaneously true for the total logical condition to be true.

• The and operator can be mixed with other and, or, not, xor, nested $ in a complex logical

condition. When this is done GAMS will execute the various statement components according to a
predefined operator precedence. However it is advisable to be cautious and use parentheses to
carefully control the meaning of the condition.

7.6.4.1.2 Or

When one wishes to perform an action if at least one of two or more conditionals apply one can join
them with an or operator. This involves using syntax like

Action$(logicalcondition1 or logicalcondition2 or
 logicalcondition3)

or

If(logicalcondition1 or logicalcondition2 or
 logicalcondition3), Action);

or

While(logicalcondition1 or logicalcondition2 or
 logicalcondition3), Action);

Examples:

(complexcond.gms)

u(k)$(s(k) or t(k)) = a(k);

u(k)$(s(k) or u(k) or t(k)) = a(k);

loop(k,if(s(k) lt 0 or t(k), u(k) = a(k)));

Notes:

• Any one or more than one of the logical conditions must be simultaneously true for the total logical

condition to be true.

• The or operator can be mixed with other and , or , not, xor , nested $ in a complex logical condition.

 When this is done GAMS will execute the various statement components according to a predefined
operator precedence. However it is advisable to be cautious and use parentheses to carefully
control the meaning of the condition.

7.6.4.1.3 Xor

When one wishes to perform an action if and only if one of two or more conditionals apply one can join
them with an xor operator. This involves using syntax like

Action$(logical condition 1 xor logical condition 2 xor
 Logical condition 3)

More Language Basics 328

© 2022 Prof. Bruce McCarl

or

If(logical condition 1 xor logical condition 2 xor
 Logical condition 3, Action);

or

While(logical condition 1 xor logical condition 2 xor
 Logical condition 3, Action);

Examples:

(complexcond.gms)

u(k)$(s(k) xor t(k)) = a(k);

u(k)$(s(k) xor u(k) xor t(k)) = a(k);

loop(k,if(s(k) lt 0 xor t(k), u(k) = a(k)));

Notes:

• One and only one not more than one of the logical conditions can be simultaneously true if the total

logical condition to be true.

• The xor operator can be mixed with other and , or , not, xor , nested $ in a complex logical

condition. When this is done GAMS will execute the various statement components according to a
predefined operator precedence. However it is advisable to be cautious and use parentheses to
carefully control the meaning of the condition.

7.6.4.1.4 Not

When one wishes to do something when a conditional is not true one can prefix it a not operator. This
involves using syntax like

Action$(not logical condition 1)

or

If(not logical condition 1, Action);

or

While(not logical condition 1), Action);

Examples:

(complexcond.gms)

u(k)$(not s(k)) = a(k);

loop(k,if(not (s(k) lt 0), u(k) = a(k)));

Notes:

• When a logical condition is preceded by a not then the logical condition must be false for the not of

it to be true.

• The not operator can be mixed with other and , or , not, xor , nested $ in a complex logical

McCarl GAMS User Guide329

© 2022 Prof. Bruce McCarl

condition. When this is done GAMS will execute the various statement components according to a
predefined operator precedence. However it is virtually imperative that you set the not off in
parentheses to insure the meaning of the statement.

7.6.4.2 Nested $ conditionals

$ conditions can be nested. The term $(logicalcondition1$(logicalcondition2)) can also be written as
$(logicalcondition1 and logicalcondition2). For nested $ conditions, all succeeding expressions after
the first $ must be enclosed in parentheses. Consider the following example (complexcond.gms),

u(k)$(s(k)$t(k)) = a(k) ;

The assignment will be made only for those members of k that are also members or associated with
data in both s and t. Note the position of the parenthesis in the $ condition. The statement above can
be rewritten as

u(k)$(s(k) and t(k)) = a(k) ;

To assist with the readability of statements, one should usually employ the operator and instead of
nesting dollar operators.

7.6.4.2.1 Nested Operators and precedence order

Nested operators are acted on in a fixed precedence order and are also operated on in an order relative
to mathematical operators. The default precedence order in the absence of parentheses is shown below
in decreasing order.

Operation Operator Precedence

Exponentiation ** 1
Multiplication, Division * / 2
Addition, Subtraction + - 3
Numerical Relationships < ,<=, = , <>, >=, > 4

lt , le ,eq, ne , ge, gt
Not not 5
And and 6
Or, Xor or, xor 7
Logical Equivalence & Imp, Eqv 8

 Logical implication ->, <=>

When operators with the same precedence appear in an expression or logical condition they are
performed from left to right.

7.6.4.2.1.1 Note of caution

It is always advisable to use parentheses rather than relying on the precedence order of operators. It
prevents errors and makes the intention clear. It is especially important to encapsulate not operators in
parentheses to limit their scope.

More Language Basics 330

© 2022 Prof. Bruce McCarl

Examples:

(complexcond.gms)

u(k)$(s(k) and {u(k) xor t(k)}) = a(k);
u(k)$(s(k) and {u(k) or t(k)}) = a(k);
u(k)$([not s(k)] and {u(k) or t(k)}) = a(k);
u(k)$(s(k) xor {u(k) and t(k){) = a(k);
u(k)$(s(k) xor [not {u(k) and t(k)}]) = a(k);

Notes:

• You can use (),[] and {} in pairs interchangeably.

• When the not operator is mixed with other and, or, not, xor, nested $ in a complex logical condition

it is virtually imperative that you set the not off in parentheses to insure the meaning of the
statement.

• When more than one and, or, not, xor, nested $ operator are used in a complex logical condition

GAMS will execute the various statement components according to a predefined operator
precedence.

7.6.5 The conditional alternative: the tuple

Often the conditionals required in a model are complex and are used in a repetitive manner. It is
sometimes simpler to establish a tuple that encapsulates the conditionals and only use that tuple
instead of the complex set of conditionals.

Example:

In the model below the logical condition in red that appears repetitively can be replaced with the tuple making
the model visually simpler plus potentially easier to maintain. (tuple.gms)

TCOSTEQ.. TCOST =E= SUM((PLANT,MARKET)

 $(supply(plant)

 and demand(market)

 and distance(plant,market))

 , SHIPMENTS(PLANT,MARKET)*

 COST(PLANT,MARKET));

 SUPPLYEQ(PLANT).. SUM(MARKET

 $(supply(plant)

 and demand(market)

 and distance(plant,market))

 ,SHIPMENTS(PLANT, MARKET))

 =L= SUPPLY(PLANT);

 DEMANDEQ(MARKET).. SUM(PLANT

 $(supply(plant)

McCarl GAMS User Guide331

© 2022 Prof. Bruce McCarl

 and demand(market)

 and Distance(plant,market))

 , SHIPMENTS(PLANT, MARKET))

 =G= DEMAND(MARKET);

where the alternative with the tuple is

set thistuple(plant,market) thistuple expressing conditional;

thistuple(plant,market)$(supply(plant)
 and demand(market)

 and distance(plant,market))

 =yes;

TCOSTEQ2.. TCOST =E= SUM(thistuple(plant,market)

 , SHIPMENTS(PLANT,MARKET)*

 COST(PLANT,MARKET));

SUPPLYEQ2(PLANT).. SUM(thistuple(plant,market)

 ,SHIPMENTS(PLANT, MARKET))

 =L= SUPPLY(PLANT);

DEMANDEQ2(MARKET).. SUM(thistuple(plant,market)

 , SHIPMENTS(PLANT, MARKET))

 =G= DEMAND(MARKET);

Notes:

• More on tuples appears in the Sets and Calculating chapter.

• One should be careful here with the fact that a tuple is only calculated in a static manner and the

calculation will only be updated if it is reissued as discussed in the Calculating chapter.

7.7 Control Structures

There is a class of statements in GAMS that control the number of times a group of statements are
executed. The If syntax controls whether a single use occurs. The For, While, Loop and Repeat
statements permit multiple executions of a set of statements. Each is discussed here.

If, Else, and Elseif

Loop

While

For, To, Downto, and By

Repeat, Until

7.7.1 If, Else, and Elseif

Another way of imposing conditionals involves use of the If statement which also involves the else and
Elseif statements. The optional else part allows specification for cases where the If fails. The Elseif part
allows an alternative If test to be presented relative to the original.

• The basic syntax for an If statement without an else or Elseif is:

If (logical condition,

More Language Basics 332

© 2022 Prof. Bruce McCarl

statements to be executed If true ;);

• The basic syntax for an If statement with an else is:

If (logical condition,
statements executed If condition true;

else
statements execut. If cond. not true;);

• The basic syntax for an If statement with an Elseif is:

If (logical condition,
statements to be executed If true ;

Elseif logical condition,
statements executed If this conditional
is true and the earlier one is false);

• The basic syntax for an If statement with two Elseif s is:

If (logical condition,
statements to be executed If true ;

Elseif logical condition,
statements executed If conditional is
true and the earlier one is false ;

Elseif logical condition,
statements executed If conditional is
true and both the earlier ones are false

);

An else could also be added to 3 or 4 that would be executed when all the previous conditionals were
not satisfied.

Examples:

(ifelseitelse.gms)

A simple If

If (key <= 0,
data1(i) = -1 ;
key2=case1;

) ;

A simple if when $onend is present

$onend
If key <= 0 then

data1(i) = -1 ;
key2=case1;

endif ;

An If with an else

If (key <= 0,
data1(i) = -1 ;

 key2=case1;
else
 data1(i) = data1(i)**3 ;

McCarl GAMS User Guide333

© 2022 Prof. Bruce McCarl

 key2=case4;
) ;

A complex If with more than one Elseif and an else

If (key <= 0,
data1(i) = -1 ;
key2=case1;

Elseif ((key > -1) and (key < 1)),
data1(i) = data1(i)**2 ;
key2=case2;

Elseif ((key >= 1) and (key < 2)),
data1(i) = data1(i)/2 ;
key2=case3;

else
data1(i) = data1(i)**3 ;
key2=case4;

) ;

An If else statement group that contains solve statements.

solve ml using lp maximizing z;

If ((ml.modelstat eq 4),

display 'model ml was infeasible',

 'relaxing bounds on x and solving again';

 x.up(i) = 2*x.up(i) ;

 solve ml using lp minimizing z ;

else

 If ((ml.modelstat ne 1),

abort "error solving model ml" ;

);

);

Notes:

• When $onend is not present the If is followed by an open (and a close) which surround the logical

condition and the subsequent statements to be executed. The logical condition is followed by a
comma.

• When $onend is present the If is followed by a logical condition a then followed by the subsequent

statements to be executed. The statement is ended with an endif.

• The statements executed by an If are ended by the appearance of an Elseif or an else.

• One cannot place parameter, acronym, set, file, table, model, equation, variable or scalar

statements or .. equation declarations in the statements to be executed when the If logical condition
is true.

• Many other logical condition forms are possible as explained in the Conditional chapter.

• If statements usually can also be written as a set of dollar conditionals, but the If statement may

make the code more readable.

• The body of the If statement can contain solve statements.

More Language Basics 334

© 2022 Prof. Bruce McCarl

7.7.1.1 Alternative syntax

A dollar command can be used to alter the syntax for the If statement. Namely, Endif is introduced as a
keyword when $Onend is active and becomes illegal upon use of $Offend. When active, Endif ends the
If statement. The dollar command option is employed using the syntax

$Offend

or

$Onend

Setting the $Onend dollar command will make the alternative syntax valid, but makes the standard
syntax invalid.

7.7.1.1.1 Endif

Ordinarily Ifs are of the form

If(conditional,
 statements ;
) ;

and when $Onend is specified the statement becomes

$Onend
If conditional then
 statements ;
Endif;

Example:

(control.gms)

The following two commands are equivalent and illustrate the ways the syntax varies.

If (x ne 0,
 DATA(I)=12 ;
);
$Onend
If x ne 0 then
 DATA(I)=12 ;
Endif;

7.7.2 Loop

The Loop statement allows one to execute a group of statements for each element of a set. The syntax of the
Loop statement is,

Loop((sets_to_vary),
statement or statements to execute

);

McCarl GAMS User Guide335

© 2022 Prof. Bruce McCarl

If the sets_to_vary contains one set, then the statement can be

Loop(set_to_vary,
statement or statements to execute

);

The Loop statement causes GAMS to execute the statement or statements for each member of sets_to_vary
in turn. The order of evaluation is determined by the contents of the UEL list as discussed in the Rules for Item
Capitalization and Ordering chapter. One can also break out of loops using Break and Continue as discussed
below.

Example:

The following syntax would cause the model to be solved for each element within the set I. In that Loop I first
revise some data in the model in accordance with the ith element of savparam. In turn the objective value
would be saved in the ith element of data.

Loop (i,

 problemdata=savparam(i);

 Solve mymodel using lp maximizing profit;

 Data(i)=profit.l;

) ;

Notes:

• Within the Loop the index is treated as If it referenced only the single set element that the Loop

index takes on during each pass. Thus If the set I in the example above had the elements corn and
wheat the first pass would act as If it were

problemdata=savparam("corn");

Solve mymodel using lp maximizing profit;

Data("corn")=profit.l;

and on the second pass as If it were

problemdata=savparam("wheat");

Solve mymodel using lp maximizing profit;

Data("wheat")=profit.l;

• The Loop set elements addressed may be subject to a conditional as discussed in the Conditionals

chapter.

• Loops may involve more than one set e.g. Loop((I,j), statement or statements to execute);

• One cannot include parameter, acronym, set, file, table, model, equation, variable or scalar

statements or .. equation declarations inside a Loop statement.

• It is illegal to modify any set indexed by the Loop statement inside the body of the Loop.

• Solves can appear within a Loop and Loops are often conveniently used to do a scenario based

study with repeated solves.

More Language Basics 336

© 2022 Prof. Bruce McCarl

• A Loop is often used to perform iterative calculations.

• Break causes the Loop to be terminated and can have an argument where break 1 causes the

innermost Loop to terminate, break 2 the next most inner loop and so forth. The example

Breakcontinue.gms illustrates use of this. This also works within WHILE, REPEAT and FOR

commands.

• Continue causes execution to jump to the end of a Loop. The example Breakcontinue.gms illustrates

use of this. This also works for WHILE, REPEAT and FOR commands.

7.7.2.1 Alternative syntax

A dollar command can be used to alter the syntax for the Loop statement. Namely, Endloop is
introduced as a keyword when $Onend is active and becomes illegal upon use of $Offend. When active,
Endloop ends the Loop statement. The dollar command option is employed using the syntax

$Offend

or

$Onend

Setting the $Onend dollar command will make the alternative syntax valid, but makes the standard
syntax invalid.

7.7.2.1.1 Endloop

Ordinarily Loop statements require syntax of the form

Loop (settovary,
 statements ;
) ;

and when $Onend is specified the required syntax becomes

$Onend
Loop settovary do
 statements ;
Endloop;

Example:

(control.gms)

The following two commands are equivalent and illustrate the ways the syntax varies.

Loop (i,
 DATA(I)=12 ;
) ;
$Onend

https://www.gams.com/latest/docs/UG_FlowControl.html#UG_FlowControl_Break_Examples

McCarl GAMS User Guide337

© 2022 Prof. Bruce McCarl

Loop i do
 DATA(I)=12 ;
Endloop;

7.7.3 While

The While statement allows one to repeatedly execute a block of statements until a logical condition is
satisfied. Ordinarily, the syntax of the While statement is:

While (logical condition,
statements to be executed While condition is true;

);
But when $Onend is specified the statement becomes
$Onend
While conditional do

statements ;
Endwhile;

One can exit or jump to the end of a While statement using break or continue as discussed in the
context of a Loop here.

Examples:

A binary root finder using While (while.gms) is as follows

While (converge = 0 and iter lt lim,
root=(maxroot+minroot)/2;

iter=iter+1;

function_value=a-b*root+c*sqr(root);

If(abs(function_value) lt tolerance,

converge=1;

else

 If(sign(function_value1)=sign(function_value),

 minroot=root;

 function_value1=function_value;

else

 maxroot=root;

 function_value2=function_value;

);

);

);

or

$onend

While converge = 0 and iter lt lim do

More Language Basics 338

© 2022 Prof. Bruce McCarl

 root=(maxroot+minroot)/2;

 iter=iter+1;

 function_value=a-b*root+c*sqr(root);

 function_value=function_value;

 If(abs(function_value)) lt tolerance then

 converge=1;

 else

 if(sign(function_value1)=sign(function_value)) then

 minroot=root;

 function_value1=function_value;

 else

 maxroot=root;

 function_value2=function_value;

 endif;

 endif;

endwhile;

Notes:

• When $onend is not present While is followed by an open (and a close) which surround the logical

condition and the subsequent statements to be executed. Furthermore the logical condition is
followed by a comma.

• When $onend is present While is followed by a logical condition possibly in parentheses then a do

and the subsequent statements to be executed. Finally the statement is ended with an Endwhile.

• One cannot place parameter, acronym, set, file, table, model, equation, variable or scalar

statements or .. equation declarations in the in the statements to be executed If condition is true.

• Many other logical condition forms are possible as explained below.

• The total number of passes through the While statements can be limited using the option Forlim.

7.7.3.1 Alternative syntax

A dollar command can be used to alter the syntax for the While statement. Namely, Endwhile is
introduced as a keyword when $Onend is active and becomes illegal upon use of $Offend. When active,
Endwhile ends the While statement. The dollar command option is employed using the syntax

$Offend

or

$Onend

Entering the $Onend command will make the alternative syntax valid, but makes the standard syntax
invalid.

7.7.3.1.1 Endw hile

Ordinarily, While statements are of the form

McCarl GAMS User Guide339

© 2022 Prof. Bruce McCarl

While(conditional,
 statements ;
) ;

and when $Onend is specified the statement becomes

$Onend
While conditional then
 statements ;
Endif;

Example:

(control.gms)

The following two commands are equivalent and illustrate the ways the syntax varies.

While(x<10,
 x=x+0.01;
);
$Onend
While x<10 do
 x=x+0.01;
 Endwhile;

7.7.4 For, To, Downto, and By

The For statement allows one to repeatedly execute a block of statements over a successively varied
values of a scalar.

for (scalarq = startval to(downto) endval by increment,
statements;

);

where scalarq is a scalar
startval is the constant or scalar giving the value where scalarq will begin
endval is a constant or scalar giving the value that will result in statement

termination when scalarq equals or passes it
increment is a positive constant or scalar which is optional and defaults to one
To indicates that GAMS will add increment until scalarq gets equal to or larger

than end
Downto indicates that GAMS will subtract increment until scalarq gets equal to

or smaller than end.
One can exit or jump to the end of a For statement using break or continue as discussed in the context

of a Loop here.

Example:

(for.gms)

More Language Basics 340

© 2022 Prof. Bruce McCarl

for (iter = 1 to iterlim,

 root=(maxroot+minroot)/2;

 function_value=a-b*root+c*sqr(root);

 If(abs(function_value) lt tolerance,

 iter=iterlim;

 else

 If(sign(function_value1)=

 sign(function_value),

 minroot=root;

 function_value1=function_value;

 else

 maxroot=root;

 function_value2=function_value;);

);

);

Notes:

• One cannot incorporate parameter, set, file, table, model, equation, variable or scalar statements or

.. equation declarations inside a for statement.

• The values of start, end and increment need not be integer. The start and end values can be

positive or negative real numbers.

• The value of increment has to be a positive real number.

• The total number of passes through the For statements can be limited using the option Forlim.

option forlim=10;

7.7.4.1 Alternative syntax

A dollar command can be used to alter the for statement syntax. Namely, Endfor is introduced as a
keyword when $Onend is active and becomes illegal upon use of $Offend. When active, Endfor ends the
For statement. The dollar command option is employed using the syntax

$Offend

or

$Onend

Setting the $Onend dollar command option will make the alternative syntax valid, but makes the
standard syntax invalid.

7.7.4.1.1 Endfor

Ordinarily For statements are of the form

For(scalar=limits,
 statements ;
) ;

McCarl GAMS User Guide341

© 2022 Prof. Bruce McCarl

and when $Onend is specified the statement becomes

$Onend
For scalar=limits do
 statements ;
endfor;

Example:

(control.gms)

The following two commands are equivalent and illustrate the ways the syntax varies.

for(x=1 downto 12 by 2,
 data(i)=x;
);
$Onend
for x=1 downto 12 by 2do
 data(i)=x;
 endfor;

7.7.5 Repeat, Until

The Repeat statement causes one to execute a block of statements over and over until a logical
condition is satisfied. The syntax of the Repeat statement is:

repeat (statements to be executed;
 until logical condition is true);

Examples:

A binary root finder using Repeat may be found in repeat.gms

repeat (
 root=root+inc;

 function_value2= a-b*root+c*sqr(root);

 If((sign(function_value1) ne sign(function_value2)

 and abs(function_value1) gt 0

 and abs(function_value2) gt tolerance),

 maxroot=root;

 signswitch=1

 else

 If(abs(function_value2) gt tolerance,

 function_value1=function_value2;

 minroot=root;));

 until (signswitch>0 or root > maxroot) ;);

Notes:

More Language Basics 342

© 2022 Prof. Bruce McCarl

• Repeat is followed by an open (and a close) which surround subsequent statements to be

executed, an until and the logical condition which when true causes statement termination.

• The until and logical condition are at the end of the statement.

• The until precedes the logical condition and is then followed by a closing parenthesis.

• One cannot place GAMS set, acronym, for, scalar, parameter, table, variable, equation or model

statements inside the repeat statement.

• Many logical condition forms are possible as explained in the Conditionals chapter.

• The total number of passes through the Repeat statements can be limited using the option Forlim.

8 Doing a Comparative Analysis with GAMS

Most of the modeling done today in my professional field involves comparative analysis. Models, once
built, are almost always subjected to a number of alternative scenarios where the analyst compares the
results across solutions to see what the effect is of the various scenario assumptions. This chapter
covers how to do comparative analysis with GAMS.

Basic approaches

Manual approach

An automated approach - avoiding repeated work

Where am I?

8.1 Basic approaches

There are two ways of accomplishing scenario analysis. One can

• Use multiple GAMS submissions or multiple solves generating report writing output then

manually comparing the analysis results.

• Use the GAMS loop procedure and set up a comparative scenario analysis system that

creates cross scenario comparison tables.

I will only briefly touch on the first approach but will extensively cover the second approach.

8.2 Manual approach

Suppose we have an existing model and we wish to do a comparative analysis altering commodity
prices. In this case we will use as a base a farm profit-maximizing model that is called farmcomp.gms.
 Within that model we have a vector of commodity prices

PARAMETER price(primary) prices for products

/corn 2.20

soybeans 5.00

beef 0.50/

and we wish to run a base case and two cases with alternative prices – a case with the beef price at

McCarl GAMS User Guide343

© 2022 Prof. Bruce McCarl

$0.70 and one with the corn price at $2.70. Suppose we also have programmed a report writer using the
techniques discussed in the Improving Output via Report Writing chapter and placed the calculations for
it in the file farmrep.gms. When that file is included using the $Include syntax as discussed in
Including External Files chapter we get a report on whatever solution was generated by the last solve
executed in the GAMS program. This report consists of a number of tables. We will only focus on the
one below

Set alli allitems

 /Corn,Soybeans,Beef ,cattle

 Water,Cropland,Pastureland

 Fertilizer,Seed,Othercost, Veternary, Supplement

 "April Labor","May Labor"

 "Summer Labor","Sept Labor","Oct Labor",

 Cattlefeed

 Total/

Set measures output measures

 / "Net Income", "Land use", "Dry Cropping", "Irr Cropping",

 "Livestock", "Resource Value","Product Value"/

Parameter summary(alli,measures) Farm Summary;

which computes the report summary which contains rows for the major commodities as named in the alli
set and the columns identified in the measures set.

Now given this code we can accomplish a comparative analysis in the file mancomp.gms as follows

$include Farmcomp.gms

display price;

$include Farmrep.gms

price("beef")=0.70;

SOLVE Firm USING LP MAXIMIZING NETINCOME;

display price;

$include Farmrep.gms

price("corn")=2.70;

SOLVE Firm USING LP MAXIMIZING NETINCOME;

display price;

$include Farmrep.gms

This code

• sets up and solves the original model using the file farmcomp.gms which also contains the

set definitions for the report

• displays the initial prices

• constructs a report by including farmrep.gms

• alters the beef price to $0.70

• solves the altered model

• constructs a report on the altered model by including farmrep.gms

Doing a Comparative Analysis with GAMS 344

© 2022 Prof. Bruce McCarl

• alters the corn price to $2.70

• solves the altered model

• constructs a report on the altered model by including farmrep.gms

This yields in the LST file a display arising from line 287 which is associated with the Base model gives

---- 266 PARAMETER SUMMARY Farm Summary

 Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

Corn 20.00 200.00 2.20

Soybeans 480.00 5.00

Beef 0.50

cattle 615.79

Water 16.83

Cropland 700.00 128.49

Pastureland 130.00 84.26

Cattlefeed 4.71

Total 162685.05 500.00 200.00

while a display arising from line 359 which is associated with the $0.70 beef price gives

---- 359 PARAMETER SUMMARY Farm Summary

 Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

Corn 22.84 160.85 2.34

Soybeans 489.86 5.00

Beef 0.70

cattle 866.67

Cropland 673.55

Pastureland 130.00 1456.90

Cattlefeed 4.89

Total 373686.10 512.70 160.85

and the display arising from line 431 which is associated with the $2.70 corn price gives

---- 431 PARAMETER SUMMARY Farm Summary

 Net Income Land use Dry Cropp~ Irr Cropp~ Livestock Resource ~ Product V~

Corn 31.98 200.00 2.70

Soybeans 410.24 5.00

Beef 0.70

cattle 866.67

Water 15.99

Cropland 642.22

Pastureland 130.00 1316.09

Cattlefeed 5.36

Total 375839.30 442.22 200.00

Now let's appraise how good this is. In my judgment it is not so good for four reasons

McCarl GAMS User Guide345

© 2022 Prof. Bruce McCarl

• The output is inconveniently spread over 250 lines in the output.

• No cross scenario comparison is present.

• The beef price is troublesome because after I raised it to $0.70 it remains there is the third

scenario.

• There is a lot of repetition in handling of solves and report writing.

Lets fix these up.

8.2.1 Introducing cross scenario report writing

First suppose we gather the output into one spot. We can do this by introducing a couple of new sets
and a parameter (mancompb.gms). The set

set scenarios /base,beefp,beefcorn/;

set ordr /"Scenario setup","Scenario Results"/;

identifies the scenarios and sets up a place to save the assumptions and the results. In turn the new
parameter adds two dimensions to the summary parameter and retains it.

Parameter savsumm(ordr,*,alli,scenarios) Comparative Firm Summary;

savsumm("Scenario setup","price",primary,"base")=price(primary);

savsumm("Scenario Results",measures,alli,"base")=summary(alli,measures);

where the Scenario setup line copies in the current setup of the price vector and the Scenario Results
line copy in the results as stored in the summary parameter.

In turn our code is

$include farmcomp.gms

$include farmrep.gms

set ordr /"Scenario setup","Scenario Results"/

set scenarios /base,beefp,beefcorn/

Parameter savsumm(ordr,*,alli,scenarios) Comparative Farm Summary;

savsumm("Scenario setup","price",primary,"base")=price(primary);

savsumm("Scenario Results",measures,alli,"base")=summary(alli,measures);

price("beef")=0.70;

SOLVE Firm USING LP MAXIMIZING NETINCOME;

display price ;

$include Farmrep.gms

savsumm("Scenario setup","price",primary,"beefp")=price(primary);

savsumm("Scenario Results",measures,alli,"beefp")=summary(alli,measures);

price("corn")=2.70;

display price ;

SOLVE Firm USING LP MAXIMIZING NETINCOME;

$include Farmrep.gms

savsumm("Scenario setup","price",primary,"beefcorn")=price(primary);

savsumm("Scenario Results",measures,alli,"beefcorn")=summary(alli,measures);

Doing a Comparative Analysis with GAMS 346

© 2022 Prof. Bruce McCarl

option savsumm:2:3:1;display savsumm;

The results are

---- 439 PARAMETER savsumm Comparative Farm Summary

 base beefp beefcorn

Scenario setup .price .Corn 2.20 2.20 2.70

Scenario setup .price .Soybeans 5.00 5.00 5.00

Scenario setup .price .Beef 0.50 0.70 0.70

Scenario Results.Net Income .Total 162685.05 373686.10 375839.30

Scenario Results.Land use .Cropland 700.00 673.55 642.22

Scenario Results.Land use .Pastureland 130.00 130.00 130.00

Scenario Results.Dry Cropping .Corn 20.00 22.84 31.98

Scenario Results.Dry Cropping .Soybeans 480.00 489.86 410.24

Scenario Results.Dry Cropping .Total 500.00 512.70 442.22

Scenario Results.Irr Cropping .Corn 200.00 160.85 200.00

Scenario Results.Irr Cropping .Total 200.00 160.85 200.00

Scenario Results.Livestock .cattle 615.79 866.67 866.67

Scenario Results.Resource Value.Water 16.83 15.99

Scenario Results.Resource Value.Cropland 128.49

Scenario Results.Resource Value.Pastureland 84.26 1456.90 1316.09

Scenario Results.Resource Value.April Labor 32.34 82.29 61.39

Scenario Results.Resource Value.May Labor 27.01 80.53 61.72

Scenario Results.Resource Value.Sept Labor 53.57 84.92

Scenario Results.Resource Value.Oct Labor 11.50 46.21 87.21

Scenario Results.Product Value .Corn 2.20 2.34 2.70

Scenario Results.Product Value .Soybeans 5.00 5.00 5.00

Scenario Results.Product Value .Beef 0.50 0.70 0.70

Scenario Results.Product Value .Cattlefeed 4.71 4.89 5.36

where we have now achieved a cross scenario report and place all the output in one place.

8.2.1.1 Percentage change cross scenario reports

However we may still wish some percentage change calculations which we achieve by adding

Parameter savsummp(ordr,*,alli,scenarios) Comparative Farm Summary (percent chg);

savsummp(ordr,measures,alli,scenarios)$savsumm(ordr,measures,alli,"base")=

 round((savsumm(ordr,measures,alli,scenarios)

 -savsumm(ordr,measures,alli,"base"))*100

 /savsumm(ordr,measures,alli,"base"),1);

savsummp(ordr,measures,alli,scenarios)

 $(savsumm(ordr,measures,alli,"base") eq 0

 and savsumm(ordr,measures,alli,scenarios) ne 0)=na;

option savsummp:1:3:1;display savsummp;

which sets up a new parameter, computes percentage changes rounded to one place and sets them to

McCarl GAMS User Guide347

© 2022 Prof. Bruce McCarl

na if the base number is zero yielding

---- 456 PARAMETER savsummp Comparative Farm Summary (percent chg)

 beefp beefcorn

Scenario setup .price .Corn 22.7

Scenario setup .price .Beef 40.0 40.0

Scenario Results.Net Income .Total 129.7 131.0

Scenario Results.Land use .Cropland -3.8 -8.3

Scenario Results.Dry Cropping .Corn 14.2 59.9

Scenario Results.Dry Cropping .Soybeans 2.1 -14.5

Scenario Results.Dry Cropping .Total 2.5 -11.6

Scenario Results.Irr Cropping .Corn -19.6

Scenario Results.Irr Cropping .Total -19.6

Scenario Results.Livestock .cattle 40.7 40.7

Scenario Results.Resource Value.Water -100.0 -5.0

Scenario Results.Resource Value.Cropland -100.0 -100.0

Scenario Results.Resource Value.Pastureland 1629.0 1461.9

Scenario Results.Resource Value.April Labor 154.4 89.8

Scenario Results.Resource Value.May Labor 198.1 128.5

Scenario Results.Resource Value.Sept Labor NA NA

Scenario Results.Resource Value.Oct Labor 301.8 658.4

Scenario Results.Product Value .Corn 6.4 22.7

Scenario Results.Product Value .Beef 40.0 40.0

Scenario Results.Product Value .Cattlefeed 3.9 13.8

8.2.2 Preserving changed data

In the above example the management of the beef price was questionable. In particular the beefprice is
"static", as discussed in the chapter Calculating Items, and since GAMS lives for the moment, when a
calculation is issued then all prior values are overwritten for calculated items and that value is retained
from then on. In this case the "repeated static" buildup and to manage thus we need to reset the data.
We do this by first saving then reestablishing the price vector before each change as is done in
mancompc.gms

$include farmcomp.gms

$include farmrep.gms

parameter saveprice(alli) saved prices;

saveprice(alli)=price(alli);

set ordr /"Scenario setup","Scenario Results"/

set scenarios /base,beefp,beefcorn/

Parameter savsumm(ordr,*,alli,scenarios) Comparative Farm Summary;

savsumm("Scenario setup","price",primary,"base")=price(primary);

savsumm("Scenario Results",measures,alli,"base")=summary(alli,measures);

price(alli)=saveprice(alli);

price("beef")=0.70;

SOLVE FARM USING LP MAXIMIZING NETINCOME;

display price ;

Doing a Comparative Analysis with GAMS 348

© 2022 Prof. Bruce McCarl

$include farmrep.gms

savsumm("Scenario setup","price",primary,"beefp")=price(primary);

savsumm("Scenario Results",measures,alli,"beefp")=summary(alli,measures);

price(alli)=saveprice(alli);

price("corn")=2.70;

display price ;

SOLVE FARM USING LP MAXIMIZING NETINCOME;

$include farmrep.gms

savsumm("Scenario setup","price",primary,"beefcorn")=price(primary);

savsumm("Scenario Results",measures,alli,"beefcorn")=summary(alli,measures);

option savsumm:2:3:1;display savsumm;

which resets the data to base levels before each scenario.

8.3 An automated approach - avoiding repeated work

The basic structure of a comparative analysis is outlined in Figure 1. The first three boxes reflect
preparatory steps that would be done in a conventional GAMS program where one sets up the initial data
and model then solves. In the box labeled step 1, the comparative model analysis begins. There the
scenarios are identified and the scenario data defined. After that I save the data that are to be changed

during the scenario runs preserving Abase@ scenario values. I then enter a loop that is repeated for
each scenario to be analyzed. In that loop the first task is to restore the data to its base scenario levels
(step 3). This is done so that I always start from the same data. For example, if I am altering prices in
some scenarios and costs in others once I changed the prices they will be altered forever unless they
are changed back (restored) to their original values. Then the data and model differences for that
scenario are imposed in step 4 and the model solved in Step 5. Step 6 involves a report on the individual
scenario with items displayed as desired. Then in step 7 parameters for cross scenario comparative
reports are saved. In step 8 I check to see if more scenarios are to be solved and if so return to repeat
steps 3-8 until all scenarios are completed. Finally, I display a comparative report that presents the
information saved across scenarios.

McCarl GAMS User Guide349

© 2022 Prof. Bruce McCarl

This is implemented in the file compare.gms

Doing a Comparative Analysis with GAMS 350

© 2022 Prof. Bruce McCarl

*step 1 - setup scenarios

set ordr /"Scenario setup","Scenario Results"/

set scenarios /base,beefp,beefcorn/

Parameter savsumm(ordr,*,alli,scenarios) Comparative Farm Summary;

table scenprice(primary,scenarios) price alterations by scenario

 base beefp beefcorn

corn 2.70

soybeans

beef 0.70 ;

*step 2 save data

parameter savprice(primary) saved primary commodity prices;

savprice(primary)=price(primary);

loop(scenarios,

*step 3 reestablish data to base level

 price(primary)=savprice(primary);

*step 4 change data to levels needed in scenario

 price(primary)$scenprice(primary,scenarios)=scenprice(primary,scenarios);

 display price;

*step 5 -- solve model

 SOLVE FARM USING LP MAXIMIZING NETINCOME;

*step 6 single scenario report writing

$include farmrep.gms

*step 7 cross scenario report writing

 savsumm("Scenario setup","price",primary,scenarios)=price(primary);

 savsumm("Scenario Results",measures,alli,scenarios)=summary(alli,measures);

*step 8 end of loop

);

*step 9 compute and display final results

option savsumm:2:3:1;display savsumm;

The above comparative analysis code contains a LOOP statement as discussed in the Control
Structures chapter. The LOOP statement tells GAMS to repeat execution of all the statements
enclosed in the parentheses defining the LOOP. In this case GAMS will repeat execution of the
statements starting with the assignment of

price(primary)=savprice(primary);

through

savsumm("Scenario Res",measures,alli,scenarios) =summary(alli,measures);

for each element of the scenarios set avoiding the repetition.

Note in the loop you can address the scenarios set and only the one element active at that stage of the
loop will be considered.

Adding a scenario

Changing model structure

McCarl GAMS User Guide351

© 2022 Prof. Bruce McCarl

8.3.1 Adding a scenario

Now let me illustrate the full extent to which the above approach is automated by adding a new scenario.
 This is done through two modifications. First we expand the set of named scenarios to include the new
one. Second we add data for the new scenario (comparenew.gms).

set scenarios /base,beefp,beefcorn,new/

table scenprice(primary,scenarios) price alterations by scenario

 base beefp beefcorn new

corn 2.70

soybeans 4.32

beef 0.70 ;

The rest of the code is unchanged. Note we did not have to add a solve or report writing or anything
else. That is all handled by the LOOP and one just has to add data to add to the scenarios.

In doing such an analysis cases certainly arise where a new scenario requires that other data items like
resource endowments be changed. In such a case, and one needs to alter the code so that with
respect to the other data item the code saves, resets to base levels and alters to reflect the scenario.
For example if our new scenario also involved alteration of the data item available in the cropland
category making 30% more available, we could add code like the following (compareother.gms)

table scenavailable(alli,scenarios) price alterations by scenario

 base beefp beefcorn new

cropland 1.3;

*step 2 save data

parameter savprice(primary) saved primary commodity prices;

savprice(primary)=price(primary);

parameter saveavailable (alli);

saveavailable (alli)= available (alli);

loop(scenarios,

*step 3 reestablish data to base level

 price(primary)=savprice(primary);

 available (alli)=saveavailable (alli);

*step 4 change data to levels needed in scenario

 price(primary)$scenprice(primary,scenarios)=scenprice(primary,scenarios);

 available(alli)$scenavailable(alli,scenarios)=

 available(alli)*scenavailable(alli,scenarios);

 display price,available;

8.3.2 Changing model structure

Many studies involve model structure modifications. A context sensitive model structure by making
constraints or terms in the model conditional (see the discussion in the Conditionals chapter). In
particular in the example a conditional constraint on maximum cattle (cowlimit) could be set up based
on a scalar (cowlim) and controlled by the scenario looping procedure (comparemod.gms).

scalar cowlim activates cowlimit constraint /1/

equation cowlimit conditional equation on cow limits;

Doing a Comparative Analysis with GAMS 352

© 2022 Prof. Bruce McCarl

cowlimit$cowlim.. sum((animals,livemanage),

liveprod(animals,livemanage))=l=100;

model farmcowlim /all/

parameter cowlims(scenarios) cowlimit by scenario

 /base 0, cowlim 1/;

loop(scenarios,

 cowlim=cowlims(scenarios);

 SOLVE FARMcowlim USING LP MAXIMIZING NETINCOME;

);

which imposes the constraint in a conditional manner.

It can be desirable from the standpoint of integrity of an advanced basis (see discussion in the Advanced
Basis Usage chapter) to make the model size invariant. In such a case one would alter the code above
so the constraint was practically rather than physically removes. This could be accomplished by
altering the code above to be

scalar cowlim activates cowlimit constraint /1/

equation cowlimit conditional equation on cow limits;

cowlimit.. sum((animals,livemanage),

liveprod(animals,livemanage))=l=100+(1-cowlim)*1000000;

model farmcowlim /all/

parameter cowlims(scenarios) cowlimit by scenario

 /base 0, cowlim 1/;

loop(scenarios,

 cowlim=cowlims(scenarios);

 SOLVE FARMcowlim USING LP MAXIMIZING NETINCOME;

);

which keeps the constraint but limits the farm to the unattainable million+ cows if the unlimited scenario
is being run. Similarly for variables to be eliminated one could alter objective function coefficients so
they became very undesirable (adding a term to a maximization problem like (3-1000000$eliminatevar)*x
to the objective equation).

8.4 Where am I?

Suppose you are running a comparative analysis job which takes a long time with many solves and you
want to know the stage it is on. You can get such information to the screen by including the following
pieces GAMS code.

To define where output is to be sent for messages to the screen and the log file (comparewhere.gms).

$set console

$if %system.filesys% == UNIX $set console /dev/tty

$if %system.filesys% == DOS $set console con

$if %system.filesys% == MS95 $set console con

$if %system.filesys% == MSNT $set console con

$if "%console%." == "." abort "filesys not recognized";

file screen / '%console%' /;

McCarl GAMS User Guide353

© 2022 Prof. Bruce McCarl

file log /''/

To send the output to the screen and the log (IDE process window)

loop(scenarios,

 put screen;

 put 'I am on scenario ' Scenarios.tl;

 putclose;

 put log;

 put 'I am on scenario ' Scenarios.tl;

 putclose;

The screen part works fine in DOS or UNIX but not in IDE (there you need to make the DOS window
visible by manipulating the options under the execute tab or just send to the LOG file).

The LOG part put entries in the IDE process window.

One can also change the name of the DOS box in windows versions starting with Windows 2000 using
the put file sequence (dosbox.gms)

File dosbox / titlemaker.cmd/
putclose dosbox '@title this is a new DOS box title';
execute 'titlemaker.cmd'

where again the DOS window must be visible if this is used in the IDE.

9 GAMS Command Line Parameters

When GAMS is called one can use a number of arguments on the command line or in the GAMS
parameters box in the upper right hand corner of the IDE screen. Here I discuss the universe of available
command line parameters.

Important parameters

Alphabetic list of all GAMS command line parameters

GAMS Command Line Parameters 354

© 2022 Prof. Bruce McCarl

9.1 Important parameters

The command line parameters break into classes as listed below. Also note one can employ these
command line options in a text file to permanently customize all GAMS runs done on a computer as
discussed in the Customizing GAMS chapter. Here we list the parameters divided by category and
below provide a composite alphabetic list.

Compiler function – regional settings

Error detection and correction

LST and LOG output content and format control

Solver name choice

Option file presence

Directory management

Saves and restarts

User defined options

9.1.1 Compiler function – regional settings

One can change command line parameters and in turn cause GAMS to alter the way the compiler
functions allowing the user GMS files to allow inclusion of additional characters and modify the time date
formats of output using the options below. Such changes are often desirable in an international setting.

Parameter Brief description

Charset Command line parameter that controls compiler use of extended
character set including European and other international characters.

Dformat Command line parameter that controls the date format and allows
European date conventions.

Tformat Command line parameter that controls time format.

9.1.2 Error detection and correction

A few options are available that influence error message placement, error condition correction and
monitoring of statement execution performance characteristics.

Parameter Brief description
 Cerr Command line parameter that controls the compile time error limit.
Errmsg Command line parameter that controls the position of error messages

in the echo print and through use of ERRMSG=2 allows one to
reposition error messages to just after error marking (Standard Output).

Errnam Command line parameter that specifies the name of a file defining the
internally used compiler error messages.

Error Command line parameter that forces a parameter error with a specified
message.

Execerr Command line parameter that defines a limit on the number of errors
that can be found during execution or preprocessing associated with a
solve statement.

Ferr Command line parameter that controls redirection of compilation error

McCarl GAMS User Guide355

© 2022 Prof. Bruce McCarl

messages to a file.
Profile Command line parameter that causes GAMS to include information on

statement execution time and memory use in LST file allowing one to
find slow or large memory using statements (Speed, Memory).

9.1.3 LST and LOG output content and format control

A group of options allow some control of the contents of the LOG and LST output files. These are
mostly discussed in Standard Output.

Parameter Brief description

Appendlog Command line parameter that controls whether the
program overwrites or appends to the LOG file.

Appendout Command line parameter that controls whether the
program overwrites or appends to the LST file.

Case Command line parameter that controls the case of
the text in the LST file for the echo print.

Dumpparms Command line parameter that provides more
detailed information about the parameters changed
or set by the user, GAMS or the IDE during the
current run.

DumpParmsLogPrefix Command line parameter causes log lines that are
triggered by DumpParms=2 to be prefixed with a
specific string for easy filtering of these lines

Errorlog Command line parameter that controls the error
message lines written to the LOG file.

Limcol Command line parameter that includes the first n
cases for each named variable in the LST file.

Limrow Command line parameter that includes the first n
cases for each named equation in the LST file.

Logfile Command line parameter that specifies the name of
the LOG file.

Logline Command line parameter that controls the amount
of line tracing to the LOG file.

Logoption Command line parameter controls destination for the
LOG file, used with setting of 0 or 2 to permit UNIX
jobs to operate in the background.

Output Command line parameter that specifies the name of
file containing the output (LST file).

Pagecontr Command line parameter that affects the page
control in the LST file.

Pagesize Command line parameter that sets the default
number of lines per page. If less than 30 it will be
reset to the default of 9999.

Pagewidth Command line parameter that sets the default
number of columns on a page. This value should be
between 72 and 32767.

GAMS Command Line Parameters 356

© 2022 Prof. Bruce McCarl

Profile Command line parameter that tells GAMS whether
to include statement execution time and memory
use reporting to the LST file.

Profiletol Command line parameter that specifies the
minimum time a statement must use to appear in
the profile generated output.

Solprint Command line parameter that controls the printing of
the solution report.

Stepsum Command line parameter that controls the
generation of a step summary of the processing
times taken by GAMS during a given run.

Suppress Command line parameter that tells GAMS whether
to suppress the compiler echo print of the GAMS
input instructions.

Sysout Command line parameter that controls the
incorporation of additional solver generated output to
the LST file.

Tabin Command line parameter that tells GAMS how to
deal with tabs

Timer Command line parameter that specifies an
instruction timer threshold in milli seconds.

9.1.4 Solver name choice

A group of options allow one to make a command line specification of which solver is to be used.

Parameter Brief description

CNS Command line parameter that gives the name of the CNS model solver.
DNLP Command line parameter that gives the name of the DNLP model

solver.
EMP Command line parameter that gives the name of the EMP model

solver.
LP Command line parameter that gives the name of the LP model solver.
MCP Command line parameter that gives the name of the MCP model

solver.
MINLP Command line parameter that gives the name of the MINLP model

solver.
MIP Command line parameter that gives the name of the MIP model solver.
MIQCP Command line parameter that gives the name of the MIQCP model

solver.
MPEC Command line parameter that gives the name of the MPEC model

solver.
NLP Command line parameter that gives the name of the NLP model solver.
RMINLP Command line parameter that gives the name of the RMINLP model

solver.
RMIP Command line parameter that gives the name of the RMIP model

solver.
QCP Command line parameter that gives the name of the QCP model solver.
RMIQCP Command line parameter that gives the name of the RMIQCP model

McCarl GAMS User Guide357

© 2022 Prof. Bruce McCarl

solver.
RMPEC Command line parameter that gives the name of the RMPEC model

solver.

9.1.5 Option file presence

One may use options to change the location and default existence of the solver option file rather than
having to use the command modelname.optfile=1 in each and every GMS file.

Parameter Brief description

Optdir Command line parameter that gives the name of the directory to be
used by GAMS for solver option files.

Optfile Command line parameter that gives the number to use by default for
model.optfile.

9.1.6 Directory management

One can redefine both the search tree for GAMS input files, as well as relocating places where libinclude
files will be drawn from and other file locations.

Directory Parameter Brief description

Curdir Command line parameter that gives the name of the working
directory.

Griddir Command line parameter that gives the name of the grid file
directory.

Inputdir Command line parameter that gives the search path for files.
Inputdir1 to inputdir40 Command line parameters that give the names of the individual

directories to be searched.
Libincdir Command line parameter that gives the name of the directory

where libinclude files are kept.
Maxprocdir Command line parameter that gives the maximum number of

workfile directories that can be generated by GAMS.
Optdir Command line parameter that gives the name of the directory

to be used by GAMS for solver option files.
Procdir Command line parameter that gives the name of the directory

where the work files generated by GAMS will be stored.
Putdir Command line parameter that gives the name of the directory

where files generated by the put command will be stored.
Scrdir Command line parameter that gives the name of the directory

to be used by GAMS for temporary files generated during
execution.

Sysdir Command line parameter that gives the name of the directory
where GAMS executables reside.

Sysincdir Command line parameter that gives the name of the directory
where sysinclude files are kept.

Workdir Command line parameter that gives the name of the working
directory.

File Parameter Brief description

GAMS Command Line Parameters 358

© 2022 Prof. Bruce McCarl

GDX Command line parameter that gives the name of GAMS data
exchange file to write at program end.

License Command line parameter that points to the GAMS license
file

9.1.7 Saves and restarts

Options control whether or not save and restart files will be used (Save Restart). They also permit a
platform independent restart file to be written that can be moved between computers with different
operating systems.

Parameter Brief description

Fsave Command line parameter that forces GAMS to write a saved workfile
even in the face of execution or other errors.

Restart Command line parameter that gives the name of restart file.
Save Command line parameter that gives the name of save file.
Xsave Command line parameter that specifies the name of a save file written

in ASCII format so it is platform independent. Note restart
automatically will read this file type.

One can change the names of the items in a save restart file using SymPrefix although one cannot
start a program with 2 restart files. Thus one may need to do a restart with the changed names then
save items to a gdx file and eventually load in the desired stuff elsewhere.

Users can work with models where it is desirable to solve models on computational grids or clouds
outside a secure computing environment. GAMS contains facilities that allows one to prepare a
restart files that within it has has all the names and other documentation related to a specific model
run changed before moving it to the less secure environment. This is duiscussed under the topic of
obfuscated save and restarts.

GAMS also contains ways to take a subsequent save file containing results and back translate it
inside the secure environment.

This is done using an "obfuscated" save files, which is a save files where symbol and UEL names
have been obfuscated meaning all the names have been changed to computer generated labels that
do not convey problem information. This is done to allow one to enhance the security of information
in the saved files particularly if operating in a cloud computing environment.

To do this one employs the command line options saveobfuscate (abbreviated as so)
and xsaveobfuscate (abbreviated as xso) that respectively generate uncompressed and
compressed obfuscated save files. Also the command line option restartNamed (rn) can be used
to bring back the original names when restarting from an obfuscated save file.

The syntax for use is as follows.

McCarl GAMS User Guide359

© 2022 Prof. Bruce McCarl

· To run a GAMS model into a named and an obfuscated save file:

gams trnsport a=c s=0named saveobfuscate=0anon

· To bring the obfuscated save file in and do a continued compilation with
reporting and export one would use

gams more r=0anon restartNamed=0named

The obfuscated work file is basically the original named work file but with all strings for symbols , set
elements and explanatory text replaced with obfuscated names. GAMS obfuscates by keeping the
original length of the symbol/label and creating a sequence of strings e.g. for symbols of length 3 we
create A00, A01, A02, ..., Z . Similarly for explanatory text, GAMS always uses the single quote
character and creates many weird looking labels. For the other strings (symbol text and label text)
we just change all characters in these strings. The only other strings obfuscated are the titles and
subtitles. File names are not obfuscated.

The basic way this works is on the original machine you run
gams mymodel a=c s=0named so=0obfuscated

which yields an obfuscated restart file plus a local restart file that gives instructions for back
translating the information. Note these files have not been executed since a compile only command
lime parameter (a=c) was used

Now we move the obfuscated work file to a non-secure machine and start up execution of an empty
file there restarting from the obfuscated save file and the in turn save the results.
The empty file can be created using

execute "echo * Empty > jobforremote.gms"

the run can then be done as
gams jobforremote r=0obfuscated s=1obfuscated

which will execute the original job on the remote machine but in an obfuscated manner and create a
saved file with the results.

In turn one can bring that file back to the original machine and run an additional job translating the
results back using the local save file

gams continue r=1obfuscated rn=0named

9.1.8 More Secure "obfuscated" saves and restarts

Users can find it desirable to solve models on computational grids or clouds that are outside a secure
computing environment. GAMS contains facilities that allows one to prepare a restart files that within
it alters all the names and other documentation related to the model so it is virtually impossible to
figure out the context. In turn, then this can be more securely used in the less secure environment.

GAMS also contains ways to take a subsequent save file containing results from the less secure

GAMS Command Line Parameters 360

© 2022 Prof. Bruce McCarl

environment and back translate it inside the original secure environment.

This is done using an "obfuscated" save files, which is a save file where symbol and UEL names have
been obfuscated. Generally this means all the text strings have been changed to computer generated
labels that do not convey problem information.

To do this one employs the command line options saveobfuscate (abbreviated as so) and
xsaveobfuscate (abbreviated as xso) that respectively generate uncompressed and compressed
obfuscated save files. Also the command line option restartNamed (rn) can be used to bring back
the original names when restarting from both an obfuscated save file and a regular save file.

The syntax for use is as follows.

· To save a GAMS model for future execution into an obfuscated save file one
does

gams trnsport a=c s=0named saveobfuscate=0anon

where one also must create and retain a regular save file so back translation can
be done

· To start from the obfuscated save file and do a continued job with reporting and
whatever else one would use

gams more r=0anon rn=0named

The obfuscated work file is basically the original save file but with all strings for symbols , set
elements and explanatory text replaced with obfuscated names.

GAMS obfuscates by keeping the original length of the symbol/label and creating a sequence of
strings e.g. for symbols of length 3 we create A00, A01, A02, ..., Z . Similarly for explanatory text,
GAMS always uses the single quote character and creates many weird looking labels. For the other
strings (symbol text and label text) we just change all characters in these strings. The only other
strings obfuscated are the titles and subtitles. File names are not obfuscated.

The basic way this works is on the original machine you run
gams mymodel a=c s=0named so=0obfuscated

which yields an obfuscated restart file plus a local restart file that gives instructions for back
translating the information. Note these files have not been executed since a compile only command
lime parameter (a=c) was used

Now we move the obfuscated work file to a non-secure machine and start up execution of an empty
file there restarting from the obfuscated save file and the in turn save the results.
The empty file can be created using

execute "echo * Empty > jobforremote.gms"

McCarl GAMS User Guide361

© 2022 Prof. Bruce McCarl

the run can then be done as
gams jobforremote r=0obfuscated s=1obfuscated

which will execute the original job on the remote machine but in an obfuscated manner and create a
saved file with the results.

In turn one can bring that file back to the original machine and run an additional job translating the
results back using the local save file

gams continue r=1obfuscated rn=0named

9.1.9 User defined options

A set of options allow users to pass control variables and text strings of their own definition into the
program for their use. A set of text strings may be passed through 5 user options that are not used by
GAMS but are entirely under user control and require definitions in the GAMS code to implement their
use (Conditional Compile).

Parameter Brief description

 -- Command line parameter that allows definition of a control
variable.

 // Command line parameter that allows definition of a control
variable.

 /- Command line parameter that allows definition of a control
variable.

 -/ Command line parameter that allows definition of a control
variable.

Integer 1 to Integer5 Command line parameter that can contain any integer number.
User1 to user5 Command line parameter that permits entry of text for up to 5

user defined options.

9.2 Alphabetic list of all GAMS command line parameters

Here I list all options that can be used on a GAMS command line or included in the GAMSPARM.txt file
to customize default values.

Each of the commands below is implemented in one of three ways

• In the GAMS command line using the syntax

GAMS filename command=stringornumber

• In the command line box of the IDE or in its default execution parameters (Gamside)

• In the gmsprmxx.txt file to customize GAMS function of a computer.

-- // -/ /-- on command lines

Action: A

Integer1 to Integer5

IntVarup

RMIQCP

RMPEC

GAMS Command Line Parameters 362

© 2022 Prof. Bruce McCarl

Appendexpand: Ae

Appendlog: Al

Appendout: Ao

Bratio

Case

Cerr

Charset

CNS

Curdir: Cdir

Dformat: Df

DNLP

Domlim

Dumpopt

Dumpparms: Dp

DumpparmsLogPrefix:Dplp

EMP

Eolonly: Ey

Errmsg

Errnam

Error

Errorlog: Er

Etlim

Execerr

Execmode

Expand: Ef

FDDelta

FDopt

Ferr

Filecase

Filestem

Forcework: Fw

Forlim

Fsave

G205

Gdx

Gdxcompress

Gdxconvert

Gdxuels

Griddir: Gdir

Gridscript: Gscript

Heaplimit: Hl

Holdfixed

Ide

Input: I

Inputdir: Idir

Inputdir1 to inputdir40:

Idir1 to idir40

Iterlim

Jobtrace: Jt

Keep

Libincdir: Ldir

License

Limcol

Limrow

Logfile: Lf

Logline: Ll

Logoption_Lo

LP

Maxprocdir

MCP

Mcprholdfx

MINLP

MIP

MIQCP

MPEC

Multipass: Mp

NLP

Nodlim

NoNewVarEqu

On115

Optca

Optcr

Optdir

Optfile

Output: O

Pagecontr: Pc

Pagesize: Ps

Pagewidth: Pw

Parmfile: Pf

Plicense

Procdir

Profile

Profilefile

Profiletol: Ptol

Putdir: Pdir

QCP

Reference: Rf

Reslim

Restart: R

RMINLP

RMIP

Save: S

Savepoint: Sp

Scrdir: Sd

Scrext: Se

Scriptexit

Scriptfrst: Sf

Scriptnext: Script

Scrnam: Sn

Seed

Solprint

Solvelink

Solver

Solvercntr: Scntr

Solverdict: Sdict

Solverinst: Sinst

Solvermatr: Smatr

Solversolu: Ssolu

Solverstat: Sstat

Stepsum

Stringchk

Subsys

Suppress

Symbol

SymPrefix

Sys10

Sys11

Sysdir

Sysincdir: Sdir

Sysout

Tabin

Tformat: Tf

Threads

ThreadsAsync

Timer

Trace

Traceopt

User1 to user5: U1 to U5

Warnings

Workdir: Wdir

Workfactor

Workspace

Xsave: Xs

Zerores

Zeroresrep

McCarl GAMS User Guide363

© 2022 Prof. Bruce McCarl

9.2.1 -- // -/ /-- on command lines

A set of 2 minus signs followed by a name defines a control variable as discussed in the conditional
compile chapter. The symbol strings // , -/ , and /- all do the same.

The syntax is any of the following four

--name=string
//name=string
/-name=string
-/name=string

where name is the name of a control variable chosen by the user and string a text string.

For example (minusminus.gms) one could use

--keycity=Boston //myflag=modes /-myvalue=7.6 -/dothis="display x;"

specifying the control variables keycity, myflag, myvalue and dothis with the strings Boston, modes, 7.6
and display x; respectively. In tune when one had a statement

x("%keycity%","%myflag%")=%myvalue%;
%dothis%

it would become

x("boston","mode")=7.6;
display x;

9.2.2 Action: A

This keyword controls the type of compiling action that will be undertaken by GAMS. String input is
expected with the allowable string values being

CE compile and execute (default)

C compile only

E execute only

G glue code generation

R restart after a solve

The command is implemented with either

Action=string

or

A=string

where string is one of the choices above. This command can sometimes be useful when one wishes to
compile but not execute.

GAMS Command Line Parameters 364

© 2022 Prof. Bruce McCarl

9.2.3 Appendexpand: Ae

This keyword controls the manner of file opening of the expand file. Numeric input is expected with the
allowable numeric values being

0 open with rewrite

1 open with an append (default)

The command is implemented with either

Appendexpand=number

or

Ae=number

9.2.4 Appendlog: Al

This keyword controls whether the program overwrites or appends to the LOG file. Numeric input is
expected with the allowable numeric values being

0 overwrite LOG file (default)

1 append to LOG file

The command is implemented with either

Appendlog=number

or

Al=number

9.2.5 Appendout: Ao

This keyword controls whether the program overwrites or appends to the LST file. Numeric input is
expected in with the allowable numeric values being

0 overwrite LST file (default)

1 append to LST file

The command is implemented with either

Appendout=number

or

Ao=number

9.2.6 Bratio

This option specifies what GAMS will do in forming an advanced basis as discussed in the Basis

McCarl GAMS User Guide365

© 2022 Prof. Bruce McCarl

chapter. This option is used by setting

Option Bratio=realnumber;

The value specified for this option causes a basis to be discarded if the number of basic variables is
smaller than bratio times the number of equations.

Notes:

• Setting bratio to 1 will always cause the basis to be discarded, which is sometimes needed with

nonlinear problems as discussed in the NLP and Basis chapters.

• Setting bratio to 0 forces GAMS to always try to construct a basis.

• If bratio has been set to 0 and there was no previous solve, an "all slack" (sometimes called 'all

logical') basis will be provided.

• This option is not useful for MIP solvers.

• The allowable values range from 0 to 1 with a default value of 0.25.

9.2.7 Case

This keyword controls the case of the text in the LST file for the echo print. Numeric input is expected
with the allowable numeric values being

0 write LST file GAMS statement echo print in mixed case (default)

1 write GAMS statement echo print file in upper case only

The command is implemented with either

Case=number

9.2.8 Cerr

This keyword controls the compile time error limit. The compilation will be stopped after n errors have

occurred. Numeric input is expected with the allowable numeric values being

0 no error limit (default)

n stop after n errors

The command is implemented with

Cerr=number

9.2.9 Charset

This keyword controls compiler use of the extended character set which permits the compiler to accept
international characters in comments and text items (European and other characters). Numeric input is

GAMS Command Line Parameters 366

© 2022 Prof. Bruce McCarl

expected with the allowable numeric values being

0 use limited GAMS characters set

1 accept any character in comments and other text entries (default)

The command is implemented with

Charset=number

9.2.10 CNS

This keyword controls the name of the solver that will be used to solve CNS models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

CNS=solvername

9.2.11 Curdir: Cdir

This keyword gives the name of the current working directory. If not specified, it will be set to the
directory the GAMS module is called from. String input is expected.

The command is implemented with

Curdir=directoryname

or

Cdir= directoryname

9.2.12 Dformat: Df

This keyword controls compiler use of alternative date formats. Numeric input is expected with the
allowable numeric values being

0 mm/dd/yy (month/day/year) (default)

1 dd.mm.yy

2 yy-mm-dd

The command is implemented with

Dformat=number

or

Df=number

McCarl GAMS User Guide367

© 2022 Prof. Bruce McCarl

9.2.13 DNLP

This keyword controls the name of the solver that will be used to solve DNLP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

DNLP=solvername

9.2.14 Domlim

This option sets the maximum number of domain errors. It allows errors to occur up to the given number
during solution.Numeric input is expected with the allowable numeric values being

0 allows 0 errors to occur (default)

n allows n errors to occur

The command is implemented with

Domlim=number

9.2.15 Dumpopt

This keyword creates a GAMS file of input that will reproduce results encapsulating all include files into
one GAMS file. If activated a file will be written containing GAMS source code for the entire problem. The
file name is the input file name plus the extension DMP. Numeric input is expected with the allowable
numeric values being

 0 no dump file (default)

 1 extract referenced data from the restart file using original set element names

 2 extract referenced data from the restart file using new set element names

 3 extract referenced data from the restart file using new set element names and drop symbol text

 4 extract referenced symbol declarations from the restart file

11 write processed input file without comments

21 write processed input file with all comments

The command is implemented with

Dumpopt=number

Example:

To illustrate the use of the dumpopt option, [TRNSPORT] has been split into two files. The first file (say
trans1.gms) contains most of the original file except for the solve statement, and looks as follows

sets

 i canning plants / seattle, san-diego /

 j markets / new-york, chicago, topeka / ;

GAMS Command Line Parameters 368

© 2022 Prof. Bruce McCarl

parameters

 a(i) capacity of plant i in cases

 / seattle 350

 san-diego 600 /

 b(j) demand at market j in cases

 / new-york 325

 chicago 300

 topeka 275 / ;

table d(i,j) distance in thousands of miles

 new-york chicago topeka

 seattle 2.5 1.7 1.8

 san-diego 2.5 1.8 1.4 ;

scalar f freight in dollars per case per thousand miles /90/ ;

parameter c(i,j) transport cost in thousands of dollars per case ;

 c(i,j) = f * d(i,j) / 1000 ;

variables

 x(i,j) shipment quantities in cases

 z total transportation costs in thousands of dollars ;

positive variable x ;

equations

 cost define objective function

 supply(i) observe supply limit at plant i

 demand(j) satisfy demand at market j ;

cost .. z =e= sum((i,j), c(i,j)*x(i,j)) ;

supply(i) .. sum(j, x(i,j)) =l= a(i) ;

demand(j) .. sum(i, x(i,j)) =g= b(j) ;

model transport /all/ ;

Running this model and saving the work files through the save parameter leads to the generation of eight work
files.
The second file (say trans2.gms) generated from [TRNSPORT] looks as follows

solve transport using lp minimizing z ;

display x.l, x.m ;

One can then run trans2.gms restarting from the saved work files generated from running trans1.gms. The
result obtained is equivalent to running [TRNSPORT].
To illustrate the use of the dumpopt option, run the second model using the following command

McCarl GAMS User Guide369

© 2022 Prof. Bruce McCarl

gams trans2 restart=trans dumpopt=1

where trans is the name of the saved files generated through the save parameter from trans1.gms. A new

file trans2.dmp is created as a result of this call, and looks as follows

* This file was written with DUMPOPT=1 at 11/30/11 08:43:06

*

* INPUT = C:\Fred\GAMS options\test\trnsport2.gms

* DUMP = C:\Fred\GAMS options\test\trnsport2.dmp

* RESTART = C:\Fred\GAMS options\test\trans1.g0?

*

* with time stamp of 11/30/11 08:40:41

*

* You may have to edit this file and the input file.

* There are 5 labels

Set WorkFileLabelOrder dummy set to establish the proper order /

 seattle,san-diego,new-york,chicago,topeka /;

Model transport;

Variable z total transportation costs in thousands of dollars;

Set i(*) canning plants /

 seattle,san-diego /

Set j(*) markets /

 new-york,chicago,topeka /

Parameter c(i,j) transport cost in thousands of dollars per case /

 seattle.new-york 0.225,seattle.chicago 0.153,seattle.topeka 0.162,

 san-diego.new-york 0.225,san-diego.chicago 0.162,san-diego.topeka 0.126 /

Positive Variable x(i,j) shipment quantities in cases;

Parameter a(i) capacity of plant i in cases /

 seattle 350,san-diego 600 /

Parameter b(j) demand at market j in cases /

 new-york 325,chicago 300,topeka 275 /

Equation demand(j) satisfy demand at market j;

Equation supply(i) observe supply limit at plant i;

Equation cost define objective function;

GAMS Command Line Parameters 370

© 2022 Prof. Bruce McCarl

* *** EDITS FOR INPUT FILE ***

*** END OF DUMP ***

9.2.16 Dumpparms: Dp

This keyword lists the settings of all command line parameters changed or set by the user, GAMS or
the IDE during the current run. Numeric input is expected with the allowable numeric values being

0 no logging (default)

1 lists altered parameters in the log file

2 creates a list of altered parameters in the log file with the line marked with ***

The command is implemented with

Dumpparms=number

or

Dp=number

For example using the command line parameter dp=2 on the example model
gdxintrnsportinfersets.gms results in a log file that contains the following

* * * o p e n n o t y p e R= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . g ms "
* * * o p e n t e x t W= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . l x i "
* * * o p e n t e x t W= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . l s t "
* * * L P CPL EX
* * * MI P CPL EX
* * * RMI P CPL EX
* * * MI NL P DI COPT
* * * MI QCP DI COPT
* * * I n p u t C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ g d x i n t r n s p o r t i n f e r s e t s . g ms
* * * Ou t p u t C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ g d x i n t r n s p o r t i n f e r s e t s . l s t
* * * Pa g e Wi d t h 8 0
* * * Pa g e Si z e 0
* * * Pa g e Co n t r 3
* * * Ac t i o n CE
* * * Su b Sy s C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \ g ms c mp n t . t x t
* * * Sc r Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ 2 2 5 a \
* * * Sy s Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \
* * * Cu r Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2 \
* * * Wo r k Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2 \
* * * Pu t Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2 \
* * * Gr i d Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ 2 2 5 a \
* * * Sc r i p t Ne x t 2 2 5 a \ g a ms n e x t . c md
* * * Sc r i p t Fr s t @e c h o o f f
* * * L o g Op t i o n 3
* * * Ap p e n d Ou t 1
* * * DFo r ma t 0
* * * TFo r ma t 0
* * * Du mp Pa r ms 2

McCarl GAMS User Guide371

© 2022 Prof. Bruce McCarl

* * * L i b I n c Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \ i n c l i b \
* * * Sy s I n c Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \
* * * Er r o r L o g 9 9
* * * I DE 1
* * * Ex e c Mo d e 1

This can be used in conjunction with the command line option DumpParmsLogPrefix='string'
that will prefix the listing that are triggered by DumpParms=2 with a specific string for easy filtering of
these lines.

9.2.17 DumpParmsLogPrefix: DPLP

This keyword prefixes the list in the log file of all command line parameters changed or set by the user,
GAMS or the IDE during the current run. String input is expected

The command is implemented with

DumpParmsLogPrefix=string

or

DPLP=string

This must be used in conjunction with the command line option DumpParms=2 and is designed to
allow one to easily find those lines. By default the lines are marked with ***.

For example using the command line parameters dp=2 DumpParmsLogPrefix=changed on the
example model gdxintrnsportinfersets.gms results in a log file that contains the following

c h a n g e d o p e n n o t y p e R= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . g ms "
c h a n g e d o p e n t e x t W= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . l x i "
c h a n g e d o p e n t e x t W= 0 FN= " C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ g d x i n t r n s p o r t i n f e r s e t s . l s t "
c h a n g e d L P CPL EX
c h a n g e d MI P CPL EX
c h a n g e d RMI P CPL EX
c h a n g e d MI NL P DI COPT
c h a n g e d MI QCP DI COPT
c h a n g e d I n p u t C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ g d x i n t r n s p o r t i n f e r s e t s . g ms
c h a n g e d Ou t p u t C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ g d x i n t r n s p o r t i n f e r s e t s . l s t
c h a n g e d Pa g e Wi d t h 8 0
c h a n g e d Pa g e Si z e 0
c h a n g e d Pa g e Co n t r 3
c h a n g e d Ac t i o n CE
c h a n g e d Su b Sy s C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \ g ms c mp n t . t x t
c h a n g e d Sc r Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\ 2 2 5 a \
c h a n g e d Sy s Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \
c h a n g e d Cu r Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\
c h a n g e d Wo r k Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \
c h a n g e d Pu t Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s \ g a ms 2 0 0 2
\

GAMS Command Line Parameters 372

© 2022 Prof. Bruce McCarl

c h a n g e d Gr i d Di r C: \ g a ms s t u f f \ mc c a r l g u i d e \ mc c d o c \ d o c s \ b i g d o c s
\ g a ms 2 0 0 2 \ 2 2 5 a \
c h a n g e d Sc r i p t Ne x t 2 2 5 a \ g a ms n e x t . c md
c h a n g e d Sc r i p t Fr s t @e c h o o f f
c h a n g e d L o g Op t i o n 3
c h a n g e d Ap p e n d Ou t 1
c h a n g e d DFo r ma t 0
c h a n g e d TFo r ma t 0
c h a n g e d Du mp Pa r ms 2
c h a n g e d L i b I n c Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \ i n c l i b \
c h a n g e d Sy s I n c Di r C: \ GAMS\ wi n 6 4 \ 2 4 . 1 \
c h a n g e d Er r o r L o g 9 9
c h a n g e d I DE 1
c h a n g e d Ex e c Mo d e 1
c h a n g e d Du mp Pa r ms L o g Pr e f i x c h a n g e d

9.2.18 EMP

This keyword controls the name of the solver that will be used to solve EMP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

EMP=solvername

9.2.19 Eolonly: Ey

This keyword controls formatting of parameters on the command line and is useful in conjunction with
the pf parameter. Numeric input is expected with the allowable numeric values being

0 any number of keys or values (default)

1 only one key-value pair on a line

The command is implemented with

Eolonly=number

or

EY=number

9.2.20 Errmsg

This keyword controls the position of error messages in the listing file as discussed in the standard
output and compilation error chapters. Numeric input is expected with the allowable numeric values
being

0 Place error messages at the end of compiler listing (default)

1 Place error messages immediately following the line with the error

2 Suppress error messages

McCarl GAMS User Guide373

© 2022 Prof. Bruce McCarl

The command is implemented with the syntax

Errmsg=number

9.2.21 Errnam

This option specifies the name of a file defining the internally used compiler error messages. It is used
to change the name from the default GAMSERRS.TXT. String input is expected.

The command is implemented with the syntax

Errnam=filename

This is not ordinarily changed by users.

9.2.22 Error

This keyword forces a parameter error with a specified message. String input is expected.

The syntax for this command is

Error=message

It is useful in conditional compilation exercises which contain error checking.

9.2.23 Errorlog: Er

This keyword controls the error message lines written to the LOG file. Numeric input is expected with
the allowable numeric values being

0 no error messages to LOG file

n Number of lines for each error that will be written to LOG file (default=99)

The command is implemented with the syntax

Errorlog=number

or

Er=number

9.2.24 Etlim: Etl

This GAMS parameter controls the time limit for a job. A GAMS job will terminate if the elapsed time in
seconds exceeds the value of Etlim. Numeric input is expected

The command is implemented with the syntax

GAMS Command Line Parameters 374

© 2022 Prof. Bruce McCarl

Etlim=number

or

Etl=number

The default value for Etlim is +inf.

The system will terminate with a compilation or execution error if the limit is reached.

9.2.25 Execerr

This keyword puts a maximum limit on the number of errors that can be found during execution or
preprocessing associated with a solve statement. When more than Execerr errors have been found
GAMS will abort. Numeric input is expected with the allowable numeric values being

0 no errors allowed limit (default)

n max number allowed

The command is implemented with the syntax

Execerr=number

9.2.26 Execmode

This keyword limits users ability to run external programs or write to areas on the disk and is intended to
help in network administration for security purposes. Numeric input is expected with the allowable
numeric values being

0 everything allowed

1 interactive shells in $call and execute commands are prohibited

2 all $call and execute commands are prohibited

3 $echo/n or put commands can only write to directories in or below the working or scratch directory

4 $echo and put commands are not allowed

The command is implemented with the syntax

Execmode=number

9.2.27 Expand: Ef

The expand parameter generates a file that contains information about all the input files processed
during a particular compilation. By default names are composed by completing the name with the
working directory. String input is expected.

The command is implemented with the syntax

Expand=filename

McCarl GAMS User Guide375

© 2022 Prof. Bruce McCarl

or

Ef=filename

Example:

parameter a ; a = 0 ;

$include file2.inc

$include file2.inc

where file2.inc contains

a = a+1;

display a;

Running the model with the command line flag expand myfile.fil results in the creation of the
myfile.fil with the following content

1 INPUT 0 0 0 1 7 E:\TEMP\FILE1.GMS

2 INCLUDE 1 1 2 2 4 E:\TEMP\FILE2.INC

3 INCLUDE 1 1 3 5 7 E:\TEMP\FILE2.INC

· The first row always refers the parent file called by the GAMS call.
· The first column gives the sequence number of the input files encountered.
· The second column refers to the type of file being referenced. The various types are

0 INPUT

1 INCLUDE

2 BATINCLUDE

3 LIBINCLUDE

4 SYSINCLUDE

· The third column provides the sequence number of the parent file for the file being referenced.
· The fifth column gives the local line number in the parent file where the $include appeared.
· The sixth column gives the global (expanded) line number which contained the $include statement.
· The seventh column provides the total number of lines in the file after it is processed.
· The eighth and last column provides the name of the file.

9.2.28 FDDelta

This option allows one to exercise control over the computation of the hessian and numerical
derivatives are computed. .

The default for FDDelta is 1e-5.. Numerical input is expected with the value needing to fall between

1.e-9 and 1.

The command is implemented with the syntax

Fddelta=value

GAMS Command Line Parameters 376

© 2022 Prof. Bruce McCarl

Also users can control scaling of the step size using FDOpt.

9.2.29 FDOpt

This option allows one to exercise control over how numerical derivatives are computed in terns of
scaling of steps, hessian calculation method, and use of numerical first derivatives. This involves a
numerical parameter setting between 0 and 4 plus 10 id step size scaling is to be turned off . The
default for FDDelta is 0.. Numerical input is expected with the value needing to fall between 0 -4 and

10-14.

The command is implemented with the syntax

Fdopt=value

The value involves specifying two digits: ij.

· The first i digit controls whether the step size (FDDelta) is scaled to
reflect the size of the value of the point (x) around which the derivative
is being formed. When i=0 the default state then scaling is used and d
is set to the FDDelta value multiplied by max(1,|x|) (ie. d=max(1,|x|)
*FDDelta). When i is set to 1 this turns off scaling and d=FDDelta.

· The j digit is mostly for testing, but allows one to influence gradient
computation when the extrinsic function provides gradient but no
Hessian values. By default the numerical derivatives routine uses the
gradient calculation from the extrinsic function to approximate the
Hessian. If the gradient is expensive to calculate compared to a
function evaluation, it could be beneficial to use multiple function
values to approximate the Hessian. In this case set the j digit to 1.

· Here are all possible values for FDopt:

o 0: All derivatives are computed analytically if available, for
numerical Hessian use gradient values, FDdelta will be scaled

o 1: All derivatives are computed analytically if available, for
numerical Hessian use function values, scale delta

o 2: Gradient are computed analytically, force Hessian numerically
using gradient values, scale delta (testing only)

o 3: Gradient are computed analytically, force Hessian numerically
using function values, scale delta (testing only)

o 4: Force gradient and Hessian numerically, scale delta (testing
only)

o 10: Same as 0, but no scale of delta
o 11: Same as 1, but no scale of delta
o 12: Same as 2, but no scale of delta (testing only)

McCarl GAMS User Guide377

© 2022 Prof. Bruce McCarl

o 13: Same as 3, but no scale of delta (testing only)
o 14: Same as 4, but no scale of delta (testing only)

Also users can control the step size using FDDelta.

9.2.30 Ferr

This option allows one to redirect compilation error messages to a file and names the file. The file name
is composed by completing the name with the scratch directory and the scratch extension. Under
default settings a file with compilation error messages is not generated. String input is expected.

The command is implemented with the syntax

Ferr=filename

9.2.31 Filecase

This option allows one to alter the file name casing GAMS uses in saving put, gdx, ref etc. files. It only
works with new file names but for example it won't create trnsport.REF if TRNSPORT.ref already exists.
The command is implemented with the syntax

Filename=integer

where the allowable integer values are

0 causes GAMS to use default casing

1 causes GAMS to uppercase filenames

2 causes GAMS to lowercase filenames

9.2.32 FileStem

FileStem allows you to use a different stem name for LST, LXI, and LOG files along with any GDX

files that use the default name.

Thus if you run myfile.gms but use the command line parameter

filestem=anothername

then the LST, LXI and LOG files will be named

anothername.lst, anothername.lxi, anothername.log

This allows users to save these files with a unique name when one is running multiple cases of single
GAMS program in the same directory.

GAMS Command Line Parameters 378

© 2022 Prof. Bruce McCarl

9.2.33 Forcework: Fw

Most of the work files generated by GAMS using the save option are in binary format. The information
inside these files will change from version to version. Every attempt is made to be backward compatible
and ensure that all new GAMS systems are able to read save files generated by older GAMS systems.
However, at certain versions, we are forced to concede default incompatibility (regarding save files, not
source files) in order to protect efficiency. The Forcework option is used to force newer GAMS systems
into translating and reading save files generated by older systems. Numeric input is expected with the
allowable numeric values being

0 no translation (default)

1 try translation

9.2.34 Forlim

This option specifies the maximum number of allowable executions of Control Structures involving a For,
While or Repeat before GAMS signals an execution error and terminates the control structure. Numeric
input is expected. The command is implemented with the syntax

Forlim=number;

as illustrated in otheroptions.gms. The default value is 2 3̂2-1.

9.2.35 Fsave

This keyword forces GAMS to write a saved workfile. This allows one to save a file even in the face of
execution or other errors. To work the SAVE option must be present and the file name is taken from
the SAVE specification. GAMS will make up a name if the SAVE specification is not present. Numeric
input is expected with the allowable numeric values being

0 workfile only written to file specified by SAVE if no errors occur (default)

1 workfile always written to file specified by SAVE or if SAVE is not present to a name made up by GAMS.

The command is implemented with the syntax

Fsave=number

9.2.36 G205

This keyword controls the syntax allowed in GAMS causing reversions to older versions. This is mainly
used for backward compatibility. New key words have been introduced in the GAMS language since
Release 2.05. Models developed earlier that use identifiers that have since become keywords will cause
errors when run with the latest version of GAMS. This option will allow one to run such models. Numeric
input is expected with the allowable numeric values being

0 use only latest syntax (default)

1 allow version 2.05 syntax only

2 allow version 2.25 syntax only

McCarl GAMS User Guide379

© 2022 Prof. Bruce McCarl

The command is implemented with the syntax

G205=number

9.2.37 Gdx

This option specifies the name of the GAMS data exchange file and causes such a file (a GDX file) to be
written containing all data in the model at the end of the job. String input is expected.

The command is implemented with the syntax

Gdx=filename

Setting gdx to the string "default" i.e.

gdx=default

causes GAMS to create a GDX file with the GMS file root name and a GDX extension. Thus

gams trnsport gdx=default

will cause GAMS to write the GDX file trnsport.gdx.

9.2.38 Gdxcompress

This option allows the user to specify whether GDX files will be compressed or not. Numeric input is
expected with the allowable numeric values being

0 do not compress gdx files (default)

1 compress gdx files

The command is implemented with the syntax

Gdxcompress=number

The command is entered on the command line of a DOS/UNIX GAMS call or in the parameters box in
the IDE although an equivalent environmental variable exists. The command line parameter takes
precedence.

Note that version 5 gdx files do not support compression.

9.2.39 Gdxconvert

This option allows the user to specify whether GDX files will be written in an older GDX file format . String
input is expected with the allowable strings being

v5 version 5 gdx file, does not support compression

v6 version 6 gdx file

v7 version 7 gdx file (default)

GAMS Command Line Parameters 380

© 2022 Prof. Bruce McCarl

The command is implemented with the syntax

Gdxconvert=v#

The command is entered on the command line of a DOS/UNIX GAMS call or in the parameters box in
the IDE although an equivalent environmental variable exists. The command line parameter takes
precedence.

9.2.40 GdxUELs

This option allows the user to specify whether only the UELs that are required by the exported
symbols are registered to GDX or whether all will be registered. The command is entered on the

command line of a DOS/UNIX GAMS call or in the parameters box in the IDE.

The command is implemented with the syntax

Gdxuels=squeezed

or

GdxUELs=full

 gdxUELs is set to squeezed by default.

9.2.41 Griddir: Gdir

GDIR is a command line paramter that specifies the grid file directory. Each GAMS job has only one grid
file directory. By default it is assumed to be the scratch directory. String input is expected.

The command is implemented with the syntax

Griddir=filename

or

Gdir=filename

If filename is not a fully qualified name, it will be completed using the current directory. This is also
discussed in the grid computing section.

9.2.42 Gridscript: Gscript

A parameter that provides the name of a script file to submit grid computing jobs. String input is
expected.

The command is implemented with the syntax

Gridscript=filename

McCarl GAMS User Guide381

© 2022 Prof. Bruce McCarl

If only the file name is given the file is assumed to be located in the system directory. A fully qualified
name can be given as well.

The script needs to be similar to gmsgrid.cmd on windows machines with arguments giving name and
location of the solver executable, the solver control file name and the name of the scratch directory.

Advanced knowledge of how GAMS sets up and calls solvers is needed for successful use.

9.2.43 HeapLimit: Hl

Cases may arise where one needs to limit the amount of memory a GAMS job can use during
compilation and execution. HeapLimit is a GAMS parameter with which one can limit the maximum
amount of memory that can be used to store data during GAMS compilation and execution. If the
needed data storage exceeds this limit, the job will be terminated with return code 10, out of memory.

The command is implemented with

Heaplimit=number

where number gives the memory use limit in megabytes. The default value is 1e20.

This can also be implemented through the function heaplimit.

The limit does not apply to solvers but CONOPT contains the option HeapLimit to allow memory
limitations during the solve.

9.2.44 Holdfixed

This option can reduce the problem size by treating fixed variables as constants. Numeric input is
expected with the allowable numeric values being

0 fixed variables are not treated as constants (default)

1 fixed variables are treated as constants

The command is implemented with the syntax

Holdfixed=number

9.2.45 Ide

The ide option instructs GAMS to write special instructions to the log file that are in turn read by the
IDE. Numeric input is expected with the allowable numeric values being

GAMS Command Line Parameters 382

© 2022 Prof. Bruce McCarl

1 causes the writing to occur (default when running under the IDE)

0 does not (default outside of IDE)

The command is implemented with

Ide=number

Normal IDE users do not need to worry about the ide parameter as GAMS adds it automatically.

It is of concern when Execute or $Call are used to spawn GAMS jobs as discussed here.

9.2.46 Input: I

Completing the input file name with the current directory composes the final name. If such a file does not
exist and the extension was not specified, the standard input extension is attached and a second
attempt is made to open an input file. String input is expected.

The command is implemented with the syntax

Input=filename

or

I=filename

9.2.47 Inputdir: Idir

In general, GAMS searches for input and include files in the current working directory only. This option
allows the user to specify additional directories for GAMS to search for include and batinclude files. A
maximum of 40 separate directories can be included with the directories separated by Operating System
specific symbols. On a PC the separator is a semicolon (;) character, and under Unix it is the colon (:)
character. Note that libinclude and sysinclude files are handled differently, and their paths are specified
by libincdir and sysincdir. String input is expected.

The command is implemented with

Inputdir=listofdirectorynames

or

Idir=listofdirectorynames

For example under Windows one could use

Idir=c:\;c:\gams;c:\mymodel

The search order is (1) current directory and (2) directories specified by inputdir in order.

McCarl GAMS User Guide383

© 2022 Prof. Bruce McCarl

9.2.48 Inputdir1 to inputdir40: Idir1 to idir40

This keyword gives the name of the directories to be searched by GAMS given a file name with number 1
being first then number 2 etc up to 40 when encountering an include or batinclude. Directory names
must be listed in a form consistent with the way of indicating directory names on the operating system
being employed. If not specified, the name will be blank. String input is expected.

The command is implemented with

Inputdir1=directoryname
Inputdir2=directoryname

or

Idir1= directoryname
Idir40= directoryname

For example under Windows one could use

Idir1=c:\ Idir2=c:\gams Idir3=c:\mymodel

Where this corresponds to the example from the IDIR case above.

9.2.49 Integer1 to Integer5

Integer communication cell that can contain any integer number.

The command is implemented with

Integer1=integer
Integer2=integer

These parameters are only used in very special circumstances and generally not by most users.

The main usage to data has been for passing information to experimental solvers that don't have an
option file that has been implemented inside the GAMS system.

9.2.50 IntVarUp

The default upper bound on integer variables has been changed from 100 to +INF but
an option has been introduced for backward compatability. Namely since some
previously developed GAMS applications may inadvertently depend on the previous
default value of 100,, the GAMS command line parameter IntVarUp=n, has been
introduced to allow the user to control what values will be passed to the solver. If the
GAMS parameter IntVarUp is not specified then a default value of IntVarUp=1 is
assumed and the default bound will be 100 as in previous releases.

 IntVarUp=0: A default upper bound of +INF will be passed to the solver for any
integer variables without an explicit upper bound .

GAMS Command Line Parameters 384

© 2022 Prof. Bruce McCarl

 IntVarUp=1: A default upper bound of +100 will be passed to the solver for any
integer variables without an explicit upper bound .. The solvers will operate as with older
GAMS versions. In addition messages will be written to the log and listing to report on
the number of integer or semi-integer variables which had the new default bound of +INF
reset to 100.

 IntVarUp=2: The new default values of +INF will be used as with IntVarUp=0.
Additionally when a solution is returned to GAMS and the level value of an integer
variable exceeds the old bound value of 100, a message will be written to the log and
listing files.

 IntVarUp=3: The same as IntVarUp=2 with an additional execution error issued
if the solution reports a level value greater than 100 for any integer variable with a
default bound of +INF.

Implementation - to use a default upper bound of +INF you can use the following
command line parameter:

IntVarUp=0

Setting IntVarUp values to 2 and 3 is a convenient way to test if the application run
under older GAMS versions would have been constrained by the older default bound of
of 100. Future releases may use IntVarUp=0 as the default. Note that, one can use a
shorted tect string for this of PF4 i.e. pf4=2

9.2.51 iterlim

This parameter specifies the maximum number of allowable solver iterations, before the solver terminates
the run. Numeric input is expected.

The command is implemented with

Iterlim=number

The default value is 2000000000.

9.2.52 Jobtrace: Jt

This parameter specifies a string written to the trace file at the end of a GAMS job. String input is
expected.

The command is implemented with

Jobtrace=string

McCarl GAMS User Guide385

© 2022 Prof. Bruce McCarl

or

Jt=string

9.2.53 Keep

This keyword tells GAMS whether to keep the temporary files generated during a run. Numeric input is
expected with the allowable numeric values being

0 delete all files (default)

1 keep all temporary files

The command is implemented with the syntax

Keep=number

9.2.54 Libincdir: Ldir

This keyword gives the name of the directory to be used by GAMS for libinclude files that do not have a
full path specification. An absolute or relative path can be specified. If not specified, it will be set to the
inclib subdirectory of the GAMS system directory. A relative path is relative to the GAMS System
Directory. String input is expected.

The command is implemented with

Libincdir=directoryname

or

Ldir= directoryname

Notes:

· Unlike Idir, additional directories cannot be set with Ldir. The string passed will be treated as one
directory. Passing additional directories will cause errors.

· If the Ldir parameter is set, the default library include directory is not searched.

9.2.55 License

This option specifies the name of file containing the GAMS license. It is used to change the name from
the default GAMSLICE.TXT located in the system directory. String input is expected.

The command is implemented with

License=Licensefilename

9.2.56 Limcol

This keyword controls the number of cases written to the LST file for each named variable in a model.

GAMS Command Line Parameters 386

© 2022 Prof. Bruce McCarl

The command is implemented with

Limcol=number

The default value is 3.

9.2.57 Limrow

This keyword controls the number of cases written to the LST file for each named equation in a model.

The command is implemented with

Limrow=number

The default value is 3.

9.2.58 Logfile: Lf

This option specifies the name of the LOG file. The LOG file name is completed using the working
directory. If no Logfile is given but the LogOption=2 or LogOption=4, then the file name will be the input
file name with the extension LOG. String input is expected.

The command is implemented with the syntax

Logfile=filename

or

Lf= filename

9.2.59 Logline: Ll

This keyword controls the amount of line tracing to the LOG file. Numeric input is expected with the
allowable numeric values being

0 all line tracing suppressed

1 shows include file nesting

2 full line tracing (default)

The command is implemented with the syntax

Logline=number

or

LL=number

McCarl GAMS User Guide387

© 2022 Prof. Bruce McCarl

9.2.60 Logoption: Lo

This keyword tells GAMS whether to write a LOG file to the screen. Numeric input is expected with the
allowable numeric values being

0 suppress LOG output

1 LOG output to screen (default)

2 send LOG output to file

3 writes LOG output to standard output

4 writes LOG output to a file and standard output

This can be used with a setting of 0 or 2 to permit jobs to operate in background.

9.2.61 LP

This keyword controls the name of the solver that will be used to solve LP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

LP=solvername

9.2.62 MaxProcDir

This keyword gives the maximum number of workfile directories that can be generated by GAMS. By
default they are called 225a, 225b, ..., 225aa, 225ab Numeric input is expected.

The command is implemented with

MaxProcdir=number

where number is an integer.

For example MaxProcDir=100 will allow 100.

The 225 lablel can be changed using the parameter procdir.

9.2.63 MCP

This keyword controls the name of the solver that will be used to solve MCP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

MCP=solvername

GAMS Command Line Parameters 388

© 2022 Prof. Bruce McCarl

9.2.64 McprHoldFx

And attribute, option or command line parameter which controls whether when dealing with an MCP
problem a list of equations is generated and output that is designed to help resolving with
complementary matching issues. Such issues can arise whensome variables are fixed in value using the
.FX command and the holdfixed parameter is used. For more discussion see here.

The command is implemented with the syntax

MCPrHoldFX=1

9.2.65 MINLP

This keyword controls the name of the solver that will be used to solve MINLP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

MINLP=solvername

9.2.66 MIP

This keyword controls the name of the solver that will be used to solve MIP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

MIP=solvername

9.2.67 MIQCP

This keyword controls the name of the solver that will be used to solve MIQCP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

MIQCPP=solvername

9.2.68 MPEC

This keyword controls the name of the solver that will be used to solve MPEC models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

MPEC=solvername

McCarl GAMS User Guide389

© 2022 Prof. Bruce McCarl

9.2.69 Multipass: Mp

This is a command line parameter keyword that tells GAMS whether to use quick syntax compilation
facility which does not require all items to be declared. This is useful when a large model is being put
together from smaller pieces. Numeric input is expected with the allowable numeric values being

0 employ standard compilation

1 quick check-out compilation

2 does the quick check-out compilation but skips all incidences of $call and ignores any missing files that cannot be found in $include statements

The command is implemented with the syntax

Mulitpass=number

or

MP=number

9.2.70 NLP

This keyword controls the name of the solver that will be used to solve NLP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

NLP=solvername

9.2.71 Nodlim

This parameter specifies the maximum number of nodes to process in the branch and bound tree for a
MIP problem. Numeric input is expected.

The command is implemented with

Nodlim=number

The default value is 0 and interpreted as 'not set'.

9.2.72 NoNewVarEqu

This parameter specifies that GAMS is to run in a mode that does not permit new variables or
equations to be defined.. Numeric input is expected.

The command is implemented with

Nonewvarequ=0
or
Nonewvarequ=1

GAMS Command Line Parameters 390

© 2022 Prof. Bruce McCarl

The default value is 0 and interpreted as variable and equation is allowed. Setting will cause GAMS to
trigger compilation errors if the user tries to define new equation or variable symbols.

This is useful for testing GAMS run-time environments.

9.2.73 On115

Generate errors for unknown unique element in an equation. Numeric input is expected with the
allowable numeric values being

0 no error messages (default)

1 issue error messages

The command is implemented with

On115=number

9.2.74 Optca

Absolute optimality criterion. This attribute specifies an absolute termination tolerance for use in solving
all mixed-integer models. Numeric input is expected.

The command is implemented with

Optca=realnumber

The default value is 0.0.

9.2.75 Optcr

Relative optimality criterion. This attribute specifies a relative termination tolerance for use in solving all
mixed-integer models. Numeric input is expected.

The command is implemented with

Optcr=realnumber

The default value is 0.1.

9.2.76 Optdir

This keyword gives the name of the directory to be used by GAMS for solver option files. If not specified,
it will be set to the current working directory. String input is expected.

The command is implemented with

Optdir=directoryname

McCarl GAMS User Guide391

© 2022 Prof. Bruce McCarl

9.2.77 Optfile

This option specifies the default number for modelname.optfile in the code. Integer input is expected.

The command is implemented with the syntax

Optfile=number

9.2.78 Output: O

This option specifies the name of file containing the output. If no name is given, the input file name is
combined with the working directory and the standard output file extension (LST) is applied. Otherwise,
the final name is composed by using the working directory. String input is expected.

The command is implemented with the syntax

Output=filename

or

O=filename

9.2.79 Pagecontr: Pc

This keyword affects the page control in the listing file. Numeric input is expected with the allowable
numeric values being

0 no page control with padding

1 Fortran style line printer format

2 no page control, no padding

3 Form feed character for new page (default)

It is implemented using the syntax

Pagecontr=number

or

Pc=number

9.2.80 Pagesize: Ps

This keyword tells the number of lines per page for printing the listing file. The default value is 58 and the
lower bound is 0 which is interpreted as '+inf'.

It is implemented using the syntax

Pagesize=number

or

Ps=number

GAMS Command Line Parameters 392

© 2022 Prof. Bruce McCarl

9.2.81 Pagewidth: Pw

This option sets the print width on a page in the listing file with a possible range from 72 to 32767 and a
default value of 255. Note that under the IDE the default is set to 80. If the value is outside the allowed
range, the default value will be used.

It is implemented using the syntax

Pagewidth=number

or

Pw=number

The option can also be used to specify the pagewidth for the put facility, i.e.

file f /myfile.txt/; put f; f.pw=80;.

In this case the range is from 0 to 32767 and if the value is above the range, then it is set to 32767.

9.2.82 Parmfile: Pf

This option specifies the name of a secondary customization parameter file to use. It is used to
augment the command line adding more command line parameters from a file.

The command is implemented with the syntax

Parmfile=filename

or

Pf=filename

It is read from the current directory unless a path is specified.

One thus could use

Gams myfile pf=c:\place\fileofcommands

Where file of commands was one like

Eolonly 1
Ps=9999
Pw=90
Errmsg=1
Pf=c:\place\moreparameters
Eolonly 0

Use of the eolonly parameter allows one to place one command per line.

This can be used in a customization exercise with the same file used by default in the IDE or in a

McCarl GAMS User Guide393

© 2022 Prof. Bruce McCarl

gmsprmXX.txt file as discussed in the chapter on customization. As shown in blue above this parameter
may be used recursively with the pf file containing a pf= line identifying a file containing further pf entries.

9.2.83 Plicense

This keyword tells the name of a privacy license file that contains file encryption codes. It is
implemented using the syntax

plicense=targetfilename

A full path should be used.

One thus could use

Gams myfile plicense=c:\place\speciallicensefile.txt

Where speciallicensefile.txt is obtained from GAMS corporation as discussed in the User's Guide or
the compression and encryption section.

9.2.84 ProcDir

This keyword gives the name of the directory where the work files generated by GAMS will be stored.
This directory must already exist, otherwise an error is triggered. If not specified, it will be set to 225 with
characters a,b,c,... attached. String input is expected.

The command is implemented with

Procdir=name

The internal item %gams.procdir% is also defined and gives the name of the actual process directory in
use for this run.

9.2.85 Profile

This keyword tells GAMS whether to include statement execution time and memory use reporting to the
LST file. Numeric input is expected with the allowable numeric values being

0 no profiling (default)

1 minimum profiling

2 profling depth for nested control structures

A value of 0 does not cause an execution profile to be generated. A value of 1 reports execution times for
each statement and the number of set elements over which the particular statement is executed. A value
of 2 reports specific times for statements inside control structures like loops etc.

The command is implemented with the syntax

https://www.gams.com/latest/docs/UG_GamsCall.html#GAMSAOplicense

GAMS Command Line Parameters 394

© 2022 Prof. Bruce McCarl

Profile=number

At the end of the log file a profile summary is created which contains (up to) ten of the 'worst' control
structures.

Examples:

Running [TRNSPORT] with profile=1 provides the following additional information in the listing file

---- 1 ExecInit 0.000 0.000 SECS 3 Mb

---- 44 Assignment c 0.000 0.000 SECS 4 Mb 6

---- 65 Solve Init transport 0.000 0.000 SECS 4 Mb

---- 57 Equation cost 0.000 0.000 SECS 4 Mb 1

---- 59 Equation supply 0.000 0.000 SECS 4 Mb 2

---- 61 Equation demand 0.000 0.000 SECS 4 Mb 3

---- 65 Solve Fini transport 0.000 0.000 SECS 4 Mb 19

---- 65 GAMS Fini 0.015 0.015 SECS 4 Mb

---- 1 ExecInit 0.000 0.000 SECS 2 Mb

---- 65 Solve Read transport 0.000 0.000 SECS 2 Mb

---- 67 Display 0.000 0.000 SECS 3 Mb

---- 67 GAMS Fini 0.000 0.000 SECS 3 Mb

The first column provides the line number in the input file of the statement being executed. The second column
provides the type of statement being executed.

9.2.86 Profilefile

A parameter that causes profiling information to be written to a file.

The expected input is

PROFILEFILE=file

where file is a file name

This allows one to write profiling information to a text file with a fixed format which can easily be imported
into a spreadsheet for further analysis.

Note that profiling information is only created with profile=1 or profile=2.

9.2.87 Profiletol: Ptol

This option specifies the minimum time a statement must use to appear in the profile generated output.
The default value is 0.0.

It is implemented using the syntax

Profiletol=number

McCarl GAMS User Guide395

© 2022 Prof. Bruce McCarl

or

Ptol=number

9.2.88 Putdir: Pdir

This keyword gives the name of the directory where files generated by the Put command will be stored.
If not specified, it will be set to the current working directory. String input is expected.

The command is implemented with

Putdir=directoryname

or

Pdir=directoryname

9.2.89 QCP

This keyword controls the name of the solver that will be used to solve QCP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

QCP=solvername

9.2.90 Reference: Rf

This option specifies the name of the file on which to place extensive reference map information. New
information is appended to this file. String input is expected.

The command is implemented with the syntax

Reference=filename

or

Rf=filename

Setting Rf or Reference to the string "default" causes GAMS to create a reference file with the GMS

file root name and a REF extension.

Thus gams trnsport rf=default will cause GAMS to write the reference file trnsport.ref.

9.2.91 Reslim

This parameter specifies the maximum time in seconds that the computer can run during execution of a
solver, before the solver terminates the run. Numeric input is expected.

The command is implemented with

Reslim=number

GAMS Command Line Parameters 396

© 2022 Prof. Bruce McCarl

The default value is 1000.

9.2.92 Restart: R

This option specifies the name of file containing a workfile written by a SAVE command that allows the
GAMS program to be restarted. String input is expected.

The command is implemented with the syntax

Restart=filename

or

R=filename

For example one can use

r=myfile

where GAMS will create myfile.go0

For more detailed information see the Save and Restart basics.

9.2.93 RMINLP

This keyword controls the name of the solver that will be used to solve RMINLP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

RMINLP=solvername

9.2.94 RMIP

This keyword controls the name of the solver that will be used to solve RMIP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

RMIP=solvername

9.2.95 RMIQCP

This keyword controls the name of the solver that will be used to solve RMIQCP models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

McCarl GAMS User Guide397

© 2022 Prof. Bruce McCarl

RMIQCP=solvername

9.2.96 RMPEC

This keyword controls the name of the solver that will be used to solve RMPEC models. String input is
expected with the solver name being one of the known GAMS solvers and that solver being capable of
solving this type of model.

The command is implemented with

RMPEC=solvername

9.2.97 Save: S

This option specifies the name of a workfile to be written that allows the GAMS program to be restarted.
 The file written is platform independent. String input is expected.

The command is implemented with the syntax

Save=filename

or

S=filename

For more detailed information see the Save and Restart basics.

9.2.98 Savepoint: Sp

This parameter tells GAMS to save a point format GDX file that contains the information on the current
solution point. One can save the solution information from the last solve or from every solve. The points
that are saved can be used to provide an advanced basis, integer program starting point or NLP starting
point. Numeric input is expected with the allowable numeric values being

0 no point gdx file is to be saved (default)

1 a point gdx file is to be saved from the last solve in the GAMS model

2 a point gdx file is to be saved from every solve in the GAMS model

The command is implemented with the syntax

Savepoint=number

or

SP=number

When Savepoint=1 the point gdx file saved has the name modelname_p.gdx so for a model identified in
the solve statement as transport the file would be transport_p.gdx. On the other hand if Savepoint=2
then the file name is modelname_pnn.gdx where nn is the solve number as determined internally by
GAMS (gdxsavepoint2.gms). Thus, for a model solved 2 times that is identified with the name firm in
the solve statement, the file names would be firm_p1.gdx and firm_p2.gdx. The file is reloaded with the
Execute_loadpoint syntax.

GAMS Command Line Parameters 398

© 2022 Prof. Bruce McCarl

This can also be done through an option command or a model attribute.

9.2.99 Scrdir: Sd

This keyword gives the name of the directory to be used by GAMS for temporary files generated during
execution. If not specified, it will be set to a subdirectory of the current directory with an internally
generated name. String input is expected.

The command is implemented with

Scrdir=directoryname

or

Sd= directoryname

9.2.100 Scrext: Se

This parameter gives the name of the extension for the GAMS temporary files generated during
execution. String input is expected.

The command is implemented with

Scrext=string

or

Se=string

The default is Scrext=dat.

9.2.101 Scriptexit

By default GAMS does not call an exit script anymore. If this is required, the GAMS parameter
ScriptExit has to be set explicitly to the script that should be called after GAMS terminates. An empty
template of an exit script can be found in the GAMS system directory (gmsxitnt.cmd (Windows) or
gmsxitus.run (Unix)).

String input is expected.

The command is implemented with

Scriptexit=string

9.2.102 Scriptfrst: Sf

This parameter specifies the first line written to gamsnext. The default is an empty string and the first
line is not written.

String input is expected.

McCarl GAMS User Guide399

© 2022 Prof. Bruce McCarl

The command is implemented with

Scriptfrst=string

or

Sf=string

9.2.103 Scriptnext: Script

Gams Parameter that specifies the script mailbox file name. String input is expected.

The command is implemented with

Scriptnext=string

or

Script=string

The default is script=gamsnext.

9.2.104 Scrnam: Sn

Name stem used to complete the names of intermediate work files. This name stem has to have at least
one ' ?'. Name will be completed with the scratch directory and the standard scratch name extension.
String input is expected.

The command is implemented with

Scrnam=string

or

Sn=string

9.2.105 Seed

This option specifies the seed used for the pseudo random number generator. Numeric input is
expected.

The command is implemented with

Seed=number

The default value is 3141.

9.2.106 Solprint

This keyword controls the printing of the solution report. Numeric input is expected with the allowable
numeric values being

0 remove solution listings following solves

GAMS Command Line Parameters 400

© 2022 Prof. Bruce McCarl

1 include solution listings following solves (default)

2 suppress all solution information

The command is implemented with the syntax

Solprint=number

A related set of Solprint constants is defined as follows

Solprint.Summary is a constant that equals 0.

Solprint.Report is a constant that equals 1.

Solprint.Quiet is a constant that equals 2.

These may be used in a fashion as follows (simpnlp.gms)

a1= %Solprint.Summary%;
a2= %Solprint.Report%;
a3= %Solprint.Quiet%;
a4= %gams.Solprint%;
display a1,a2,a3,a4;
if(%gams.solprint%= %Solprint.Report%,display 'Normal output present');
display 'gams.solprint =','%gams.solprint%';

These constants are defined at compile time and cannot be manipulated or reassigned.

9.2.107 Solvelink: Sl

This option controls GAMS function when linking to solve. Numeric input is expected with the

allowable numeric values being

0 GAMS operates as it has for years (default)

1 the solver is called from a shell and GAMS remains open.

2 the solver is called with a spawn (if possible as determined by GAMS) or a shell (if the

spawn is not possible) and GAMS remains open.

3 GAMS starts the solution and continues in a Grid computing environment

4 GAMS starts the solution and wait (same submission process as 3) in a Grid computing

environment. This is included mainly for debugging purposes as is solvelink=7.
5 the problem is passed to the solver in core without use of temporary files

6 GAMS uses multi-threading and does not wait for the solver to return the solution and

does not automatically collect the result when a solve statement is executed. Instead, the

model is generated and then passed to the solver in a separate thread while GAMS

continues the execution. This way, multiple models can be solved in parallel and the

results can be collected later. This is similar to what is done under the Grid Computing

McCarl GAMS User Guide401

© 2022 Prof. Bruce McCarl

Facility with the difference, that the solver does not operate in its own process space

but in a separate thread. After the solve statement, one can store a handle of the model

instance using the model attribute mymodel.handle and use the functions that are used

for the Grid Facility to collect the solution. One can use the command line parameter

ThreadsAsync to reserve threads for processes. Only selected solvers can be used as

listed below

7 GAMS submits a single job to the solver using the same linking procedure as Solvelink=6

but waits for the solution to be returned. This is included mainly for debugging purposes as is
solvelink=4.

Currently, the following solvers can be used with SolveLink = 6:

· CONOPT

· CPLEXD

· GUROBI

· MOSEK

· OSICPLEX

· OSIGUROBI

· SCIP

If another solver is selected, SolveLink = %solveLink.Async Grid% will be used instead (which is

noted in the log).

 The command is implemented with

Solvelink=number

Leaving GAMS open or passing the information in core saves time. On the other hand additional

memory is required. This option is best for jobs that have a large data set and solve many small

models as in that case one sacrifices memory but avoids the overhead of many GAMS saves and

restarts. This is implemented by using the option SOLVELINK that can appear on the command

line, as a model attribute or as an internal option statement.

The default setting is zero.

A set of SolveLink constants have been defined

Solvelink.ChainScript is a constant that equals 0.

Solvelink.CallScript is a constant that equals 1.

Solvelink.CallModule is a constant that equals 2.

Solvelink.AsyncGrid is a constant that equals 3.

Solvelink.AsyncSimulate is a constant that equals 4.

Solvelink.LoadLibrary is a constant that equals 5.

These may be used as follows

modelname.solvelink=%solvelink.AsyncGrid%;

which is the same as setting the item to 3

GAMS Command Line Parameters 402

© 2022 Prof. Bruce McCarl

These constants are defined at compile time and cannot be manipulated or reassigned.

An example of how this new feature can be used, can be seen in the GAMS Model Library model

TGRIDMIX.

This can also be done through a model attribute or an option command.

9.2.108 Solver

The command line option solver=abc initializes the default solver for the model types solver abc is

capable of to abc. This initialization is done before the default solvers of individual model types are set
via command line options. So a command line with lp=conopt solver=bdmlp will first set BDMLP

as the default solver for model types LP, RMIP, and MIP (these are the model types BDMLP can handle)
and then reset Conopt as the default solver for LP. The order of these parameters on the command line
has no impact (i.e. lp=conopt solver=bdmlp behaves identically to solver=bdmlp

lp=conopt). If multiple occurrences of option solver appear, the last one sets the option as it is with

other options, including LP, MIP, ...

9.2.109 Solvercntr: Scntr

This parameter specifies the solver control file name. String input is expected.

The command is implemented with

Solvercntr=text

or

Scntr=text

9.2.110 Solverdict: Sdict

This parameter specifies the solver dictionary file name. String input is expected.

The command is implemented with

Solverdict=text

or

Sdict=text

9.2.111 Solverinst: Sinst

This parameter specifies the solver instruction file name. String input is expected.

The command is implemented with

Solverinst=text

or

https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_tgridmix.html

McCarl GAMS User Guide403

© 2022 Prof. Bruce McCarl

Sinst=text

9.2.112 Solvermatr: Smatr

This parameter specifies the solver matrix file name. String input is expected.

The command is implemented with

Solvermatr=text

or

Smatr=text

9.2.113 Solversolu: Ssolu

This parameter specifies the solver solution file name. String input is expected.

The command is implemented with

Solversolu=text

or

Ssolu=text

9.2.114 Solverstat: Sstat

This parameter specifies the solver status file name. String input is expected.

The command is implemented with

Solverstat=text

or

Sstat=text

9.2.115 Stepsum

This parameter controls the generation of a step summary of the processing times taken by GAMS
during a given run. Numeric input is expected with the allowable numeric values being

0 no step summary (default)

1 step summary printed

The command is implemented with the syntax

Stepsum=number

Example:

To illustrate the use of the stepsum option, the default GAMS LST file from running [TRNSPORT] with the option

GAMS Command Line Parameters 404

© 2022 Prof. Bruce McCarl

stepsum=1 contains the following step summaries.

STEP SUMMARY: 0.000 0.000 STARTUP

0.000 0.000 COMPILATION

0.000 0.000 EXECUTION

0.000 0.000 CLOSEDOWN

0.000 0.000 TOTAL SECONDS

0.008 0.008 ELAPSED SECONDS

3.949 3.949 MAX HEAP SIZE (Mb)

STEP SUMMARY: 0.000 0.000 STARTUP

0.000 0.000 COMPILATION

0.000 0.000 EXECUTION

0.000 0.000 CLOSEDOWN

0.000 0.000 TOTAL SECONDS

0.089 0.096 ELAPSED SECONDS

2.884 3.949 MAX HEAP SIZE (Mb)

The first step summary occurs before the model is sent to the solver, and the second occurs after the solver
completes its task and returns control back to GAMS. The first column reports time for the individual section of
the run, while the second column reports accumulated times including previous sections.

9.2.116 strictSingleton

This option specifies whether GAMS is to trigger out an error if more than one element is specified in a
singleton set. Integer input is expected.

The command is implemented with the syntax

Strictsingleton=number

Where the values and corresponding actions for the number entry are.

0 Use the first set element ignoring the rest when the singleton set has multiple
elements

1
Message out an error if assignment to singleton set causes the set to have
multiple elements

The default value is one

9.2.117 Stringchk

This keyword tells GAMS how to perform a string substitution check for %xxx% symbols. Numeric
input is expected with the allowable numeric values being

0 no substitution if symbol undefined and no error (default)

1 error if symbol undefined

2 remove %xxx% if symbol undefined and no error

The command is implemented with the syntax

McCarl GAMS User Guide405

© 2022 Prof. Bruce McCarl

Stringchk=number

9.2.118 Subsys

This option specifies the configuration file name that contains solver defaults and other information. It is
used to change the name of GMSCMPNT.TXT on Windows or GMSCMPUN.TXT on Unix. The name will
be used as is. String input is expected.

The command is implemented with the syntax

Subsys=filename

9.2.119 Suppress

This keyword tells GAMS whether to suppress the compiler echo print of the GAMS input instructions.
This parameter is similar in functionality to the $offlisting dollar control option. Numeric input is expected
with the allowable numeric values being

0 standard compiler listing (default)

1 suppress compiler listing

The command is implemented with the syntax

Suppress=number

9.2.120 Symprefix

This option specifies a prefixes that is appended to the beginning of all user symbols that are in this
run in a resultant save/restart file. This avoids name clashes when merging multiple models together.
String input is expected.

The command is implemented with the syntax

Symprefix=filename

9.2.121 Symbol

This option specifies the name of a partial symbol table that can be written in conjunction with reference
files. String input is expected.

The command is implemented with the syntax

Symbol=filename

9.2.122 Sys10

This option controls whether GAMS converts exponentiation treating a real power as an integer power if

the exponent is constant and within 10-12 of an integer value. This option is used by setting

GAMS Command Line Parameters 406

© 2022 Prof. Bruce McCarl

Sys10=number;

where two numerical values are allowed

0 which does not convert exponentiation.
1 which converts exponentiation.

The default value is 0.

there is a corresponding option command implementd by

option sys10=number;

9.2.123 Sys11

Speed-up for expressions containing constant indices or indices that are not in the natural order at the
cost of increased memory use. Numeric input is expected with the allowable numeric values being

0 automatic optimization/restructuring of data

1 no optimization

2 always optimize/restructure

The command is implemented with the syntax

Sys11=number

9.2.124 Sysdir

This keyword gives the name of the directory where GAMS executables reside. If not specified, it will be
set to the GAMS system directory. String input is expected.

The command is implemented with

Sysdir=directoryname

9.2.125 Sysincdir: Sdir

This keyword gives the name of the directory to be used by GAMS for sysinclude files that do not have a
full path specification. If not specified, it will be set to the GAMS system directory. String input is
expected.

The command is implemented with

Sysincdir=directoryname

or

McCarl GAMS User Guide407

© 2022 Prof. Bruce McCarl

Sdir= directoryname

9.2.126 Sysout

This option controls the incorporation of additional solver generated output (that in the solver status file)
to the listing file. Numeric input is expected with the allowable numeric values being

0 suppress additional solver generated output (default)

1 include additional solver generated output

The command is implemented with the syntax

Sysout=number

9.2.127 Tabin

This keyword tells GAMS how to deal with tabs. Numeric input is expected with the allowable numeric
values being

0 tabs are not allowed

1 tabs are replaced by blanks

n tabs are 1, n+1, 2n+1,.. (default: n=8)

The command is implemented with the syntax

Tabin=number

9.2.128 Tformat: Tf

This keyword controls compiler use of alternative time formats. Numeric input is expected with the
allowable numeric values being

0 hh:mm:ss (default)

1 hh.mm.sd

The command is implemented with

Tformat=number

or

Tf=number

9.2.129 Threads

Threads is an option that controls the number of threads or CPU cores to be used by a solver. It can be
set as a command line parameter, a GAMS option or a model attribute. Note that this does not alter the
cores used in Grid computing. Numeric input is expected with the allowable numeric values being

-n reserve n cores

GAMS Command Line Parameters 408

© 2022 Prof. Bruce McCarl

0 use all available cores

n use n cores

it is implemented in the command line with the syntax

Threads=number

or as an option with

option threads=number;

or as a model attribute with

modelname.threads=number;

Non-positive values are interpreted as the number of cores to leave free so setting threads to 0 uses all
available cores while setting threads to -1 leaves one core free for other tasks.

9.2.130 ThreadsAsync

ThreadsAsync is an command line parameter that controls the number of threads or CPU cores to
use (at most) for asynchronous solve (SolveLink=6) .

The Default value is: -1.

The following values are allowed

value meaning

0 use all available cores

n use n cores

-n number of cores to leave free for other tasks

Further documentation on the use of this feature appears in the Grid computing section and in the
document here.

https://www.gams.com/latest/docs/UG_GridComputing.html

McCarl GAMS User Guide409

© 2022 Prof. Bruce McCarl

9.2.131 Timer

This option specifies an instruction timer threshold in milli seconds. That means that only details about
internal GAMS intructions that took more than n milli seconds are echoed to the log.

The command is implemented with

Timer=number

The default 0.0 is interpreted as +inf and no details are echoed.

9.2.132 Trace

This option specifies the trace file name and causes a trace file to be written. String input is expected.

The command is implemented with the syntax

Trace=filename

9.2.133 Traceopt

This option specifies the trace file format. Numeric input is expected with the allowable numeric values
being

0 solver and GAMS step trace without headers

1 solver and GAMS step trace

2 solver step trace only

3 trace file format used for GAMS performance world

5 trace file with all available trace fields

The command is implemented with the syntax

Traceopt=number

9.2.134 User1 to user5: U1 to U5

This keyword permits user entry of text for up to 5 user-defined options. String input is expected.

The command is implemented with the syntax

User1=string
User2=string

GAMS Command Line Parameters 410

© 2022 Prof. Bruce McCarl

or

U1=string
U5=string

9.2.135 Warnings

This option specifies the maximum number of allowable warnings, before the run terminates. Numeric
input is expected. The default value is MAXINT.

9.2.136 Workdir: Wdir

This keyword gives the name of the working directory to be used by GAMS. If not specified, it will be set
to the Curdir name. String input is expected.

The command is implemented with

Workdir=directoryname

or

Wdir= directoryname

9.2.137 Workfactor

This keyword gives the multiplier to initially allocate for solver memory as a multiple of the GAMS
memory use estimate. The default value is 1.0. Real input is expected.

The command is implemented with

Workfactor=realnumber

If one sets workfactor to 2.5 then 2.5 times the GAMS memory use estimate for a problem will be
allocated.

9.2.138 Workspace

Parameter that when initializes all modelname.workspace attributes.

The command is implemented with

Workspace=realnumber

where realnumber is memory space in megabytes.

If not given by the user the solver can choose the size and usually it is the memory available on the
machine.

McCarl GAMS User Guide411

© 2022 Prof. Bruce McCarl

9.2.139 Xsave: Xs

This option specifies the name of a save file written in ASCII format in older systems (versions older than
21.7), so it is platform independent and can be moved to machines with different operating systems.
String input is expected.

In GAMS systems from release 22.3 and newer it causes writing of compressed save files.

The command is implemented with the syntax

Xsave=filename

or

Xs=filename

9.2.140 Zerores

This parameter specifies the threshold value for internal rounding to zero in certain operations. Numeric
input is expected.

The command is implemented with

Zerores=number

The default value is 0.0.

9.2.141 Zeroresrep

This option causes GAMS to issue warnings whenever a rounding occurs because of zerores. Numeric
input is expected with the allowable numeric values being

0 no warning when a rounding occurs because of zerores (default)

1 issue warnings whenever a rounding occurs because of zerores

The command is implemented with the syntax

Zeroresrep=number

10 Saves and Restarts

In GAMS one may divide a job into pieces and reassemble them as if they were all continuous using the
GAMS save and restart command line parameters.

Saves and Restarts 412

© 2022 Prof. Bruce McCarl

Basics

Use of save and restarts and their effect

Why use save and restart?

10.1 Save Restart Basics

Suppose we have a program like transml.gms and divide it into three parts trandata.gms the red part
below, tranmodl.gms the blue part below and tranrept.gms the magenta part below.

SETS PLANT PLANT LOCATIONS /NEWYORK , CHICAGO , LOSANGLS /

 MARKET DEMAND MARKETS /MIAMI, HOUSTON, MINEPLIS, PORTLAND/

PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT

 /NEWYORK 100, CHICAGO 275, LOSANGLS 90/

 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET

 /MIAMI 100,HOUSTON 90,MINEPLIS 120,PORTLAND 90/;

TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET

 MIAMI HOUSTON MINEPLIS PORTLAND

 NEWYORK 1300 1800 1100 3600

 CHICAGO 2200 1300 700 2900

 LOSANGLS 3700 2400 2500 1100 ;

PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;

 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);

POSITIVE VARIABLES

 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;

VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;

TCOSTEQ.. TCOST =E=SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*

 COST(PLANT,MARKET));

SUPPLYEQ(PLANT).. SUM(MARKET,SHIPMENTS(PLANT,MARKET))=L=SUPPLY(PLANT);

DEMANDEQ(MARKET)..SUM(PLANT,SHIPMENTS(PLANT,MARKET))=G=DEMAND(MARKET);

MODEL TRANSPORT /ALL/;

SOLVE TRANSPORT USING LP MINIMIZING TCOST;

ParAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;

MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);

MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));

OPTION DECIMALS=0;

DISPLAY MOVEMENT;

We could execute this using an include file sequence such as in tranint.gms. We can also use save
and restart files. First let me introduce the needed commands.

Save: S

McCarl GAMS User Guide413

© 2022 Prof. Bruce McCarl

Restart: R

Xsave: Xs

10.1.1 Save: S

Save is a GAMS command line parameter. It is used though the syntax

Save=path\filestemname

or

S=path\filestemname

Where path may be used or omitted and filestemname is the name under which a family of seven to nine
work files will be saved. In versions before 20.1 these files were named

Path\filestemname.G01
Path\filestemname.G02
…
Path\filestemname.G09

and will be platform dependent binary files only suitable for GAMS use but not for user manipulation. In
later versions there is only one of these and it in a packed form that is machine independent. That file is
named

Path\filestemname.G00

If the path is omitted the files will be saved in the current working directory. Any valid name for the
filestemname may be employed which will result in a validly named file in the operating system being
used.

Often it is useful to include a path to a directory where these will remain out of the way. Such a path is
achieved often by using .\t\ which places the work files in a subdirectory of the current working directory
named t.

The work files contain the complete contents of the GAMS run after execution and also may contain
items from earlier GAMS runs if incorporated through a restart command.

Current work files are platform independent and may be moved for example from a windows machine to a
Unix or Linux machine. For versions of GAMS before 21.7 Xsave as discussed below allows platform
independence.

10.1.2 Restart: R

Restart is a GAMS command line parameter. It is used though the syntax

Restart=path\filestemname

or

R=path\filestemname

Saves and Restarts 414

© 2022 Prof. Bruce McCarl

where the path and filestemname must match the characteristics of a set of work files that have already
been saved through a save command.

• Restart senses whether the file it starts up from is a Save type or an Xsave type and thus can

read both.

10.1.3 Xsave: Xs

Xsave is an older pre version 21.7 GAMS command line parameter which provides an alternative to
Save. It is used though the syntax

Xsave=path\filestemname

or

Xs=path\filestemname

where path may be used or omitted and filestemname is the name under which a family of up to nine
work files will be saved. These files follow all the naming characteristics of the save files discussed
above. In terms of composition they contain the same information being still only suitable for internal
GAMS use not for user manipulation, but were platform independent but Save now generates such files.

Notes:

• Wen using restart GAMS automatically senses whether the file it starts up from is a Save type or an

Xsave type and thus can read both.

10.2 Use of save and restarts and their effect

Saves and restarts allow one to run GAMS code up to a point and save the job status in a set of work
files, then start another job which has all the results of the first job. Thus, for example, we could divide a
big job into pieces running the data component (trandata.gms) then using save to preserve the run
status in work files called S1. Then we could run the model component tranmodl.gms restarting from
the S1 work files and save the resultant status in work files called S2. Finally we could run the report
writing part tranrept.gms restarting from the work files in S2. The net effect of this is the same as if the
continuous undivided file was run composed of the three parts in the individual files. Each component
would start from the previous component just if it was one continuous file.

Save and restart on command line

IDE usage

10.2.1 Save and restart on command line

In DOS and Unix commands to invoke save and restart look like

GAMS trandata s=s1
GAMS tranmodl r=s1 s=s2
GAMS tranrept r=s2

McCarl GAMS User Guide415

© 2022 Prof. Bruce McCarl

These are implemented in the file tran.bat with one small addition. Namely, the save and restart are
given a relative address (e.g. .\t\s1) so they're put in a subdirectory t under the area where we are
working to avoid clutter. When GAMS is told to save its files it generates 7-9 files for each saved set of
work files.

One can also use xsave to save machine independent files

GAMS trandata xsave=s1
GAMS tranmodl r=s1 xsave=s2
GAMS tranrept r=s2

10.2.2 IDE usage

Saves and restarts can also be used in the IDE in the GAMS command line parameters box. Entries in
that box associate a set of execution time command line parameters with a file that are automatically
added to the GAMS call.

The IDE saves any entries in the command line parameter box in the current IDE project. Thus, once
you specify the save and restart parameters you will have these associated with every subsequent use
of the file provided you're using the right project and have not changed the restart information.

10.2.2.1 Save and restart calling GAMS from within GAMS

One may not like the IDE command line option since it requires one to wait for one job before beginning
the next. One can overcome this by using GAMS to call itself. To do this we enter GAMS command
line instructions within quotes in an Execute statement as follows (saverestar.gms) where I am also
using the $log command to send a message to the IDE process window.

execute "GAMS trandata s=s1"
$log done1
execute "GAMS tranmodl r=s1 s=s2"
$log done2
execute "GAMS tranrept r=s2"
$log done3

Saves and Restarts 416

© 2022 Prof. Bruce McCarl

Note when one does this the GAMS jobs run in the background without any log reporting appearing in
the process window. To get that information you must make the DOS window visible under File Options
in the Execute tab. You can also use syntax like the following (saverestar.gms)

$set gamsparm "ide=%gams.ide% lo=%gams.lo% errorlog=%gams.errorlog% errmsg=1"
execute "GAMS trandata %gamsparm% s=s1"
execute "GAMS tranmodl %gamsparm% r=s1 s=s2"
execute "GAMS tranrept %gamsparm% r=s2"

The gamsparm item here is a control variable and in this particular case it is being set up to tell
GAMS that the
· IDE is being used (ide=1 on a PC)
· To write the log to a file which in turn is intercepted by the IDE (lo=3 on a pc)
· To redirect a given number of error messages to that file (errorlog=99 on a pc)
· To place error messages next to the GAMS lines causing them (errmsg=1)

The syntax %gamsparm% is placing the contents of gamsparm in the calling parameters for GAMS.
 The syntax %gams.ide% picks up the setting of the GAMS command line parameter ide on the
computer being used while %gams.lo% and %gams.errotlog% pick up the values of the lo and
errorlog GAMS command line parameters.

One can also use the command SplitOption here is one wants to provisionally include the calling
parameters for GAMS.

The same syntax works with $Call.

10.3 Why use save and restart?

There are seven basic reasons to use save and restart.

• Efficiency

• Output management

• Separation of code function

• Save study results

• Comparative statics analysis

• Compiled code

• Easy solve of related models

10.3.1 Increasing run efficiency

One can use save and restart to save program status after lengthy execution permitting one to quickly
do more analysis or code maintenance. Suppose we have code taking four hours and want to work on
the final part. Suppose for a couple of days we have been making small changes, but have found we
need to wait four hours each time to observe the results of the modifications. This would clearly be
unsatisfactory and frustrating. It is also avoidable.

McCarl GAMS User Guide417

© 2022 Prof. Bruce McCarl

One can use save and restart to save a set of work files encapsulating the 4 hours worth of results and
allowing a restart beginning from just before the revision. Generally reading in the restart file takes less
than a minute. This means we can revise and rerun many times in the four hours we would have been
waiting. Tactically you can do this by only executing the last component and just restarting from saved
results of the earlier runs as in the following where the rem prefix makes this command into a remark
(comment) that is not executed during the bat file run. Naturally if alterations were to be done in the
earlier code components, one would need to rerun those to update the work files. However, one does
not need to rerun unless changes are made as the work files completely encapsulate the results that
would arise running the earlier files.

rem GAMS trandata s=s1
rem GAMS tranmodl r=s1 s=s2
GAMS tranrept r=s2

We can even test out changes in earlier components reissuing calculations (if needed under different
names), adding new variables and equations and test different formulations employing models with
named equations (not /ALL/).

10.3.2 Output management

GAMS modelers sometimes complain that they want a more concise output file. All the program
listings, limrow/limcol output, intermediate data displays, solver output, cross-reference maps etc are
not always desirable. One-way of managing this output is through save and restarts.

Suppose we add a fourth file (trandisp.gms) to the transportation system that contains only display
statements.

GAMS trandata s=s1
GAMS tranmodl r=s1 s=s2
GAMS tranrept r=s2 s=s1
GAMS trandisp r=s1 (note reuse of name)

with the trandisp.gms file looking as follows

OPTION DECIMALS=0;
DISPLAY MOVEMENT,COSTS;
OPTION DECIMALS=2;
DISPLAY DEMANDREP, CMOVEMENT, shipments.l;

This mechanism creates "to the point" LST files but allows other output to be resident in other LST files
if needed. Also one can activate or deactivate certain displays and rapidly choose relevant output for a
study while maintaining other potential output in the system.

10.3.3 Separation of code function

The save and restart procedure easily allows one to substitute different data sets and maintain different
pieces of code in different ways. In particular, suppose the data were kept in a separate file with saves
and restarts used for the model and report writing. In turn, data specialists could maintain the data
without disturbing the model or report writing code. Such a separation is not unique to saves and

Saves and Restarts 418

© 2022 Prof. Bruce McCarl

restarts but is also exploitable when using include files. We can also use a separate data file structure
to maintain small data sets for large models.

Suppose we illustrate code function separation by substituting in a larger data set in the bat file and
automatically rerun a bigger model.

GAMS trandatl s=b1
GAMS tranmodl r=b1 s=b2
GAMS tranrept r=b2 s=b1
GAMS trandisp r=b1

Here we changed the restart file names to show they can be whatever desired and to avoid file confusion.

10.3.4 Save study results

Sometimes when doing applied modeling one finds a lot of experiments have been done and it's difficult
to reconstruct the exact assumptions that were employed in a particular experiment. Save files provide
a mechanism for archiving a file containing study results.

One can retain the save files which contain all the data and assumptions implicit in a program. Data
items and stored solution results can be displayed revealing values present at the time the save file was
constructed. Modifications can be made in report writing without having to rerun the whole study
providing the appropriate data have been stored.

On the other hand, saving files means one cannot get an algebraic listing of equations, data
manipulations etc. (the model can be resolved to list current equations or the parameters displayed to
get current values). Nor can one recover any comments in the GAMS segments leading up to the saved
file.

10.3.5 Comparative statics analysis

As discussed in the Basis chapter, saves and restarts can be used to save a base model from which
further experimentation can be done retaining the advanced basis.

10.3.6 Compiled code

Those desiring not to release proprietary code can choose to employ a strategy where only save files are
released from which others may restart but not see the source. Also you can optionally stop the client
from displaying data or solution objects as discussed in Appendix H of the GAMS Users Guide.

10.3.7 Fast related solutions

Restarted models that are solved again a are restarting from a file which contains the results of a
previous file generally solve quickly because of GAMS ability to suggest an advanced basis that
improves solver performance. Thus one can execute and solve a model through its initial solve and then
save a set of work files. In turn, restarted programs tend to rapidly solve alternative models or the same
model under different options.

McCarl GAMS User Guide419

© 2022 Prof. Bruce McCarl

11 Customizing GAMS

Everyone has their own preferences about how programs should run. GAMS contains a number of
options that allows one to manipulate

program function

and

output content.

These options may be changed on a problem-by-problem basis or may be set permanently. These
notes discuss the ways to set such options and briefly cover the available options.

What types of options are there?

Possible command line parameters to customize

How can these options be set?

Hierarchy for customizing options

11.1 What types of options are there?

Mainly one can change command line parameters but on a permanent basis that applies to all jobs or all
uses of the IDE. Furthermore, users can do further customization on a case-by-case basis as
discussed elsewhere using $ commands and option statements in the GAMS language.

11.2 Possible command line parameters to customize

A complete list of parameters is in the chapter on Command Line Parameters. Perhaps the most
desirable options to consider for run customization are

Charset Causes use of extended (international) character set.
CNS Name to be used for default CNS solver.
Dformat Date format to use in output.
DNLP Name to be used for default DNLP solver.
Errmsg Controls position of error messages in echo print and through use of

Errmsg=1 allows one to reposition error messages to just after error
marking.

Inputdir Input search paths. Can include several directories separated by OS
specific symbols.

Inputdir1 to 40 Input search path names to be used. Default is no search path.
Libincdir Library include directory. Used to complete a filename for $Libinclude.
Limcol Include the first n cases for each named variable in the LST file.
Limrow Include the first n cases for each named equation in the LST file.
Logoption Controls destination for the Log file, used with setting of 2 to permit

Unix/Linux jobs to operate in background.
LP Name to be used for default LP solver.
MCP Name to be used for default MCP solver.
MINLP Name to be used for default MINLP solver.
MIP Name to be used for default MIP solver.

Customizing GAMS 420

© 2022 Prof. Bruce McCarl

MPEC Name to be used for default MPEC solver.
NLP Name to be used for default NLP solver.
Optdir Location to look for solver option files.
Optfile Default value for model.optfile, can be set to 1 if one always wants

GAMS to look for option file.
Pagesize Page size. If less than 30 it will be reset to the default of 60.
Pagewidth Print width. This value should be between 72 and 32767.
Profile Causes GAMS to include information on statement execution time and

memory use in LST file allowing one to find slow or large memory using
statements.

Ps Page size. If less than 30 it will be reset to the default of 60.
Putdir Default directory where put files will be saved. If not specified, it will be

set to the work directory.
Pw Print width. This value should be between 72 and 32767.
RMINLP Name to be used for default RMINLP solver.
RMIP Name to be used for default RMIP solver.
Savepoint Save a point GDX file with the current solution.
Tformat Time format.

I will not describe these fully here, as the GAMS Command Line Parameters chapter does an extensive
job.

11.3 How can these options be set?

These options can be set in either a file in the GAMS system directory or in the IDE. The IDE overrides
some changes so you will need to work with it to achieve desired final outcome. The possibilities are

Globally Locally
In pf= command line X X
In IDE X X
In GAMS parameter file X
In DOS call X

Note if you use GAMS parameter file manipulation then you will be making changes for all users utilizing
this GAMS version on this computer.

To set in command line via pf=

To set in Gmsprmxx.txt parameter file

To set in IDE

11.3.1 To set in command line via pf=

One can use the pf= command line parameter to specify a file containing customization items and then
address that file. For example one thus could use

Gams myfile pf=c:\place\fileofcommands

McCarl GAMS User Guide421

© 2022 Prof. Bruce McCarl

Where fileofcommands is one containing entries like

Eolonly 1
Ps=9999
Pw=90
Errmsg=1
Eolonly 0

Use of the eolonly parameter allows one to place one command per line.

11.3.2 To set in Gmsprmxx.txt parameter file

After installation you get a file that looks like the black lines below and you can add to it

* GAMS 2.50 Default Parameterfile for Windows 95

* GAMS Development Corp.

* Date : 20 Mar, 1998

* entries required by CMEX, put in by GAMS.exe:

* SYSDIR

* SCRDIR

* SCRIPTNEXT

* INPUT

pw 85

ps 9999

errmsg 1

charset 1

LP OSL

MIP OSL

limrow 0

limcol 0

optfile 1

sp 1

pf="c:\program files\gams22.7\mycusomizing"

where the entries in red are the customizing values for the GAMS command line parameters

Parameter Abbreviation New setting above

Page width pw 85 columns
Page lines ps 9999 lines
Error message placement errmsg 1-below error messages
International characters charset 1-active
LP solver LP OSL
MIP solver MIP OSL
Row display limrow 0-suppressed
Col display limcol 0-suppressed

Customizing GAMS 422

© 2022 Prof. Bruce McCarl

Optfile presence optfile 1-always look for
Pf pf name of file
Savepoint sp 1-save a file

The lines in red above once added to the Gmsprmxx.txt file are part of every GAMS execution on the
computer. The above options can all be set in a GAMS call but it would be a long and involved one.

GAMS myfile pw=85 ps=9999 .. .optfile=1 …

However note a number of the options are overwritten by IDE options on a PC.

The Gamsprm - GAMS parameter file name depends on the operating system as follows

under Windows 95/98 Gmsprm95.txt
under Windows NT Gmsprmnt.txt
under UNIX/LINUX Gmsprmun.txt

These are in the GAMS system directory that is c:\program files\GAMS22.7 as of this writing.

11.3.3 To set in IDE

One can also set these options through the IDE and many of them are retained in the ini and project
files. These can be set on a global basis in two ways. First, a number of the options are accessible in
the tabs under the File Options menu. Specifically under the tab for

Editor one can set tab options
Output one can control page size and width along with date and time format
Solvers one can determine default solvers

Second, for those that are not listed they can be entered in the Use Following Additional Parameters
box under the Execute Tab in the File Options menu.

Finally the options can be set as parameters only for runs with particular files in the IDE by using the

McCarl GAMS User Guide423

© 2022 Prof. Bruce McCarl

box in the upper right hand corner.

Either of the IDE commands can be coupled with the Pf= command line parameter allowing use of a file
of customization items.

11.4 Hierarchy for customizing options

One needs to be aware of the hierarchy for options when customizing GAMS on a machine or for a job
as some specifications cannot be over ridden. In particular, the priorities are as follows

1. Command line specifications on GAMS command line or in IDE command line box.

2. Command line specifications in IDE additional parameters box reached by going to file,
options and execute.

3. Option command specifications as discussed in the option command chapter.

4. IDE specifications for output page size and other customizable items.

5. GMSPRMxx.txt specifications.

where a higher priority setting cannot be overwritten by a lower priority setting. Thus, if one sets
optfile=2 on the command line this will overcome a specification like a line stating

option optfile=1;

in the GAMS program.

11.5 List of all customizing options

The following table provides an overview of all available customizing options. The columns indicate:

Customizing GAMS 424

© 2022 Prof. Bruce McCarl

Name The option name
Syn The option synonym for a cl parameter if available
Description A description of what the option can be used for
cl Availability as command line parameter
opt Availability as option statement
att Availability as model attribute
trc Option can be echoed to trace file
api Option is available in the Object Oriented APIs
type Option type, e.g. 'S' for 'string', 'I' for 'integer, 'B' for 'boolean', 'IS' for

'integer or string', etc
default Default value
lo Lower bound
up Upper bound

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

Action A GAMS processing request.

R Restart After Solve

C CompileOnly

E ExecuteOnly

CE Compile and Execute

GT Trace Report

x x S CE

AppendExpand AE Expand f ile append option.

0 Reset expand f ile

1 Append to expand f ile

x x B 1 0 1

AppendLog AL Log f ile append option.

0 Reset log f ile

1 Append to logfile

x B 0 0 1

AppendOut AO Output f ile append option.

0 Reset listing f ile

1 Append to listing f ile

x x B 0 0 1

AsyncSolLst Print solution listing w hen asynchronous solve

(Grid or Threads) is used.

0 Do not print solution listing into lst f ile for

asynchronous solves

1 Print solution listing into lst f ile for

asynchronous solves

x x x B 0 0 1

Bratio Basis acceptance threshold. x x x x R 0.2

5

0.0

0

1.00

Case Output case option for LST file.

0 Write listing f ile in mixed case

1 Write listing f ile in upper case only

x x B 0 0 1

CErr Compile time error limit.

0 No error limit (default)

n Stop after n errors

x x I 0 0

CharSet Character set f lag.

0 Use limited GAMS characters set

1 Accept any character in comments and

text items (foreign language characters)

x x B 1 0 1

Cheat Cheat value, i.e. minimum solution improvement

threshold.

x R 0.0

0

0.0

0

CNS Constrained Nonlinear Systems - default solver. x x x x S

ComputerName Computer name. x S

McCarl GAMS User Guide425

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

CurDir CDir Current directory. x S

CutOff Cutoff value for branch and bound. x R 0.0

0

0.0

0

Decimals Decimal places for display statements. x I 3 0 8

DefPoint Indicator for passing on default point.

0 Pass user defined levels and marginals to

solver

1 Pass default levels and marginals to solver

2 Pass default marginals to solver

x I 0 2

DFormat DF Date format.

0 Date as mm/dd/yy

1 Date as dd.mm.yy

2 Date as yy-mm-dy

x x I 0 0 2

DictFile Force w riting of a dictionary f ile if dictf ile > 0. x R 0.0

0

Direction Optimization direction (min or max).

0 Minimize

1 Maximize

x B 0 1

DispWidth Number of characters to be printed in the column

labels of all subsequent display statements.

x I 10 10 31

DmpOpt Debugging option: causes GAMS to echo the

runtime option settings.

x 0.0

0

0 0

DmpSym Debugging option: causes GAMS to echo the

symbol table to the listing f ile.

x 0.0

0

0 0

DNLP Non-Linear Programming w ith Discontinuous

Derivatives - default solver.

x x x x S

DomLim Domain violation limit solver default. x x x x I 0 0

DomUsd Number of domain violations. x I 0

DualCheck Output on the reduced cost condition. x I 0

DumpOpt Writes preprocessed input to the f ile input.dmp.

0 No dumpfile

1 Extract referenced data from the restart

f ile using original set element names

2 Extract referenced data from the restart

f ile using new set element names

3 Extract referenced data from the restart

f ile using new set element names and

drop symbol text

4 Extract referenced symbol declarations

from the restart f ile

11 Write processed input f ile w ithout

comments

21 Write processed input f ile w ith all

comments

x x I 0 0 21

DumpParms DP GAMS parameter logging.

0 No logging

1 Lists accepted/set parameters

2 Log of f ile operations plus list of accepted/

set parameters

x x I 0 0 2

DumpParmsLogPr

efix

DPLP Prefix of lines triggered by DumpParms>1. x x S star

s

Eject Inject a page break into the LST file. x 0.0

0

0 0

Customizing GAMS 426

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

EMP Extended Mathematical Programs - default solver. x x x x S

EolOnly EY Single key-value pairs (immediate sw itch).

0 Any number of keys or values

1 Only one key-value pair on a line

x I 0 0

ErrMsg Placing of compilation error messages.

0 Place error messages at the end of

compiler listing

1 Place error messages immediately

follow ing the line w ith the error

2 Suppress error messages

x x I 0 0

ErrNam Name of error message f ile. x S

Error Force a compilation error w ith message. x S

ErrorLog ER Max error message lines w ritten to the log for each

error.

0 No error messages to LOG file

n Number of lines for each error that w ill be

w ritten to LOG file

x x I 0 0

ETAlg Elapsed time it took to execute the solve algorithm. x x R 0.0

0

ETLim ETL Elapsed time limit in seconds. x x R max

dou

ble

0.0

0

ETSolve Elapsed time it took to execute a solve statement in

total.

x x R 0.0

0

ETSolver Elapsed time taken by the solver only. x x R 0.0

0

ExecErr Execution time error limit.

0 No errors allow ed limit

n Max number allow ed

x x I 0 0

ExecMode Limits on external programs that are allow ed to be

executed.

0 Everything allow ed

1 Interactive shells in $call and execute

commands are prohibited

2 Embedded Code and all $call and execute

commands are prohibited

3 $echo or put commands can only w rite to

directories in or below the w orking or

scratchdir

4 $echo and put commands are not allow ed

x x I 0 0 4

Expand EF Expanded (include) input f ile name. x x S

FDDelta Step size for f inite differences. x x x x R 1.0

000

000

000

000

00E

-5

1.0

000

000

000

000

00E

-9

1.00

FDOpt Options for f inite differences.

0 All derivatives analytically, for numerical

Hessian use gradient values, scale delta

1 All derivatives analytically, for numerical

Hessian use function values, scale delta

2 Gradient analytically, force Hessian

x x x x I 0 0 14

McCarl GAMS User Guide427

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

numerically using gradient values, scale

delta

3 Gradient analytically, force Hessian

numerically using function values, scale

delta

4 Force gradient and Hessian numerically,

scale delta

10 Same as 0, but no scale of delta

11 Same as 1, but no scale of delta

12 Same as 2, but no scale of delta

13 Same as 3, but no scale of delta

14 Same as 4, but no scale of delta

FErr Alternative error message f ile. x x S

FileCase Casing of new file names (put, gdx, ref etc.).

0 Causes GAMS to use default casing

1 Causes GAMS to upper case f ile names

2 Causes GAMS to low er case f ile names

x x I 0 0 3

FileStem Sets the f ile stem for output f iles w hich use the

input f ile name as stem by default.

x x S

FileStemApFromEn

v

Append a string read from an environment variable

to the "FileStem".

x x S

ForceOptFile Overw rites other option f ile section mechanism. x x I 0 0

ForceWork FW Force GAMS systems to process save f iles for

example w ith an execution error.

0 No translation

1 Try translation

x x B 0 0 1

ForLim GAMS looping limit. x x x I max

int

0

FreeEmbeddedPyt

hon

Free external resources at the end of each

embedded Python code blocks.

0 Keep resources to reuse them potentially

1 Free resources

x x B 0 0 1

FSave Creates a forced \ref UG_SaveRestart "w ork f ile",

i.e., the f ile is saved even if execution errors or

other errors occured.

0 Workfile only w ritten to f ile specif ied by

SAVE if no errors occur

1 Workfile alw ays w ritten to f ile specif ied by

SAVE or if SAVE is not present to a name

made up by GAMS

x B 0 0 1

G205 Use GAMS version 2.05 syntax.

0 Use only latest syntax

1 Allow version 2.05 syntax only

2 Allow version 2.25 syntax only

x I 0 0 2

GamsCloseDow nT

ime

GAMS close dow n time. x R 0.0

0

GamsCompTime GAMS compilation time. x R 0.0

0

GamsElapsedTime GAMS elapsed time. x R 0.0

0

GamsElements GAMS elements. x R 0.0

0

GamsErrorCount GAMS error count. x R 0.0

0

Customizing GAMS 428

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

GamsExecTime GAMS execution time. x R 0.0

0

GamsLineNumber GAMS number of lines. x R 0.0

0

GamsReturnCode GAMS return code. x R 0.0

0

GamsStartupTime GAMS startup time. x R 0.0

0

GamsSymbols Number of GAMS symbols. x R 0.0

0

GamsTotalTime GAMS total time. x R 0.0

0

GamsVersionID GAMS version ID. x R 0.0

0

GDX GAMS data exchange f ile name. x S

gdxCompress Compression of generated GDX file.

0 Do not compress GDX files

1 Compress GDX files

x x B 0 0 1

gdxConvert Version of GDX files generated (for backw ard

compatibility).

v5 Version 5 GDX file, does not support

compression

v6 Version 6 GDX file

v7 Version 7 GDX file

x x S v7

gdxUels Unload labels or UELs to GDX either squeezed or

full.

Sque

ezed

Write only the UELs to Universe, that are

used by the exported symbols

Full Write all UELs to Universe

x x x S squ

eez

ed

GridDir GDir Grid f ile directory. x x S

GridScript GScript Grid submission script. x x S gms

grid

Handle Unique handle number of SOLVE statement. x R 0.0

0

HeapLimit HL Maximum Heap size allow ed in MB. x x R max

dou

ble

0.0

0

HoldFixed Treat f ixed variables as constants.

0 Fixed variables are not treated as

constants

1 Fixed variables are treated as constants

x x x B 0 0 1

IDE Integrated Development Environment f lag.

0 Unknow n environment

1 Runs under GAMS IDE

x B 0 0 1

Input I Input f ile. x S

InputDir IDIR Input f ile directories. x S

InputDir1 IDIR1 Input f ile directory number N. x S

InputDir10 IDIR10 Input f ile directory number N. x S

InputDir11 IDIR11 Input f ile directory number N. x S

InputDir12 IDIR12 Input f ile directory number N. x S

InputDir13 IDIR13 Input f ile directory number N. x S

InputDir14 IDIR14 Input f ile directory number N. x S

InputDir15 IDIR15 Input f ile directory number N. x S

McCarl GAMS User Guide429

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

InputDir16 IDIR16 Input f ile directory number N. x S

InputDir17 IDIR17 Input f ile directory number N. x S

InputDir18 IDIR18 Input f ile directory number N. x S

InputDir19 IDIR19 Input f ile directory number N. x S

InputDir2 IDIR2 Input f ile directory number N. x S

InputDir20 IDIR20 Input f ile directory number N. x S

InputDir21 IDIR21 Input f ile directory number N. x S

InputDir22 IDIR22 Input f ile directory number N. x S

InputDir23 IDIR23 Input f ile directory number N. x S

InputDir24 IDIR24 Input f ile directory number N. x S

InputDir25 IDIR25 Input f ile directory number N. x S

InputDir26 IDIR26 Input f ile directory number N. x S

InputDir27 IDIR27 Input f ile directory number N. x S

InputDir28 IDIR28 Input f ile directory number N. x S

InputDir29 IDIR29 Input f ile directory number N. x S

InputDir3 IDIR3 Input f ile directory number N. x S

InputDir30 IDIR30 Input f ile directory number N. x S

InputDir31 IDIR31 Input f ile directory number N. x S

InputDir32 IDIR32 Input f ile directory number N. x S

InputDir33 IDIR33 Input f ile directory number N. x S

InputDir34 IDIR34 Input f ile directory number N. x S

InputDir35 IDIR35 Input f ile directory number N. x S

InputDir36 IDIR36 Input f ile directory number N. x S

InputDir37 IDIR37 Input f ile directory number N. x S

InputDir38 IDIR38 Input f ile directory number N. x S

InputDir39 IDIR39 Input f ile directory number N. x S

InputDir4 IDIR4 Input f ile directory number N. x S

InputDir40 IDIR40 Input f ile directory number N. x S

InputDir5 IDIR5 Input f ile directory number N. x S

InputDir6 IDIR6 Input f ile directory number N. x S

InputDir7 IDIR7 Input f ile directory number N. x S

InputDir8 IDIR8 Input f ile directory number N. x S

InputDir9 IDIR9 Input f ile directory number N. x S

InputFileName Input f ile name. x S

Integer1 Integer communication cell N. x x x x I 0

Integer2 Integer communication cell N. x x x x I 0

Integer3 Integer communication cell N. x x x x I 0

Integer4 Integer communication cell N. x x x x I 0

Integer5 Integer communication cell N. x x x x I 0

InteractiveSolver Allow solver to interact via command line input.

0 Interaction w ith solvelink 0 is not

supported

1 Interaction w ith solvelink 0 is supported

x x B 0 0 1

IntVarUp PF4 Set default upper bound on integer variables.

0 Set default upper bound for integer

variables to +INF

1 Pass a value of 100 instead of +INF to the

solver as upper bound for integer

variables

2 Same as 0 but w rites a message to the log

if the level of an integer variable is greater

than 100

x x x I 1 0 3

Customizing GAMS 430

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

3 Same as 2 but issues an execution error if

the level of an integer variable is greater

than 100

IterLim Iteration limit of solver. x x x x I 200

000

000

0

0

IterUsd Number of iterations used. x I 0

JobDate Job date. x S 0

JobTime Job time in hh:mm:ss format. x S 0

JobTrace JT Job trace string to be w ritten to the trace f ile at the

end of a GAMS job.

x x S

JulianDate Julian date, returns a serial day number, starting

w ith Jan 1, 1900 as day 1.

x S

Keep Controls keeping or deletion of process directory

and scratch f iles.

0 Delete process directory

1 Keep process directory

x x B 0 0 1

LibIncDir LDIR LibInclude directory. x x S

License Use alternative license f ile. x x S

LimCol Maximum number of columns listed in one variable

block.

x x x x I 3 0

LimRow Maximum number of row s listed in one equation

block.

x x x x I 3 0

Line Line number of last solve of the corresponding

model.

x I 1

LinkUsed Integer number that indicates the value of SolveLink

used for the last solve.

x I 0 5

LogFile LF Log f ile name. x S

LogLine LL Amount of line tracing to the log f ile.

0 No line tracing

1 Minimum line tracing

2 Automatic and visually pleasing

x x I 2 0 2

LogOption LO Log option.

0 No log output

1 Log output to screen (console)

2 Log output to logfile

3 Log output to standard output

4 Log output to logfile and standard output

x I 1 0 4

LP Linear Programming - default solver. x x x x S

LstTitleLeftAligned Write title of LST file all left aligned.

0 Split LST title into left and right aligned part

1 Write LST title completely left aligned

x x B 0 0 1

Marginals Indicator for marginals present. x I 0 1

MaxInfes Maximum of infeasibilities. x R 0.0

0

MaxProcDir Maximum number of 225* process directories. x x I 700 0

MCP Mixed Complementarity Problems - default solver. x x x x S

MCPRHoldfx Print list of row s that are perpendicular to variables

removed due to the holdfixed setting.

x x x B 0 0 1

MeanInfes Mean of infeasibilities. x R 0.0

0

Measure Output of time and memory use since the last x 0.0 0

McCarl GAMS User Guide431

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

measure statement or the program beginning. 0

MemoryStat Show memory statistics in the LST file. x 0.0

0

0

MINLP Mixed-Integer Non-Linear Programming - default

solver.

x x x x S

MIP Mixed-Integer Programming - default solver. x x x x S

MIQCP Mixed Integer Quadratically Constrained Programs -

default solver.

x x x x S

ModelGenerationTi

me

Model generation time. x R 0.0

0

ModelName Model Name. x S

ModelStat Integer number that indicates the model status.

1 Optimal

2 Locally Optimal

3 Unbounded

4 Infeasible

5 Locally Infeasible

6 Intermediate Infeasible

7 Intermediate Nonoptimal

8 Integer Solution

9 Intermediate Non-Integer

10 Integer Infeasible

11 Licensing Problem

12 Error Unknow n

13 Error No Solution

14 No Solution Returned

15 Solved Unique

16 Solved

17 Solved Singular

18 Unbounded - No Solution

19 Infeasible - No Solution

x I 1 19

ModelStatus Model Status. x I 1 19

ModelType Model type. x S

MPEC Mathematical Programs w ith Equilibrium Constraints

- default solver.

x x x x S

MultiPass MP Multipass facility.

0 Standard compilation

1 Check-out compilation

2 As 1, and skip $call and ignore missing f ile

errors w ith $include and $gdxin

x B 0 0 2

NLP Non-Linear Programming - default solver. x x x x S

NodLim Node limit in branch and bound tree. x x x I 0 0

NodUsd Number of nodes used by the MIP solver. x I 0

NoNew VarEqu Triggers a compilation error w hen new equations

or variable symbols are introduced.

0 Allow New VarEqu

1 DoNotAllow New VarEqu

x x I 0 0

Number Model instance serial number. x R

NumberOfDiscrete

Variables

Number of discrete variables (see model attribute

NumDVar).

x I 0

NumberOfDomain

Violations

Number of domain violations. x I 0

Customizing GAMS 432

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

NumberOfEquation

s

Number of equations (see model attribute NumEqu). x I 0

NumberOfInstructi

ons

Number of instructions. x I 0

NumberOfIteration

s

Number of iterations. x I 0

NumberOfNodes Number of nodes. x I 0

NumberOfNonlinea

rNonZeros

Number of nonlinear nonzeros (see model attribute

NumNLNZ).

x I 0

NumberOfNonZer

os

Number of nonzeros (see model attribute NumNZ). x I 0

NumberOfVariable

s

Number of variables (see model attribute NumVar). x I 0

NumDepnd Number of dependencies in a CNS model. x I 0

NumDVar Number of discrete variables. x I 0

NumEqu Number of equations. x I 0

NumInfes Number of infeasibilities. x I 0

NumNLIns Number of nonlinear instructions. x I 0

NumNLNZ Number of nonlinear nonzeros. x I 0

NumNOpt Number of nonoptimalities. x I 0

NumNZ Number of nonzero entries in the model coeff icient

matrix.

x I 0

NumRedef Number of MCP redefinitions. x I 0

NumVar Number of variables. x I 0

NumVarProj Number of bound projections during model

generation.

x I 0

ObjectiveValue Objective function value (see model attribute

ObjVal).

x R

ObjectiveValueEsti

mate

Estimate of the best possible solution for a mixed-

integer model (see model attribute ObjEst).

x R

ObjEst Estimate of the best possible solution for a mixed-

integer model.

x R 0.0

0

ObjVal Objective function value. x R 0.0

0

On115 Generate errors for unknow n unique element in an

equation.

0 No error messages

1 Issue error messages

x x B 0 0 1

OptCA Absolute Optimality criterion solver default. x x x x R 0.0

0

0.0

0

OptCR Relative Optimality criterion solver default. x x x x R 0.1

0

0.0

0

OptDir Option f ile directory. x x S

OptFile Default option f ile.

0 No option f ile w ill be used

1 The option f ile solvername.opt w ill be used

2 The option f ile solvername.op2 w ill be

used

3 The option f ile solvername.op3 w ill be

used

15 The option f ile solvername.o15 w ill be

used

222 The option f ile solvername.222 w ill be

x x x I 0 0

McCarl GAMS User Guide433

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

used

1234 The option f ile solvername.1234 w ill be

used

OptionFile Option f ile. x I 0

Output O Listing f ile name. x x S

PageContr PC Output f ile page control option.

0 No page control, w ith padding

1 FORTRAN style line printer format

2 No page control, no padding

3 Formfeed character for new page

x x I 3 0 3

PageSize PS Output f ile page size (=0 no paging). x x I 58 0

PageWidth PW Output f ile page w idth. x x I 255 72 327

67

ParmFile PF Command Line Parameter include f ile. x S

Platform Platform. x S

PLicense Privacy license f ile name. x x S

PrefixLoadPath Prepend GAMS system directory to library load

path.

0 Do not set GAMS system directory at

beginning of library load path

1 Set GAMS system directory at beginning

of library load path

x x B 0 0 1

PriorOpt Priority option for variable attribute .prior. x R 0.0

0

ProcDir Process Directory. x S

ProcDirPath Directory to create process directory in. x S

ProcUsed Integer number that indicates the used model type.

1 LP

2 MIP

3 RMIP

4 NLP

5 MCP

6 MPEC

7 RMPEC

8 CNS

9 DNLP

10 RMINLP

11 MINLP

12 QCP

13 MIQCP

14 RMIQCP

15 EMP

x I 1 15

Profile Execution profiling.

0 No profiling

1 Minimum profiling

n Profiling depth for nested control

structures

x x x I 0 0

ProfileFile PFILE Write profile information to this f ile. x x S

ProfileTol PTOL Minimum time a statement must use to appear in

profile generated output.

x x x R 0.0

0

0.0

0

PutDir PDir Put f ile directory. x x S

PyMultInst GAMS/Python Multiple Instance Interpreter. x x I 0 0 1

Customizing GAMS 434

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

0 Use a single-session Python interpreter

1 Use a multi-session Python interpreter

PySetup GAMS/Python Setup.

0 Rely on user setup of Python

1 Use Python installation provided in GAMS

system directory

x x I 1 0 1

QCP Quadratically Constrained Programs - default

solver.

x x x x S

Real1 Real communication cell N. x x R

Real2 Real communication cell N. x x R

Real3 Real communication cell N. x x R

Real4 Real communication cell N. x x R

Real5 Real communication cell N. x x R

Reference RF Symbol reference f ile. x x S

Reform Reformulation level. x x I

ResGen Time GAMS took to generate the model in CPU

seconds(deprecated).

x R 0.0

0

ResLim Wall-clock time limit for solver. x x x x R 100

0.0

0

0.0

0

Restart R Name of a restart f ile, see \ref UG_SaveRestart. x S

RestartNamed RN Name of another matching restart f ile, see \ref

UG_SecureWorkFiles_ObfuscatedWorkFiles.

x S

ResUsd Time the solver used to solve the model in CPU

seconds.

x R 0.0

0

RMINLP Relaxed Mixed-Integer Non-Linear Programming -

default solver.

x x x x S

RMIP Relaxed Mixed-Integer Programming - default

solver.

x x x x S

RMIQCP Relaxed Mixed Integer Quadratically Constrained

Programs - default solver.

x x x x S

RMPEC Relaxed Mathematical Programs w ith Equilibrium

Constraints - default solver.

x x x x S

RObj Objective function value from the relaxed solve of a

mixed-integer model w hen the integer solver did not

f inish.

x R

Save S Creates a w ork f ile, see \ref UG_SaveRestart. x S

SaveObfuscate SO Creates an obfuscated w ork f ile, see \ref

UG_SecureWorkFiles_ObfuscatedWorkFiles.

x S

SavePoint SP Save solver point in GDX file.

0 No point GDX file is to be saved

1 A point GDX file from the last solve is to be

saved

2 A point GDX file from every solve is to be

saved

x x x x I 0 0 2

ScaleOpt Employ user specif ied variable and equation scaling

factors.

x B 0 0 1

ScrDir SD Scratch directory. x S

ScrExt SE Scratch f ile extension to be used w ith temporary

files.

x S dat

ScriptExit Program or script to be executed at the end of a

GAMS run.

x x S

ScriptFrst SF First line to be w ritten to GAMSNEXT file.. x S

McCarl GAMS User Guide435

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

ScrNam SN Work f ile names stem. x S

Seed Random number seed. x x x I 314

1

0

Show OSMemory Show the memory usage reported by the Operating

System instead of the internal counting.

0 Show memory by internal accounting

1 Show resident set size reported by

operating system

2 Show virtual set size reported by

operating system

x x I 0 0 2

SolPrint Solution report print option.

0 Remove solution listings follow ing solves

1 Include solution listings follow ing solves

2 Suppress all solution information

x x x x IS 1 0 2

SolSlack Causes the equation output in the listing f ile to

contain slack variable values instead of level

values.

0 includes equation levels in the solution part

of the LST file follow ing solves

1 includes equation slacks in the solution

part of the LST file follow ing solves

x B 0 0 1

SolveLine Line number of the solve statement. x I 0

SolveLink SL Solver link option.

0 GAMS operates as it has for years

1 Solver is called from a shell and GAMS

remains open

2 Solver is called w ith a spaw n (if possible)

or a shell (if spaw n is not possible) and

GAMS remains open

3 GAMS starts the solution and continues in

a Grid computing environment

4 GAMS starts the solution and w ait (same

submission process as 3) in a Grid

computing environment

5 The problem is passed to the solver in

core w ithout use of temporary f iles

6 The problem is passed to the solver in

core w ithout use of temporary f iles,

GAMS does not w ait for the solver to

come back

7 The problem is passed to the solver in

core w ithout use of temporary f iles,

GAMS w aits for the solver to come back

but uses same submission process as 6

x x x x I 0 0 7

SolveNumber Number of the solve statement (for the

corresponding model).

x I 1

SolveOpt Multiple solve management.

0 The solution information for all equations

appearing in the model is completely

replaced by the new model results;

variables are only replaced if they appear

in the f inal model

1 The solution information for all equations

and variables is merged into the existing

x x IS 1 0 2

Customizing GAMS 436

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

solution information

2 The solution information for all equations

appearing in the model is completely

replaced; in addition, variables appearing

in the symbolic equations but removed by

conditionals w ill be removed

Solver Default solver for all model types that the solver is

capable to process.

x x S

SolverCalcTime x R 0.0

0

SolverCntr SCNTR Solver control f ile name. x S

SolverDict SDICT Solver dictionary f ile name. x S

SolverElapsedTim

e

Elapsed solver time (slightly differs from ETSolver). x R 0.0

0

SolverID Solver ID. x I

SolverInst SINST Solver instruction f ile name. x S

SolverMatr SMATR Solver matrix f ile name. x S

SolverName Solver name. x S

SolverReadTime x R 0.0

0

SolverRealTime x R 0.0

0

SolverSignature e.g. IBM ILOG CPLEX 24.1.2 r40979 Released Jun

16, 2013 VS8 x86/MS Window s.

x S

SolverSolu SSOLU Solver solution f ile name. x S

SolverStat SSTAT Solver status f ile name. x S

SolverStatus Indicates the solver termination condition (see

model attribute SolveStat).

x S

SolverTime x S

SolverVersion x IS

SolverWriteTime x R

SolveStat Indicates the solver termination condition.

1 Normal Completion

2 Iteration Interrupt

3 Resource Interrupt

4 Terminated By Solver

5 Evaluation Interrupt

6 Capability Problems

7 Licensing Problems

8 User Interrupt

9 Setup Failure

10 Solver Failure

11 Internal Solver Failure

12 Solve Processing Skipped

13 System Failure

x I 1 13

StepSum Summary of computing resources used by job

steps.

0 No step summary

1 Step summary printed

x x B 0 0 1

strictSingleton Error if assignment to singleton set has multiple

elements.

0 Take f irst record if assignment to singleton

set has multiple elements

x x x B 1 0 1

McCarl GAMS User Guide437

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

1 Error if assignment to singleton set has

multiple elements

StringChk String substitution options.

0 No substitution if symbol undefined and no

error

1 Error if symbol undefined

2 Remove entire symbol reference if

undefined and no error

x x I 0 0 2

SubSys Name of subsystem configuration f ile. x S

SubSystems Lists all solvers available as w ell as the current

default and active solvers in the LST file.

x 0.0

0

0

SumInfes Sum of infeasibilities. x R 0.0

0

Suppress Compiler listing option.

0 Standard compiler listing

1 Suppress compiler listing

x x B 0 0 1

Symbol Symbol table f ile. x x S

SymPrefix Prefix all symbols encountered during compilation

by the specif ied string in w ork f ile.

x x S

Sys10 Changes rpow er to ipow er w hen the exponent is

constant and w ithin 1e-12 of an integer.

0 Disable conversion

1 Enable conversion

x x x B 0 0 1

Sys11 Dynamic resorting if indices in assignment/data

statements are not in natural order.

0 Automatic optimization/restructuring of

data

1 No optimization

2 Alw ays optimize/restructure

x x x I 0 0 2

Sys12 noSolve

Skip

Pass model w ith generation errors to solver. x x x I 0 0 1

Sys15 Automatic sw itching of data structures used in

search records.

0 Automatic sw itching to dense data

structures

1 No sw itching

2 Alw ays sw itch

1x Print additional information in lst f ile

x I 0 0

Sys16 Disable search record memory (aka execute this as

pre-GAMS 24.5).

x I 0 0 1

Sys17 Disable sparsity trees grow ing w ith permutation

(aka execute this as pre-GAMS 24.5).

x I 0 0 1

SysDir GAMS system directory w here GAMS executables

reside.

x S

SysIdent Solver identif ication number. x R

SysIncDir SDIR SysInclude directory. x x S

SysOut Solver Status f ile reporting option.

0 Suppress additional solver generated

output

1 Include additional solver generated output

x x x x BS 0 0 1

SysVer Solver version. x R

TabIn Tab spacing.

0 Tabs are not allow ed

x x I 8 0

Customizing GAMS 438

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

1 Tabs are replaced by blanks

n Tabs are 1, n+1, 2n+1,.. (default: n=8)

TFormat TF Time format.

0 Time as hh:mm:ss

1 Time as hh.mm.ss

x x B 0 0 1

Threads Number of threads to be used by a solver.

0 Use number of available processors

n Use n threads

-n Number of processors to leave free for

other tasks

x x x x I 1 mini

nt

ThreadsAsync Limit on number of threads to be used for

asynchronous solves (solveLink=6).

0 Use number of available processors

n Use n threads

-n Number of processors to leave free for

other tasks

x x x I -1 mini

nt

Timer Instruction timer threshold in milli seconds.

0 Interpreted as +inf, no details echoed

n Echo all details about internal GAMS

instructions that took more than n milli

seconds to the log

x x I 0 0

TolInfeas Infeasibility tolerance for an empty row of the form

a.. 0*x =e= 0.0001;.

x R 0.0

0

TolInfRep This attribute sets the tolerance for marking

infeasible in the equation listing.

x R 1.0

000

000

000

000

00E

-6

TolProj Tolerance for setting a variable level to its bound

and f iltering marginals w hen reading a solution.

x R 1.0

000

000

000

000

00E

-8

0.0

0

Trace Trace f ile name. x x S

TraceLevel TL Solvestat threshold used in conjunction w ith

action=GT.

x x I 0 0

TraceOpt Trace f ile format option.

0 Solver and GAMS step trace w ithout

headers

1 Solver and GAMS step trace

2 Solver step trace only

3 Trace f ile format used for GAMS

performance w orld

5 Trace f ile w ith all available trace f ields

x x I 0 0 5

TryInt Whether solver should make use of a partial

integer-feasible solution.

x R

TryLinear Examine empirical NLP model to see if there are any

NLP terms active. If there are none the default LP

solver w ill be used.

x R

User1 U1 User string N. x x x S

McCarl GAMS User Guide439

© 2022 Prof. Bruce McCarl

Name Syn Description cl opt att trc api typ

e

Def

ault

lo up

User2 U2 User string N. x x x S

User3 U3 User string N. x x x S

User4 U4 User string N. x x x S

User5 U5 User string N. x x x S

UserName User name. x S

Warnings Number of w arnings permitted before a run

terminates.

x x I max

int

0

WorkDir WDir Working directory. x S

WorkFactor Memory Estimate multiplier for some solvers. x x x R 1.0

0

0.0

0

WorkSpace Work space for some solvers in MB. x x x R 0.0

0

XSave XS Creates a compressed \ref UG_SaveRestart "w ork

file".

x S

XSaveObfuscate XSO Creates a compressed \ref

UG_SecureWorkFiles_ObfuscatedWorkFiles

"obfuscated w ork f ile".

x S

ZeroRes The results of certain operations w ill be set to zero

if abs(result) LE ZeroRes.

x x R 0.0

0

0.0

0

ZeroResRep Report underflow as a w arning w hen abs(results)

LE ZeroRes and result set to zero.

0 No w arning w hen a rounding occurs

because of ZeroRes

1 Issue w arnings w henever a rounding

occurs because of ZeroRes

x x B 0 0 1

12 Finding and Fixing Errors or Performance
Problems

This section covers the repair of computational problems that can arise when GAMS models are run,
particularly large ones. The coverage is organized by chapter with the chapters covering:

Fixing Execution Errors

Scaling GAMS Models

Small to Large: Aid in Development and Debugging

Speeding up GAMS

Memory Use Reduction in GAMS

12.1 Fixing Execution Errors

The execution of a GAMS program passes through a number of stages, one of which is the execution
step. During execution, errors can be detected. Generally these occur during

GAMS execution
Model generation or
Solver execution.

Finding and Fixing Errors or Performance Problems 440

© 2022 Prof. Bruce McCarl

Generally, the cause of such problems is

Job requirements in excess of GAMS limits
Technical arithmetic problems where an illegal operation is performed
Critical model structure flaws

These notes cover the process of finding and fixing GAMS execution errors.

GAMS limit errors

Arithmetic errors during GAMS execution

Execution errors during model generation

Execution errors during model solution

Basing conditionals on number of errors

Clearing error conditions

12.1.1 GAMS limit errors

GAMS generates errors when it runs out of time, authorized iterations or space either during the GAMS
execution of the problem or inside the solver. In turn, the LOG file can contain messages such as

--- Starting compilation

--- AGRESTE.GMS(312) 1 Mb

--- Starting execution

--- AGRESTE.GMS(307) 1 Mb

--- Generating model agreste

--- AGRESTE.GMS(309) 1 Mb

--- 52 rows, 101 columns, and 665 non-zeroes.

--- Executing BDMLP

 BDMLP 1.3 Mar 21, 2001 WIN.BD.NA 20.0 056.043.039.WAT

 Reading data...

 Work space allocated -- 0.06 Mb

 Iter Sinf/Objective Status Num Freq

 1 5.95393922E+02 infeas 6 1

 20 2.12198277E-02 infeas 1

 SOLVER STATUS: 3 RESOURCE INTERRUPT

 MODEL STATUS : 6 INTERMEDIATE INFEASIBLE

**** SOLVER STATUS 3 RESOURCE INTERRUPT

**** MODEL STATUS 6 INTERMEDIATE INFEASIBLE

**** OBJECTIVE VALUE 0.0000

McCarl GAMS User Guide441

© 2022 Prof. Bruce McCarl

• Resources interrupt which indicates GAMS runs out of authorized time which is fixed by
expanding the resource limit –

OPTION RESLIM = 50000;

where the 50000 may be replaced with any number. Etlim can also be used.

• Too many iterations which is fixed by expanding the iteration limit –

OPTION ITERLIM = 100000;

where the 100000 may be replaced with any number. As of 23.1 the default iteration limit
(IterLim) was been increased from 10000 to 2e9. Setting IterLim to INF will not work
since it is treated as an integer by GAMS and many solvers. Some solver, e.g. GAMS/
Gurobi, recognize 2e9 and set the solver iteration limit to infinity

• Not enough work space which is fixed by expanding the workspace limit –

OPTION work = 30;

where the number (30) gives the Work space limit in megabytes and should not exceed the
computer RAM.

12.1.2 Arithmetic errors during GAMS execution

Execution time numerical errors can arise during GAMS execution calculations. These occur because
of improper exponentiation (such as raising a negative number to a real power), logs of negative
numbers, or dividing by zero. Such errors are marked in the LST file with **** and an associated brief
message. That message indicates the nature of the arithmetic problem and the line number of the
source code where the problem was encountered. Consider the example executcl.gms

sets elements /s1*s25/

parameter data1(elements) data to be exponentiated

 datadiv(elements) divisors;

data1(elements)=1;

data1("s20")=1;

datadiv(elements)=1;

datadiv("s21")=0;

parameter result(elements);

result(elements)=data1(elements)**2.1/datadiv(elements)

display result;

Running GAMS we get LOG file contents of

--- Starting execution

--- EXECUTCL.GMS(10) 134 Kb

*** ExecError 10 at Line 10

 ILLEGAL ARGUMENTS IN ** OPERATION

Finding and Fixing Errors or Performance Problems 442

© 2022 Prof. Bruce McCarl

*** ExecError 0 at Line 10

 DIVISION BY ZERO

--- EXECUTCL.GMS(11) 134 Kb 2 Errors

*** Status: Execution error(s)

--- Erasing scratch files

Exit code = 3

Sometimes the message indicates exactly where the problem is and the user can easily figure out the
cause. Other times the problem may arise within a multidimensional item. In such cases the best way
to find out where such difficulties appear is to use a display statement and show the result of the
operation, then look for bad elements. This may also involve displays of the input data to the
calculations so one can investigate the numerical properties of elements entered into the calculation that
yields the error. Often even more displays will be involved where one needs to trace faulty input data
back through the program. One would display these items repeatedly investigating places where these
data have been calculated. Eventually one will find why these data have taken on the specific numerical
values they have.

In the case of the above example the display of Result in the LST file reveals

**** EXECUTION ERROR 10 AT LINE 10 .. ILLEGAL ARGUMENTS IN ** OPERATION

**** EXECUTION ERROR 0 AT LINE 10 .. DIVISION BY ZERO

---- 11 PARAMETER RESULT

s1 1.000, s2 1.000, s3 1.000, s4 1.000, s5 1.000, s6 1.000

s7 1.000, s8 1.000, s9 1.000, s10 1.000, s11 1.000, s12 1.000

s13 1.000, s14 1.000, s15 1.000, s16 1.000, s17 1.000, s18 1.000

s19 1.000, s20 UNDF, s21 UNDF, s22 1.000, s23 1.000, s24 1.000

s25 1.000

Here we have an indication of where the execution errors arise in the result calculation:

For the "S20" element where we are exponentiating a negative constant to a real power raw
data investigations or displays of data1 and data2 would indicate the cause is the presence in
data1 of an element equal to –1 and its subsequent exponentiation.

For the element "S21" where we are dividing by zero raw data investigations or displays of
data1 and data2 would indicate the cause is the presence in data2 of an element equal to 0
and its subsequent use as a divisor.

So we then fix with data revisions or conditionals stopping use of data items that will cause the program
to blow up.

12.1.3 Execution errors during model generation

Execution errors may arise when GAMS is generating the model before passing it to the solver. These
again can be arithmetic errors or can also be model structure errors. Such model structure errors arise
because some equations are improperly set up i.e. being inherently infeasible or the wrong solver is
being used.

Discovery of such execution errors is sometimes very straightforward but can at other times be fairly

McCarl GAMS User Guide443

© 2022 Prof. Bruce McCarl

involved. An error in the middle of a multi-dimensional equation block and/or in a multi-dimensional
equation term within a block can be difficult to find. The most practical way of finding such errors is to
use the Limcol/Limrow option commands.

Consider the example executmd.gms

sets elems /s1*s25/

parameter data1(elems) data to be exponentiated

 datadiv(elems) divisors

 datamult(elems) x limits;

data1(elems)=1;

data1("s20")=-1;

datadiv(elems)=1;

datadiv("s21")=0;

datamult(elems)=1;

datamult("s22")=0;

positive variables x(elems) variables

variables obj;

equations objr objective with bad exponentiation

 xlim(elems) constraints with bad divisor;

objr.. obj=e=sum(elems,data1(elems)**2.1*x(elems));

xlim(elems).. datamult(elems)/datadiv(elems)*x(elems)=e=1;

model executerr /all/

option limrow=30; option limcol=30;

solve executerr using lp maximizing obj;

In this example, we will have execution errors arise during model generation because of arithmetic
problems. Namely

• In the objective function for the "S20" element where we are exponentiating a negative

constant to a real power (because of the assignment in line 9);

• In the XLIM constraint associated with element "S21" where we are dividing by zero (because

of the assignment in line 11); and

• In the XLIM "S22" constraint where we set zero equal to one which results in an infeasible

constraint (because of the assignment in line 15).

When we run GAMS, we see the execution error messages as follows:

--- Generating model EXECUTERR

--- EXECUTMD.GMS(16) 134 Kb

*** ExecError 10 at Line 16

 ILLEGAL ARGUMENTS IN ** OPERATION

--- EXECUTMD.GMS(17) 134 Kb 1 Errors

*** ExecError 0 at Line 17

 DIVISION BY ZERO

*** ExecError 28 at Line 17

 EQUATION INFEASIBLE DUE TO RHS VALUE

--- EXECUTMD.GMS(20) 134 Kb 3 Errors

Finding and Fixing Errors or Performance Problems 444

© 2022 Prof. Bruce McCarl

*** SOLVE aborted

*** Status: Execution error(s)

The Limrow section of the LST file reveals

**** EXECUTION ERROR 10 AT LINE 16 .. ILLEGAL ARGUMENTS IN ** OPERATION

---- OBJR =E= objective with bad exponentiation

OBJR.. - X(s1) - X(s2) - X(s3) - X(s4) - X(s5) - X(s6) - X(s7) - X(s8)

 - X(s9) - X(s10) - X(s11) - X(s12) - X(s13) - X(s14) - X(s15) - X(s16)

 - X(s17) - X(s18) - X(s19) + UNDF*X(s20) - X(s21) - X(s22) - X(s23)

 - X(s24) - X(s25) + OBJ =E= UNDF ; (LHS = UNDF, INFES = UNDF ***)

**** EXECUTION ERROR 0 AT LINE 17 .. DIVISION BY ZERO

**** EXECUTION ERROR 28 AT LINE 17 .. EQUATION INFEASIBLE DUE TO RHS VALUE

**** INFEASIBLE EQUATIONS ...

---- XLIM =E= constraints with bad divisor

XLIM(s22).. 0 =E= 1 ; (LHS = 0, INFES = 1 ***)

This does not display the equation limrow listing for the divide by zero error. To get it you have to fix the
infeasibility and run again. Then you get

XLIM(s21).. UNDF*X(s21) =E= UNDF ; (LHS = UNDF, INFES = UNDF ***)

Regardless the Limrow display shows the exact elements within the model where the problems have
arisen and one may then investigate. Such an investigation may involve displays of the input data used
within the equation calculations so one can investigate the numerical properties of specific elements
associated with problems. Often even more displays will be involved where one traces faulty input data
back through the program investigating places where these data have been calculated to eventually see
why these data have taken on the specific numerical values they have.

12.1.4 Execution errors during model solution

Execution errors during model solution are generally

Arithmetic errors or

Problems caused by a presolve.

Arithmetic errors are numerically based and caused by

• Improper exponentiation (such as raising a negative value of a variable to a real power),

• Logs or square roots of negative variables,

• Squaring a negative term with **2 (use sqr or a multiplication instead of **2) and

McCarl GAMS User Guide445

© 2022 Prof. Bruce McCarl

• Dividing by zero.

Presolve errors either

• Indicate infeasibility or unboundedness

• Result from an overzealous presolve which eliminates the problem for all practical purposes

(this generally only occurs with very small problems).

Solver function evaluation errors

Presolve errors

Solver specific limits

12.1.4.1 Solver function evaluation errors

Solvers can signal out errors using rather obscure LOG file error messages such as those below when
numerical underflows or overflows are encountered during the evaluation of user model defined nonlinear
terms or their derivatives. The examples below arose from a run of the problem solvelog.gms which has
a log term in the objective function and allows the decision variable to become zero.

12.1.4.1.1 Symptoms

The messages are solver dependent. In this case MINOS yields the LOG file error message

EXIT -- Termination requested by User in subroutine FUNOBJ

while CONOPT leads to the message:

** Domain error(s) in nonlinear functions.

 Check bounds on variables.

In turn both cause GAMS to include the error message following in the LST file:

**** ERRORS(S) IN EQUATION R1

1 INSTANCE OF - UNDEFINED LOG OPERATION (RETURNED -0.1E+05)

Essentially the same messages occur with the other types of numerical problems. For example, a
model that permits division by zero is given in solvdiv.gms and a run of it causes similar error
messages:

When using CONOPT the LOG file shows

** Domain error(s) in nonlinear functions.

 Check bounds on variables.

and the LST file shows

Finding and Fixing Errors or Performance Problems 446

© 2022 Prof. Bruce McCarl

**** SOLVER STATUS 5 EVALUATION ERROR LIMIT

**** MODEL STATUS 6 INTERMEDIATE INFEASIBLE

**** ERRORS(S) IN EQUATION r1

 1 instance(s) of - DIVISION BY ZERO

 LOWER LEVEL UPPER MARGINAL

---- EQU r1 . -0.400 . EPS INFES

 LOWER LEVEL UPPER MARGINAL

---- VAR x . . +INF EPS

---- VAR z -INF -0.400 +INF EPS

When using MINOS the LOG file shows

EXIT - Function evaluation error limit exceeded.

and the LST file shows

**** SOLVER STATUS 5 EVALUATION ERROR LIMIT

**** MODEL STATUS 7 FEASIBLE SOLUTION

**** ERRORS(S) IN EQUATION r1

 4 instance(s) of - DIVISION BY ZERO (RESULT SET TO 0.1E+05)

 LOWER LEVEL UPPER MARGINAL

---- EQU r1 . . . 1.000

 LOWER LEVEL UPPER MARGINAL

---- VAR x . . +INF -1.000E+4 NOPT

---- VAR z -INF -1.000E+4 +INF .

12.1.4.1.2 Allow ing errors to occur

One may allow a number of such errors to be tolerated by setting the option command Domlim.

12.1.4.1.3 Repair

Collectively these examples show that the solvers give a message indicating the type of arithmetic
problem encountered and the equation where found, but do not identify the particular offending variable or
the exact index case of the equation. If the cause is not obvious, one needs to investigate the numerical
properties of elements within the model equations. This may involve

• Display of input data items to the nonlinear terms in the suspect equations.

• Examination of the solution report to find the markers as to where equations are infeasible

McCarl GAMS User Guide447

© 2022 Prof. Bruce McCarl

(INFES), variables are nonoptimal (NOPT) to see where problems are present and what
variables were being manipulated at the end of the run.

• Investigation of solution items that are zero, negative or very large to see variable and equation

levels at the end of the run.

• One may also need to deactivate part of the code to narrow down the problem as discussed in

the notes on finding execution speed problems.

The solutions to such problems are generally

1. Add lower bounds to the problem to keep variables away from zero (x.lo(index)=0.00001).

2. Add upper bounds to the problem to keep variables away from large values (x.up(index)
=1000.).

3. Reformulate the problem revising the terms and equations.

4. Provide a better starting point that keeps the solver search in a more relevant region (x.l(index)
=k).

5. Fix faulty input data.

12.1.4.2 Presolve errors

Presolves in some GAMS solvers can signal execution errors problems (e.g. OSL, CPLEX, CONOPT).
Circumstances where we have seen errors arise.

• Presolve can, in relatively simple problems, essentially eliminate the problem. This generally

occurs because presolves commonly substitute away bounds and equality constraints to
simplify the problem and may in effect simplify the problem out of existence.

• Presolve may detect the problem is unbounded or infeasible and terminate.

• CONOPT may investigate the problem and stop citing scaling inadequacies.

In such cases, the LST file solution is often mysterious and unusual. Each is illustrated below.

12.1.4.2.1 Problem eliminated

Presolve can, in relatively simple problems, essentially eliminate the problem. This generally occurs
because presolves commonly substitute away bounds and equality constraints to simplify the problem
and may in effect simplify the problem out of existence.

Consider the example presol1.gms

variables z;

positive variables y1,y2;

equations r1,r2,r3,r4;

 r1.. z=e=y1+y2;

 r2.. y1=l=10;

 r3.. y2=l=10;

 r4.. y1+y2=e=10;

model badpresol /all/

option lp=osl;

solve badpresol using lp maximizing z;

Finding and Fixing Errors or Performance Problems 448

© 2022 Prof. Bruce McCarl

The LOG file reports

Presolve...

 **** PRESOLVE has deleted all rows

 0 0.000000 Unknown

 Infeasible

and the LST file

 S O L V E S U M M A R Y

 MODEL BADPRESOL OBJECTIVE Z

 TYPE LP DIRECTION MAXIMIZE

 SOLVER OSL FROM LINE 10

**** SOLVER STATUS ERROR SOLVER FAILURE

**** MODEL STATUS 6 INTERMEDIATE INFEASIBLE

**** OBJECTIVE VALUE 0.0000

and later we see

**** PRESOLVE has deleted all rows

The OSL presolve has made constraints r2 and r3 into simple upper bounds and has manipulated
constraint r4 to express y1 in terms of y2 and y1 has been substituted out of the problem. The resultant
model has one variable and no explicit constraints. In turn, the OSL solver cannot function. One would
have to suppress the presolve with the OSL.opt solver option file to solve the model. The other solvers
with presolves - CPLEX, XA , XPRESS and CONOPT - all can handle this.

12.1.4.2.2 No feasible mixed integer solution

 Presolves can cause unusual behavior when there is no feasible integer solution. A mixed integer
programming problem (presol2.gms) was tried which did not have a feasible integer solution.

variables z;

integer variables y1,y2;

equations r1,r2,r3,r4;

 r1.. z=e=y1+y2;

 r2.. y1=g=0.10;

 r3.. y2=g=0.10;

 r4.. y1+y2=l=1;

model badpresol /all/

option mip=cplex;

solve badpresol using mip maximizing z;

Solving this problem with CPLEX yielded the solution messages

McCarl GAMS User Guide449

© 2022 Prof. Bruce McCarl

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 10 INTEGER INFEASIBLE

followed by

Presolve found MIP to be infeasible or unbounded.

Switching to RMIP in hopes LP solution will help with diagnosis.

Problem is integer infeasible

and no solution report. XA, XPRESS and BDMLP all terminate in a similar fashion although some do
return a solution report.

The OSL presolve did not discover problems and cratered.

Presolve...

 Crashing...

 Primal Simplex...

 Iter Objective Sum Infeasibilities

 **** Severe problem in OSL. Check the listing file.

 Terminating...

--- Restarting execution

--- PRESOL2.GMS(14) 0 Mb

--- Reading solution for model badpresol

--- PRESOL2.GMS(14) 0 Mb 1 Error

*** Status: Execution error(s)

In these cases, one needs to investigate the LST file to find the messages from the presolve processor
to see what happened. Also one may need to suppress the presolve using a solver options file.

12.1.4.2.3 No feasible continuous solution

Presolves can also cause unusual behavior when there is no feasible solution to the constraints. A
linear programming problem (presol3.gms) was tried which did not have a feasible integer solution.

variables z;

positive variables y1,y2;

equations r1,r2,r3,r4;

 r1.. z=e=y1+y2;

 r2.. y1=g=1.10;

 r3.. y2=g=0.10;

 r4.. y1+y2=l=1;

model badpresol /all/

solve badpresol using lp maximizing z;

CPLEX, and OSL had experiences roughly like the following

Finding and Fixing Errors or Performance Problems 450

© 2022 Prof. Bruce McCarl

 S O L V E S U M M A R Y

 MODEL badpresol OBJECTIVE z

 TYPE LP DIRECTION MAXIMIZE

 SOLVER CPLEX FROM LINE 15

**** SOLVER STATUS 1 NORMAL COMPLETION

**** MODEL STATUS 19 INFEASIBLE - NO SOLUTION

 RESOURCE USAGE, LIMIT 0.060 1000.000

 ITERATION COUNT, LIMIT 0 10000

GAMS/CPLEX Mar 21, 2001 WIN.CP.NA 20.0 019.019.039.WAT For CPLEX 7.0

CPLEX 7.0.0, GAMS Link 19

Unable to open options file: C:\GAMS\GAMSPDF\CPLEX.OPT.

Unable to process options file.

Presolve found the problem infeasible or unbounded.

and did not return a solution report. The other solvers tried (XA and XPRESS) turned off the presolve and
gave back a report with some information on where the infeasibility exists.

12.1.4.3 Solver specific limits

Many solvers contain internal limits that may be exceeded and cause a LST file report of an execution
errors. These are fixed by using the option commands above or a solver specific option file. Generally
the LST file will tell one what options to employ. The solver manuals distributed with GAMS give the
types of options that can be specified for each solver. For example to relax the MINOS major iteration
limit the user should employ the file minos.opt containing the line

Major iterations 1000

or some other appropriate value.

12.1.5 Basing conditionals on number of errors

One may set up a procedure to do certain things in a job depending on the number of execution errors
encountered. This is done using the function execerror. In particular one could use GAMS code as
follows (executcl.gms)

result(elements)=data1(elements)**2.1/datadiv(elements);

display result;

*cause z to be undefined

scalar z;

z=1/0;

if(execerror gt 0,

 result(elements)$(result(elements) = z)=0;);

display result;

McCarl GAMS User Guide451

© 2022 Prof. Bruce McCarl

which removes the execution errors from the result array.

12.1.6 Clearing error conditions

One may also use the function Execerror to reset the count of the number of execution errors. Typically
one would choose to set this to zero so GAMS terminates normally. This is done as follows
(executcl2.gms)

execerror=0;

which causes GAMS to terminate with a normal completion message as opposed to a error code (see
executcl.gms).

12.2 Scaling GAMS Models

Model solutions within GAMS frequently require manipulation of large matrices and many computations.
 The heart of most solvers includes a many numerical procedures such as a sparse matrix inverter and
sets of convergence and infeasibility tolerances. Numerical problems often arise within such
procedures. Poorly scaled models can cause excessive time to be taken in solving or can cause the
solver to fail. GAMS can assist the user in scaling as discussed here.

Basics

Theory of scaling

Simultaneous equation and variable scaling

Scaling of GAMS models

Using GAMS scaling assistance

Effect of scaling on GAMS output

How do you know how much to scale?

A caution when scaling – runaway cases

User defined data scaling

Nonlinear scaling

12.2.1 Basics

Scaling efforts involve attempts to reduce the disparity between the coefficient magnitudes in the model
including in the nonlinear variable gradients. Scaling endeavors in general try to reduce the disparity
between the coefficients including the nonlinear term gradients so that the absolute value of their
magnitude is centered on one and differs by no more than a multiplicative factor of no more than 1000 to
10000. Generally a well scaled model would exhibit the characteristics that

• Solution level values for the variables fall into a range around 1, e.g. from 0.01 to 100.

• Solution values of the nonzero constraint marginals exhibit absolute values falling into a range

around 1, e.g. ranging in absolute value from 0.01 to 100.

• Derivatives of nonlinear terms (Jacobian elements) in the model equations fall in absolute value

around 1, e.g. ranging in absolute value from 0.01 to 100 both at the starting values and at the
optimal solution.

• Constants in the model equations exhibit absolute values around 1, e.g. ranging in absolute

Finding and Fixing Errors or Performance Problems 452

© 2022 Prof. Bruce McCarl

value from 0.01 to 100.

To achieve such ranges the model needs to be manipulated numerically by changing the units of the
variables and equations. GAMS users can employ three mechanisms that will cause such
manipulations (commonly called scaling) to explicitly or implicitly occur

• Allow the solvers attached to GAMS to scale the problem

• Cause GAMS to scale using built-in scaling features

• Prescale the input data.

Solver scaling should always be done and does not require active participation by the user, but is not
always sufficient. You can always do better because you understand the problem. In short, Context is
king.

GAMS supported, user defined model scaling should be used on numerically difficult problems. You
should also scale your data into sensible units.

12.2.2 Theory of scaling

Lets consider scaling theoretically. Given the LP problem

Scaling a variable

Scaling equations

12.2.2.1 Scaling a variable

Suppose I wish alter the units of a variable like X
1
 (e.g. changing it from kilograms to metric tons,

requires multiplying all coefficients for X
1
 by 1000). Thus, I substitute X

1
' which is X

1
 divided by the

scaling factor (X
1
/SC

1
). I also adjust the a

i1
's and c

1
 such that they are multiplied by the scaling factor

a
i1
' = SC

1
 * a

i1
 c

1
' = SC

1
 * c

1

and the problem becomes

McCarl GAMS User Guide453

© 2022 Prof. Bruce McCarl

Notes:

• The solutions to the problems before and after scaling are mathematically related. http://

agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf 1 and Spreen show that such
scaling divides the optimal variable value by the scaling factor and multiplies the reduced cost or
variable marginal by that factor.

• Note in doing such scaling that all coefficients for a variable have a common denominator in terms

of units (resource use per unit of X
1
) both before and after scaling, so every coefficient associated

with X
1
 needs to be multiplied by the same scaling factor to preserve denominator homogeneity of

units.

12.2.2.2 Scaling equations

Scaling can also be done on equations. It again involves altering the units of model elements. For
example, one might change the units of an equation from say acres to 1000 acres. To do that you
would divide all associated coefficients by one thousand. In general equation scaling involves dividing
very equation coefficient by the scaling factor (SR

1
) as follows:

where SR
1
 is a positive equation scaling factor.

Notes:

• The solutions to the problem before and after scaling have a mathematical relationship.http://

agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf show that such scaling divides

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new17.pdf

Finding and Fixing Errors or Performance Problems 454

© 2022 Prof. Bruce McCarl

the optimal slack variable (or equivalently equation level) by the scaling factor and multiplies the
optimal shadow price or equation marginal by that scaling factor.

• All coefficients for an equation have a common numerator (row resource units per variable unit)

both before and after scaling, so every coefficient associated with the equation needs to be divided
by the same scaling factor to maintain homogeneity of the numerator units in the equation.

12.2.3 Simultaneous equation and variable scaling

Reductions in numerical disparity across the coefficients are made when equations and variables are
simultaneously scaled. If I scale all variables multiplying coefficients by SC

j
 , all rows dividing

coefficients by SR
i
 and the objective dividing coefficients by SO then I get the following table from

McCarl and Spreen applies. In the resultant problem the coefficients after scaling are given by the
formulae

and the relationships between solution items before and after scaling is given by

Item
Symbol
Before
Scaling

Symbol
After

Scaling

Unscaled Value
in Terms of

Scaled Value

Scaled Value
in Terms of

Unscaled Value

Variable levels X
j

X
j
' X

j
 = X

j
'* SC

j
X

j
' = X

j
 /SC

j

Slacks/equation levels S
i

S
i
' S

i
= S

i
'*SR

i
S

i
' = S

i
 / SR

i

Reduced costs/ variable
marginals

z
j
- c

j
z

j
 '- c

j
'

z
j
 - c

j
 = (z

j
 '- c

j
') *

(SO/SC
j
)

z
j
 '- c

j
 ' = (z

j
 - c

j
) /

(SO/SC
j
)

Shadow prices/equation
marginals

U
i

U
i
' U

i
 = U

i
' * (SO/SR

i
) U

i
 '= U

i
 / (SO/SR

i
)

Obj.Function vlue Z Z ' Z = Z' * SO Z '= Z / SO

Fortunately, GAMS and the GAMS solvers do this for us adjusting all solutions so they look as if they
were never scaled. But this table does show the solutions are equivalent only differing by multiples of the
scaling factors.

Example of scaling

McCarl GAMS User Guide455

© 2022 Prof. Bruce McCarl

12.2.3.1 Example of scaling

Suppose I have the problem below

To solve this problem I would not ordinarily use scaling, but the problem provides a vehicle to illustrate
scaling procedures and consequences. The biggest numbers in the problem within the constraint matrix
are in the first third and fourth constraint equations. Thus, suppose I convert the units of the first
constraint by dividing all coefficients by 10000 and since it appears X

1
 is in the same units convert the

units of X
1
 to 10000's of items by multiplying all coefficients under it by 10000. Simultaneously, I will

divide all coefficients in the third constraint equation by 1000 and in the fourth by 50. The resultant
model is

Now suppose I divide all coefficients in the X
4
 column by 50 and all coefficients in the objective function

by 10000. The final scaled problem then becomes

Finding and Fixing Errors or Performance Problems 456

© 2022 Prof. Bruce McCarl

The disparity in numbers is now much less and this is what I try to achieve in scaling. Furthermore
when I solve the problem now in numerically simpler form I can reconstruct the solution to the original
problem by simply multiplying and dividing solution items by the scaling factors using the above table.

12.2.4 Scaling of GAMS models

While the above theory tells how scaling works in the abstract, it is another matter as to how one goes
about employing scaling in a GAMS exercise. Here I cover scaling by solvers, and users.

Scaling in GAMS solvers

12.2.4.1 Scaling in GAMS solvers

Most of the solvers GAMS uses when a SOLVE statement is executed will automatically scale
problems and will transform the solution back to the unscaled one. Thus users usually gain the benefits
of a scaling exercise without having to do anything.

• Solver based scaling is implemented where the solver determines the scaling factors. For

example, equations may be divided through by the absolute value of the average coefficient in
that equation. Similarly, variables are divided through by numbers derived from the absolute
values of the average coefficient in their column. Such mechanical scaling is done iteratively
for a number of passes alternating between variable and equation scaling.

• In turn the solvers automatically construct the unscaled solution using procedures like those

in the table above so solver scaling is transparent to the user.

• Generally the user can do a better job than the solver in scaling due to an understanding of

the model structure.

• Solver scaling can usually be suppressed through the solver options file. But this should not

be done.

• Some solvers contain additional scaling procedures that are activated through the options file.

 Important optional scaling features are resident in MINOS as the example nlpscale.gms
exploits.

MODEL nation /ALL/;

nation.optfile=1;

SOLVE nation USING NLP MAXIMIZING csps;

McCarl GAMS User Guide457

© 2022 Prof. Bruce McCarl

minos.opt

superbasics 100

scale nonlinear variables

optimality tolerance 0.0000000001

12.2.5 Using GAMS scaling assistance

Generally the user can do a better job than the solver in scaling due to understanding of the model
structure. GAMS also allow user controlled model scaling that can be employed to improve over solver
based scaling. This procedure allows the user to specify scaling factors that are used to both alter the
units in the model at hand resulting in a better-scaled model and descale the results. The procedure
accepts a scale factor, both for variables and equations.

The syntax to enter such commands for variables and equations is:

variablename.scale(setdependency)=k1;
equationname.scale(setdependency)=k2;

where variablename is the name of a problem variable;
equationname is the name of a problem equation;
scale is a variable or equation attribute
setdependency are the associated set elements; and
k1 is a number or expression giving a number that will multiply all coefficients
associated with the named variable
k2 is a number or expression giving a number that will divide all coefficients
associated with the named equation

Scaling is turned off by default. Setting the model attribute modelname.scaleopt to 1 activates the
scaling feature.

modelname.scaleopt=1;

where modelname is that named used in the model and solve statements.

The scaling statements that would be used in a GAMS program of the scaling example discussed above
are (scale.gms)

scalemod.scaleopt=1;

obj.scale=10000;

z.scale=obj.scale;

avail.scale("r1")=10000;

x.scale("x1")= avail.scale("r1");

avail.scale("r3")=1000;

avail.scale("r4")=50;

x.scale("x4")=1/50;

In turn, GAMS would automatically scale the model and would present the results after reverse scaling
to recover the original solution.

Finding and Fixing Errors or Performance Problems 458

© 2022 Prof. Bruce McCarl

More generally in a model with variables named PRODUCTION and SALES along with equations named
RESOURCES and PRODBAL one could introduce the scaling statements

modelname.scaleopt=1;

SCALFACTOR(ITEMS)=50;

SCALFACTOR("CARS")=100;

PRODUCTION.SCALE (ITEMS) = 1000;

SALES.SCALE (PRODUCTS) = 2000;

RESOURCES.SCALE (TYPES,OTHERSET) =

SCALFACTOR(ITEMS);

PRODBAL.SCALE ("CARS") = 50;

much as in the manner of defining upper or lower bounds.

Note here I can set scales using set indexing as in normal GAMS calculations.

Why should you scale?

12.2.5.1 Why should you scale?

The argument was made above that you know more about model structure and therefore should be able
to beat the solvers in scaling. In most cases the user can do simultaneous scaling of multiple rows and
columns that can greatly narrow coefficient disparity. To see why lets return to the example,

In this model the variable X
1
 is a sale variable that disposes of the products produced by X

2
 and X

3
 as

added up in the first constraint. Thus, to preserve integrity of units, I scale X
1
 and the first equation by

the same factor.

This problem knowledge gives us a leg up and is why the user can usually do better. However solver-
scaling procedures should also be used so to get the benefit of double scaling.

12.2.6 Effect of scaling on GAMS output

GAMS automatically descales all solution information so scaling does not affect the solution output.
However, the LIMROW/LIMCOL output from GAMS displays the elements after scaling and an option in

McCarl GAMS User Guide459

© 2022 Prof. Bruce McCarl

GAMSCHK controls whether the data displayed are before or after scaling. The GAMSCHK
DISPLAYCR, MATCHIT, BLOCKPIC and BLOCKLIST ordinarily print out information on an after scaling
basis but POSTOPT is on a before scaling basis.

12.2.7 How do you know how much to scale?

In scaling the goal should be to reduce the coefficient absolute value range as discussed above so all
numbers in the constraint matrix of the model are between 0.1 and 100. (Note that models with more
disparate coefficients will work.) The steps to scaling I recommend follow

I. Examine the model first on a block-by-block basis where a block is all the set cases
associated with each variable declared in the VARIABLES statements and each case for each
equation declared in the EQUATIONS statements. For each block discover variables and/or
constraints with absolute value maximum or minimum coefficients significantly departing from
one. You can use LIMROW and LIMCOL but this is not very efficient. Use of GAMSCHK
BLOCKPIC and BLOCKLIST is generally more efficient.

II. Develop positive scaling factors for the blocks that when employed will alter median
coefficients to one concentrating on either variables or equations but ordinarily not both.

� For example, when all coefficients associated with a variable block exceed an absolute
value of one (e.g. 5 to 50), then enter a variable scale factor to divide all coefficients so
the median is close to one (e.g. 25).

� Simultaneously use problem knowledge to scale associated variable and/or equation
blocks that should be in same units if at all possible (e.g. if you are scaling water
available then scale the water sales variables by the same amount). If you don't use
such knowledge you will not do any better than the solver.

III. Tell GAMS to scale with those factors.

IV. Examine the block scaling characteristics after scaling. If there are items with high or low
scaling across entire blocks then iteratively work over the variables and equations until the
coefficients converge in value.If the block scaling is all centered on one then proceed to
individual variable and equation scaling. Here use the same steps as above employing
LIMROW and LIMCOL, or GAMSCHK MATCHIT, PICTURE or DISPLAYCR to obtain data on
model item scaling characteristics.

scalegck.gms provides an example.

12.2.8 A caution when scaling – runaway cases

A warning is in order when scaling of multidimensional variables and equations. Assume variable X
(I,J,K,L,M,N) only appears in the model for a few of the possible simultaneous cases of I,J,K,L, M and N
but that each of these sets has 10 elements. Naively entering the expression,

X.SCALE(I,J,K, L,M,N) = 100;

would attempt to put 1 million scaling factors into memory and could cause a computer memory
overflow. One needs to be careful to only scale the variables that appear in the model. This is
discussed further in the Memory and Speed chapters.

Finding and Fixing Errors or Performance Problems 460

© 2022 Prof. Bruce McCarl

12.2.9 User defined data scaling

There is yet one other form of scaling that I recommend. Users can define their input data in a fashion
that scales the model data and the answer. In particular, one should try to develop units for the input
data so that the largest value expected for decision variables and shadow prices is under a million and in
the thousands if possible.

Carefully consider the units for your data. For example, in US agriculture about 325 million acres are
cropped and there is a 9-10 billion bushel corn crop. Thus in setting up production data I could enter
land in 1000's of acres and all other resources in 1000's of units. I might also treat the corn crop in
millions of bushels. The data will be simultaneously scaled so with resource endowments in 1000's then
corn yields are divided by 1000. The net affect then is a corn production variable in the units of millions.
 Consumption statistics would need to be scaled accordingly. Money units can also be in say millions
or billions of dollars.

Such data scaling generally greatly reduces the disparity of coefficients in the model.

12.2.10 Nonlinear scaling

Nonlinear terms merit special scaling efforts. Drud, in his CONOPT implementation, pays particular
attention to scaling diagnostics. His recommendations for scaling are essentially those above and he
also emphasizes scaling the model so that the gradients of all nonlinear terms so exhibit absolute
values close to one at the starting point and at optimality.

Thus, in nonlinear models scaling should be done so that the absolute value of the nonlinear terms as
reported back by GAMS LIMROW/LIMCOL and GAMSCHK are close to one.

Several actions are then in order

• One needs to use a starting point as close to the optimal solution point as possible.

• Use solver scaling. MINOS5, and CONOPT2 have special options controlling whether

nonlinear scaling is done. CONOPT3 does default scaling.

• If you are having problems then scale the model using the user defined GAMS scaling

options. I have worked with cases where MINOS5 would not solve the model unless user
defined scaling was done.

12.3 Small to Large: Aid in Development and Debugging

Many GAMS users are overly impressed with how easily GAMS handles large models. PC based
GAMS can be used with tens of thousands of variables and equations. Modelers often feel such a
facility means they should always work on the full model. The result is often a large, sometimes
extremely large, model in the early stages of model development. Debugging such large formulations is
not easy.

The algebraic modeling style employed in GAMS is inherently expandable. This offers interesting
possibilities in terms of the strategy that may be employed for model development and debugging which
are discussed herein.

Basics

Essence of the small to large approach

https://www.gams.com/latest/docs/S_CONOPT.html

McCarl GAMS User Guide461

© 2022 Prof. Bruce McCarl

Steps for working from small to large

Making small parts of large models

12.3.1 Basics

By its very nature the set based algebraic modeling style embodied in GAMS is expandable. One may
employ the exact same algebra on different sized data sets.

Expandability in an example

12.3.1.1 Expandability in an example

Consider the basic transportation model (transml.gms) as follows where the set and parameter names
are in brown, the data are in magenta and the model in blue.

SETS PLANT PLANT LOCATIONS /NEWYORK , CHICAGO , LOSANGLS /

MARKET DEMAND MARKETS /MIAMI, HOUSTON, MINEPLIS, PORTLAND/

PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT

/NEWYORK 100, CHICAGO 275, LOSANGLS 90/

DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET

/MIAMI 100,HOUSTON 90,MINEPLIS 120,PORTLAND 90/;9

TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET

 MIAMI HOUSTON MINEPLIS PORTLAND

 NEWYORK 1300 1800 1100 3600

 CHICAGO 2200 1300 700 2900

 LOSANGLS 3700 2400 2500 1100 ;

PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;

 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);

POSITIVE VARIABLES

 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;

VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;

TCOSTEQ.. TCOST =E=SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*

 COST(PLANT,MARKET));

SUPPLYEQ(PLANT).. SUM(MARKET,SHIPMENTS(PLANT,MARKET))=L=SUPPLY(PLANT);

DEMANDEQ(MARKET)..SUM(PLANT,SHIPMENTS(PLANT,MARKET))=G=DEMAND(MARKET);

MODEL TRANSPORT /ALL/;

SOLVE TRANSPORT USING LP MINIMIZING TCOST;

PARAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;

MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);

MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));

OPTION DECIMALS=0;

DISPLAY MOVEMENT;

Finding and Fixing Errors or Performance Problems 462

© 2022 Prof. Bruce McCarl

One can make a bigger implementation of that model (tranlrg.gms) as follows where the set and
parameter names are in brown, the data are in red and the model in blue.

SETS PLANT PLANT LOCATIONS

 /NEWYORK , CHICAGO , LOSANGLS , BALTIMORE , WASHINGTON

 PHILADEL , LASVEGAS, RENO , SEATTLE , BOISE/

 MARKET DEMAND MARKETS

 /MIAMI, HOUSTON, MINEPLIS, PORTLAND,BOSTON/

PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT

 /NEWYORK 100, CHICAGO 75, LOSANGLS 90,

 BALTIMORE 80, WASHINGTON 70, PHILADEL 60,

 LASVEGAS 40, RENO 20, SEATTLE 55,

 BOISE 10/

 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET

 /MIAMI 100, HOUSTON 90,

 MINEPLIS 120, PORTLAND 90, BOSTON 180/;

TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET

 MIAMI HOUSTON MINEPLIS PORTLAND BOSTON

 NEWYORK 1300 1800 1100 3600 150

 CHICAGO 2200 1300 700 2900 800

 LOSANGLS 3700 2400 2500 1100 3800

 BALTIMORE 1100 1600 1200 3700 350

 WASHINGTON 1050 1550 1200 3700 400

 PHILADEL 1200 1700 1150 3650 250

 LASVEGAS 3300 2100 2300 1300 3600

 RENO 3400 2200 2200 900 3400

 SEATTLE 3700 2500 1900 250 3500

 BOISE 3500 2200 1700 450 3300 ;

PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;

 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);

POSITIVE VARIABLES

 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;

VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;

TCOSTEQ.. TCOST =E=SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*

 COST(PLANT,MARKET));

SUPPLYEQ(PLANT).. SUM(MARKET,SHIPMENTS(PLANT,MARKET))=L=SUPPLY(PLANT);

DEMANDEQ(MARKET)..SUM(PLANT,SHIPMENTS(PLANT,MARKET))=G=DEMAND(MARKET);

MODEL TRANSPORT /ALL/;

SOLVE TRANSPORT USING LP MINIMIZING TCOST;

PARAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;

MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);

MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));

MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));

OPTION DECIMALS=0;

DISPLAY MOVEMENT;

McCarl GAMS User Guide463

© 2022 Prof. Bruce McCarl

Comparing the models note the data contents differ between the small and the large models, but the set
and parameter names are identical as are the model related algebraic statements.

In this case to make the larger model:

• The supply and demand sets were expanded to their new size.

• The supply availability and demand requirement data were expanded to cover the new supply

and demand points.

• The distance table was expanded to include the new supply and demand points.

But, the data calculation, model definition, model solution and report writing sections are identical and
the general structure of the data including all set and parameter names in the data section were identical
with the data contents varying.

12.3.2 Essence of the small to large approach

The small to large approach is motivated by what we did not have to do in the above example. One can
develop a model with a small data set and once the structure is right it can be used without change with
larger data sets. Thus we have built the last transport model algebra we ever need to!

GAMS allows the same model structure, calculations and report writing to be developed, implemented,
tested and debugged using a small data set instead of having to put up with the size, cumbersomeness,
and speed degradation inherent in working with the large data set. Thus, the golden rule of GAMS
model development and debugging is

work from small to large

One should to the extent possible develop, debug and augment model codes using a representative, but
purposefully small, data set.

The larger the model the longer everything takes. This includes solution, compilation, generation, editing
etc. Generally, time expands exponentially. Often frustration will result even when one is trying to find
some relatively small data problems. Using a reduced data set permits intimate examination of model
structure and function. After such verification, later expand to full problem context. But now what about
the argument "I can't go back to the small data set".

Using a small model is psychologically difficult to do. Once a model is developed it is tempting to use
the large data set rather than simplify.

Consider one of my mistakes. I have a linked agriculture - forest sector model used to do a greenhouse
gas offset studies. Once I had to make small modifications to the constraints and report writing. After
each modification the full model study was rerun covering 100+ scenarios taking 2½ days. I assured
myself I didn't need to use a small model to test modifications (figuring I was a perfect modeler). Well I
ended up running the 2½ day analysis 6 times, each time fixing a bug. Finally I went back to a small
model and got things right in 2 hours. Sheer laziness and arrogance (I knew the model was right - 5
times over) that led me to not initially check things out using a small model, and lengthened the project
by at least ten days.

Finding and Fixing Errors or Performance Problems 464

© 2022 Prof. Bruce McCarl

12.3.3 Steps for working from small to large.

So how is this done? Here is a step-by-step recipe.

I. Set up a small data set representing the full model with all structural features, set names,
parameters etc.

II. Implement all data calculations, model features and report writing calculations.

III. Exhaustively check the results of Step b.

IV. Save the small model. Then implement a full version with the full data set. In doing this
create separate files for data, calculation, model definition and report writing so size
independence is maintained. (Use include or save restart).

V. Test the larger model. Use the small part of large model techniques below to facilitate your
work.

VI. Keep the small model alive. As additional structural features are added to the large model
use it to test them.

12.3.4 Making small parts of large models

One will not always be able to do everything perfectly within the small model. One needs to judiciously
develop the small data set so it has all the features of the large data set. I have found that most of the
work can be done in the simpler setting.

Occasionally something happens in the full data set that I cannot reproduce in the small data set. There
are almost always be peculiarities and interrelationships introduced when I go to the full data set. When
I need to find a large data set only problem, I try one of the following strategies.

Save and restart to isolate problem area
Strategic sub-setting
Data reduction

Each of these is explained below.

Save and restart to isolate problem areas

Strategic sub-setting

Data reduction

12.3.4.1 Save and restart to isolate problem areas

Cases involving large data sets must be run. I work with several models that take hours to run. When I
wish to add or verify code in a relatively small segment, an important strategy is to isolate it.

This permits repair and investigation without having to freshly input data, do initial calculations and solve.
 I do this using save and restart files. Consider the following example.

rem GAMS ALLOFIT.gms pw=80 s=.\t\save1
rem GAMS ASMMODEL.gms pw=80 r=.\t\save1 s=.\t\save2

McCarl GAMS User Guide465

© 2022 Prof. Bruce McCarl

rem GAMS ASMSOLVF.gms r=.\t\save2 s=.\t\save3
GAMS ASMREPT.gms pw=80 r=.\t\save3

The last command in the sequence involving asmrept.gms is executing report writer code. When I wish
to make changes in the report writer code I often will run it by itself from the saved files or will even just
run a smaller file containing the few instructions I wish to focus on.

12.3.4.2 Strategic sub-setting

When using full data sets in debugging or development, we usually narrowing focus to a few items and
use subsets to facilitate this in an exercise I call strategic subsetting.

Consider modification of tranlrg.gms renaming overall sets plants and markets and introducing subsets
plant and market (transtrt.gms). All tables, parameters, variables and equations are defined with
supersets but model and calculations are defined in a subset.

SETS PLANTs PLANT LOCATIONS /NEWYORK , CHICAGO , LOSANGLS , BALTIMORE , WASHINGTON

 PHILADEL , LASVEGAS, RENO , SEATTLE , BOISE/

 MARKETs DEMAND MARKETS /MIAMI, HOUSTON, MINEPLIS, PORTLAND,BOSTON/

set plant (plants) a possibly reduced set of plants

 /newyork,chicago,losangls/

 market (MARKETs) a possible reduced set of DEMAND MARKETS

 /MIAMI, HOUSTON/;

* plant (plants)=yes ;market(markets)=yes;

PARAMETERS SUPPLY (PLANTs) QUANTITY AVAILABLE AT EACH PLANT

 /NEWYORK 100, CHICAGO 75, LOSANGLS 90,

 BALTIMORE 80, WASHINGTON 70, PHILADEL 60,

 LASVEGAS 40, RENO 20, SEATTLE 55, BOISE 10/

DEMAND (MARKETs) QUANTITY REQUIRED BY DEMAND MARKET

 /MIAMI 100, HOUSTON 90, MINEPLIS 120, PORTLAND 90, BOSTON 180/;

TABLE DISTANCE (PLANTs, MARKETs) DISTANCE FROM EACH PLANT TO EACH MARKET

 MIAMI HOUSTON MINEPLIS PORTLAND BOSTON

 NEWYORK 1300 1800 1100 3600 150

 CHICAGO 2200 1300 700 2900 800

 LOSANGLS 3700 2400 2500 1100 3800

 BALTIMORE 1100 1600 1200 3700 350

 RENO 3400 2200 2200 900 3400

 SEATTLE 3700 2500 1900 250 3500

 BOISE 3500 2200 1700 450 3300 ;

PARAMETER COST(PLANTs,MARKETs) CALCULATED COST OF MOVING GOODS;

 COST (PLANT,MARKET) = 50 + 1 * DISTANCE (PLANT,MARKET);

POSITIVE VARIABLES SHIPMENTS(PLANTs,MARKETs) AMOUNT SHIPPED OVER A ROUTE;

VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 SUPPLYEQ(PLANTs) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 DEMANDEQ(MARKETs) MINIMUM REQUIREMENT AT A DEMAND MARKET;

TCOSTEQ.. TCOST =E=SUM((PLANT,MARKET),

SHIPMENTS(PLANT,MARKET)*COST (PLANT,MARKET));

SUPPLYEQ (PLANT).. SUM(MARKET,SHIPMENTS(PLANT,MARKET))=L=SUPPLY(PLANT);

DEMANDEQ (MARKET)..SUM(PLANT,SHIPMENTS(PLANT,MARKET))=G=DEMAND(MARKET);

Finding and Fixing Errors or Performance Problems 466

© 2022 Prof. Bruce McCarl

MODEL TRANSPORT /ALL/;

SOLVE TRANSPORT USING LP MINIMIZING TCOST;

In turn altering the lines defining the plant and market subsets as follows would alter problem from the
restricted problem back to the full model.

set plant(plants) a possibly reduced set of plants

* /newyork,chicago,losangls/

market(MARKETs) a possibly reduced set of MARKETS

* /MIAMI, HOUSTON/

;

plant (plants)=yes ;market(markets)=yes;

Furthermore, since the plant and market sets are now calculated items this could be done anywhere.
Thus, if one were employing code isolation one could further narrow the things being examined using
strategic sub setting.

Strategic sub setting has proven to be an effective way of maintaining a small data set with little effort.
All one really does is pick elements from the full set that are representative for model development and
debugging.

12.3.4.3 Data reduction

Another variant of the problem reduction strategy is to exploit the fact that GAMS skips cases where
data items are zero. Thus data can be temporarily removed from data set by setting items to zero.
Consider the following example (tranzer.gms)

set origin /o1*o100/

 destinat /d1*d100/;

parameter distance(origin,destinat);

distance(origin,destinat)=120+50*ord(destinat)-10*ord(origin);

set smallorig(origin) small set of origins for testing /o4,o47,o91/

smalldest(destinat) small set of destinations /d3,d44,d99/;

distance(origin,destinat)

 $(not (smallorig(origin) and smalldest(destinat)))=0;

parameter cost(origin,destinat);

Cost(origin,destinat)$distance(origin,destinat)

 =3+2*distance(origin,destinat);

display cost,distance;

Here we have zeroed most of the distances and if the rest of model were conditioned on nonzero
transportation costs, then this would greatly reduce model size. This also illustrates strategic sub-
setting.

12.4 Speeding up GAMS

Program execution time and memory usage is often a function of the GAMS implementation, which can
be changed without substantively altering the results of the program. I have seen alteration of a few

McCarl GAMS User Guide467

© 2022 Prof. Bruce McCarl

statements cause huge efficiency gains to be achieved. For example, I have seen reductions in
execution time from 30 minutes to 15 seconds achieved by rewriting a small amount of GAMS code
without changing results. Here I cover

Diagnosis whether and where there is a problem
Causality features of GAMS that cause time problems to occur
Repair manipulation of the GAMS code to repair the problem.

I limit coverage to the speed of execution within GAMS not covering manipulations to reduce time usage
within a solver called by GAMS.

Basics

Finding where excessive time is being used

Why programs can be slow and their repair

Trading memory for time

Other speed ups

12.4.1 Basics

GAMS can take a lot of time in computations and model setup. When confronted with a program that
takes a long time, ask yourself some questions:

• Does the program take more time than you feel it should?

• During execution does the screen show execution of one line number for a long time?

• Is the procedure used often enough that efficiency is a concern?

If the answer to any of these questions is yes, then further investigation is in order to see whether there
are poorly executing portions of the program.

12.4.2 Finding where excessive time is being used

The best strategy for discovering causes of slow execution and eliminating the problem is a mixture of
problem reduction and the techniques below. The problem reduction strategy will not be discussed here
(see the Small to Large chapter). Beyond that the strategies one can used involve

• Tracking program execution through screen watching and LOG file / process window contents

examination.

• Tracking program execution characteristics through profile and profiletol usage.

• Finding problems within large slow statements by searching and code isolation.

• Finding problems when GAMS goes on forever and you cannot wait for the profile by searching

and code isolation.

Screen watching and LOG file examination

Profile

Finding and Fixing Errors or Performance Problems 468

© 2022 Prof. Bruce McCarl

12.4.2.1 Screen watching and LOG file examination

One can carefully watch the screen or IDE process window (LOG file) report during execution. In that
display, GAMS reports the line number that it is executing. If the program pauses on a line number for a
moderately long time, then one would look at that line as a cause of slow execution (reasons why a
statement may be slow are discussed below).

Example:

When I run gamsslow.gms, the diligent screen watcher may see that the line reporting pauses longest on
statements 29,30,31,32 but I really can't on my computer.

Notes:

Screen watching and or LOG file examination are not good problem detection techniques for two
reasons.

• Staring at the screen for long time periods may not be effective and one may miss certain

statements, may identify statements improperly or get distracted and have to redo the approach
repeatedly.

• GAMS line reporting is misleading when loops, if and other control structure statements are being

executed. For example in running gamsloop2.gms the statements within the LOOP are all reported
as if they were at the line number of the loop statement -28 in this case. Individual calculations in
the loop are not reported to the screen i.e. lines 29-31. Thus through screen watching, one would
not get any indication other than the loop is taking a lot of time and would not know where within the
loop to look. The same thing happens within if statements and other GAMS control structures.

12.4.2.2 Profile

GAMS users can cause the output to contain information on statement execution time and associated
memory usage by employing profile. Profile is invoked using an option or a command line parameter as
I discuss below. When profile is activated in a model, the LST file contains profiling lines. These lines
are collected and reproduced below for a run of the gamsslow.gms model.

---- 13 ASSIGNMENT x 0.090 0.090 SECS 5.7 Mb 172800

---- 15 ASSIGNMENT z 0.520 0.610 SECS 9.9 Mb 172800

---- 17 ASSIGNMENT y 0.561 1.171 SECS 9.9 Mb

---- 29 ASSIGNMENT slow 0.000 1.171 SECS 9.9 Mb

---- 30 SOLVE INIT slow 0.000 1.171 SECS 9.9 Mb

---- 24 EQUATION objeq 1.142 2.313 SECS 10.5 Mb 1

---- 25 EQUATION R 0.861 3.174 SECS 17.8 Mb 1200

---- 26 EQUATION q 1.142 4.316 SECS 18.3 Mb 1440

---- 30 SOLVE FINI slow 0.120 4.436 SECS 18.3 Mb

---- 1 EXEC-INIT 0.000 0.000 SECS 9.2 Mb

solve appeared here

---- 30 SOLVE READ slow 0.010 0.010 SECS 9.7 Mb

---- 32 ASSIGNMENT sumofvar 0.701 0.711 SECS 10.5 Mb

The columns of this report are:

McCarl GAMS User Guide469

© 2022 Prof. Bruce McCarl

• A demarking string ---- flagging this line. The line also contains the text string SECS (which is

usually the better thing to search for).

• GAMS statement number of the instruction being profiled.

• The item name of the GAMS symbol being worked on.

• The execution time of each statement.

• Cumulative program execution time.

• Current memory use.

• The number of cases for which the statement is executed (if the cases exceed one).

Note

• As of version 23.1 when Profile is used a summary report of the ten slowest execution steps
will be written to the log and listing files.

• The timing on slow data definitions and gdx loads during compilation is profiled as well.

•

12.4.2.2.1 Use of profile to f ind slow statements

Now lets look at what the profile reveals.

---- 13 ASSIGNMENT x 0.090 0.090 SECS 5.7 Mb 172800

---- 15 ASSIGNMENT z 0.520 0.610 SECS 9.9 Mb 172800

---- 17 ASSIGNMENT y 0.561 1.171 SECS 9.9 Mb

---- 29 ASSIGNMENT slow 0.000 1.171 SECS 9.9 Mb

---- 30 SOLVE INIT slow 0.000 1.171 SECS 9.9 Mb

---- 24 EQUATION objeq 1.142 2.313 SECS 10.5 Mb 1

---- 25 EQUATION R 0.861 3.174 SECS 17.8 Mb 1200

---- 26 EQUATION q 1.142 4.316 SECS 18.3 Mb 1440

---- 30 SOLVE FINI slow 0.120 4.436 SECS 18.3 Mb

---- 1 EXEC-INIT 0.000 0.000 SECS 9.2 Mb

solve appeared here

---- 30 SOLVE READ slow 0.010 0.010 SECS 9.7 Mb

---- 32 ASSIGNMENT sumofvar 0.701 0.711 SECS 10.5 Mb

Note the red lines identify the statements by number and symbol where large execution times are
encountered (i.e., statements 15,17, 24, 25, 26, and 30). In turn, one can examine those statements to
see if they can be reworked for faster execution. Reasons why statements may be slow are discussed
below.

12.4.2.2.1.1 Invoking profile

Profile may be invoked in a number of different ways.

On the GAMS command line

Finding and Fixing Errors or Performance Problems 470

© 2022 Prof. Bruce McCarl

In the IDE GAMS parameters box

As an internal option

Profile is a valid command line option and may be set as follows

GAMS MYMODEL PROFILE = 1 DOS
GAMS MYMODEL -PROFILE 2 UNIX

One can enter the command line option in the IDE parameters box.

One can place an option statement into the program as follows:

OPTION PROFILE=3;

12.4.2.2.1.2 What should the number be

On entering profile it is set equal to a number

i.e.

option profile=1 or option profile=3

The use of higher numbers causes GAMS to carry out profiling within control structures such as loop, if,
repeat, for and when. The number tells how deep within the control structures to go.

If profile is set to

1 GAMS reports statement timing and memory use at the control statement level without details
on statements within control structures.

2 GAMS includes output on statement timing and memory use for all statements that are not
within control statements plus the first level of statements within control structures.

3 GAMS includes profile reports on statement timing and memory use for all statements that
are not within control statements and on statements nested within a second level of control
statements (i.e. loops or ifs within loops).

gamsloop.gms provides an example. Note profile can have values of 4 and above.

12.4.2.2.1.3 Limiting profile output: Profiletol

Profile can generate a tremendous amount of output, much of which is not informative. The above profile

McCarl GAMS User Guide471

© 2022 Prof. Bruce McCarl

reports show several statements reported for which there is not meaningful execution time. One can
suppress this information by using a tolerance on the minimum amount of execution time in seconds
that a statement must use to be reported.

OPTION PROFILETOL = 0.5;

or

OPTION PROFILETOL = 2;

or

OPTION PROFILETOL = 10;

In bigger models the latter would cause reporting of statements that took 2 or 10 or more seconds of
execution time. Bigger numbers yet can be used.

12.4.2.2.2 Isolating terms in slow statements

Sometimes one runs profile and finds that the time problem is inside a tremendously long statement.
For example, I have been known to regularly run models where the objective function and some report
calculation lines are well over 800 lines long containing 40 or so added terms. Finding a timing problem
in such a long statement still leaves me with the question of where is the problem. In such cases I often
temporarily deactivate part of the code using the comment inserting syntax $Ontext/$Offtext and *'s.

Namely, if a multi-term piece of code spanning lines 1182 to 1294 is slow, one could would re-execute
the code, but split the term so say lines 1240 to 1294 are deactivated (surrounding them with an $Ontext
- $Offtext sequence). Then, if the remaining lines still use the bulk of the time, I would deactivate further
code until the code deactivation greatly reduced the time use. I would then know that the last section
put into the text status contained the slow executing code. I would in turn selectively activate more
code until the exact problematic portion is identified. Naturally after finding and fixing my timing problem
I would reactivate all of the temporarily commented out code.

12.4.2.2.3 It takes too long - searching

Sometimes code executes too slow to wait or to put in profile and get the output (i.e. it runs for 3 hours
and shows no signs of abating). But if I abort the job the operating system buffer handing procedures
generally cause loss of the last few lines of profile information when the job was aborted. So how do I
find the problem? The answer is I use

The problem reduction strategies in the small to large chapter

or

Search using code deactivation and isolation

The former involves the modeling simplification strategies discussed in the small to large chapter along
with the profile and memory dump techniques discussed above with the and will not be elaborated on
here. The latter merits discussion.

Finding and Fixing Errors or Performance Problems 472

© 2022 Prof. Bruce McCarl

When I have code that just won't work fast enough to wait, I can engage in a quest for the last good
statement. This can be done by using code deactivation by commenting out statements using

$Ontext/$Offtext to temporarily make comments of active statements
Making individual lines into comments using *

In turn, I would successively deactivate more and more statements until the performance changes with
the job terminating appropriately. I would then slowly activate members of the last code statements
deactivated until the code performance got worse again. Then by iteratively activating and deactivating I
can isolate the exact problematic terms. I may also use save restart to speed this up by saving the
results up until a known good spot and just executing the suspect statements.

12.4.3 Why programs can be slow and their repair

There are three big reasons a program may be slow. These are

Set addressing and references
Considering unnecessary cases
Post solution report writing computations

I discuss each below, but before beginning I wish to note that the material below is not only useful for the
repair of specific models. Namely, by employing the efficiency enhancing practices discussed herein in
standard GAMS modeling, one can improve the effectiveness of any GAMS programs to which these
techniques are applied. For example, the section on set addressing will reveal conventions that should
be used in all GAMS programming yielding efficiency gains without the need for model efficiency
investigations.

Set addressing and references

Avoiding considering unnecessary cases

12.4.3.1 Set addressing and references

GAMS employs a sparse matrix data storage scheme. A parameter like X(A,B,C) is stored in the order

a1 b1 c1

a1 b1 c2

...

a1 b1 cm

a1 b2 c1

...

a1 b2 cm

...

a1 bn cm

a2 b1 c1

McCarl GAMS User Guide473

© 2022 Prof. Bruce McCarl

...

ak bn cm

Note the entries are stored internally in systematic order with the last entry varied the fastest then the
second then the first. GAMS withdraws entries from memory fastest if they are referenced in the order
most consistent with the storage order. As a consequence the calculation specification

Y(a,b,c)=X (a,b,c);

is faster than

Y(a,b,c)=X(b,c,a).

Referencing in a manner inconsistent with the storage order slows things down. One should arrange set
reference order so that across calculations, equation definitions etc, the sets are always referenced in
the same order. We then arrive at speed tip number one. To increase speed modelers should endeavor
to arrange definitions, calculations, sums, and equation references to sets in a consistent order.
Consider the example (gamsslow.gms versus gamsfast.gms)

parameter x(e,d,c,b,a);

X(e,d,c,b,a)=10;

parameter z(a,b,c,d,e);

z(a,b,c,d,e)=x(e,d,c,b,a);

parameter y;

 Y=sum ((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a));

variables obj

Positive variables var(e,b,a);

equations objeq

 R(b,c,d)

 q(a,b,c);

objeq.. obj=e=sum((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a)*var(e,b,a));

r(b,c,d).. sum((a,e),Var(e,b,a))=l=sum((a,e),x(e,d,c,b,a)*z(a,b,c,d,e));

q(a,b,c).. sum((d,e),var(e,b,a)/x(e,d,c,b,a)*z(a,b,c,d,e))=l=20;

model slow /all/;

*option lp=bdmlp;

slow.workspace=10;

solve slow maximizing obj using lp;

parameter sumofvar;

sumofvar=sum((a,b,c,d,e),z(a,b,c,d,e)*x(e,d,c,b,a)*var.l(e,b,a));

which yields the Profile lines where the coloring corresponds to source file lines.

---- 13 ASSIGNMENT x 0.090 0.090 SECS 5.7 Mb 172800

---- 15 ASSIGNMENT z 0.520 0.610 SECS 9.9 Mb 172800

---- 17 ASSIGNMENT y 0.561 1.171 SECS 9.9 Mb

---- 29 ASSIGNMENT slow 0.000 1.171 SECS 9.9 Mb

---- 30 SOLVE INIT slow 0.000 1.171 SECS 9.9 Mb

---- 24 EQUATION objeq 1.142 2.313 SECS 10.5 Mb 1

Finding and Fixing Errors or Performance Problems 474

© 2022 Prof. Bruce McCarl

---- 25 EQUATION R 0.861 3.174 SECS 17.8 Mb 1200

---- 26 EQUATION q 1.142 4.316 SECS 18.3 Mb 1440

---- 30 SOLVE FINI slow 0.120 4.436 SECS 18.3 Mb

---- 1 EXEC-INIT 0.000 0.000 SECS 9.2 Mb

solve appeared here

---- 30 SOLVE READ slow 0.010 0.010 SECS 9.7 Mb

---- 32 ASSIGNMENT sumofvar 0.701 0.711 SECS 10.5 Mb

A rearrangement of set indexes to a consistent order in gamsfast.gms yields the profile information

---- 13 ASSIGNMENT x 0.050 0.050 SECS 3.7 Mb 100000

---- 15 ASSIGNMENT z 0.090 0.140 SECS 6.3 Mb 100000

---- 17 ASSIGNMENT y 0.110 0.250 SECS 6.3 Mb

---- 29 ASSIGNMENT slow 0.000 0.250 SECS 6.3 Mb

---- 30 SOLVE INIT slow 0.000 0.250 SECS 6.3 Mb

---- 24 EQUATION objeq 0.410 0.660 SECS 6.3 Mb 1

---- 25 EQUATION R 0.401 1.061 SECS 11.0 Mb 1000

---- 26 EQUATION q 0.411 1.472 SECS 11.0 Mb 1000

---- 30 SOLVE FINI slow 0.070 1.542 SECS 11.0 Mb

---- 30 GAMS FINI 0.030 1.572 SECS 11.0 Mb

---- 30 SOLVE READ slow 0.010 0.010 SECS 6.1 Mb

---- 32 ASSIGNMENT sumofvar 0.150 0.160 SECS 6.8 Mb

Where note the redefinition of the line numbered 15

z(a,b,c,d,e)=x(e,d,c,b,a);

into

z(a,b,c,d,e)=x(a,b,c,d,e);

drops execution time from 0.52 to 0.09 seconds. Substantial percentage reductions were achieved in all
the time consuming cases by the reordering and improved consistency of set addressing.

12.4.3.2 Avoiding considering unnecessary cases

One way to speed up GAMS is to make sure only necessary cases are indexed. There are five
contexts which merit consideration

Calculation statements

Equation existence

Equation terms

Variable specification

Post solution computations

12.4.3.2.1 Calculation statements

A calculation of a parameter that is defined over a large of number of sets such as the following can

McCarl GAMS User Guide475

© 2022 Prof. Bruce McCarl

inadvertently cover a huge number of cases

X(A, B, C, D, E) = 5

If each set had 20 members then the calculation would have to cover 3.2 million cases and would take a
long time. This can be helped by narrowing attention only to good cases employing conditionals.

X(A, B, C, D, E) $ GOODCASE (A, B, C, D, E) = 5

where the user must somehow define the good case item, perhaps as a tuple.

Example:

(landcal.gms versus landexam.gms)

Suppose I have states and counties in my data set and wish to sum. In the absence of other information
GAMS would consider all counties as possibly being in all states. Thus, New Jersey counties are considered
in doing sums involving Texas. Consider 2 cases of the same calculation

In landcal.gms every county is treated as if it is in every state

 12 landarea(state,county,landtype)=1;

 13 parameter totalland(state);

 14 totalland(state)=

 15 sum(county,sum(landtype,landarea(state,county,landtype)));

which generates the profile lines

---- 12 ASSIGNMENT landarea 0.811 0.811 SECS 39.8 Mb 1500000

---- 14 ASSIGNMENT totalland 0.731 1.542 SECS 39.8 Mb 50

In landexam.gms a county is treated in a state only when the county is matched up with the state in the
matchup array

 16 landarea(state,county,landtype)$matchup(state,county)=1;

 17 parameter totalland(state);

 18 totalland(state)=

 19 sum(matchup(state,county),sum(landtype,landarea(state,county,landtype)));

The resultant profile is

---- 16 ASSIGNMENT landarea 0.020 0.380 SECS 2.1 Mb 30490

---- 18 ASSIGNMENT totalland 0.010 0.390 SECS 2.1 Mb 50

and the second version treats a lot less cases, executes in executes in about 1/4 the total time and greatly
reduces memory use. In general, speed can often be helped by using tuples, subsets or conditionals to
reduce attention in calculations only to relevant cases.

Finding and Fixing Errors or Performance Problems 476

© 2022 Prof. Bruce McCarl

12.4.3.2.2 Equation existence limited using conditionals

(transbad.gms vs. transfix.gms)

Equations such as

slDEMANDEQ(MARKET)..
SUM(PLANT, SHIP(PLANT, MARKET))=G=DEMAND(MARKET);

may not really be relevant for all possible elements of the market set. I might only define equations
when there is nonzero demand. Program execution time and model size would be helped by

inDEMANDEQ(MARKET)$demand(market)..
SUM(PLANT, SHIP(PLANT, MARKET)) =G= DEMAND(MARKET);

In general, speed can often be helped by using tuples, subsets or conditionals to reduce attention only
to relevant equations.

12.4.3.2.3 Equation term consideration limited using conditions

(transbad.gms vs. transfix.gms)

An equation such as

slDEMANDEQ(MARKET)..
SUM(PLANT, SHIP(PLANT, MARKET))=G=DEMAND(MARKET);

can be generated faster by adding conditionals both on equation and term existence to avoid considering
unnecessary cases

fsDEMANDEQ(MARKET)$demand(market)..
SUM(PLANT $cost(plant,market),SHIP(PLANT, MARKET)) =G=
DEMAND(MARKET);

In general, speed can often be helped by using tuples, subsets or conditionals to reduce inclusion of
terms in .. equations only to relevant cases.

12.4.3.2.4 Variable specif ication - suppression

(transbad.gms vs. transfix.gms)

Cases can exist where unneeded variables are being defined. Creation of an unnecessary variable
requires extra execution time. For example, in a transport model, I may only want variables that are
defined over routes with nonzero transportation cost.

TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)

 , SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));

fsSUPPLYEQ(PLANT)$supply(plant)..

 SUM(MARKET $cost(plant,market), SHIPMENTS(PLANT, MARKET))=L=SUPPLY(PLANT);

McCarl GAMS User Guide477

© 2022 Prof. Bruce McCarl

fsDEMANDEQ(MARKET)$demand(market)..

 SUM(PLANT$cost(plant,market), SHIPMENTS(PLANT, MARKET))=G=DEMAND(MARKET);

In general, speed can often be helped by using tuples, subsets or conditionals to reduce attention in
variable inclusion across .. equations only to relevant cases.

12.4.3.2.4.1 Watch out for incomplete suppression

(trnssu.gms)

When I use conditionals to eliminate variables I must be careful to watch out for cases of incomplete
elimination. Variables may still be there that I thought were gone. Below, I do not suppress zero
transport cost cases in the bottom 2 equations and will end up with variables present that trivially allow
demand satisfaction.

TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)

, SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));

fsSUPPLYEQ(PLANT)$supply(plant)..

SUM(MARKET, SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);

fsDEMANDEQ(MARKET)$demand(market)..

SUM(PLANT, SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

In general poor quality answers can be avoided if one is careful to suppress variables in a consistent
fashion across all equations.

12.4.3.2.5 Post solution report w riting computations

Often modelers employ post solution report writing calculations. These calculations can involve
retrieving and manipulating a lot of data then multiplying it by the optimal variable levels

Y=SUM((A,B,C,D,E,F,G),
(DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G))

Such calculations will virtually always perform better if the modeler enters a conditional that only causes
the data retrieval and calculations to start if the solution variable value is nonzero

Y=SUM((A,B,C,D,E,F,G)$X.L(A,B,C,D,E,F,G),
(DAT(A)+IT(B,C)+Y(D,E)+W(F,G))*X.L(A,B,C,D,E,F,G));.

This can be a huge time saver. It relies on the fact that in general few variables will be nonzero in a
programming model compared to the number of variables present.

In general, speed can often be helped by using tuples, subsets or conditionals to reduce attention in
report writing calculations only to terms associated with nonzero decision variable values.

12.4.4 Trading memory for time

Sometimes an extensive calculation that is repeated in the model many times can be restructured so it

Finding and Fixing Errors or Performance Problems 478

© 2022 Prof. Bruce McCarl

is calculated once then saved. For example, a component of a .. equation specification for a model
solved a lot of times can be restructured to be done once and stored then only accessed later as
follows.

obj.. Z=SUM((CROP, TILLAGE, LANDTREAT, ROTATION),

 ACREPLANT(CROP, TILLAGE, LANDTREAT, ROTATION)*

 SUM(INPUT, USAGE(INPUT, CROP)));

Here the code is revised by defining a parameter for the input usage sum and substituting i.e.;

INPUTUSE(CROP) = SUM(INPUT, USAGE (INPUT, CROP));

obj.. Z=SUM((CROP, TILLAGE, LANDTREAT, ROTATION),

 ACREPLANT(CROP, TILLAGE, LANDTREAT, ROTATION)*

 INPUTUSE (CROP));

This can be a huge time saver but one needs to watch out for problems with static calculations as
discussed in the calculating items chapter.

12.4.5 Other speed ups

In addition to the strategies above one can try to enhance speed-using items discussed in other
chapters of this document.

Scaling

Advanced Basis Usage

Starting Points

One can alto try

Changing the solver choice

or

Reformulating the problem

12.5 Memory Use Reduction in GAMS

Memory usage by a GAMS program is often a function of the implementation. Code can often be
changed so memory requirements are reduced without substantively altering the bottom line results of
the program. For example, I have seen substantial reductions in memory requirements achieved by
rewriting a small amount of GAMS code without changing results. Here I cover

Diagnosis whether and where there is a problem
Causality features of GAMS that cause memory problems to occur

McCarl GAMS User Guide479

© 2022 Prof. Bruce McCarl

Repair manipulation of the GAMS code to repair the problem.

I limit coverage to the memory usage within GAMS not covering manipulations to reduce memory use
within a solver called by GAMS.

Basics

Finding where excessive memory is being used

Causes of excessive memory use and repair

Limiting memory usin using HeapLimit

12.5.1 Basics

GAMS can use a lot of space in computations and model setup. When confronted with a program that
takes a lot of memory, ask yourself some questions:

• Does the program take more memory than you feel it should or than the computer will allow?

• Does the memory reporting on the screen show a large increase after executing of one line

number?

• Is the procedure used on machines where memory limits are of concern?

If the answer to any of these questions is yes, then further investigation is in order to see whether the
memory use characteristics of a GAMS program can be improved.

12.5.2 Finding where excessive memory is being used

The best strategy for discovering causes of excess memory usage and eliminating the problem involves
a mixture of problem reduction and the techniques below. The problem reduction strategy will not be
discussed here (see the Small to Large chapter). Beyond that the strategies one can used involve

• Tracking program memory use through screen watching and LOG file / process window

contents examination.

• Tracking program memory use characteristics through profile and profiletol usage.

• Tracking memory use at a point through the DMPSYM option.

• Finding problems by searching and code isolation.

Each is described below.

Screen watching and LOG file examination

Profile

Memory use dumps: Dmpsym

Looking within memory hogs to find offending term

My code won't work - searching

12.5.2.1 Screen watching and LOG file examination

GAMS outputs information on memory use to the screen during execution. Namely, the line number
that is being executed and the current memory use are output. One may try to watch that display

Finding and Fixing Errors or Performance Problems 480

© 2022 Prof. Bruce McCarl

although it can go by very fast. In particular, if can observe that the memory use jumps greatly during
execution of a line number, then one would look at that line as a possible cause of excessive memory
use. For example in the model in toobig.gms the procedure shows a large jump to 60+ megs in the
reporting but the display goes by too fast to see just where. The LOG file and the IDE process window
contain some memory information and the LOG file is often retained on the disk (this can be forced
using the Logoption command line parameter) or can be opened by the IDE. But these items are not
very useful because the output does not contain much detail.

Screen watching is not very satisfactory because

• Staring at the screen for long time periods may not be effective and one may miss certain

statements, may identify statements improperly or get distracted and have to redo the
approach repeatedly. Also statements may scroll by too quickly to observe.

• GAMS line reporting is misleading when loops and if statements are being executed. For

example in running gamsloop2.gms the statements within the LOOP are all reported as if
they were at the line number of the loop statement -28 in this case. Individual calculations in
the loop are not reported to the screen i.e. lines 29-34. Thus through screen watching, one
would not get any indication other than the loop is taking a lot of time and would not know
where within the loop to look. The same thing happens within if statements and other GAMS
control structures.

12.5.2.2 Profile

GAMS can give information on statement execution time and associated memory usage by employing
the profile option. Profile is invoked using an option or a command line parameter, as I will discuss
below. When GAMS is run with profile active the LST file contains profiling lines. These lines are
collected and reproduced below for a run of the model memory.gms.

---- 3 OTHER 0.000 0.000 SECS 1.6 Mb
---- 5 OTHER 0.000 0.000 SECS 1.6 Mb
---- 6 OTHER 0.000 0.000 SECS 1.6 Mb
---- 22 ASSIGNMENT y 0.050 0.050 SECS 3.7 Mb

McCarl GAMS User Guide481

© 2022 Prof. Bruce McCarl

 78125
---- 23 ASSIGNMENT x 0.060 0.110 SECS 8.4 Mb
 78125
---- 24 ASSIGNMENT x 0.030 0.140 SECS 8.4 Mb
 78125
---- 25 ASSIGNMENT q 0.000 0.140 SECS 8.4 Mb
 125
---- 34 OTHER 0.000 0.140 SECS 8.4 Mb
generate

---- 35 SOLVE INIT memory 0.000 0.140 SECS 8.4 Mb
---- 29 EQUATION z 0.460 0.600 SECS 27.8 Mb
 78125
---- 31 EQUATION res 0.000 0.600 SECS 27.8 Mb
 125
---- 27 EQUATION ob 0.341 0.941 SECS 29.9 Mb
 1
---- 35 SOLVE FINI memory 0.340 1.281 SECS 29.9 Mb
---- 35 GAMS FINI 1.032 2.313 SECS 29.9 Mb
---- 1 EXEC-INIT 0.000 0.000 SECS 11.3 Mb
Solve

---- 35 SOLVE READ memory 0.130 0.130 SECS 16.0 Mb

The profile contents by column are

• A demarking string ---- flagging this line. The line also contains the text string SECS (which is

usually the better thing to search for).

• GAMS statement number of the instruction being profiled.

• The item name of the GAMS symbol being worked on.

• The execution time of each statement.

• Cumulative program execution time.

• Current memory use at end of statement.

• The number of cases for which the statement is executed.

12.5.2.2.1 Profiling to f ind memory hogging statements

Now lets look at what the profile is revealing about memory.gms. The inserted blue lines indicate
execution stage and are not generated by GAMS.

---- 3 OTHER 0.000 0.000 SECS 1.6 Mb

---- 5 OTHER 0.000 0.000 SECS 1.6 Mb

---- 6 OTHER 0.000 0.000 SECS 1.6 Mb

---- 22 ASSIGNMENT y 0.050 0.050 SECS 3.7 Mb 78125

---- 23 ASSIGNMENT x 0.060 0.110 SECS 8.4 Mb 78125

---- 24 ASSIGNMENT x 0.030 0.140 SECS 8.4 Mb 78125

---- 25 ASSIGNMENT q 0.000 0.140 SECS 8.4 Mb 125

---- 34 OTHER 0.000 0.140 SECS 8.4 Mb

generate

---- 35 SOLVE INIT memory 0.000 0.140 SECS 8.4 Mb

Finding and Fixing Errors or Performance Problems 482

© 2022 Prof. Bruce McCarl

---- 29 EQUATION z 0.460 0.600 SECS 27.8 Mb 78125

---- 31 EQUATION res 0.000 0.600 SECS 27.8 Mb 125

---- 27 EQUATION ob 0.341 0.941 SECS 29.9 Mb 1

---- 35 SOLVE FINI memory 0.340 1.281 SECS 29.9 Mb

---- 35 GAMS FINI 1.032 2.313 SECS 29.9 Mb

---- 1 EXEC-INIT 0.000 0.000 SECS 11.3 Mb

Solve

---- 35 SOLVE READ memory 0.130 0.130 SECS 16.0 Mb

Note the red lines show where memory use jumps are encountered (i.e., statements 22, 23 and 29. In
turn, one can examine those statements to see if they can be reworked for memory use reduction.

12.5.2.2.1.1 Invoking profile

Profile may be invoked in a number of different ways.

On the GAMS command line

In the IDE GAMS parameters box

As an internal option

Profile is a valid command line option and may be set as follows

GAMS MYMODEL PROFILE=1

One can enter the command line option in the IDE parameters box as shown below.

One can place an option statement into the program as follows:

OPTION PROFILE=3;

12.5.2.2.1.2 What should the profile number be

The profile statement is associated with a number i.e.

option profile=1 or option profile=3

The use of higher numbers causes GAMS to carry out profiling within control structures such as loop, if,

McCarl GAMS User Guide483

© 2022 Prof. Bruce McCarl

repeat, for and when. The number tells how deep within the control structures to go.

If profile is set to

1 then GAMS reports statement timing and memory use at the control statement level without
details on statements within control structures.

2 then GAMS includes output on statement timing and memory use for all statements that are
not within control statements (everything but ifs or loops etc) plus the first level of statements
within control structures.

3 then GAMS includes profile reports output on statement timing and memory use for all
statements that are not within control statements and on statements nested within a second
level of control statements (i.e. loops or ifs within loops).

gamsloop.gms provides an example. Note profile can have values of 4 and above.

12.5.2.2.1.3 Limiting profile output: Profiletol

Profile can generate a tremendous amount of output, much of which is not informative. The above profile
reports show several statements reported for which there is not meaningful execution time. One can
suppress this information by using a tolerance on the minimum amount of execution time in seconds
that a statement must use to be reported.

OPTION PROFILETOL = 1;

or

OPTION PROFILETOL = 2;

or

OPTION PROFILETOL = 10;

This would limit reporting of statements to those that took 1 or 2 or 10 or more seconds of execution
time. Bigger numbers yet can be used. Note, you must exercise care with use of profiletol during a
memory use quest because there may be fast executing statements that use a lot of memory and a
large value of profiletol could cause you to miss them.

12.5.2.3 Memory use dumps: Dmpsym

GAMS will report the number of cases stored for each item at the point in the program where the
statement option dmpsym; is inserted. The cases stored report is in the LST file and for the example
(memdump.gms) looks like

SYMBOL TABLE DUMP, NR ENTRIES = 62

ENTRY ID TYPE DIM DIM-OK LENGTH DEFINED ASSIGNED DATAKNOWN

 1 MAPVAL FUNCT 0 False 0 False False False

 2 CEIL FUNCT 0 False 0 False False False

 3 FLOOR FUNCT 0 False 0 False False False

 4 ROUND FUNCT 0 False 0 False False False

 5 MOD FUNCT 0 False 0 False False False

....

Finding and Fixing Errors or Performance Problems 484

© 2022 Prof. Bruce McCarl

 40 TIMECLOSE FUNCT 0 False 0 False False False

 41 ERRORLEVEL FUNCT 0 False 0 False False False

 42 HEAPSIZE FUNCT 0 False 0 False False False

 43 *** FUNCT 0 False 0 False False False

 44 SAMEAS PRED 0 False 0 False False False

 45 DIAG PRED 0 False 0 False False False

 46 FILE FILE 0 False 0 False False False

 47 I SET 1 True 5 True False True

 48 J SET 1 True 5 True False True

 49 K SET 1 True 5 True False True

 50 L SET 1 True 5 True False True

 51 M SET 1 True 5 True False True

 52 N SET 1 True 5 True False True

 53 O SET 1 True 5 True False True

 54 Y PARAM 7 True 78125 False True False

 55 Q PARAM 3 True 125 False True False

 56 X VAR 7 True 78125 False True False

 57 F VAR 3 True 125 False True False

 58 OBJ VAR 0 True 0 False True False

 59 Z EQU 7 True 78125 False True False

 60 RES EQU 3 True 125 False True False

 61 OB EQU 0 True 0 False True False

 62 MEMORY MODEL 0 True 3 True True True

The dump has 2 parts

• The first part contains information on GAMS functions that is of little user value.

• The second part contains a report of number of cases stored for each item in the GAMS

program.

So let's focus on the second part for the example memdump.gms.

SYMBOL TABLE DUMP, NR ENTRIES = 62

ENTRY ID TYPE DIM DIM-OK LENGTH DEFINED ASSIGNED DATAKNOWN

 1 MAPVAL FUNCT 0 False 0 False False False

....

 46 FILE FILE 0 False 0 False False False

 47 I SET 1 True 5 True False True

 48 J SET 1 True 5 True False True

 49 K SET 1 True 5 True False True

 50 L SET 1 True 5 True False True

 51 M SET 1 True 5 True False True

 52 N SET 1 True 5 True False True

 53 O SET 1 True 5 True False True

 54 Y PARAM 7 True 78125 False True False

 55 Q PARAM 3 True 125 False True False

 56 X VAR 7 True 78125 False True False

 57 F VAR 3 True 125 False True False

McCarl GAMS User Guide485

© 2022 Prof. Bruce McCarl

 58 OBJ VAR 0 True 0 False True False

 59 Z EQU 7 True 78125 False True False

 60 RES EQU 3 True 125 False True False

 61 OB EQU 0 True 0 False True False

 62 MEMORY MODEL 0 True 3 True True True

In this dump, the columns of information that help in discovering large memory using items are

ID User specified name for this item
TYPE Item type (set, parameter, variable etc.)
DIM Number of indices used in item definition
LENGTH Number of cases (related to memory use)

In this display the rows where there are high counts in the length are associated with the items within
the GAMS program which have large numbers of internal cases that must be stored which is associated
with memory requirements. However, note that not all length counts are of equal significance. In
particular, variables and equations use more memory per element than parameters that use more per
element than sets (variables and equations have memory use for bounds, levels, marginals and scales
for each case while parameter items are just one number per case and sets can be just one yes no
indicator). In addition, note that set element explanatory text raises set element memory requirements.

Nevertheless one can look at the items (particularly variable, equations and parameters) that are of long
length and make sure the number of cases stored are valid (reasons why it might not be are covered
below).

Also note this dump gives status of active cases stored at the point in program where it is placed.

12.5.2.4 Looking within memory hogs to find offending term

Sometimes one runs profile and finds that the memory problem is inside a complex statement. For
example, I have been known to regularly run models where report statements are well over 800 lines long
containing 40 or so different terms. Finding a memory use problem in such a long statement still leaves
one with the question of where is the problem. In such cases you can use the comment inserting
syntax $Ontext/$Offtext and *'s to deactivate parts of the code.

Namely, if a multi-term piece of code spanning lines 1182 to 1294 uses excessive memory, one could
would re-execute the code but split the term so say lines 1240 to 1294 are deactivated (surrounding
them with an $Ontext - $Offtext sequence). Then if the remaining lines still showed use of a lot of
memory, I would deactivate further code until the code deactivation greatly reduced memory use. I
would then know that the last section put into the text status contained the memory hogging code. In
turn, I could search further until the exact problematic portion is identified.

12.5.2.5 My code won’t work - searching

Sometimes code leads to fatal computer errors which stops the job so you can't get any profile output
(i.e. GAMS runs out of memory and dumps). But a memory overrun error causes the operating system
buffer handing procedures to generally lose the last few lines of profile information when the job
malfunctioned. So how do I find the problem? The answer is use

Finding and Fixing Errors or Performance Problems 486

© 2022 Prof. Bruce McCarl

The problem reduction strategies in the small to large chapter

or

Search using code deactivation and isolation

The former involves the modeling simplification strategies discussed in the small to large chapter along
with the profile and memory dump techniques discussed above and will not be elaborated on here. The
latter merits discussion.

When one has code that just won't work one can engage in a quest for the last good statement. This
can be done by using code deactivation by commenting out statements using

$Ontext/$Offtext to temporarily make comments of active statements
Making individual lines into comments using *

In turn, one would successively deactivate more and more statements until the performance changes
with the job terminating appropriately. The searcher would then slowly activate members of the last
code statements deactivated until the code performance got worse again. Then by iteratively activating
and deactivating one can isolate the exact problematic terms. One may also use save restart to speed
this up by saving the results up until a known good spot and just executing the suspect statements.

12.5.3 Causes of excessive memory use and repair

There are four big reasons a program may use too much memory. These are

Considering unnecessary cases
Keeping unnecessary items
Solving a huge problem
Inadequate computer capacity

I discuss the first two below and can only remark on the latter two that sometimes the problem must be
simplified and sometimes one just needs to invest in bigger equipment. However, before doing either,
consider using the techniques discussed above to insure the memory use is truly legitimate.

Also before beginning I wish to note that the material below is not only useful for the repair of specific
models. Namely, by employing the memory reducing practices discussed herein in standard GAMS
modeling, one can improve the effectiveness of any GAMS programs to which these techniques are
applied. For example, the section on avoiding unnecessary cases will reveal conventions that should be
used in all GAMS programming yielding memory use reductions without the need for memory usage
investigations.

Avoiding considering unnecessary cases

Clearing memory of unnecessary items

McCarl GAMS User Guide487

© 2022 Prof. Bruce McCarl

12.5.3.1 Avoiding considering unnecessary cases

One way to reduce memory use in GAMS is to make sure only necessary cases are indexed. There
are five contexts which merit consideration.

Calculation statements
Equation existence
Equation terms
Variable specifications
Memory traps to watch out for

Each is discussed below.

12.5.3.1.1 Calculation statements

A calculation of a parameter that is defined over a large of number of sets such as the following can
inadvertently cover a huge number of cases

X(A, B, C, D, E) = 5

If each set had 20 members then the calculation would have to cover 3.2 million cases and would take a
lot of memory. Narrowing attention only to good cases employing conditionals can help this

X(A, B, C, D, E) $ GOODCASE (A, B, C, D, E) = 5

where the user must somehow define the good case item, perhaps as a tuple.

12.5.3.1.2 Equation existence using conditionals

(transbad.gms vs transfix.gms)

Equations such as

slDEMANDEQ(MARKET)..
SUM(PLANT, SHIP(PLANT, MARKET))=G=DEMAND(MARKET);

may not really be relevant for all possible elements of the MARKET set and their uncontrolled generation
involves GAMS needing to deal with more equations thus using more memory. I might only define
equations when there is nonzero demand. Program execution memory use and model size would be
reduced by

inDEMANDEQ(MARKET)$demand(market)..
SUM(PLANT, SHIP(PLANT, MARKET)) =G= DEMAND(MARKET);

Finding and Fixing Errors or Performance Problems 488

© 2022 Prof. Bruce McCarl

12.5.3.1.3 Equation term consideration limited using conditions

(transbad.gms vs transfix.gms)

An equation such as

slDEMANDEQ(MARKET)..
SUM(PLANT, SHIP(PLANT, MARKET))=G=DEMAND(MARKET);

can be defined and cause the problem to contain less variables and equations thus using less memory
by adding conditionals both on equation and term existence to avoid considering unnecessary cases

fsDEMANDEQ(MARKET)$demand(market)..
 SUM(PLANT $cost(plant,market),SHIP(PLANT, MARKET))
 =G=
 DEMAND(MARKET);

12.5.3.1.4 Variable specif ication - suppression

(transbad.gms vs transfix.gms)

Cases can exist where unneeded variables are being defined. Creation of an unnecessary variable
requires excess memory. For example, in a transport model I may only want variables that are defined
over routes with nonzero transportation cost so I enter a conditional on cost.

TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)

 , SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));

fsSUPPLYEQ(PLANT)$supply(plant)..

 SUM(MARKET $cost(plant,market), SHIPMENTS(PLANT, MARKET))=L=SUPPLY(PLANT);

fsDEMANDEQ(MARKET)$demand(market)..

 SUM(PLANT$cost(plant,market), SHIPMENTS(PLANT, MARKET))=G=DEMAND(MARKET);

12.5.3.1.4.1 Watch out for incomplete suppression

(trnssu.gms)

When one uses conditionals to eliminate variables one must be careful to watch out for cases of
incomplete elimination. Variables may still be there that you thought were gone. Below, I do not
suppress zero transport cost cases in the bottom 2 equations and will end up with variables present that
trivially allow demand satisfaction.

TCOST =E= SUM((PLANT,MARKET)$cost(plant,market)

 , SHIPMENTS(PLANT,MARKET)*COST(PLANT,MARKET));

fsSUPPLYEQ(PLANT)$supply(plant)..

 SUM(MARKET, SHIPMENTS(PLANT, MARKET))=L= SUPPLY(PLANT);

fsDEMANDEQ(MARKET)$demand(market)..

 SUM(PLANT, SHIPMENTS(PLANT, MARKET)) =G= DEMAND(MARKET);

You need to suppress variables in a consistent fashion across all equations.

McCarl GAMS User Guide489

© 2022 Prof. Bruce McCarl

12.5.3.1.5 Memory traps to w atch out for

There are a set of commands that user have been known to employ without appropriate caution that can
use up a lot of memory. These generally involve variable attributes for scaling or upper/lower bounds.
For example statements like

x.scale(i,j,k,l,m)=100;
x.up(i,j,k,l,m)=100;
x.lo(i,j,k,l,m)=100;

can use a lot of memory for irrelevant cases and one must again take care to restrict attention to
relevant cases.

One can also import data from a database with long set explanatory text and cause problems.

12.5.3.2 Clearing memory of unnecessary items

In a GAMS run one can generate large temporary items which are not permanently required. For
example one could have the sequence (memtest.gms)

Distance(I,j)=111;
Cost(I,j)=a+b*distance(I,j);

and never use distance again. One can cause GAMS to release the item from memory consumed using
clear or killIn particular using option clear=itemname as follows

option clear=distance;

in effects zeros all entries in the distance matrix. The kill option also completely removes the item

option kill=distance;

In either case, the memory is not recovered unless the file is saved and restarted or a solve is executed
with solvelink=0 .

Resetting a symbol to default values using "normal" assignment (i.e. x(i,j)=0;) is as fast as the execution
time clear (or kill). The clear and kill are only more compact for for variables and equations where
multiple statements would be needed to deal with each attribute (i.e. x.lo(i,j)=0;x.l(i,j)=0;x.up(i,j)=0 etc
for scale, m and possibly others).

Compile time clean and kill, in the form of '$clear symbol' and '$kill symbol' also (re)set the symbol to
default values but only have an effect on save and restart.

Use of $kill allows the used to redeclare the symbol with a data statement as follows:

set i /1,2,3/
$kill i
set i /a,b,c/

Finding and Fixing Errors or Performance Problems 490

© 2022 Prof. Bruce McCarl

12.5.4 Limiting memory use with HeapLimit

Cases may arise where one needs to limit the amount of memory a GAMS job can use. The
HeapLimit GAMS parameter and function permits this to be done during GAMS compilation and
execution, but does not limit memory use during solver execution (i.e. not during CONOPT or
CPLEX etc.). It limits memory use to a given number of MegaBytes. If the data storage exceeds
this limit, the job will be terminated with return code 10, out of memory. These features may be
especially useful in a server environment. This is accomplished in one of two ways. Namely
through

· The GAMS parameter HeapLimit sets the limit of memory use at compile and execution
time for a GAMS job.

· The function/property HeapLimit can be used to interrogate the current limit and allows it
to be reset.

Note the NLP solver CONOPT also has a HeapLimit option which ensures that the solver will not
use more dynamic memory than allowed.

13 More Language Features

This section covers slightly more advanced features of the GAMS language. The coverage is organized
by chapter with the chapters covering:

Including External Files

Dollar Commands

The Option Command

13.1 Including External Files

GAMS may include external files. This may be done with and without substitution of some items within
the file. There are also special provisions regarding inclusion of comma-delimited files.

Inclusion without arguments

Suppressing the listing of include files

Redefining the location of include files - Idir

Include with arguments

Influence on LST file contents: $Oninclude and $Offinclude

Passing $ commands between code segments: $Onglobal and $Offglobal

Special provision for CSV files

13.1.1 Inclusion without arguments

When files of GAMS instructions or data are to be incorporated into a GAMS program and one simply

McCarl GAMS User Guide491

© 2022 Prof. Bruce McCarl

wants to incorporate the file as is one uses the GAMS dollar command $Include. Otherwise one may
wish to specify some arguments and use the include with arguments commands.

$Include

13.1.1.1 $Include

One may include external files using the syntax

$Include externalfilename

where the externalfilename can

• Include the full path or just a file name relative to the current working directory (which will be

the IDE project file location) using no path name or syntax like ./subdir/externalfilename that
goes into a subdirectory below this one or a .. like ../filename which goes above this directory.

• Be quoted or unquoted.

• Only contain part of name and does not need to incorporate the extension gms. In turn if

� A file with just the name given in the $Include is found in the current working directory
(which will be the IDE project file location), then it will be used.

� If not a file with the name externalfilename.gms will be searched for in the current
working directory (which will be the IDE project file location) and if found, then it will be
used.

Example:

Suppose we break a transport problem into three files (trandata.gms, tranmodl.gms, tranrept.gms) and
include them into one composite file tranint.gms as follows

$Include trandata
$Include tranmodl
$Include tranrept

Note also tranrept.gms includes another file trannest.gms. The resultant LST file looks as follows

INCLUDE D:\GAMSPDF\TRANDATA.GMS

 2 SETS PLANT PLANT LOCATIONS /NEWYORK , CHICAGO , LOSANGLS /

 3 MARKET DEMAND MARKETS /MIAMI, HOUSTON, MINEPLIS, PORTLAND/

 4 PARAMETERS SUPPLY(PLANT) QUANTITY AVAILABLE AT EACH PLANT

 5 /NEWYORK 100, CHICAGO 275, LOSANGLS 90/

 6 DEMAND(MARKET) QUANTITY REQUIRED BY DEMAND MARKET

 7 /MIAMI 100,HOUSTON 90,MINEPLIS 120,PORTLAND 90/;

 8 TABLE DISTANCE(PLANT,MARKET) DISTANCE FROM EACH PLANT TO EACH MARKET

 9 MIAMI HOUSTON MINEPLIS PORTLAND

 10 NEWYORK 1300 1800 1100 3600

 11 CHICAGO 2200 1300 700 2900

 12 LOSANGLS 3700 2400 2500 1100 ;

More Language Features 492

© 2022 Prof. Bruce McCarl

INCLUDE D:\GAMSPDF\TRANMODL.GMS

 14 PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;

 15 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);

 16 POSITIVE VARIABLES

 17 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;

 18 VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

 19 EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 20 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 21 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;

 22 TCOSTEQ.. TCOST =E=SUM((PLANT,MARKET), SHIPMENTS(PLANT,MARKET)*

 23 COST(PLANT,MARKET));

 24 SUPPLYEQ(PLANT).. SUM(MARKET,SHIPMENTS(PLANT,MARKET))=L=SUPPLY(PLANT);

 25 DEMANDEQ(MARKET)..SUM(PLANT,SHIPMENTS(PLANT,MARKET))=G=DEMAND(MARKET);

 26 MODEL TRANSPORT /ALL/;

 27 SOLVE TRANSPORT USING LP MINIMIZING TCOST;

INCLUDE D:\GAMSPDF\TRANREPT.GMS

 29 PARAMETER MOVEMENT(*,*) COMMODITY MOVEMENT;

 30 MOVEMENT(PLANT,MARKET)=SHIPMENTS.L(PLANT,MARKET);

 31 MOVEMENT("TOTAL",MARKET)=SUM(PLANT,SHIPMENTS.L(PLANT,MARKET));

 32 MOVEMENT(PLANT,"TOTAL")=SUM(MARKET,SHIPMENTS.L(PLANT,MARKET));

 33 MOVEMENT("TOTAL","TOTAL")=SUM(MARKET,MOVEMENT("TOTAL",MARKET));

 34 OPTION DECIMALS=0;

 35 DISPLAY MOVEMENT;

 36 PARAMETER COSTS(*,*) COMMODITY MOVEMENT COSTS BY ROUTE;

 37 COSTS(PLANT,MARKET)=COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET);

 38 COSTS("TOTAL",MARKET)

 39 =SUM(PLANT,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));

 40 COSTS(PLANT,"TOTAL")

 41 =SUM(MARKET,COST(PLANT,MARKET)*SHIPMENTS.L(PLANT,MARKET));

 42 COSTS("TOTAL","TOTAL")=TCOST.L;

 43 OPTION DECIMALS=0;

 44 DISPLAY COSTS;

 45 PARAMETER SUPPLYREP(PLANT,*) SUPPLY REPORT;

 46 SUPPLYREP(PLANT,"AVAILABLE")=SUPPLY(PLANT);

 47 SUPPLYREP(PLANT,"USED")=MOVEMENT(PLANT,"TOTAL");

 48 SUPPLYREP(PLANT,"MARGVALUE")=ABS(SUPPLYEQ.M(PLANT));

 49 OPTION DECIMALS=2;

 50 DISPLAY SUPPLYREP;

 51 PARAMETER DEMANDREP(MARKET,*) DEMAND REPORT;

 52 DEMANDREP(MARKET,"REQUIRED")=DEMAND(MARKET);

 53 DEMANDREP(MARKET,"RECIEVED")=MOVEMENT("TOTAL",MARKET);

 54 DEMANDREP(MARKET,"MARGCOST")=ABS(DEMANDEQ.M(MARKET));

 55 OPTION DECIMALS=2;

 56 DISPLAY DEMANDREP;

 57 PARAMETER CMOVEMENT(*,*) COSTS OF CHANGING COMMODITY MOVEMENT PATTERN;

 58 CMOVEMENT(PLANT,MARKET)=SHIPMENTS.M(PLANT,MARKET);

 59 OPTION DECIMALS=2;

 60 DISPLAY CMOVEMENT;

INCLUDE D:\GAMSPDF\TRANNEST.GMS

 61 *this is a nested include

McCarl GAMS User Guide493

© 2022 Prof. Bruce McCarl

and runs just as if it were one continuously typed file.

Notes:

• In the LST file the incidence of the include file is marked in two ways.

� Wherever an include file starts the echo print contains a line that indicates the file name and
location. In the echo print of the above example 4 such lines appear as shown just below.
Note as illustrated in the LST file above these are separated by a echo print of the content of
the included files and are just grouped together here for convenience of exposition.

INCLUDE C:\GAMS\ADVCLASS\CLASS\EXAMPLE\LINK\TRANDATA.GMS

INCLUDE C:\GAMS\ADVCLASS\CLASS\EXAMPLE\LINK\TRANMODL.GMS

INCLUDE C:\GAMS\ADVCLASS\CLASS\EXAMPLE\LINK\TRANREPT.GMS

INCLUDE D:\GAMSPDF\TRANNEST.GMS

� At the end of the file one gets an indication of what was inserted and where

SEQ GLOBAL TYPE PARENT LOCAL FILENAME

1 1 INPUT 0 0 C:\GAMSPDF\TRANINT.GMS

2 6 INCLUDE 1 6 .C:\GAMSPDF\TRANDATA.GMS

3 25 INCLUDE 1 7 .C:\GAMSPDF\TRANMODL.GMS

4 44 INCLUDE 1 8 .C:\GAMSPDF\TRANREPT.GMS

5 77 INCLUDE 4 33 ..C:\GAMSPDF\TRANNEST.GMS

There are several columns to this display

• The SEQ column gives a number to the include files encountered always including the base GMS

file which is listed as INPUT (tranint.gms).

• The GLOBAL column gives the line number within the composite LST file (which is expanded for the

presence of the included files as above) where the $Include statement occurs.

• The TYPE column indicates the type of include present. The various types can be INPUT, INCLUDE,

BATINCLUDE, LIBINCLUDE, and SYSINCLUDE. INPUT is used to label the base file (tranint.gms).
 The other modifiers in front of the word include will be discussed below.

• The PARENT column provides the number of the file from the SEQ column into which this file was

included (note in the above example most were included in file number 1 the base Input but that
trannest.gms was included in file number 4 which is tranrept.gms).

• The LOCAL column gives the local line number in the parent file where the $Include appeared

(showing the first three were included in lines 6, 7 and 8 of the INPUT file tranint.gms and that
trannest.gms is included into line 33 of tranrept.gms.

• The FILENAME column gives the path and name for the included file.

13.1.1.1.1 Includes that cause compiler error messages

When syntax errors are made in the referenced files then the LST file has additional information about
the name of the include file and the local line number (incerr.gms) as follows

INCLUDE D:\GAMSPDF\TRANMODL.GMS

More Language Features 494

© 2022 Prof. Bruce McCarl

 15 PARAMETER COST(PLANT,MARKET) CALCULATED COST OF MOVING GOODS;

 16 COST(PLANT,MARKET) = 50 + 1 * DISTANCE(PLANT,MARKET);

 17 POSITIVE VARIABLES

 18 SHIPMENTS(PLANT,MARKET) AMOUNT SHIPPED OVER A TRANSPORT ROUTE;

 19 VARIABLES TCOST TOTAL COST OF SHIPPING OVER ALL ROUTES;

 20 EQUATIONS TCOSTEQ TOTAL COST ACCOUNTING EQUATION

 21 SUPPLYEQ(PLANT) LIMIT ON SUPPLY AVAILABLE AT A PLANT

 22 DEMANDEQ(MARKET) MINIMUM REQUIREMENT AT A DEMAND MARKET;

**** $195

**** LINE 8 IN FILE D:\GAMSPDF\TRANMODL.GMS

Note here the error message indicates the error is not in line 22 of the expanded listing but rather in line
8 of the included file. The IDE also jumps to the relevant line in the included file when the error discovery
procedure is employed.

13.1.2 Suppressing the listing of include files

Sometimes the files included are large files that one really does not wish to be included in the echo print
within the LST file. Under such circumstances one can do two things.

• One can suppress all include file listings (and the alternative Batinclude etc forms below)

using the $offlisting syntax.

• One can use a $offlisting somewhere within the included files (say after the first four lines just

to give a small taste of the contents and all subsequent lines in the files will be suppressed.
GAMS then automatically with switch back to an $onlisting status in dealing with the
subsequent files.

13.1.3 Redefining the location of include files - Idir

The directory in which $Include files are expected to be located can be altered. This is done by using
the IDIR command line parameter in which case the named file is looked for first then one with a .gms
extension.

13.1.4 Include with arguments

There are variants of the include command which permit insertion of some user defined arguments in the
file to be included. Three of these variants exist Batinclude, Libinclude and Sysinclude.

$Batinclude

$Libinclude

$Sysinclude

13.1.4.1 $Batinclude

There are 2 main attributes to Batinclude that differentiate it from the simple Include discussed above
and the Libinclude and Sysinclude forms discussed below. These involve the way that parameter
inclusion works and location of the file to be included. The Batinclude files are located in the current
working directory or in the search path identified by the Idir command line parameter.

McCarl GAMS User Guide495

© 2022 Prof. Bruce McCarl

The basic syntax for the command is

$Batinclude externalfilename argument1 argument2 …

13.1.4.1.1 How parameter inclusion w orks

Batinclude passes user defined arguments into selected places within the included file. Argument1,
argument2,.. are arguments passed for substitution. These arguments can be single unbroken strings
(quoted or unquoted) or quoted multi-part strings that include spaces and special characters.

The arguments are treated as character strings that are substituted by argument number inside the
included file as in the DOS batch facility. Argument substitution is indicated by using the character %
followed immediately by the argument number where %1 refers to the first argument, %2 to the second
argument, and so on.

Names may be used for the substitutable parameters using the procedure discussed under the $setargs
command.

Example:

Suppose we wish to do addition involving different elements in fact suppose we have scalars a and b with data
and wish to form

c = a + b;
d = a + c;

We can accomplish this with a Batinclude file. In particular, we can write a file that sets

Argument1 = argument2 + argument3

and call it twice

once with arguments c , a , b
again with arguments d , a , c

To do this we build a file that contains

%1 = %2 + %3 ;

and call it batincadd.gms.

Then we build addbat.gms which will include the above file twice using the syntax

scalar a /2/, b /4/, c ,d ;
$Batinclude batincadd c a b
$Batinclude batincadd d a c

In turn the LST file from the run shows the following

 1 *main program for Batinclude example

 2 scalar a /2/, b /4/, c ,d ;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\BATINCADD.GMS

More Language Features 496

© 2022 Prof. Bruce McCarl

 4 *example of arguments in Batinclude

 5 c = a + b;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\BATINCADD.GMS

 7 *example of arguments in Batinclude

 8 d = a + c;

Note in line 2 of the source the statement

$Batinclude batincadd c a b

has three arguments (c a b) attached to the call of the included file batincadd.gms and that this causes a
substitution of the parameters into

%1 = %2 + %3 ;

where c is the first argument and goes into place %1

a is the second argument and goes into place %2

b is the third argument and goes into place %3
yielding

c = a + b;

in line 3 of the LST file.

The equivalent example using setargs is in setargs.gms and batincsag.gms which causes the Batinclude file
to use number1 in place of %1, second in place of %2 , house in place of %3 and * for all remaining using
code like

$setargs number1 second house *
%number1% = %second% * %house%;

in the BATINCLUDE instead of

%1=%2*%3;

Note setargs must appear in the Batincluded file. Also note that the * or a . or a / will cause a numbered item to
be skipped over.

Notes:

• Arguments are substituted as text items.

• All substitutions are done before the compiler is activated.

• Arguments are not substituted in comments.

• GAMS requires that the line after substitutions cannot be longer than the maximum input line length

(currently 32767 characters).

• The font upper and lower casing of the passed parameters is preserved for use in string

comparisons.

• If the argument number does not correspond to a non blank argument, then a null string is

substituted.

McCarl GAMS User Guide497

© 2022 Prof. Bruce McCarl

• When the argument %0 is used then the full file and file path name for the current file will be

included.

• A $Batinclude call without any arguments is equivalent to a $Include call.

• Includes with parameters are useful when wishes to do the same general operation over a number

of named parameters or files.

• A $Shift command can be used in argument processing.

Additional Examples:

The full power of a include with arguments can best be appreciated by expanding the example

Adding the line below to addbat.gms

$Batinclude batincadd d "a+b-d*a" "c*sqrt(abs(a+1))"

results in an LST file with

10 d = a+b-d*a c*sqrt(abs(a+1));

showing that quoted items for arguments can result in substitution of formulae in the included file.

Adding a fourth argument to activation of the Batinclude file (addbat.gms) in a slightly different file
batincadd2.gms

$Batinclude batincadd2 d a c "text for the display"

and adding the line to the included file

display "%4", "%0"

yields the LST file component

display "text for the display", "C:\GAMS\GAMSPDF\BIGONE\BATINCADD2.GMS"

and the display output

---- 16 text for the display

 D:\GAMSPDF\BATINCADD2.GMS

More complex examples also appear in the conditional compilation chapter.

Note the parameter %0 gives the name of the file being incorporated by the Batinclude.

13.1.4.2 $Libinclude

One can also pass parameters using the Libinclude syntax that only really differs from Batinclude in
terms of where the file comes from. Namely, if an incomplete path is given, the file name is completed
using the library include directory.

The basic syntax for the command is

$Libinclude externalfilename argument1 argument2 …

More Language Features 498

© 2022 Prof. Bruce McCarl

Notes:

• By default, the library include directory is set to the inclib subdirectory of the GAMS system directory.

• On a PC running version 22.7 in the default library include directory location this would be

c:\program files\gams22.7\inclib\

• This is useful when one develops a general utility that is to be used in many settings across many

directories.

13.1.4.2.1 Ldir

The default directory can be reset with the Ldir command line parameter using the syntax

GAMS myfile LDIR=c:\whereiwant

13.1.4.3 $Sysinclude

One can also pass parameters using the Sysinclude syntax that only really differs from Batinclude in
where the file comes from. Namely, if an incomplete path is given, the file name is completed using the
system include directory.

The basic syntax for the command is

$Sysinclude externalfilename argument1 argument2 …

Notes:

• By default, the system include directory is set to the GAMS system directory.

• On a PC running version 22.7 the default system include directory location this would be

c:\program files\gams22.7\

• This is useful when one develops a general utility that is to be used in many settings across many

directories.

13.1.4.3.1 Sdir

The default directory can be reset with the Sdir command line parameter using the syntax

GAMS myfile SDIR=c:\whereiwant

13.1.5 Influence on LST file contents: $Oninclude and $Offinclude

Ordinarily the LST file contains an echo print of the contents of all included files with contents expanded
for any passed arguments. On can exclude such listings using

• a $Offinclude command which can be subsequently reversed using $Oninclude.

McCarl GAMS User Guide499

© 2022 Prof. Bruce McCarl

• a $Offlisting in a file to be include which does not need to be matched by a $Onlisting as

GAMS will automatically reset the echo print to on text status after the file is included.

13.1.6 Passing $ commands between code segments: $Onglobal and $Offglobal

Ordinarily the $commands in a program which includes others are not passed on to included files. On
can require GAMS to pass such commands using the $Onglobal command which can be subsequently
reversed using $Offglobal.

13.1.7 Special provision for CSV files

Spreadsheets and other programs can read and write CSV (comma separated value) files. Therein
commas separate fields and text items can be in quotes. GAMS can also include such files using the $
command $Ondelim.

$Ondelim$Offdelim

13.1.7.1 $Ondelim and $Offdelim

CSV formatted entries files may be incorporated by using the command $Ondelim before beginning the
entry and then $Offdelim afterwards. Consider the following example (CSV1.gms):

SETS

 PLANT PLANT LOCATIONS /NEWYORK,CHICAGO,LOSANGLS /

 MARKET DEMANDS /MIAMI,HOUSTON, PORTLAND/

table datafrmCSV(plant,market) data in CSV format

$Ondelim

dummy,MIAMI,HOUSTON,PORTLAND

NEWYORK,1300,1800,1100

CHICAGO,2200,1300,700

LOSANGLS,3700,2400,2500

$Offdelim

where the section in blue is in CSV form. In version 22.7 and later one can also drop the dummy entry
but must maintain the comma as follows

table datafrmCSV2(plant,market) data in CSV format

$Ondelim

,MIAMI,HOUSTON,PORTLAND

NEWYORK,1300,1800,1100

CHICAGO,2200,1300,700

LOSANGLS,3700,2400,2500

$Offdelim

One could equivalently use an include file as follows (CSV2.gms)

SETS

 PLANT PLANT LOCATIONS /NEWYORK,CHICAGO,LOSANGLS /

More Language Features 500

© 2022 Prof. Bruce McCarl

 MARKET DEMANDS /MIAMI,HOUSTON, PORTLAND/

table datafrmCSV(plant,market) data in CSV format

$Ondelim

$Include Csvtoinc

$Offdelim

where the file csvtoinc.gms contains

dummy,MIAMI,HOUSTON,PORTLAND

NEWYORK,1300,1800,1100

CHICAGO,2200,1300,700

LOSANGLS,3700,2400,2500

where the dummy could be dropped but the comma must be maintained.

Notes:

• We use $Ondelim before the CSV entry or included file and $Offdelim after to tell GAMS that the

following entries are delimited.

• A text item like the entry dummy above is included to use up the space over the set elements

defining the table rows although as of version 22.7 this can be balk with just a comma.

13.2 Dollar Commands

Dollar commands set off with a $ in column 1 OR A $$ in other columns are used to exercise increased
control over GAMS functions. All $ commands in this class are implemented at compile time and cannot
be data value dependent. (Note we are not dealing here with $ in conditionals.)

Basics

Categories of $ commands

Detailed description of dollar commands

13.2.1 Basics

Dollar commands must start with a "$" symbol in the first column or with a $$ in columns other than
one. Dollar commands may be placed anywhere within a GAMS program and are processed during the
compilation of the program. The commands options are used as follows

$commandname argument

or

$$commandname argument

where

$ begins command in column one

McCarl GAMS User Guide501

© 2022 Prof. Bruce McCarl

$$ begins command in columns other than one

commandname is the name of the specific option to be altered as listed below

Argument is a potentially needed argument associated with the command

Notes:

• Dollar commands ordinarily occur in column 1

• .Dollar commands can occur in columns other than 1 if they begin with $$

• .Dollar commands do not appear on the compiler listing unless an error has been detected or they

are included using the option $Ondollar.

• The command names are not case sensitive.

• Depending on the particular dollar command, the number of arguments required can vary from 0 to

many.

• Blank space is permitted between the $ character and the command name that follows.

• In most cases, multiple dollar commands can be processed on a line although $$ can only occur

once.

• The effect of the dollar command is felt immediately after the dollar command is processed.

• Dollar commands ordinarily begin with a $ but this can be changed using $dollar.

• Dollar commands are processed at compile time immediately with the program stopping until the

command is finished and all $ commands are resolved before beginning execution. This can lead
to interesting implications for the results as discussed next.

13.2.1.1 When do dollar commands occur?

One important consideration when considering employing $commands involves the timing of there
resolution. Suppose we have a file (toinclude.gms) that contains

a=3;

and a file that includes this file but also redefines it via use of put commands and in the sequence as
typed the redefinition occurs before the inclusion as follows (timeinclude.gms)

scalar a /1/;

file toinc /toinclude.gms/;

put toinc,'a=5;' /;

$include toinclude

display a;

so that after the program runs the file (toinclude.gms) contains

a=5;

More Language Features 502

© 2022 Prof. Bruce McCarl

So what does the display look like? Well it is

6 PARAMETER a = 3.000

reflecting the initial value of the parameter "a" from toinclude.gms before the program started, and is
unaffected by the action of the put command. Why? This occurs because all $ commands are resolved
at compile time and can never be affected by the subsequent results of the program.

Another example is also instructive as illustrated by the example dollartime.gms below.

1 set i /i1,i2/

2 $ONMULTI

3 parameter a(i) /i1 22, i2 33/;

4 display a;

5 parameter a/i1 44/;

6 display a;

where the resultant output is

---- 4 PARAMETER a

i1 44.000, i2 33.000

---- 6 PARAMETER a

i1 44.000, i2 33.000

Note in line 4 the value we get from the display is not the 22 entered originally for a(1) but is rather the
redefined value allowed by $ONMULTI of 44 which does not actually occur until line 5. This occurs
because the $ and redefinition is processed before the execution time display occurs.

This can become yet more complex when one is using $CALL and GDX associated commands as
illustrated in the Links to Other Programs Including Spreadsheets chapter.

13.2.2 Categories of $ commands

The Dollar Commands can be grouped into major functional categories affecting

$$ for commands starting beyond column 1

Commands for inclusion of comments

LST and other output file contents

Inclusion of external files

Contents dependent compilation

Numerical procedures used

Reset of data for items

GDX files

Compiler procedures

Execution of an external program

Impose data access restrictions

McCarl GAMS User Guide503

© 2022 Prof. Bruce McCarl

Tear apart strings

Compress and encrypt files

Macro definitions

Include user defined function

Here we list these commands by group then later we define them more precisely.

13.2.2.1 Commands for inclusion of comments

The dollar commands in this group cause GAMS to include comments or allow different forms of
comments. They are discussed here and in the Comment chapter. These dollar commands are:

$Comment Dollar command that changes character used to start a comment in column 1
which is now an *.

$Eolcom Dollar command that changes delimiter for end of line comments.
$Hidden Dollar command that inserts one line comment that does not appear in LST file.
$Inlinecom Dollar command that changes character strings delimiting an in line comment.
$Maxcol Dollar command that sets right margin for the input file.
$Mincol Dollar command that sets left margin for the input file.
$Offeolcom Dollar command that deactivates ability to use end-of-line comments.
$Offinline Dollar command that deactivates ability to use in line comments.
$Offmargin Dollar command that turns off mincol and maxcol margins.
$Offnestcom Dollar command that prohibits nested in line comments.
$Offtext Dollar command that ends a multi line comment.
$Oneolcom Dollar command that activates ability to use end-of-line comments.
$Oninline Dollar command that activates ability to use in line comments.
$Onmargin Dollar command that turns on mincol and maxcol margins.
$Onnestcom Dollar command that allows nested in line comments.
$Ontext Dollar command that starts a multi line comment.
$Remark Dollar command that includes a comment with a substitutable parameter.

13.2.2.2 LST and other output file contents control

The dollar commands in this group cause GAMS to alter the contents of the LST file or send messages
to other files. They are discussed here and in the Standard Output chapter. The dollar commands are:

$Abort Dollar command that causes compilation to stop and issues an error message
in LST file.

$Double Dollar command that starts double spacing of echo print lines in LST file.
$Echo Dollar command that echoes text to a named file.
$Eject Dollar command that starts a new page in LST file.
$Error Dollar command that causes reporting of compiler error to LST file but allows

continued compilation.
$Lines Dollar command that starts new page if less than n lines are left on a page.
$Log Dollar command that sends specified text to the LOG file.
$Offdollar Dollar command that suppresses echo print of dollar commands to LST file.
$Offecho Dollar command to stop action of $Onecho, $Onechos or $Onechov.
$Offinclude Dollar command that suppresses echo print of included files to LST file.
$Offlisting Dollar command that deactivates echo print of subsequent input lines.
$Offlog Dollar command that turns off line logging.

More Language Features 504

© 2022 Prof. Bruce McCarl

$Offput Dollar command that stops $onput transfer of text to a put file.
$Offsymlist Dollar command that removes symbol list from LST file.
$Offsymxref Dollar command that removes symbol cross reference from LST file.
$Offuellist Dollar command that removes unique element list from LST file.
$Offuelxref Dollar command that removes unique element cross reference from LST file.
$Offverbatim Dollar command used in conjunction with the GAMS parameter DUMPOPT
$Ondollar Dollar command that adds echo print of dollar commands to LST file.
$Onecho Dollar command to start copying succeeding lines to file.
$Onechos Dollar command to start copying succeeding lines to file with parameter

substitution.
$Onechov Dollar command to start copying succeeding lines to file.
$Oninclude Dollar command that causes echo print of included files.
$Onlisting Dollar command that activates echo print of subsequent input lines.
$Onlog Dollar command that resets line logging.
$Onput Dollar command that transfers the text in subsequent lines to a put file.
$Onputs Dollar command that transfers the text in subsequent lines to a put file with

parameter substitution.
$Onputv Dollar command that transfers the text in subsequent lines to a put file without

parameter substitution.
$Onsymlist Dollar command that includes symbol list in LST file.
$Onsymxref Dollar command that includes symbol cross reference in LST file.
$Onuellist Dollar command that adds unique element list to LST file.
$Onuelxref Dollar command that adds unique element cross reference to LST file.
$Onverbatim Dollar command used in conjunction with the GAMS parameter DUMPOPT
$Single Dollar command that starts single space listing of subsequent echo print lines

in LST file.
$Stars Dollar command that redefines characters for four **** messages.
$Stitle Dollar command that defines subtitle for LST file.
$Title Dollar command that defines LST file title.

13.2.2.3 Ways of including external files

The dollar commands in this group cause GAMS to include external files in a program and control
attributes of those files plus the LST file. They are discussed here and in the file inclusion chapter. The
dollar commands are:

$Batinclude Dollar command that includes an external file with arguments.
$Include Dollar command that includes an external file without arguments.
$Libinclude Dollar command that includes a file with arguments from inclib subdirectory.
$Offglobal Dollar command that causes dollar commands in main programs to not be

honored in included files.
$Offinclude Dollar command that suppresses echo print of included files in LST file.
$Offrecurse Dollar command that disallows a file to include itself.
$Onglobal Dollar command that causes dollar commands in main programs to be honored

in included files.
$Oninclude Dollar command that causes echo print of included files.
$Onrecurse Dollar command that allows a file to include itself.
$Shift Dollar command that shifts arguments in include files.
$Sysinclude Dollar command that includes file with arguments from system directory.

13.2.2.4 Contents dependent compilation

The dollar commands in this group cause GAMS to execute statements that follow different procedures

McCarl GAMS User Guide505

© 2022 Prof. Bruce McCarl

based on the setting of flags or the characteristics of data items or file existence. They are discussed
briefly here and more extensively in the Conditional Compilation chapter. The dollar commands are.

$Abort Dollar command that causes compilation to stop and issues an error message
in LST file.

$Drop Dollar command that destroys a variable that was defined with $Set.
$Dropenv Dollar command that destroys a variable that was defined with $Setenv.
$Dropglobal Dollar command that destroys a variable that was defined with $Setglobal.
$Droplocal Dollar command that destroys a variable that was defined with $Setlocal.
$Else Dollar command that is followed by an instruction which is executed if the

matching $ifThen statement is not true
$Elseif Dollar command that controls whether a number of statements are active
$Elseife Dollar command that controls whether a number of statements are active

(expression evaluation)
$Elseifi Dollar command that controls whether a number of statements are active (case

insensitive)
$Endif Dollar command that hast to match with $Ifthen, $Ifthene or $Iftheni
$Error Dollar command that causes reporting of compiler error to LST file but allows

continued compilation.
$Eval Dollar command that evaluates a numerical expression and places it into a

scoped control variable.
$Evalglobal Dollar command that evaluates a numerical expression and places it into a

global control variable.
$Evallocal Dollar command that evaluates a numerical expression and places it into a

local control variable.
$Goto Dollar command that transfers control to a line with an internal label.
$If Dollar command that causes a statement to be executed at compile time if

case sensitive conditional is true.
$If not Dollar command that causes a statement to be executed at compile time if

case sensitive conditional is false.
$Ife Dollar command that causes a statement to be executed at compile time if

evaluated conditional is true.
$Ife not Dollar command that causes a statement to be executed at compile time if

evaluated conditional is false.
$Ifi Dollar command that causes a statement to be executed at compile time if

case sensitive conditional is true.
$Ifi not Dollar command that causes a statement to be executed at compile time if

case sensitive conditional is false.
$Ifthen Dollar command that controls whether a number of statements are active
$Ifthene Dollar command that controls whether a number of statements are active

(expression evaluation)
$Iftheni Dollar command that controls whether a number of statements are active (case

insensitive)
$Label Labels a line allowing branching to it from a $goto.
$Maxgoto Maximum number of jumps to the same label.
$Prefixpath Augments search path windows environment variable.
$Set Dollar command that defines control variable.
$Setenv Dollar command that defines or redefines windows environment variable.
$Setglobal Dollar command that defines global control variable.
$Setlocal Dollar command that defines local control variable.
$Terminate Dollar command that terminates compilation and execution immediately.

More Language Features 506

© 2022 Prof. Bruce McCarl

$Warning Dollar command that issues a compilation warning but continues compilation
and execution.

13.2.2.5 Alter numerical procedures used

The dollar commands in this group alter some of the GAMS numeric procedures. The dollar commands
are.

$Offdigit Dollar command that deactivates significant digit transformation.
$Offeps Dollar command that deactivates treatment of zeros as EPS.
$Ondigit Dollar command that activates significant digit transformation.
$Oneps Dollar command that activates treatment of zeros as EPS.

13.2.2.6 Alter data for items

The dollar commands in this group allow removal of data items or a reset of their contents. The dollar
commands in this group are listed in the table below.

$Clear Dollar command that resets named items to all zero values.
$Kill Dollar command that removes all data for an item and the item itself allowing

redefinition of items.

13.2.2.7 GDX file read/write

The dollar commands in this group allow one to pass data to and from GDX files as discussed in the
GDX chapter. The dollar commands in this group are:

$Gdxin Dollar command that opens/closes a GDX file for input.
$Gdxout Dollar command that opens/closes a GDX file for output.
$Load Dollar command that loads data from a GDX file.
$Loaddc Dollar command that loads data from a GDX file with domain checking.
$Loaddcm Dollar command that loads data from a GDX file (mixture of $Loaddc and

$Loadm).
$Loaddcr Dollar command that loads data from a GDX file (mixture of $Loaddc and

$Loadr)
$Loadm Dollar command that loads data from a GDX file and merges it.
$Loadr Dollar command that loads data from a GDX file and replaces sets or

parameters with the data from that file
$Unload Dollar command that unloads data to a GDX file.

13.2.2.8 Alter compiler procedures

The dollar commands in this group alter GAMS compilation procedures applied to entries in the input file
allowing or disallowing particular syntax choices. The dollar commands in this group are:

$Clearerror Dollar command that clears compiler errors.
$Dollar Dollar command that resets character that starts dollar option commands.
$Offdelim Dollar command that deactivates CSV separation of table data.
$Offembedded Dollar command that disables the use of embedded values in parameter and

set data statements.

McCarl GAMS User Guide507

© 2022 Prof. Bruce McCarl

$Offempty Dollar command that prohibits empty data statements.
$Offend Dollar command that deactivates alternative syntax for flow control statements.
$Offmulti Dollar command that prohibits multiple data item definitions.
$Offundf Dollar command that prohibits undf from being assigned.
$Offwarning Dollar command that activates relaxed domain checking.
$Ondelim Dollar command that activates CSV separation of table data.
$Onembedded Dollar command that enables the use of embedded values in parameter and set

data statements.
$Onempty Dollar command that allows empty data statements.
$Onend Dollar command that deactivates alternative syntax for flow control statements.
$Onmulti Dollar command that allows multiple data item definitions.
$Onundf Dollar command that allows undf to be assigned.
$Onwarning Dollar command that deactivates relaxed domain checking.
$Phantom Dollar command that designates a phantom set element.
$Use205 Dollar command that tells GAMS to use version 2.05 syntax.
$Use225 Dollar command that tells GAMS to use version 2.25 syntax.
$Use999 Dollar command that tells GAMS to use latest version syntax.
$Version Dollar command to test GAMS compiler version number.

13.2.2.9 Cause execution of an external program

This dollar commands in this group allow one to execute an external program.

$Call Dollar command that executes a program during compilation.
$Call.Async Dollar command that allows asynchronous job handling.
$Call.AsyncNC Dollar command that allows asynchronous job handling allowing use of multiple

processors

13.2.2.10 Restrict access to data

The dollar commands in this group cause GAMS to limit access to data. The dollar commands in this
group are:

$Expose Dollar command that removes all privacy restrictions.
$Hide Dollar command that hides the objects in a privacy setting but allows them to

be used in model calculations.
$Protect Dollar command that does not allow the objects to be modified in a privacy

setting but allows use in model calculations.
$Purge Dollar command that removes the objects and all data associated in a privacy

setting.

13.2.2.11 Tear apart strings

The dollar commands in this group cause GAMS to disassemble strings into multiple environment
variables. The dollar commands in this group are:

$Setcomps Dollar command that dissembles period delimited item into individual
components.

$Setnames Dollar command that tears apart a file name into components.

More Language Features 508

© 2022 Prof. Bruce McCarl

13.2.2.12 Compress and encrypt files

Input file compression and decompression are available to all users. Encryption and secure work files

require special licensing. Three Dollar Control Options control this:

$Compress <source> <target> Causes compression of an input file

$Decompress <source> <target> Causes decompression of an input file

$Encrypt <source> <target> Causes encryption of an input file

13.2.2.13 Handling and definition of macros

The dollar commands in this group are about definition and handling of macros.

$Macro Dollar command that defines a new macro
$Offdotl Dollar command that deactivates the automatic addition of .L to variables on the

right hand side of calculations
$Offexpand Dollar command that deactivates the expansion of macros.
$Offlocal Dollar command that limits use of .local on the same symbol to one in one

control stack.
$Offmacro Dollar command that disables the expansion off macros.
$Ondotl Dollar command that deactivates the automatic addition of .L to variables on the

right hand side of calculations.
$Onexpand Dollar command that activates the expansion of macros.
$Onlocal Dollar command that allows unlimited use of .local on the same symbol in one

control stack.
$Onmacro Dollar command that enables the expansion off macros.

13.2.2.14 Include user defined function

GAMS users can define their own functions. Namely functions can be programmed and imported from
an external library into GAMS for use in a model.

Function libraries are made available to a model using the $ command FuncLibIn as follows:

$FuncLibIn <InternalLibName> <ExternalLibName>

where the

InternalLibName is the name of the library inside your GAMS code.

ExternalLibName is the name that the library has on the disk drive.

In specifying the external file name the default directory is the GAMS systems directory. If the file is to
be located some where else then the full path name must be included in the external library name.

When a library of functions is specified then GAMS will validate the library, make the included functions
available for use, and add a table of the included functions to the listing file.

An example is presented here.

McCarl GAMS User Guide509

© 2022 Prof. Bruce McCarl

13.2.3 Detailed description of dollar commands

This section describes each of the dollar commands in detail. The options are listed in alphabetical
order.

$$

Abort

Batinclude

Call

Call.Async

Call.AsyncNC

Clear

Clearerror

Comment

Dollar

Double

Drop

Dropenv

Dropglobal

Droplocal

Echo, Echon

Eject

Else, Elsifi, Elseife

Endif

Eolcom

Error

Escape

Eval

Evalglobal

Evallocal

Exit

Expose

Gdxin

Gdxout

Goto

Hidden

Hide

If, If not, Ifi, Ifi not, Ife, Ife not

Ifthen, Iftheni, Ifthene

Include

Inlinecom

Kill

Label

Libinclude

Lines

Load

Loaddc

Loaddcm

Loaddcr

Loadm

Loadr

Log

Macro

Maxcol

Maxgoto

Mincol

Ondelim and Offdelim

Ondigit and Offdigit

Ondollar and Offdollar

Onecho, Onechos, Onechov and
Offecho

Onembedded and Offembedded

Onempty and Offempty

Onend and Offend

Oneolcom and Offeolcom

Oneps and Offeps

Onglobal and Offglobal

Oninclude and Offinclude

Oninline and Offinline

Onlisting and Offlisting

Onlocal and Offlocal

Onlog and Offlog

Onmargin and Offmargin

Onmulti and Offmulti

Onnestcom and Offnestcom

Onput, Onputs, Onputv, Offput

Onrecurse and Offrecurse

Onsymlist and Offsymlist

Onsymxref and Offsymxref

Ontext and Offtext

Onuellist and Offuellist

Onuelxref and Offuelxref

Onundf and Offundf

Onverbatim and Offverbatim

Onwarning and Offwarning

Phantom

Prefixpath

Protect

Purge

Remark

Set

Setargs

Setcomps

Setddlist

Setglobal

Setenv

Setlocal

Setnames

Shift

Show

Single

SplitOption

Stars

Stop

Stitle

Sysinclude

Terminate

Title

Unload

Use205

Use225

Use999

Version

Warning

More Language Features 510

© 2022 Prof. Bruce McCarl

13.2.3.1 $$

Historically all compile time $ commands had to start in column 1.

One can now move them to start elsewhere but needs to add an additional $.

So one can have the sequence (where the first command starts in column 1) as in tranint2.gms

$include trandata
*syntax for a $ command not starting in column 1
 $$include tranmodl
 $$include tranrept

13.2.3.2 Abort

This issues a compilation error and aborts the compilation placing the associated text message in the
LST file. It is employed using the syntax

$abort 'text'

It can be used with the extension .noerror causing the error count to NOT be increased. When a save file
is written, all remaining unexecuted code will be flushed. This allows effective reuse of the save file. The
syntax is

$abort.noerror 'text'

13.2.3.3 Batinclude

The $Batinclude includes an external file with arguments as discussed in the file inclusion chapter. This
command is invoked using the syntax

$Batinclude filename arg1, arg2,..

This by default includes the file from the current working directory but the Idir command line parameter
can be used to define a complex search path.

13.2.3.4 Call

This command causes GAMS to call an external program or operating system
command during compilation interrupting compilation until the command has been
completed. This command is invoked using the syntax

$call externalcommand arg1, arg2,..

McCarl GAMS User Guide511

© 2022 Prof. Bruce McCarl

or

$call.Async externalcommand arg1, arg2,..

Quotes may be placed around the command.

Example:

$call 'copy myfile newname'

Notes:

• Call is discussed extensively in the Links to Other Programs Including
Spreadsheets chapter.

• There is a counterpart command called Execute that is discussed in the Links
to Other Programs Including Spreadsheets chapter that operates at execution
time.

• Compilation errors are issued if the command or the command processor
cannot be loaded and executed properly.

• One can also use the command SplitOption here is one wants to provisionally
include the calling parameters for the executable.

• The use without the ASync Suffix means GAMS waits for the job to be
completed. When .ASync is included then GAMS proceeds without waiting.

• The command string can be passed to the system and executed directly
without using a command processor by prefixing the command with an '=' sign.

$call 'gams trnsport'
$call '=gams trnsport'

In the second call, the return codes from the system are intercepted and made
available to the GAMS system through the errorlevel DOS batch function but
they are not in the first.

13.2.3.5 Call.Async

Works like $call but allows asynchronous job handling. This means you can start a job without waiting
for the result. You can continue in your model and collect the return code of the job later.

In this cast the operating system starts asynchronous execution sharing the console of the parent
process

More Language Features 512

© 2022 Prof. Bruce McCarl

$CALL.ASYNC "command"

The calls behave identically on Windows and non-Windows platforms.

The function JobHandle can be used to get the Process ID (pid) of the last job started. With JobStatus
(pid) one could check for the status of a job. With JobTerminate(pid) or JobKill(pid) an interrupt signal
respectively a kill signal can be sent to a running job.

13.2.3.6 Call.AsyncNC

Works like $call amd $call.async but allows asynchronous job handling. This means you can start a job
without waiting for the result. You can continue in your model and collect the return code of the job later.

In this cast the NC at the end starts asynchronous calls with a new console rather than sharing the
console of the parent process allowing use of multiple processors.

$CALL.ASYNCNC "command"

The calls behave identically on Windows and non-Windows platforms.

13.2.3.7 Clear

This resets GAMS items to their default values. This command is invoked using the syntax

$clear item1 item2

Notes:

• A list of items follows $clear and results in multiple items being cleared. While the example above

lists two items one, two or many more can be listed.

• This is carried out during compile time, and not when the GAMS program executes and it is carried

out before any calculations.

• There is an associated option command called clear which operates at execution time. It is usually

the better choice.

• Not all items can be cleared - only set, parameter, equation and variable types can be reset.

• The result is that sets are emptied and data are zeroed.

13.2.3.8 Clearerror

This clears GAMS awareness of compiler errors. This command is invoked using the syntax

$clearerror

McCarl GAMS User Guide513

© 2022 Prof. Bruce McCarl

13.2.3.9 Comment

This changes the character normally used in column 1 to start a comment from * to the single character
specified as discussed in the Comment chapter. This command is invoked using the syntax

$comment character

where character is a one character specification of the new item to use. Note this item should be
carefully chosen to not conflict with other usages of the newly chosen character. An example follows
(commentdol.gms):

*normal comment
$comment !
!comment with new character

The case of character does not matter when being used.

13.2.3.10 Compress

This causes a file to be compressed into a packed file as discussed in the file compression and
encryption chapter. This command is invoked using the syntax

$Compress source target

where

source is the name of the source file to be compressed and

target is the name for the resultant compressed file

An example is :

$compress file.gms compressfile1.gms

$Decompress reverse this process.

13.2.3.11 Decompress

This causes a file to be decompressed into an unpacked file as discussed in the file compression and
encryption chapter. This command is invoked using the syntax

$Decompress source target

where

source is the name of the compressed source file to be decompressed and

More Language Features 514

© 2022 Prof. Bruce McCarl

target is the name for the resultant decompressed file

An example is :

$decompress compressfile.gms decompressfile.gms

$Compress creates the compressed files..

13.2.3.12 Dollar

This dollar command changes the current $ symbol used in dollar sign commands not those in
conditionals to the single character specified as c. This command is invoked using the syntax

$dollar character

where character is a one character specification of the new item to use. The character used should be
carefully chosen to not conflict with other usages of the newly chosen character. An example follows
(commentdol.gms):

$Onlisting
$dollar #
#offlisting

13.2.3.13 Double

The lines following the $double statement in the echo print of the source file will be echoed in a double
spaced fashion in the Echo print within the LST file. This command is invoked using the syntax

$double

13.2.3.14 Echo, Echon

These options send a text message to an external file. This command is invoked using the syntax

$echo 'text to be sent' > externalfile

or

$echo 'other text to be sent' >> externalfile

or

$echon 'this text' > externalfile

or

$echon 'a text message' >> externalfile

where externalfile is the name including if needed the path of the external file. When the $echon version
is used, then no end of line marker is written so the line is repeatedly appended to by subsequent
commands. Also note as discussed below $Onecho and $Offecho allows one to copy contiguous lines
of text.

McCarl GAMS User Guide515

© 2022 Prof. Bruce McCarl

Notes:

• Both the text and the file name can be quoted or unquoted.

• The file name by default will go in the working directory.

• The file is not closed until the end of the compilation or when a $call or any kind of $include

statement is encountered.

• The symbols > causes any files with the same name to be overwritten.

• The symbols >> causes any files with the same name to be appended to.

13.2.3.15 Eject

This will force a new page to be begun in the LST file. This command is invoked using the syntax

$eject

13.2.3.16 Encrypt

This causes a file to be converted into an encrypted file as discussed in the file compression and
encryption chapter. This command is invoked using the syntax

$Encrypt source target

where

source is the name of the source file to be compressed and

target is the name for the resultant compressed file

An example is :

$encrypt file.gms encryptfile.gms

A special license is required to use this option as explained in User's Guide.

13.2.3.17 Eolcom

This changes the up to 2 character string normally used to delimit an end of line comment from !! to the
characters specified as discussed in the Including Comments chapter. This command is invoked using
the syntax

$eolcom characters

where characters are a two character specification of the new delimiter. An example follows
(commentdol.gms):

https://www.gams.com/latest/docs/UG_DollarControlOptions.html

More Language Features 516

© 2022 Prof. Bruce McCarl

$Oneolcom
x=x+1; !! eol comment
$eolcom &&
x=x+1; && eol comment with new character

Notes:

• By default the delimiter is initialized to '!!' but is not active.

• The $eolcom or $Oneolcom dollar command must be used before end of line comments can be

employed.

• The $eolcom dollar command sets $Oneolcom to the default setting automatically.

13.2.3.18 Error

Issues a compilation error and continues compilation placing the associated text message in the LST
file. It is employed using the syntax

$error 'text to include in the LST file'

13.2.3.19 Escape

Allows one to print out or display the text sequence for the % syntax used in setting off control variables,
system attributes, GAMS command line parameters and arguments in include files. It is employed
using the syntax

$escape symbol

This renders all subsequent commands of the form %symbol to not have parameter substitution done for
them and on display or in a put to come out as just a %.

For example (escape.gms)

$escape &

will make %&controlvariable%& print out in a display or put as %controlvariable%. while %&1 will print
out as %1. This is really only present to allow one to be able to write GAMS instructions from GAMS as
one would not be able to use a put to write the symbols %gams.ps% otherwise.

One may reverse this action with

$escape %

13.2.3.20 Eval

This dollar command evaluates a numerical expression at compile time and places it into a scoped
control variable. In
turn one can use $ife to do numeric testing on the value of this variable. The format is

$eval varname expression

McCarl GAMS User Guide517

© 2022 Prof. Bruce McCarl

where the expression must consist of constants, functions or other control variables with numerical
values.

For more detailed information see $Eval in the control variables chapter.

13.2.3.21 Evalglobal

This dollar command evaluates a numerical expression at compile time and places it into a global
control variable. In
turn one can use $ife to do numeric testing on the value of this variable. The format is

$evalglobal varname expression

where the expression must consist of constants, functions or other control variables with numerical
values.

For more detailed information see $EvalGlobal in the control variables chapter.

13.2.3.22 Evallocal

This dollar command evaluates a numerical expression at compile time and places it into a local control
variable. In
turn one can use $ife to do numeric testing on the value of this variable. The format is

$evallocal varname expression

where the expression must consist of constants, functions or other control variables with numerical
values.

For more detailed information see $Evallocal in the control variables chapter.

13.2.3.23 Exit

Exits the file currently being utilized. Thus when this is placed in an included file it exits that file but
continues in the file where the include appears. In the main program compilation is discontinued at that
point. It is employed using the syntax

$exit

13.2.3.24 Expose

Removes all privacy restrictions from the named item or items.

$expose item1 item2

or

$expose all

Notes:

• A list of items follows $expose and results in multiple items being exposed.

More Language Features 518

© 2022 Prof. Bruce McCarl

• While the statement example above lists two items one, two or many more can be listed.

• The word ALL can also be used to expose all items.

• The Appendix H of the GAMS Users Guide elaborates.

• A special license file is needed for this feature to work.

• The expose only takes effect in subsequent restart files.

13.2.3.25 Gdxin

This dollar command is used in a sequence to load specified items from a GDX file. It is employed using
the syntax

$Gdxin filename

where filename gives the name of the GDX file (with or without the extension GDX) and the command
opens the specified GDX file for reading

and

$Gdxin

where the command closes the specified GDX file.

The command must be used in conjunction with the command $Load.

Example:

(gdxintrnsport.gms)

$gdxin tran2

$LOAD

 Sets

 uni universal set

 i canning plants

 j markets;

$load uni=* i j

 Parameters

 a(i) capacity of plant i in cases

 b(j) demand at market j in cases;

$load a=sup

$loaddc b=dem

 Parameter d(i,j) distance in thousands of miles;

$load d

 Scalar f freight in dollars per case per thousand miles ;

$load f

$gdxin

display uni,i,j,a,b,d,f;

McCarl GAMS User Guide519

© 2022 Prof. Bruce McCarl

Notes:

• A Gdxin command followed by the name of the GDX file to use must precede all $Load commands

and opens the file.

• A Gdxin command without following arguments must succeed the Load command or commands

and closes the file. More than one Load can appear in between.

13.2.3.26 Gdxout

This dollar command is used in a sequence to unload specified items to a GDX file. It is employed using
the syntax

$Gdxout filename

where filename gives the name of the GDX file (with or without the extension GDX) and the command
opens the specified GDX file for writing

and

$Gdxout

where the command closes the specified GDX file.

The command must be used in conjunction with the command $Unload.

Example:

(gdxtrnsport.gms)

$gdxout tran

$unload i j

$unload d

$unload f

$unload b=dem a=sup

$gdxout

Notes:

• A Gdxout command followed by the name of the GDX file to use must precede all $Unload

commands and opens the file.

• A Gdxout command without following arguments must succeed the Unload command or

commands and closes the file. More than one Unload can appear in between.

13.2.3.27 Goto

This dollar command will cause transfer of compilation focus to the line starting with an internal label
specified through $Label and then continue compilation from there skipping all lines in between. It is
employed using the syntax

More Language Features 520

© 2022 Prof. Bruce McCarl

$goto internallabel

Notes:

• This dollar command can be used to skip over or repeat sections of the input files.

• In Batinclude files, the target labels or label arguments can be passed as parameters.

• When using a $goto statement GAMS protects against the potential of an infinite loop. The number

of times a program jumps back to a label is counted and when a limit is reached, GAMS will issue
an error. A maximum of 100 jumps to the same label is the limit.

• Further discussion appears in the Conditional Compilation chapter.

13.2.3.28 Hidden

This dollar command will cause the following text to be treated as a comment that will not be echoed to
the listing file as discussed in the Including Comment chapter. It is employed using the syntax

$hidden text

For example (commentdol.gms):

$hidden a hidden comment to me

13.2.3.29 Hide

This dollar command hides the named items so they cannot be displayed or computed but still allows
them to be used in model calculations (.. commands when the solve statement is executed).

$hide item1 item2

or

$hide all

Notes:

• A list of items follows $hide and results in multiple items being hidden.

• While the statement example above lists two items one, two or many more can be listed.

• The word ALL can also be used to hide all items.

• Appendix H of the GAMS Users Guide elaborates.

• A special license file is needed for this feature to work.

13.2.3.30 If, If not, Ifi, Ifi not, Ife, Ife not

$If provides control over conditional processing of the input file(s). The syntax is

McCarl GAMS User Guide521

© 2022 Prof. Bruce McCarl

$If condition statement to execute

or

$If NOT condition statement to execute

or

$Ifi condition statement to execute

or

$Ifi NOT condition statement to execute

or

$Ife condition statement to execute

or

$Ife NOT condition statement to execute

The $Ifi variant is case insensitive while $If is case sensitive and the $Ife variant allows constant
expression evaluation.

Notes:

• Numerous conditional expression types can be used as discussed in the Conditional Compilation

chapter.

• The result of the conditional test is used to determine whether to include the remainder of the line,

which can be any valid GAMS statement including other $ commands like $Goto.

• The first non-blank character on the line following the conditional expression is considered to be the

1st column position of the GAMS input line. Therefore, if the first character encountered is a
comment character the rest of the line is treated as a comment line. Likewise if the first character
encountered is the dollar command character, the line is treated as a dollar command line.

• An alternative to placing the statement to execute on the same line as the conditional is to leave the

remainder of the line blank and place the statement to execute on the line immediately following the
$if line.

• If the conditional is found to be false, either the remainder of the line (if any) is skipped or the next

line is not read.

Example:

scalar a /3/

 b /5/

 c /8/;

More Language Features 522

© 2022 Prof. Bruce McCarl

$if a+b==c display a

$ife a+b==c display b

a is not displayed because the $if condition is not true while the $ife condition is true and b is displayed.

13.2.3.31 Ifthen, Iftheni, Ifthene, Else, Elseif, Elseifi, Elseife, Endif

These Dollar commands are a form of a $If and control whether a number of statements are active. A
$Ifthen/$Iftheni/$Ifthene must be matched with a $Endif. The syntax is generally the same as for the $If
statement.

The $Ifthen and $Elseif have variants that are case insensitive ($Ifi and $Elseifi) or evaluate numerical
values of the control variables ($Ife and $Elseife).

Notes:

• A 'not' my be used in the commands

• $Else is followed by an instruction which is executed if the matching $ifThen statement is not true.

• $ElseIf / $Elseifi / $Elseife has another comparison behind it.

• One may add a tag to the $Ifthen and $EndIf so it has a definite reference. Then for example

$Ifthen.tagone has to match with $Endif.tagone.

• For more information see $Ifthen conditionals

Example:

This example illustrates the use of IFTHEN with and without tags:

$ifThen.one x == y

display "it1";

$elseIf.one a == a

display "it2";

$ifThen.two c == c

display "it3";

$endIf.two

$elseIf.one b == b

display "it4";

$endIf.one

The resulting listing file contains

---- 2 it2

---- 4 it3

because the first condition (x == y) is obviously not true and the fourth condition (b == b) is not

tested because the second one (a == a) was already true.

McCarl GAMS User Guide523

© 2022 Prof. Bruce McCarl

13.2.3.32 Include

This includes an external file without arguments as discussed in the Including External Files chapter.
This command is invoked using the syntax

$include filename

This by default includes the file from the current working directory but the Idir command line parameter
can be used to define a complex search path.

13.2.3.33 Inlinecom

This dollar command changes the delimiters used to start and end an in line comment from /* and */ to
the characters specified. Usage is discussed in the Comments chapter. This command is invoked
using the syntax

$inlinecom beginningcharacters endingcharacters

where beginningcharacters and endingcharacters are each two character specifications of the new
beginning and ending delimiters to use. An example follows (commentdol.gms):

$Oninline

x=x /* in line comment */ +1;

$inlinecom /& &/

x=x /& another in line comment &/+1;

Notes:

• By default the delimiters are initialized to '/*' and '*/' but are not active.

• The $inlinecom or $Oninline command must be used to activate the end-of-line comment before

any in line comments can be used.

• The $inlinecom dollar command activates the ability to use in line comments just as if $Oninline

were used.

• Two pairs of character strings must be given.

13.2.3.34 Kill

Removes all data for an identifier with only the type and set definition retained. It is employed using the
syntax

$kill item1 item2

Notes:

• This command should rarely if ever be used. Rather the option command Clear is better.

More Language Features 524

© 2022 Prof. Bruce McCarl

• A list of items can follow $Kill and if more than one is present results in multiple items being

removed. While the statement example above lists two items one, two or many more can be listed.

• This is carried out during 'compile time', and not when the GAMS program executes.

• Not all data types can be killed - only set, parameter, equation and variable types can be reset.

• $Clear has about the same action but the data are treated as if they were zeroed.

• The item in $kill can be redefined.

• More on this appears here.

13.2.3.35 Label

This marks a line to be jumped to by a $Goto statement as discussed in the Conditional Compilation
chapter. It is employed using the syntax

$label internallabel

Notes:

• Any number of labels can be used in files and not all of them need to be referenced.

• Re-declaration of a label identifier will not generate an error, and only the first occurrence

encountered by the GAMS compiler will be used for any $Goto references.

13.2.3.36 Libinclude

The $libinclude includes an external file with arguments as discussed in the Including External Files
chapter. This command is invoked using the syntax

$libinclude filename arg1, arg2,..

This by default includes the file from the inclib subdirectory of the GAMS system directory.

13.2.3.37 Lines

Starts a new page in the echo print part of the LST file if less than n lines are available on the current
page. It is employed using the syntax

$lines value

13.2.3.38 Load

This dollar command loads specified items from a GDX file. It is employed using the syntax

$Load item1 item2 ...

but must be used in conjunction with the command $Gdxin.

McCarl GAMS User Guide525

© 2022 Prof. Bruce McCarl

Example:

(gdxintrnsport.gms)

$gdxin tran2

$LOAD

 Sets

 uni universal set

 i canning plants

 j markets;

$load uni=* i j

 Parameters

 a(i) capacity of plant i in cases

 b(j) demand at market j in cases;

$load a=sup

$loaddc b=dem

 Parameter d(i,j) distance in thousands of miles;

$load d

 Scalar f freight in dollars per case per thousand miles ;

$load f

$gdxin

display uni,i,j,a,b,d,f;

Notes:

• Load is followed by the names of items to load separated by a space.

• Load must be preceded and succeeded by a $Gdxin. The preceding $Gdxin specifies the GDX file

name and opens the file. The succeeding $Gdxin closes the file. More than one Load can appear in
between.

• When the $Load is not followed by arguments this causes a listing of the GDX file contents to be

generated.

• Load brings in the data at compile time and may be used to load sets, parameters, and variable or

equation starting values, bounds and scales.

• Execute_load and its variants is the execution time counterpart of this command.

• GAMS does not check to see if the sets referenced match with the elements of the sets in the data.

If one wishes that checking then the alternative $Loaddc should be used.

• The universal set can be read for a GDX by using the syntax by $LOAD id=*.

• One can use load to define a set based on the elments with non zero entries in the data.
thus if one has a set that is to be defined and we know the parameter a is defined over that
set containing all the relevant entries then one can use something like the following syntax

set i

parameter a(i)

$gdxin trannoset

$load i<a

More Language Features 526

© 2022 Prof. Bruce McCarl

which draws the elements in i from the non zero elements within a (see the example
gdxintrnsportinfersets.gms)

l

13.2.3.39 Loaddc

This dollar command loads specified items from a GDX file with domain checking. It is employed using
the syntax

$Loaddc item1 item2 ...

and must be used in conjunction with the command $Gdxin.

Example:

(gdxintrnsport.gms)

$gdxin tran2

$LOAD

 Sets

 uni universal set

 i canning plants

 j markets;

$load uni=* i j

 Parameters

 a(i) capacity of plant i in cases

 b(j) demand at market j in cases;

$load a=sup

$loaddc b=dem

 Parameter d(i,j) distance in thousands of miles;

$load d

 Scalar f freight in dollars per case per thousand miles ;

$load f

$gdxin

display uni,i,j,a,b,d,f;

Notes:

• Loaddc is an alternative form of $Load but checks to see if the set element names being loaded are

in the associated sets (I.e. checks the domain).

• All other features are the same as discussed under $Load

13.2.3.40 Loaddcm

Dollar command that loads data at compile time plus merges it combining the functions of $Loaddc and
$Loadm.

McCarl GAMS User Guide527

© 2022 Prof. Bruce McCarl

13.2.3.41 Loaddcr

Dollar command that does the same as $Loadr plus domain checking like $Loaddc.

13.2.3.42 Loadm

$Loadm is an alternative form of $load.
It loads specified items from a GDX file. It is employed using the syntax

$Loadm item1 item2 ...

but must be used in conjunction with the command $Gdxin.
Instead of replacing an item or causing a domain violation error if the item was already initialized it
merges the contents.

Example:

In the following example transsol is the GDX file of the model trnsport.gms which can be found in the GAMS Model Library.

set j /1*5/;

$gdxin transsol

$loadm j

display j;

$gdxin transsol

The resulting listing file contains

---- 4 SET j markets

1 , 2 , 3 , 4 , 5 , new-york

chicago , topeka

13.2.3.43 Loadr

$Loadr is an alternative form of $load.
It loads specified items from a GDX file. It is employed using the syntax

$Loadm item1 item2 ...

but must be used in conjunction with the command $Gdxin.

It will replace the parameters or sets item1 item2 ... by the data stored in the current GDX file.

Example:

In the following example transsol is the GDX file of the model trnsport.gms which can be found in the GAMS Model Library.

sets i / 1*3 /

j / 1*2 /;

$gdxin transsol

$loadr i j

More Language Features 528

© 2022 Prof. Bruce McCarl

$gdxin

display i,j;

The resulting listing file contains

---- 6 SET i canning plants

seattle , san-diego

---- 6 SET j markets

new-york, chicago , topeka

13.2.3.44 Log

This dollar command sends the specified text to the LOG file. It is employed using the syntax

$Log text to send

Example:

$Log

$Log The following message will be written to the LOG file

$Log with leading blanks ignored. All special % symbols will

$Log be substituted out before this text is sent to the LOG file.

$Log This was line %system.incline% of file %system.incname%

$Log

Notes:

• By default, the LOG file is the console.

• The default LOG file can be reset with the Lo and Lf command line parameters.

• Leading blanks are ignored when the text is written out to the LOG file using the $Log command.

• All special % symbols will be substituted out before the text passed through.

• The output goes to the IDE process window but is intermixed with execution reports.

13.2.3.45 Macro

GAMS includes the ability to define macros as of version 22.9. The definition takes the form

$macro name(arg1,arg2,arg3,...) body

where name is the name of the macro which has to be unique, arg1,arg2,arg3,... are the

arguments and body defines what the macro should do.

For more detailed information see the chapter Macros in GAMS.

McCarl GAMS User Guide529

© 2022 Prof. Bruce McCarl

13.2.3.46 Maxcol

Sets the right margin for the input file specifying that all valid data is before column n+1 in the input file
as discussed in the Including Comments chapter. It is employed using the syntax

$maxcol value

Notes:

• All text after column value is treated as a comment and is ignored.

• The default value for value is the maximum line length currently 32767.

• Setting maxcol to 0 causes GAMS to set it to the default value.

13.2.3.47 Maxgoto

Dollar command that sets the maximum number of jumps to the same label with $goto. Once the
maximum number is reached an error is triggered.

The default setting is 100.

13.2.3.48 Mincol

Sets the left margin for the input file specifying that all valid data is after column n-1 in the input file as
discussed in the Including Comments chapter. It is employed using the syntax

$mincol value

Notes:

• All text before column value is treated as a comment and is ignored.

• The default for value is 1.

13.2.3.49 Ondelim and Offdelim

Controls whether data in table statements are in comma delimited format. It is employed using the
syntax

$Offdelim

or

$Ondelim

Use of this feature is demonstrated in the example csv1.gms and in the file inclusion chapter.

13.2.3.50 Ondigit and Offdigit

Controls the internal precision of numbers. Sometimes a GAMS problem has to be moved from a

More Language Features 530

© 2022 Prof. Bruce McCarl

machine with higher precision to one with lower precision. Instead of changing numbers with too much
precision the $Offdigit tells GAMS to use as much precision as possible and ignore the rest of the
number. It is employed using the syntax

$Offdigit

or

$Ondigit

Notes:

• If the stated precision of a number exceeds the machine precision an error will be reported. For

most machines, the precision is 16 digits.

• The default setting is $Ondigit.

• Ondigit causes GAMS to change numbers to fit machine precision.

13.2.3.51 Ondollar and Offdollar

Controls the echo print of dollar command lines in the LST file. It is employed using the syntax

$Offdollar

or

$Ondollar

Notes:

• $Ondollar tells GAMS to include the $commands in the LST file.

• $Offdollar suppresses them.

• The default setting is $Offdollar.

13.2.3.52 Ondotl and Offdotl

Activates or deactivates the automatic addition of .L to variables on the right hand side of calculations as
explained below. The syntax is

$OndotL

or
$OffdotL

The default is $OffdotL.

In report writing one may want to do calculations which reuse terms from the model .. equations in as
close to original form as possible. Also one often wished to compute tables of results as a function of
the variable levels. Before version 22.9 the only way to do this was with the .l notation as follows
(macrotrnsport.gms)

McCarl GAMS User Guide531

© 2022 Prof. Bruce McCarl

zz2=sum((i,j),(x.l(i,j)));

where x is a model decision variable.

Today one can use $Ondotl which automatically includes attached the .l to any variables appearing on
the right hand side which do not otherwise have a variable attribute extension. In particular the following
commands yield the same calculation as that above without the need to the .l's appended to the variable
names.

$onDotL

zz=sum((i,j),(x(i,j)));

This feature was introduced to make macros more useful but is not limited to macros as illustrated
above.

This feature once enabled applies to all subsequent instances where variables are on the right hand side
of equations and can even be put in the first line of a model.

The command $offdotl turns off the implicit .l addition.

13.2.3.53 Onecho and Offecho

Sends multiple subsequent lines to an external file called externalfile. The action is stopped by an
$offecho. This command are used employing the syntax

$Onecho > externalfile
line 1 to send
line 2 to send
$Offecho

or

$Onecho >> externalfile
line 1 to send
line 2 to send
$Offecho

There is also a variant $onechos that permits parameter substitution as $onecho also does and
$onechov that forbids parameter substitution.

$Onechos > externalfile
line 1 to send with param sub %it%
line 2 to send
$Offecho

Notes

• $Echo allows one to send single lines of text.

• Both the text and the file name can be quoted or unquoted.

More Language Features 532

© 2022 Prof. Bruce McCarl

• When a path is not included the file by default will be placed in the working directory.

• The file is not closed until the end of the compilation or when a $call or any kind of $include

statement is encountered.

• The redirection symbol > causes any files with the same name to be overwritten.

• The redirection symbols >> causes any files with the same name to be appended to.

• Parameter substitution is discussed in the Conditional Compilation chapter.

13.2.3.54 Onembedded and Offembedded

Enables or disables the use of embedded values in parameter and set data statements. For sets, the
final text is concatenated with blank separators. It is employed using the syntax

$Offembedded

or
$Onembedded

The default is $Offembedded.

Example:

The element texts for the set i and j will be identical:

set k /a,b/

l /a/;

set i(k,l) / a.a 'aaaa cccc dddd', b.a 'bbbb cccc dddd' /

$onEmbedded

set j(k,l) / (a aaaa, b bbbb).(a cccc) dddd /

13.2.3.55 Onempty and Offempty

Allows empty data statements for set, parameter or table data. It is employed using the syntax

$Offempty

or

$Onempty

Notes:

• $Onempty tells GAMS to allow empty data statements such as (onempty.gms)

$onempty

set k(*) an emply set / /;

parameter data(k) / /;

set I /i2/

table aa(I,I)

 i2

i2 ;

McCarl GAMS User Guide533

© 2022 Prof. Bruce McCarl

• $Offempty suppresses them.

• The default setting is $Offempty and data statements cannot be empty.

• One can use the combination of onempty and Onmulti to develop a model without data and add it at

a later stage as in multi.gms.

• When a set is specified as empty it must be defined with dimensions present ie above the

statement set k(*) indicates k is one dimensional.

• When a table is specified as empty it must be defined with a place for at least one element as is

done in the aa table with the i2 entries above.

• Onempty coupled with Onmulti can be used in conjunction with save and restart to allow a model to

be set up and data integrated later possibly to preserve proprietary model structure.

13.2.3.56 Onend and Offend

Activates alternative syntax for flow Control Structures. Namely endloop, endif, endfor, and endwhile are
introduced as keywords when the $Onend is active. In turn, these statements end the loop, if, for, and
while statements. The dollar command is activated using the syntax

$Offend

or

$Onend

Notes

• Both forms of the syntax cannot be valid simultaneously.

• Setting the $Onend dollar command will make the alternate syntax valid, but makes the standard

syntax invalid.

• Examples appear in control.gms.

13.2.3.57 Oneolcom and Offeolcom

Activates or deactivates use of end-of-line comments as discussed in the Including Comments chapter.
By default, the end-of-line comments are set to '!!' but the processing is disabled. The dollar command
is employed using the syntax

$Offeolcom

or

$Oneolcom

13.2.3.58 Oneps and Offeps

Causes GAMS to treat a zero as an EPS in a parameter or table data statement. The syntax is

$Offeps

or

More Language Features 534

© 2022 Prof. Bruce McCarl

$Oneps

The default setting is $Offeps

13.2.3.59 Onexpand and Offexpand

Activates or deactivates the expansion of macros appearing in the arguments of a macro call. The
syntax is

$Onexpand

or

$Offexpand

The default is $Offexpand.

13.2.3.60 Onglobal and Offglobal

Causes dollar command settings to also be active in included files. The default is that command
settings are not inherited ($Offglobal). The syntax is

$Offglobal

or

$Onglobal

Dollar command settings specified in the include file will not affect the higher level file.

13.2.3.61 Oninclude and Offinclude

Controls the echo print of included files as discussed in the Including External Files chapter. The default
is that statements are included in the echo print ($Oninclude). The syntax is

$Offinclude

or

$Oninclude

13.2.3.62 Oninline and Offinline

Activates or deactivates use of in line comments as discussed in the Including Comments chapter. By
default, the delimiters are set to '/*' and '*/' but they are not allowed ($Offinline). The syntax is

$Offinline

or

$Oninline

McCarl GAMS User Guide535

© 2022 Prof. Bruce McCarl

13.2.3.63 Onlisting and Offlisting

Activates or deactivates the echo print of input lines to the LST for lines appearing after the $Offlisting.
The syntax is

$Offlisting

or

$Onlisting

The default setting is $Onlisting.

Notes:

• Suppressed input lines do not generate entries in the symbol and cross-reference sections

appearing at the end of the compilation listing.

• Lines with errors will always be listed.

13.2.3.64 Onlocal and Offlocal

$Onlocal allows unlimited use of .local on the same symbol in one control stack while $Offlocal limits
the use to one.
The default setting is $Onlocal.

Example:

set i /1*3/; alias(i,j);

parameter xxx(i,j) / 1.1 1, 2.2 2, 3.3 3, 1.3 13, 3.1 31 /;

display xxx;

parameter g(i,i);

g(i.local-1,i.local) = xxx(i,i); display g;

$offlocal

g(i.local-1,i.local) = xxx(i,i)+1; display g;

The use of $offlocal causes a compilation error in the following line because .local is used twice on

the same symbol in one control stack.

13.2.3.65 Onlog and Offlog

Turns on/off line logging for information about the line number and memory consumption during
compilation. This is scoped like the $On/Offisting applying only to included files and any subsequent
included files but reverting to $Onlog in the parent files.

That means when file1 includes file 2 and file 2 contains $Offlog then subsequent lines in file 2 will not

be logged but lines in file 1 will be.

More Language Features 536

© 2022 Prof. Bruce McCarl

The syntax is

$Offlog

or

$Onlog

The default setting is $Onlog.

13.2.3.66 Onmacro and Offmacro

Enables or disables the expansion of macros. The syntax is

$Onmacro

or

$Offmacro

The default is $Onmacro.

13.2.3.67 Onmargin and Offmargin

Activates or deactivates margin marking as discussed in the Including Comments chapter. The margins
are set with $mincol and $maxcol. The syntax is

$Offmargin

or

$Onmargin

The default is $Offmargin.

Example:

(margin.gms)

$Ontext

 1 2 3 4 5 6

123456789012345678901234567890123456789012345678901234567890

$Offtext

$Onmargin

$mincol 20 maxcol 45

Now we have set i plant /US, UK/ This defines I

turned on the scalar x / 3.145 / A scalar example.

margin marking. parameter a, b; Define some parameters

$Offmargin

Only the black section of the statements are active since they appear between columns 19 and 45, and
anything before 19 or after column 45 is treated as a comment.

McCarl GAMS User Guide537

© 2022 Prof. Bruce McCarl

This results in the LST file segment

7 Now we have . set i plant /US, UK/ .This defines I

8 turned on the . scalar x / 3.145 / .A scalar example.

9 margin marking. . parameter a, b; .Define some parameters.

where the red dots are the delimiters.

13.2.3.68 Onmulti and Offmulti

Allows or disallows multiple definition and data statements for a set or parameter. By default ($Offmulti),
GAMS does not allow data statements to be redefined. If this dollar command is enabled, the second or
subsequent data statements are merged with entries of the previous ones. It is employed using the
syntax

$Offmulti

or

$Onmulti

Ordinarily $Onmulti should not be used as it can have perverse effects.

Example:

$Onmulti

Scalar x /3/

Scalar x /4/;

Set I /i1/;

Set I /i2/;

Set j / /;

Set j /a,b,c/;

Notes:

• Note that all multiple data statements are executed before any other statement is executed.

• The last value takes precedence.

• Default is $Offmulti.

• One can use the combination of Onempty and onmulti to develop a model without data and add it at

a later stage as in multi.gms.

• Onmulti coupled with Onempty can be used in conjunction with save and restart to allow a model to

be set up and data integrated later possibly to preserve proprietary model structure.

13.2.3.69 Onnestcom and Offnestcom

Allows nesting of in line comments as discussed in the Including Comments chapter. The dollar
command is employed using the syntax

More Language Features 538

© 2022 Prof. Bruce McCarl

$Offnestcom

or

$Onnestcom

The default is $Offnestcom

Example:

(Commentdol.gms)

$inlinecom { } onnestcom

{ nesting is now possible in comments { braces have to match } }

13.2.3.70 OnOrder and OffOrder

Set operations over leads and lags require the subject set to be ordered and predefined. If one wants
to use lags and leads on sets that are dynamic and/or are unordered then this $ condition permits that
to happen. Namely including the command $offorder removes the requirement.

The dollar command is employed using the syntax

$Offorder

or

$Onorder

The default is $Onorder

Example:

(lagd1.gms)

An expanded version of the Test Library file lagd1.gms illustrates the use of on/offOrder as follows.

set i(*) ;

i("1970")=yes;

i("1975")=yes;

i("1979")=yes;

i("1980")=yes;

alias(i,j);

set linkthem(*,*);

$offorder

linkthem(i,i+1)=yes;

$onorder

display linkthem;

set linkthem2(*,*);

$offorder

linkthem2(i,i++1)=yes;

$onorder

McCarl GAMS User Guide539

© 2022 Prof. Bruce McCarl

display linkthem2;

• Since the set i is not ordered rather being dynamic with computed values the + and ++ commands
would not have worked giving compilation errors. Setting $offOrder allows their use.

• It is probably best to restore the system to normal using $onorder as soon as possible.

• The use of this option comes at a price: the compiler will not be able to diagnose odd and
incorrect formulations and data sets.

• This does not allow one to used the ord command with a set with calculated elements.

13.2.3.71 Onput, Onputs, Onputv, Offput

Causes a block of text to be placed in a put file. The offput stops the putting of the text block. The
variant Onputs causes parameters in the text block to be substituted while the onputv suppresses
substitution. This is illustrated the Output via Put Commands chapter. It is employed using the syntax

$Onput

or

$Onputs

or

$Onputv

Eventually followed by

$Offput

Notes

• Text from a file can be included in a put file with the Put_utility 'inc' syntax

13.2.3.72 Onrecurse and Offrecurse

Dollar command that allows a file to include itself. The default setting is $Offrecurse.
Note that the maximum include nesting level is 40 and if it is exceeded an error is triggered.

Example:

a file called file1.gms can contain

$onrecurse

$include file1

13.2.3.73 OnStrictSingleton and OffStrictSingleton

Controls whether compile time errors are generated when the singleton set specification for a singleton

More Language Features 540

© 2022 Prof. Bruce McCarl

set has multiple elements. It is employed using the syntax

$Offstrictsingleton

or

$Onstrictsingleton

The default is $Offstrictsingleton with error messages being generated.

13.2.3.74 Onsymlist and Offsymlist

Controls the incidence in the LST file of the symbol listing. This listing contains the names of all
symbols that have been defined and their explanatory text in alphabetical order grouped by symbol type.
 This is illustrated the Standard Output chapter. It is employed using the syntax

$Offsymlist

or

$Onsymlist

The IDE default is $Offsymlist and the command line GAMS one is $Onsymlist.

13.2.3.75 Onsymxref and Offsymxref

Controls the incidence in the LST file of the cross-reference report of all collected symbols in listing file
as discussed in the Standard Output chapter. It is employed using the syntax

$Offsymxref

or

$Onsymxref

The IDE default is $Offsymxref and the command line GAMS one is $Onsymxref.

13.2.3.76 Ontext and Offtext

The dollar command $Ontext - $Offtext pair encloses comment lines as discussed in the Including
Comments chapter. It is employed using the syntax

$Ontext
 comment statement 1
 comment statement 2
 …
$Offtext

Line numbers in the compiler listing are suppressed for lines enclosed in the $Ontext - $Offtext
sequence.

McCarl GAMS User Guide541

© 2022 Prof. Bruce McCarl

13.2.3.77 Onuellist and Offuellist

This dollar command controls the LST file incidence of a complete listing of all set elements that have
been entered. This is illustrated in the Standard Output chapter. It is employed using the syntax

$Onuellist

or

$Offuellist

The default is $Offuellist.

13.2.3.78 Onuelxref and Offuelxref

This dollar command controls the incidence of a cross references of set elements in the LST file as
discussed in the Standard Output chapter. It is employed using the syntax

$Onuelxref

or

$Offuelxref

13.2.3.79 Onundf and Offundf

This dollar command controls the incidence the use of the special value UNDF in data statements and
expression as discussed in the Calculating Items chapter. It is employed using the syntax

$Onundf

or

$Offundf

The default is Offundf.

13.2.3.80 Onverbatim and Offverbatim

These commands are used in conjunction with the GAMS parameter DUMPOPT to suppress the input
preprocessing for input lines that are copied to the dmp file. This feature is mainly used to maintain
different versions of related models in a central environment.
The $on/offVerbatim commands are only recognized for DUMPOPT >= 10 and apply only to lines in the
file the commands appeared.
The use of $goto and $on/offVerbatim are incompatible and may produce unexpected results.

Example:

$set f 123

$log %f%

$onVerbatim

$log %f%

$offverbatim

More Language Features 542

© 2022 Prof. Bruce McCarl

$log %f%

The corresponding dmp file contains

$log 123

$onVerbatim

$log %f%

$offVerbatim

$log 123

13.2.3.81 Onwarning and Offwarning

This option alters the way data domain checking is done. It allows domain errors in data statements
that are imported from other systems and reports warnings instead of errors. Internally data are
accepted and stored, even though they are outside the domain. The option is employed using the
syntax

$Onwarning

or

$Offwarning

The default value is $Offwarning.

Notes:

• This switch affects three types of domain error numbers 116, 170 and 171.

• This can have serious side affects and one has to exercise great care when using this feature.

13.2.3.82 Phantom

This dollar command is used to designate a particular element name as a phantom set element. It is
employed using the syntax

$phantom elementname

Example:

$phantom null

set i / null/

 j / a,b,null/ ;

display i,j ;

The resulting section of the LST file is

---- 4 SET I

(EMPTY)

---- 4 SET J

a, b

McCarl GAMS User Guide543

© 2022 Prof. Bruce McCarl

Notes:

• A phantom element is handled like any other set element. However, it is handled like it does not

exist.

• This is sometimes used to specify a data template that initializes the phantom records to default

values.

• Note that null does not appear in the listing file.

• Assignment statements on the phantom label are ignored.

13.2.3.83 Prefixpath

A dollar command that augments search path in the Windows path environment variable.

$prefixpath value

This results in the text in value being appended to the beginning of the search path.

13.2.3.84 Protect

This dollar command freezes all values of the named parameters not allowing modification but still
allowing their use in model calculation (.. commands when models are set up) in a privacy setting.

$protect item1 item2

or

$protect all

Notes:

• A list of items follows $protect and results in multiple items being protected.

• While the statement example above lists two items one, two or many more can be listed.

• The word ALL can also be used to protect all items.

• Appendix H of the GAMS Users Guide elaborates.

• The protection only takes effect in the restart files.

13.2.3.85 Purge

This dollar command removes the objects and all data associated in a privacy setting.

$purge item1 item2

or

$purge all

More Language Features 544

© 2022 Prof. Bruce McCarl

Notes:

• A list of items follows $purge and results in multiple items being removed.

• While the statement example above lists two items one, two or many more can be listed.

• The word ALL can also be used to remove all items.

• Appendix H of the GAMS Users Guide elaborates.

• A special license file is needed for this feature to work.

• The removal only takes effect in the restart files.

13.2.3.86 Remark

This dollar command adds a comment to the list file with parameter substitution

$remark starttext %item% moretext

Which if item was a global variable would create a line in the LST file as follows

starttext textinitem moretext

13.2.3.87 Set and Drop

Establishes or redefines contents of a control variable that is accessible in the code where the command
appears and all code included therein.

$set varname value

where

varname is any user chosen variable name

value is optional and can contain text or a number

Use of this command is discussed in the Conditional Compilation chapter.

These variables are destroyed using

 $drop varname

13.2.3.88 Setargs

Sets up substitutable parameters as GAMS control variable names.

McCarl GAMS User Guide545

© 2022 Prof. Bruce McCarl

$setargs args

For example using

$setargs one two thisthree allremain

causes a Batinclude file to use one in place of %1, two in place of %2 and thisthree in place of %3 and
all remaining arguments are associated with allremain. Thus one could use code like

$setargs one two thisthree allremain
%one% = %two% * %thisthree%;

in the BATINCLUDE instead of

%1=%2*%3;

setargs.gms provides an example. Note setargs must appear in the Batincluded file. Also note one
can also use a * or a . or a / to cause a numbered item to be skipped over.

For example

$setargs * * thisthree *

will only put a new name in for %3.

Use of this command is further discussed in the conditional compilation chapter.

13.2.3.89 Setcomps

Establishes or redefines control variables so they contain the components of a period delimited string.

$setcomps perioddelimstring v1 v2 v3 ….

where perioddelimstring is any period delimited string like the set specification of a multidimensional
parameter

v1 is the name of a control variable that will contain the name of the set element in the first
position

v2 is the name of a control variable that will contain the name of the set element in the second
position

v3 is the name of a control variable that will contain the name of the set element in the third
position

Thus (condcomp.gms)

$setcomps s1.s2.s3 sel1 sel2 sel3

More Language Features 546

© 2022 Prof. Bruce McCarl

separates the string s1.s2.s3 into its three components placing s1 into sel1, s2 into sel2 and s3 into
sel3.

The three items may be recombined back into the original filename string by using %v1%.%v2%.%v3%
in a command like (condcomp.gms)

$setglobal nam1 %sel1%.%sel2%.%sel3%

In turn one can do conditional processing as illustrated below

scalar count /0/;

set sels /s1*s3/;

loop(sels,count=count+1;

 if(sameas(sels,"%sel2%"),display "found element %sel2% in position",count;);

);

13.2.3.90 Setddlist

Causes GAMS to look for misspelled or undefined 'double dash' GAMS parameters. For example, in the
program below the double dash' options in use are 'one', 'two', 'three' and 'four' (note the use of the %two
% in quotes automatically makes it part of the allowed list of double dash parameters):

$if NOT set one $set one default value
display '%two%';
$setddlist three four

The following GAMS invocation will cause an error since --five is not a valid 'double dash' option.

gams ein.gms --two=twovalue --five=20

13.2.3.91 Setglobal and Dropglobal

Establishes or redefines contents of a control variable that is accessible in the code where the command
appears and all code included therein.

$setglobal varname value

where

varname is any user chosen variable name

value is optional and can contain text or a number

Use of this command is discussed in the conditional compilation chapter.

McCarl GAMS User Guide547

© 2022 Prof. Bruce McCarl

These variables are destroyed using

 $dropglobal varname

13.2.3.92 Setenv and Dropenv

Establishes or redefines contents of an environment variable.

$setenv varname value

where

varname is a user or system environment variable name

value is optional and can contain text or a number

Use of this command is discussed in the conditional compilation chapter.

These variables are destroyed using

 $dropenv varname

13.2.3.93 Setlocal and Droplocal

Establishes or redefines contents of a control variable that is accessible only in the code module where
defined.

$setlocal varname value

where

varname is any user chosen variable name

value is optional and can contain text or a number

Use of this command is discussed in the conditional compilation chapter.

These variables are destroyed using

 $droplocal varname

More Language Features 548

© 2022 Prof. Bruce McCarl

13.2.3.94 Setnames

Establishes or redefines three control variables so they contain the drive subdirectory, filename and
extension of a file named with full path.

$setnames filename v1 v2 v3

where filename is any file name

v1 is the name of a control variable that will contain the name of the subdirectory where the file is
located

v2 is the name of a control variable that will contain the root name of the file
v3 is the name of a control variable that will contain the extension of the file

Thus (condcomp.gms)

$setnames d:\gams\xxx.txt filepath filename fileextension

separates the filename d:\gams\xxx.txt into its three components placing d:\gams\ into filepath, xxx
into filename and .txt into fileextension.

The three items may be recombined back into the original filename string by using %v1%%v2%%v3% in
a command like (condcomp.gms).

$setglobal name %filepath%%filename%%fileextension%

13.2.3.95 Shift

Shifts the order of all parameters passed once to the 'left'. This effectively drops the lowest numbered
parameter in the list. It is employed using the syntax

$shift

You can use it to process parameters one at a time until you have done them all in a Batinclude context
(shift.gms, processshift.gms).

13.2.3.96 Show

Shows current values of the control variables plus a list of the macros. It is employed using the syntax

$show

13.2.3.97 Single

Causes all subsequent lines in the echo print source file portion of the LST file being single spaced. It is
employed using the syntax

$single

McCarl GAMS User Guide549

© 2022 Prof. Bruce McCarl

This dollar command is the default GAMS state, and is only useful as a switch to turn off the $double
dollar command.

13.2.3.98 SplitOption

This dollar control splitOption splits a parameter sequence in the form "-a3=0" or "-
a2=3.14" or "/opt=val" or "/opt val" into two parts placing then into two control
variables. This is designed for use in BATINCLUDE statements where one wants to alter
parameter when invoking other executables.

The syntax is splitOption PairToSplit ControlName1 ControlName2 where
PairToSplit is a string formatted as -opt=val or -opt val or \opt=val or \opt val
ControlName1 is the name of a compile-time control variable that will contain the name of

the parameter to change
ControlName2 is the name of a compile-time control variable that will contain the value of

the option.

For example

$splitoptin -pw 200 pgwidthI pgwidth

will return pgwidthI with the text pw and pgwidth with 200

More details on this are given here.

13.2.3.99 Stars

Alters the '****' marker in the GAMS listing file. By default, important lines like those denote errors, and
the solver/model status are prefixed with '****'. The syntax to use the command is

$stars characters

where the characters are the replacement string.

13.2.3.100Stop

Stops program compilation without creating an error.

$stop

13.2.3.101Stitle

Sets a subtitle that is placed in the page header of the LST file as discussed in the Standard Output
chapter. The next output line will appear on a new page in the listing file. It is employed using the
syntax

$stitle 'new title'

https://www.gams.com/32/docs/UG_DollarControlOptions.html

More Language Features 550

© 2022 Prof. Bruce McCarl

13.2.3.102Sysinclude

The $sysinclude includes an external file with arguments as discussed in the Including External Files
chapter. This command is invoked using the syntax

$sysinclude filename arg1, arg2,..

This by default includes the file from the GAMS system directory.

13.2.3.103Terminate

Dollar command that terminates compilation and execution immediately.

13.2.3.104Title

This dollar command sets a title that is placed in the page header of the listing file to 'new title' as
discussed in the Standard Output chapter. The next output line will appear on a new page in the listing
file. It is employed using the syntax

$title 'new title'

13.2.3.105Unload

This dollar command unloads specified items to a GDX file. It is employed using the syntax

$Unload item1 item2 ...

but must be used in conjunction with the command $Gdxout.

Example:

(gdxtrnsport.gms)

$gdxout tran

$unload i j

$unload d

$unload f

$unload b=dem a=sup

$gdxout

Notes:

• Unload is followed by the names of items to load separated by a space.

• Unload must be preceded and succeeded by a $Gdxout. The preceding $Gdxout specifies the GDX

file name and opens the file. The succeeding $Gdxout closes the file. More than one Unload can
appear in between.

• Unload outputs the data at compile time and will write the data present at the time that the

statement is encountered during the compilation. The results of calculations and solves will not be

McCarl GAMS User Guide551

© 2022 Prof. Bruce McCarl

reflected.

• Unload should not ordinarily be used, it is safer to use the execution time counterparts

Execute_Unload or Execute_Unloaddi as calculations and solves affect the results.

• The only way to guarantee that the data is current is to use the execution time command or to use a

save then restart a file with the dump commands within them.

13.2.3.106Use205

This dollar command sets the GAMS syntax to that of Release 2.05. This is mainly used for backward
compatibility and is employed as

$use205

13.2.3.107Use225

This dollar command sets the GAMS syntax to that of Release 2.25. This is mainly used for backward
compatibility and is employed as

$use225

13.2.3.108Use999

This dollar command sets the GAMS syntax to that of the latest version of GAMS. This dollar command
is the default. This is mainly used after $use205 or $use225 and is employed as

$use999

13.2.3.109Version

Dollar command to test GAMS compiler version number.

$version nnn

issues a compilation error if nnn is greater than the current GAMS version.

13.2.3.110Warning

Dollar command that issues a compilation warning but continues compilation and execution.

13.3 The Option Command

GAMS allows users to employ option commands to change solvers, obtain debugging information, alter
selected characteristics of the output, alter solution procedures, change GAMS internal settings, and
remove items from memory use.

Basics

Options by function

More Language Features 552

© 2022 Prof. Bruce McCarl

Description of options

13.3.1 Basics

Options allow users to make run time overrides of a number of internal GAMS settings that are adequate
for the most purposes but can be manipulated. The general forms an option statement can take on are

option namedoption = integer;
option namedoption = real number;
option namedoption = text;
option namedoption;
option itemname:decimals:rowentries:colentries;

where

namedoption is one of the option names as discussed below
itemname is the name of an item to be formatted for display statements as discussed below

but more completely in the Report Writing chapter.
the pink item is a setting for the option but in some cases is not required.

Notes:

• Option commands are processed at execution time unlike the Dollar Control commands discussed

in the chapter on Dollar Commands.

• More than one option can be included on a line separated by commas or end-of-line characters.

• Option or Options can be used interchangeably.

• Option names are not reserved words and therefore do not conflict with other uses of the same

name.

• An option statement is executed by GAMS in sequence with other instructions. Therefore, if an

option statement comes between two solve statements, the new values are assigned between the
solves and thus apply only to the second one.

• The values associated with an option can be changed as often as necessary, with the new value

replacing the older one each time for all subsequent but no prior instructions.

13.3.2 Options by function

Options can be divided into a number of broad classes. Namely options which

Control Solver Choice

Add debugging output to the LST file

Alter LST file contents

Influence procedures used by solvers

Change other GAMS settings

Eliminate items from memory

Form projections of data items

McCarl GAMS User Guide553

© 2022 Prof. Bruce McCarl

Below we list the options for each of these categories and later we provide a more complete discussion
of each.

13.3.2.1 Options for control of solver choice

One can change the solver applied to a problem type using the option command associated with the
problem type.

Option Basic Description

CNS Names CNS solver
DNLP Names DNLP solver
LP Names LP solver
MCP Names MCP solver
MINLP Names MINLP solver
MIP Names MIP solver
NLP Names NLP solver
RMINLP Names RMINLP solver
RMIP Names RMIP solver
Subsystems Lists all solvers and current default solvers in LST File.

13.3.2.2 Options including debugging information in LST file

One can add debugging information to the LST file using the option command.

Option Basic Description

Dmpsym Gives data on number of cases stored (memory use) for all GAMS
items.

Profile Controls inclusion of statement execution time and memory use
information.

Profiletol Controls minimum execution time for inclusion of a statement in profile
output.

Sysout Adds solver status output file to LST file.

13.3.2.3 Options influencing LST file contents

One can change the contents of the LST file using various option commands.

Option Basic Description

Option itemname:d Display item formatting.
Option itemname:d:r:c Display item formatting.
Decimals Controls default decimal places in displays.
Dispwidth Controls width of labels in display statements in the columns.

Expands beyond default of 10.
Dmpsym Gives data on number of cases stored (memory use) for all

GAMS items.
Eject Inserts a page break in the LST file.
Profile Includes statement execution time and memory use

More Language Features 554

© 2022 Prof. Bruce McCarl

information in output file.
Profiletol Specifies minimum execution time for inclusion of a statement

in profile output.
Solprint Suppresses solution printout in LST file.
Solslack Includes slacks in solution output.
Sysout Adds solver status file to LST file.

13.3.2.4 Options influencing solver function

One can change solver limits or the information GAMS passes to the solvers using various option
commands.

Option Basic Description

Bratio Controls basis formation.
Domlim Maximum number of domain errors.
Iterlim Maximum number of solver iterations.
Optca Absolute optimality tolerance in a MIP.
Optcr Relative optimality tolerance in a MIP.
Reslim Maximum seconds job can execute.
Savepoint Controls construction of saved solution GDX file.
Solprint Suppresses solution printout in LST file.
Solslack Includes slacks in solution output.
Solveopt Controls handling of solution when merged into stored solution.
Sysout Adds solver status file to LST file.
Threads Controls number of cores used by solver

One can also use the model attribute defPoint.

13.3.2.5 Other options altering GAMS settings

One can change the way GAMS performs certain tasks using various option commands.

Option Basic Description

Bratio Controls basis formation.
Decimals Controls default decimal places in displays.
Forlim Maximum number of executions of for, repeat or while.
Iterlim Maximum number of solver iterations.
Oldname Causes GAMS to only allow 10 character set element names for

compatibility with systems that do not accept longer names (notably
older versions of MPSGE).

Reslim Maximum seconds a job can execute.
Savepoint Controls construction of saved solution GDX file.
Seed Random number seed.
Solvelink Controls whether GAMS program stays open during a solve and iIn

cases the method used when passing information to a solver (in core or
out).

Solveopt Controls handling procedures when solution is merged into stored
solution.

Strictsingleton Controls handling of singletons with multiple elements.

McCarl GAMS User Guide555

© 2022 Prof. Bruce McCarl

Sys10 Controls handling procedures when exponentiation is done.

13.3.2.6 Options affecting data for items in memory

One can remove the data from an item using two option commands.

Option Basic Description

Clear Zeros all data for an item.
Kill Removes all data for an item.

13.3.2.7 Options that form projections of data items

An option command exists which allows one to rapidly count the number of elements in a particular slice
of a parameter. See the description below.

13.3.3 Description of options

Here we discuss each of the options in detail. All excepting the first two will be listed in alphabetical
order. The option settings in a model can be listed using DMPOPT.

Option itemname:d and Option
itemname:d:r:c

Option itemname < or <=
itemname2

Bratio

Clear

CNS

Decimals

DNLP

Domlim

Dmpopt

Dmpsym

Dualcheck

Eject

Forlim

IntVarUp

Iterlim

Kill

Limcol

Limrow

LP

MCP

Measure

MINLP

MIP

NLP

Oldname

Optca

Optcr

Profile

Profiletol

Reslim

RMIP

RMINLP

Savepoint

Seed

Shuffle

Solvelink

Solver

Solprint

Solslack

Solveopt

Subsystems

Sys10

Sysout

Threads

13.3.3.1 Option itemname:d and Option itemname:d:r:c

This option specifies the characteristics of display statement formats as discussed in the Report Writing
chapter. When using this option

Itemname is the name of a GAMS item that can be displayed.
d is the number of decimal places.
r is the number of index positions printed as row labels.
c is the number of index positions printed as column labels.

the statement can be used without the r and c arguments. Note a Display statement is needed to

More Language Features 556

© 2022 Prof. Bruce McCarl

output the item and that this formatting is used for all subsequent displays of that item.

13.3.3.2 Option itemname < or <= itemname2

An option command exists which allows one to rapidly count the number of elements in a particular slice
of a parameter. The general format of this command is

Option item1 < item2 ;

or

Option item1 <= item2 ;

Where item1 and item2 are GAMS sets or parameters with conforming domain declarations. The
dimensionality of item1 has to be equal or less than the dimensionality of item2. If the item1
dimensionality is less than the item2 dimension, the operation performed is an aggregation or projection
depending on the data type of the left side. In all cases, indices are permuted according to the domain
definitions. If a symbol has identical domain definitions they are permuted right to left (if < is used) or
left to right (if <= is used).

Examples:

Suppose we have Q(I,J,K) and want to know how many elements exist for a set element I across all
combinations of the subscripts J and K. This can be done using the option command (project.gms)

set i /1*3/
j /1*3/
k /1*3/;

Parameter Q(I,J,K) / 1.1.1 1, 1.2.3 3, 2.1.1 4/ ;
Parameter Elementcount(I) ;
option elementcount< Q ;
display elementcount;

Whereupon the elementcount parameter would contain a count of the number of nonzero elements in Q
associated with each element of the set I. Similarly one could develop a count of the number of nonzero
entries within Q for each pairing of the elements J and K across all values of the subscript I. by inserting

Parameter Elcount(J,K) ;
option elcount< Q ;
display elcount

This also works for sets (project.gms)

Set i, fromto(i,i), tofrom(i,i);
alias(i,ii);
parameter in(i),out(i);
option tofrom < fromto, in < fromto, out <= fromto;

which is equivalent to

tofrom(i,ii) = fromto(ii,i);
in(i) = sum(fromto(ii,i),1);
out(i) = sum(fromto(i,ii), 1);

McCarl GAMS User Guide557

© 2022 Prof. Bruce McCarl

13.3.3.3 Bratio

This option specifies what GAMS will do in forming an advanced basis as discussed in the Basis
chapter. This option is used by setting

Option Bratio=realnumber;

The value specified for this option causes a basis to be discarded if the number of basic variables is
smaller than bratio times the number of equations.

Notes:

• Setting bratio to 1 will always cause the basis to be discarded, which is sometimes needed with

nonlinear problems as discussed in the NLP and Basis chapters.

• Setting bratio to 0 forces GAMS to always try to construct a basis.

• If bratio has been set to 0 and there was no previous solve, an "all slack" (sometimes called 'all

logical') basis will be provided.

• This option is not useful for MIP solvers.

• The allowable values range from 0 to 1 with a default value of 0.25.

13.3.3.4 Clear

This option tells GAMS to resets the named GAMS items to their default values. This command is
invoked using the syntax

Option Clear=itemname;

For an example see memtest.gms

Notes:

• This is carried out during execution.

• Not all items can be cleared - only set, parameter, equation and variable types can be reset.

• The result is that the specified set is emptied or all data for the specified parameter are zeroed.

• The Kill option is related but clears out the data and removes all values and should not typically be

used.

• Memory space is not recovered unless the job is saved and restarted.

13.3.3.5 CNS

This option specifies what solver GAMS will use when it needs to solve a CNS type of model. This
option is used by setting

More Language Features 558

© 2022 Prof. Bruce McCarl

Option CNS=solvername;

where the solver must be CNS capable.

13.3.3.6 Decimals

This option specifies the default number of decimal places to be printed by all subsequent display
statements. However this specification is not applied to named items having specific display formatting
options defined as discussed above or in the report writing chapter. This option is used by setting

Option DECIMALS=number;

Nonlinear solvers have difficulty recovering after attempting an undefined operation. The default value is 3
and the number can range from 0 to 8.

13.3.3.7 Dispwidth

This option specifies the number of characters to be printed in the column labels of all subsequent
display statements when the column labels are of length greater than 10. This option is used by setting

Option DISPWIDTH=number;

The default value is 10 and the number can range from 10 to 31.

13.3.3.8 DNLP

This option specifies what solver GAMS will use when it needs to solve a DNLP type of model. This
option is used by setting

Option DNLP=solvername;

where the solver must be DNLP capable.

13.3.3.9 Domlim

This option specifies the maximum number of allowable domain errors (undefined operations like division
by zero) during a nonlinear solver run before the solver terminates the run. Such errors are encountered
while calculating the nonlinear user defined nonlinear terms function and their derivatives as discussed in
the Execution Errors chapter. This option is used by setting

Option Domlim=number;

Nonlinear solvers have difficulty recovering after attempting an undefined operation. The default value is
0.

McCarl GAMS User Guide559

© 2022 Prof. Bruce McCarl

13.3.3.10 DmpOpt

This option causes GAMS to generate a list of all available options which can be set using the option
statement, and their values to the LST file. This option is used by setting

Option DmpOpt;

13.3.3.11 Dmpsym

This option causes GAMS to generate a dump of the cases stored used by each named item in the
GAMS program. It can be used in diagnosing memory problems as discussed in the memory chapter.
This option is used by setting

Option Dmpsym;

13.3.3.12 Dualcheck

This option causes GAMS to evaluate and provide output on the reduced cost condition for each variable
in the Limcol output using the row marginals. This option is used by setting

Option Dualcheck=1;

The default value is no dual check.

13.3.3.13 Eject

This option causes GAMS to inject a page break into the LST file. This option is used by setting

Option Eject;

13.3.3.14 Forlim

This option specifies the maximum number of allowable executions of Control Structures involving a For,
While or Repeat before GAMS signals an execution error and terminates the control structure. This
option is used by setting

Option Forlim=number;

as illustrated in otheroptions.gms. The default value is 999999999.

13.3.3.15 IntVarUp

The default upper bound on integer variables has changed as explained here. This can be changed with a
command line parameter of with an option statment of the formt:

Option IntVarUp=n;

using the values discussed under the command line parameter

More Language Features 560

© 2022 Prof. Bruce McCarl

13.3.3.16 Iterlim

This option specifies the maximum number of allowable solver iterations, before the solver terminates the
run. This option is used by setting

Option Iterlim=number;

As of version 23.1 the default iteration limit has been increased from 10000 to 2e9. Setting IterLim to

INF will not work since it is treated as an integer by GAMS and many solvers. Some solver, e.g.

GAMS/Gurobi, recognize 2e9 and set the solver iteration limit to infinity.

13.3.3.17 Kill

This option tells GAMS to remove all data for a named GAMS item. This command is invoked using the
syntax

Option Kill=itemname;

For an example see memtest.gms.

Notes:

• Kill should not ordinarily be used. Rather one should use Clear but they operate essentially the

same..

• This is carried out during execution.

• Not all items can be killed - only set, parameter, equation and variable types can be reset.

• The result is that only the name and set dependency is retained.

• The Clear option is related but zeros all out the data.

• Memory space is not recovered unless the job is saved and restarted or a solve occurs with

solvelink=0.

• More on this appears here.

13.3.3.18 Limcol

This option specifies the number of cases output in the LST file for each variable as discussed in the
Standard Output chapter. This option is used by setting

Option Limcol=number;

The default value is 3.

13.3.3.19 Limrow

This option specifies the number of cases output in the LST file for each named equation as discussed
in the Standard Output chapter. This option is used by setting

McCarl GAMS User Guide561

© 2022 Prof. Bruce McCarl

Option Limrow=number;

The default value is 3.

13.3.3.20 LP

This option specifies what solver GAMS will use when it needs to solve a LP type of model. This option
is used by setting

Option LP=solvername;

where the solver must be LP capable.

13.3.3.21 MCP

This option specifies what solver GAMS will use when it needs to solve a MCP type of model. This
option is used by setting

Option MCP=solvername;

where the solver must be MCP capable.

13.3.3.22 Measure

This option tells GAMS to output the time and memory use since the last measure statement or the
program beginning. This option is used by setting

Option Measure;

Profile is probably the option to use if one really wants execution timing.

13.3.3.23 MINLP

This option specifies what solver GAMS will use when it needs to solve a MINLP type of model. This
option is used by setting

Option MINLP=solvername;

where the solver must be MINLP capable.

13.3.3.24 MIP

This option specifies what solver GAMS will use when it needs to solve a MIP type of model. This option
is used by setting

Option MIP=solvername;

More Language Features 562

© 2022 Prof. Bruce McCarl

where the solver must be MIP capable.

13.3.3.25 NLP

This option specifies the solver GAMS will use when it needs to solve a NLP type of model. This option
is used by setting

Option NLP=solvername;

where the solver must be NLP capable.

13.3.3.26 Oldname

This option causes GAMS to only allow 10 character item set element names for compatibility with
systems that do not accept longer names (notably older versions of MPSGE). It causes GAMS to
check that all set element names are less than 10 characters and uppercases the names.

Option Oldname=1;

When the set names are too long an execution error arises. There is also an Note it does not require
less than 10 character set, parameter, variable etc names and may still not work with older versions.

13.3.3.27 Optca

This option specifies an absolute termination tolerance for use in solving MIP problems. The solver will
stop the solution process when a solution is found whose objective value is guaranteed to be within
optca of the best possible solution as discussed in the MIP chapter. This option is used by setting

Option Optca=realnumber;

The default realnumber is 0.0 but the optcr choice below is used.

13.3.3.28 Optcr

This option specifies a relative termination tolerance for use in solving MIP problems. The solver will stop
the solution process when the proportional difference between the solution found and the best theoretical
objective function is guaranteed to be smaller than optcr as discussed in the MIP chapter. This option is
used by setting

Option Optcr=realnumber;

The default realnumber is 0.10.

13.3.3.29 Profile

This option specifies whether to include LST file output on statement level execution timing and memory

McCarl GAMS User Guide563

© 2022 Prof. Bruce McCarl

use as well as the number of set elements over which statements are executed. Use of this option is
discussed in the Speed and Memory chapters. This option is used by setting

Option Profile=number;

The default value is 0 and a value of

0 Means no execution profile will be generated in the LST file.
1 Means the LST file will contain reports on execution time and memory use for each

statement not in a control statement and any first level Control Structure statements
like loops, if, for and while.

2 Means that profile information will be reported for any statements that are nested in first
level control statements.

3 Profile information is reported for any statements that are nested in second level control
statements.

Higher numbers can be used to go further into nested items.

13.3.3.30 Profiletol

This option specifies the minimum amount of time a statement must use to be included in the Profile
generated output as discussed in the Speed and Memory chapters. This option is used by setting

Option Profiletol=realnumber;

The default value is 0.0. Note that profiletol is not applied to model generation statements.

13.3.3.31 Reslim

This option specifies the maximum time in seconds that the computer can run during execution of a
solver, before the solver terminates the run. This option is used by setting

Option Reslim=realnumber;

The default value is 1000.

13.3.3.32 RMIP

This option specifies the solver GAMS will use when it needs to solve a RMIP type of model. This option
is used by setting

Option RMIP=solvername;

where the solver must be RMIP capable.

More Language Features 564

© 2022 Prof. Bruce McCarl

13.3.3.33 RMINLP

This option specifies the solver GAMS will use when it needs to solve a RMINLP type of model. This
option is used by setting

Option RMINLP=solvername;

where the solver must be RMINLP capable.

13.3.3.34 Savepoint

This option tells GAMS to save a point format GDX file that contains the information on the current
solution point. One can save the solution information from the last solve or from every solve. The points
that are saved can be used to provide an advanced basis, integer program starting point or NLP starting
point Numeric input is expected with the allowable numeric values being

0 no point gdx file is to be saved
1 a point gdx file is to be saved from the last solve in the GAMS model
2 a point gdx file is to be saved from every solve in the GAMS model

The command is implemented with the syntax

Option Savepoint=number

When Sp=1 the point gdx file saved has the name modelname_p.gdx so for a model identified in the
solve statement as transport the file would be transport_p.gdx. On the other hand if Sp=2 then the file
name is modelname_pnn.gdx where nn is the solve number as determined internally by GAMS. Thus for
a model solved 2 times that is identified with the name firm in the solve statement, then the file names
would be firm_p1.gdx and firm_p2.gdx. The file is reloaded with the Execute_loadpoint syntax.

This can also be done through a command line parameter or a model attribute.

13.3.3.35 Seed

This option specifies the seed used for the pseudo random number generator. This option is used by
setting

Option Seed=number;

The default value is 3141. The function Execseed also manipulates and retrieves the random number
seed.

13.3.3.36 Shuffle

An option that rearranges the data values within a one dimensional parameter so in a random
fashion.

The command is invoked using the syntax

McCarl GAMS User Guide565

© 2022 Prof. Bruce McCarl

Option Shuffle=itemname;

Where itemname gives the name of the one dimensional parameter that will be rearranged.

There are four different ways this works depending on the way the parameter is declared. these
involve whether it is declared over the universal set or a named set and whether data has been
defined for the parameter or not.

In particular if

the parameter is defined over a named set and
o no data are declared then the data in the parameter are filled with

randomly assigned numbers that range from one to the number of
elements in the set. For example if the parameter is defined over
a set with 23 elements then the parameter will be defined with
numbers ranging from 1 to 23 with the values randomly arranged

o data are declared then the values are randomly rearranged.
the parameter is defined over the universal set and

o no data are declared then the data in the parameter are filled with
randomly assigned numbers that range from one to the number of
elements in the universal set. For example if the universal set has
1000 elements then the parameter will be defined for all of the
elements in the universal set with numbers ranging from 1 to 1000
with the values randomly arranged.

o data are declared for specified elements then the values
associated with those elements are randomly rearranged.

This is implemented in the file shuffleex.gms

Notes:

• Each use of shuffle generates a new random data rearrangement .

• One can use this to generate random rearrangements of a set as illustrated in the shuffleex.gms
example for the set j at the bottom. However the set is not rearranged rather a tuple is generated
that gives the new order (reorderj in the example)

13.3.3.37 Solvelink

This option controls GAMS function when linking to solvers. The command is implemented with

Option Solvelink=number;

Where the values for number are

0 in which case GAMS operates as it has for years (default)

More Language Features 566

© 2022 Prof. Bruce McCarl

1 in which case the solver is called from a shell and GAMS remains open.
2 in which case the solver is called with a spawn (if possible as determined by GAMS) or a shell

(if the spawn is not possible) and GAMS remains open.
3 in which case GAMS starts the solution and continues in a Grid computing environment
4 in which case GAMS starts the solution and wait (same submission process as 3) in a Grid

computing environment. This is included mainly for debugging purposes as is solvelink=7.
5 in which case the problem is passed to the solver in core without use of temporary files
6 which when chosen causes GAMS to pass data to the solver incore and not wait for the solver

to return the solution. Consequently the solution must be collected later as discussed here.
More on this option appears in the command line parameter discussion

7 under which GAMS passes information to the solver in core as it does when when solvelink=6.
However in this case GAMS also waits for the solver to return the solution. This is included
mainly for debugging purposes as is solvelink=4.

A set of solvelink constants may also be used.

Leaving GAMS open or passing the information in core saves time. On the other hand additional
memory is required. This option is best for jobs that have a large data set and solve many small models
as in that case one sacrifices memory but avoids the overhead of many GAMS saves and restarts. This
is implemented by using the option SOLVELINK that can appear on the command line, as a model
attribute or as an internal option statement.

The default setting is zero.

This can also be done through a command line parameter or a model attribute.

13.3.3.38 Solprint

This option controls the printing of the model solution in the LST file as discussed in the Standard
Output chapter. This option is used by setting

Option Solprint=text;

where two text values are allowed

On which includes solution listings following solves.
Off which removes solution listings following solves.
Silent which suppresses all solution information.

The default setting for text is On.

The related model attribute is <modelname>.solprint=n and the GAMS parameter is solprint=n
.

A related set of solprint constants is also present.

McCarl GAMS User Guide567

© 2022 Prof. Bruce McCarl

13.3.3.39 Solslack

This option causes the equation output in the listing file to contain slack variable values instead of level
values as discussed in the Standard Output chapter. This option is used by setting

Option Solslack=value;

where two values are allowed

0 which includes equation levels in the solution part of the LST file following solves.
1 which includes equation slacks in the solution part of the LST file following solves.

The default value is 0 so a print out including slacks does not occur.

13.3.3.40 Solveopt

This option controls the way solution values resulting from a solve are stored by GAMS as discussed in
the Variables, Equations, Models and Solves chapter. This option is used by setting

Option Solveopt=text;

where two text values are allowed

Merge which merges old values with new ones
Replace which replaces the old values of all equations and most variables.
Clear which replaces old equation information and all model included variables

The default text is Merge. This is only of concern if a prior solution or starting point is resident in
memory and if the sets, variables or equations in the definition of the model vary from the previously
solved model or starting point.

Under merge old and new values merged together, and new values overwrite old ones but old nonzero
values that do not have new counterparts are left alone. Under replace all old values associated with a
variable or equation that at least one instance of appears in a model are reset to default values before
new solution values are returned. There are some possible problems with the replace option that users

should realize as discussed in wontgo.pdf but these are resolved by the clear option.

13.3.3.41 Solver

Option command that makes a solver the default for all model types to which it can be applied.

Set via the command

Option solver=abc;

For example

http://www.gams.com/mccarl/wontgo.pdf

More Language Features 568

© 2022 Prof. Bruce McCarl

option solver=conopt;

will result into setting the solver for model types LP, RMIP, CNS, DNLP, NLP, QCP, RMIQCP, and
RMINLP to Conopt

Additionally

option solver=conopt, solver=cbc;

will result into setting the solver for model types LP, RMIP, CNS, DNLP, NLP, QCP, RMIQCP, and
RMINLP to Conopt and then alter the model types that CBC can sollver so CBC is the default like LP,
and RMIP, plus add CBC as the default for any model types to which it uniquely applies

13.3.3.42 strictSingleton

This option specifies whether GAMS is to trigger out an error if more than one element is specified in a
singleton set. Integer input is expected.

The command is implemented with the syntax

Strictsingleton=number

Where the values and corresponding actions for the number entry are.

0 Use the first set element ignoring the rest when the singleton set has multiple
elements

1
Message out an error if assignment to singleton set causes the set to have
multiple elements

The default value is one

13.3.3.43 Subsystems

This option causes GAMS to list all solvers available as well as the current default and active solvers in
the LST file. This option is used by setting

Option Subsystems;

as illustrated in otheroptions.gms.

13.3.3.44 Sys10

This option controls whether GAMS converts exponentiation treating a real power as an integer power if

the exponent is constant and within 10-12 of an integer value. This option is used by setting

Sys10=number;

McCarl GAMS User Guide569

© 2022 Prof. Bruce McCarl

where two numerical values are allowed

0 which does not convert exponentiation.
1 which converts exponentiation.

The default value is 0.

there is a corresponding option command implementd by

option sys10=number;

13.3.3.45 Sysout

This option controls the incorporation of additional solver generated output (that in the solver status file)
into the LST file. This option is used by setting

Option Sysout=text;

where two text values are allowed

On which includes the extra listing following solves.
Off which excludes the extra listing following solves.

The default text is Off.

The contents of the solver status file can be useful in gaining an understanding of the behavior of the
solver. This output is automatically incorporated if the solver crashes or encounters any difficulty.

14 Advanced Language Features

This section covers either very technical or infrequently used features of the GAMS language. The
coverage is organized by chapter with the chapters covering:

Output via Put Commands

Acronyms

Conditional Compilation

14.1 Macros in GAMS

GAMS includes the ability to defines macros as of version 22.9. The design of the macro facility
was inspired by the GAMS-F preprocessor for function definition developed by Ferris, Rutherford
and Starkweather, 1998, 2005.

Advanced Language Features 570

© 2022 Prof. Bruce McCarl

Macros are widely used in computer science to define and automate structured text replacements.
The GAMS macro processors functions similar to the popular C/C++ macro preprocessor.
However, it is GAMS syntax driven.

Basic Definition

The definition takes the form

$macro name macro body

$macro name(arg1,arg3,arg2,..) macro body with tokens arg1,..

The name of the macro has to be unique, similar to other GAMS data types like sets and
parameters. A (following immediately the macro name starts the list of replacement arguments and
a) ends it. These will be expanded by the arguments in parentheses in a call to the macro.

The macro body is not further analyzed after removing leading and trailing spaces.

The items to replace in the macro body follow the standard GAMS identifier conventions. For
example: let us define a simple macro that forms 1 over an item

$macro oneoverit(y) 1/y

then let us use it calling the macro twice with two different arguments(macros.gms)

z = oneoverit(x1)+oneoverit(x2);

will then be expanded using the arguments into:

z = 1/x1 +1/x2;

as GAMS recognizes oneoverit(x1) as a macro and substitutes x1 (the argument in oneoverit
(x1)) for y (in the original definition of the macro oneoverit(y))and does the same for x2.

Note the item used in the macro(y) is just a symbol and can duplicate the name of other items in the
code. For example the macro could have been defined

$macro oneoverit(x1) 1/x1

even though x1 is a named scalar in the code.

Multiple arguments

The actual calling arguments of macros can contain multiple arguments. In such a case the multiple
arguments are separated by commas. (macros.gms)

$macro ratio(a,b) a/b

when called with

z = ratio(x1,x2);

will expand into:

z = x1/x2;

McCarl GAMS User Guide571

© 2022 Prof. Bruce McCarl

Multi-line Macros

One can extend macros to multiple lines using a \ (macros.gms)

$macro equ2(z,d,q) equation equ2_&z&d; \
 equ2_&z&d.. z*q =e= 0;

Spacing within Multi line macros

I recently had problems with a macro and discovered both an issue and a previously hidden GAMS

feature that avoided the issue. In particular, suppose I had formed a macro

(macrowithampersand.gms) for the right part of the statement below

Y= (+12+3*x-0.005*x**2)$(x gt 0 and x <= 200)

Where the macro was continued over several lines as follows

$macro evalx(x) \
 (+12+3*x-0.005*x**2) \
 $(x gt 0 and \
 x <= 200)

I then ran this and got an error. Examining the LST file I found the expanded macro was

y=(+12+3*x-0.005*x**2)$(x gt 0 andx <= 200);

where GAMS had stripped all beginning and ending spaces from the lines running the “and”

together with the “x” so it was “andx” which the GAMS compiler did not recognize and identified as

an error.

I then tried several approaches to fix this and had concluded I could never end a macro line wit and,

or, ne, Eq etc. I then asked the GAMS staff if there was a way to avoid the problem and I was

informed by Alex that this could be fixed by adding an & at the end of the line after a space as

follows

$macro evalx(x) \
 (+12+3*x-0.005*x**2) \

 $(x gt 0 and & \
 x <= 200)

where the & causes the space to be retained.

Also in the process I found out that using && caused GAMS to strip quotes from a passed in

argument (see the example at bottom of macrowithampersand.gms. Thus if one had the macro

above (renamed to evalx1) and called it with

Advanced Language Features 572

© 2022 Prof. Bruce McCarl

Y=evalx1(“x”);
One would need to modify the macro to

 $macro evalx1(x) \
 (+12+3* &&x-0.005*&&x**2)

 \
 $(&&x gt 0 and &&x <= 200)

I also discovered in forming this example that one could not end a line with an & and then have next

line start with && as I would need to do to preserve the spacing after the and command if the macro

was typed as above.

Macros within Macros

Macros can be included within macros (macros.gms)

$macro product(a,b) a*b

$macro addup(i,x,z) sum(i,product(x(i),z))

when called with

z = addup(j,a1,x1);

will expand into:

z = sum(j,a1(j)*x1);

Note multiple pairs of parenthesis and quotes can be used freely to protect the separating comma.

More careful expansion

The recognition of macros and expansion of arguments can be more carefully controlled by the use
of ampersands (&) in the macro body. Ordinarily the macro will only substitute for full words thus the
macro group (macros.gms)

$macro f(i) sum(j, x(i,j))

$macro equh(q) equation equ_q(i); equ_q(i).. q =e= 0;

equh(f(i))

which would expand to become

equation equ_q(i); equ_q(i).. sum(j, x(i,j)) =e= 0;

Note this contains q in a number of other places. If one wished to replace some of them as well one
could use (macros.gms)

$macro f2(r,i) sum(j, r(i,j))

$macro equ2(z,d,q) equation equ2_&z&d; equ2_&z&d.. z*q =e= 0;

equ2(1,(i),f2(x,i))

McCarl GAMS User Guide573

© 2022 Prof. Bruce McCarl

equ2(2,(k),f2(r,k))

which would expand to become

equation equ2_1(i); equ2_1(i).. 1*sum(j, x(i,j)) =e= 0;

equation equ2_2(k); equ2_2(k).. 2*sum(j, r(k,j)) =e= 0;

where the &z and $d are replaced.

One can also include expressions with spaces, commas and unbalanced parentheses using &&
which includes an expression removing the outer set of quotes. (macros.gms)

$macro d(q) display &&q;

$macro ss(q) &&q)

d('"hereit is" , i,k')

d('"(zz"')

z=ss('sum(j,a1(j)');

z=ss('prod(j,a1(j)');

where note the d expressions contain quotes, spaces and commas and the ss expression has
unbalanced parentheses within the quoted parts.

In turn these expand to become

display "hereit is" , i,k;

display "(zz";

z=sum(j,a1(j));

z=prod(j,a1(j));

Infinite nested macros

Nested macro use can result in an expansion of infinite length. For example:

$macro a b,a

display a;

will expand into:

display b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,b,……

GAMS will eventually refuse to do more substitutions and issue a compilation error.

Use in report writing

Another feature of macros is the implicit use of the .L suffix in report writing and other data
manipulation statements. This allows using the same algebra in model definitions and assignment
statements. The following code illustrates this feature (macrotrnsport.gms)

$macro sumit(i,term) sum(i,term)

 cost .. z =e= sumit((i,j), (c(i,j)*x(i,j))) ;

 supply(i) .. sumit(j, x(i,j)) =l= a(i) ;

 demand(j) .. sumit(i, x(i,j)) =g= b(j) ;

 Model transport /all/ ;

Advanced Language Features 574

© 2022 Prof. Bruce McCarl

 Solve transport using lp minimizing z ;

$onDotL

parameter tsupply(i) total demand for report

 tdemand(j) total demand for report;

 tsupply(i)=sumit(j, x(i,j));

 tdemand(j)=sumit(i, x(i,j));

which will expand into:

cost .. z =e= sum((i,j),(c(i,j)*x(i,j))) ;

supply(i) .. sum(j,x(i,j)) =l= a(i) ;

demand(j) .. sum(i,x(i,j)) =g= b(j) ;

Model transport /all/ ;

Solve transport using lp minimizing z ;

parameter tsupply(i) total demand for report

tdemand(j) total demand for report;

tsupply(i)=sum(j,x.L(i,j));

tdemand(j)=sum(i,x.L(i,j));

The $ondotl enables the implicit .L suffix for variables. This feature was introduced to make
macros more useful and is not limited to be used in macro bodies. Since this a new feature it has to
be enabled. The matching $offdotl will disable this feature.

Other notes

Three more commands are relevant to macros.

$show will list any GAMS macros defined.

$onmacro/$offmacro will enable or disable the expansion of macros; the default is
$onmacro.

$on/offexpand will change the processing of macros appearing in the arguments of a
macro call. The default operation is not to expand macros in the arguments. The switch $onexpand
enables the recognition and expansion of macros in the macro argument list. $offexpand will
restore the default behavior.

Macro definitions are preserved in a save/restart file and are available again when performing a
continued compilation.

14.2 Output via Put Commands

Users can find that GAMS displays are inadequate for output presentation. A more customized output
can be created using GAMS put commands. However, with this control comes a cost. Put commands
involve an increased degree of technical programming.

Basics of put

McCarl GAMS User Guide575

© 2022 Prof. Bruce McCarl

Details on put related commands

Putting out a block of text: $onput, $offput, $onputs, $onputv

Making puts conditional

Output to other programs

Errors that arise during puts

14.2.1 Basics of put

The basic structure of the put instruction in its simplest form is:

put item;

where item is any type of output such as explanatory text, labels, parameters, variable attributes,
equation attributes or model attributes. However, in order that GAMS direct the output to the appropriate
place, the user must first specify the name of output file then issue a command activating that file. Thus
a more general put file sequence is:

file localfileidentifier /externalfilelocation/;

put localfileidentifier ;

put item1;

put item2;

put item3;

…

In this basic structure, the lines

• Defines the file which will receive the output from the put commands giving it a

localfileidentifier (an internal item name) and an external file name possibly containing a path
location.

• Issues a put statement with the localfileidentifier and nothing else on the line which assigns

the defined files as the current one to which all subsequent puts will be written until
another internal file is referenced.

• Lastly, the subsequent lines containing put commands each write to the current file.

• Text from a file can be included in a put file with the Put_utility 'inc' syntax

• Multiple lines of text can be included in a put file with the $onput syntax

Example:

For illustration we specify an example in the context of the transportation model using the file putex1.gms. The
component of this file involving put commands is as follows:

file myputfile;

put myputfile;

put 'Run on ' system.date ' using source file ' system.ifile ///;

put 'Run over scenario set ' scenarios.ts //;

loop(scenarios,

 Need(Destinaton)=demandscen(destinaton,scenarios);

 Solve tranport using LP minimizing totalcost ;

Advanced Language Features 576

© 2022 Prof. Bruce McCarl

 report("total","cost",scenarios)=totalcost.l;

 report("demand shadow price",Destinaton,scenarios)

 = demandbal.m(Destinaton);

 report("supply shadow price",Source,scenarios)

 = Supplybal.m(Source);

 savtransport(Source,Destinaton,scenarios)

=transport.l(Source,Destinaton);

 put 'Scenario name ' scenarios.te(scenarios):14

 put ' Optimality status ' tranport.modelstat:2:0 /;

) ;

put //;

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

 put @41;

 loop(scenarios,put scenarios.tl:10);

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

 put 'Quantity demanded ' @35

 loop(scenarios,

 put demandscen(destinaton,scenarios):10:0);

 put /;

 put 'Marginal Cost of meeting demand ' @35

 loop(scenarios,

 put report("demand shadow price",Destinaton, scenarios)

 :10:2);

 put //);

The resultant output is placed on the file myputfile.put and is

Run on 01/05/02 using source file C:\GAMS\GAMSPDF\PutEX1.GMS

Run over scenario set Four alternatives

Scenario name Base Case optimality status 1

Scenario name No Chicago optimality status 1

Scenario name No New York optimality status 1

Scenario name No Topeka optimality status 1

Report for New York ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 50 350 0 0

Incoming From San Diego 275 275 0 525

Quantity demanded 325 625 0 525

McCarl GAMS User Guide577

© 2022 Prof. Bruce McCarl

Marginal Cost of meeting demand 250.00 250.00 250.00 250.00

Report for Chicago ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 300 0 350 350

Incoming From San Diego 0 0 275 25

Quantity demanded 300 0 625 375

Marginal Cost of meeting demand 178.00 178.00 187.00 187.00

Report for Topeka ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From San Diego 275 275 275 0

Quantity demanded 275 275 275 0

Marginal Cost of meeting demand 151.00 151.00 151.00 151.00

Notes:

The file specification must always appear before any of the put commands and in general is as follows

File localname / externalfilelocation/;

More on the file specification appears below.

• The second entry in any put a sequence must always be of the form

Put localfileidentifier optional other contents

where the localfileidentifier must match that found in an earlier file statement.

• The subsequent put statements can contain

� Quoted text as discussed below.

� Set element labels as discussed below.

� Set element explanatory text as discussed below.

� GAMS item explanatory text (for sets, parameters, variables, equations, and models) as
discussed below.

� Parameter numeric data as discussed below.

� Model solution numeric data as discussed below.

� System information like source file name or date as discussed below.

� Write position control characters as discussed below.

� Item width, decimals and justification specifications as discussed below.

• The output is structured assuming a proportional font is being used (like Courier New). Non-

proportional font features are not present.

14.2.2 Details on put related commands

The main put related commands and put formatting are discussed by command below.

Advanced Language Features 578

© 2022 Prof. Bruce McCarl

File

Put

14.2.2.1 File

The file specification must always appear before any put commands and in general is formatted as
follows

File localfileidentifier optional explanatory text / externalfilelocation/;

or

Files localfileidentifier optional explanatory text / externalfilelocation/;

Notes:

• The externalfilelocation entry can be any valid filename and file location on the computer system

including a full path specification. It is limited to 255 characters.

• When the externalfilelocation is left off the external name will be localfileidentifier.put ie the

localfileidentifier plus the extension put.

• If the externalfilelocation does not contain a path specification within then by default the file is placed

in the directory where one is working.

• The default directory where put files are kept may be altered with the Putdir command line

parameter.

• The localfileidentifier and optional explanatory text must obey the GAMS item naming rules as

specified in the Name Rules chapter.

• A file statement can contain more than one localfileidentifier and associated location.

File name1/"c:\file1.out"/,file2 /"d:\out\myreport.txt"/;

• There can be more than one file statement in a program.

• The name of the active put file can be changed using Put_utility

14.2.2.1.1 Putdr: Pdir

When a path name is not given in the file statement the put files are placed in the current working
directory. However this can be reset using the command line Putdir or Pdir options that specifies the
directory where the put files are generated and saved. This option does not override the paths specified
in file statements.

14.2.2.1.2 .Pdir

One can redirect the put file output to the scratch directory by setting the put file attribute

filename.pdir=1;

McCarl GAMS User Guide579

© 2022 Prof. Bruce McCarl

14.2.2.1.3 Sending output to the LOG file

One can choose to send the put file output to the LOG file by using a null specification for the file name
as follows and in put11.gms

file name / '' /;
put name ;
put 'instructions that will go to the log file' /;
put 'more instructions that will go to the log file' /

14.2.2.1.4 Sending output to the SCREEN

One can choose to send the put file output to the console screen by using the following specification for
the file name (comparewhere.gms).

$set console
$if %system.filesys% == UNIX $set console /dev/tty
$if %system.filesys% == DOS $set console con
$if %system.filesys% == MS95 $set console con
$if %system.filesys% == MSNT $set console con
$if "%console%." == "." abort "filesys not recognized";
file screen / '%console%' /;

then using put commands like (comparewhere.gms).

put screen;
put 'I am on scenario ' Scenarios.tl;
putclose;

This works fine in DOS or UNIX but not under the IDE. There you need to make the DOS window visible
by manipulating the options under the execute tab or just send to the LOG file.

14.2.2.2 Put

The basic syntax for the put command is as follows

Put localfileidentifier item1 item2, item3;

Advanced Language Features 580

© 2022 Prof. Bruce McCarl

where localfileidentifier identifies the place to which the put output is to be directed. Item1, item2 and
item3 and any other following trailing items are some mixture of data items, labels and formatting
commands as discussed immediately below.

• The localfileidentifier entry is not always required as GAMS will direct output to the

localfileidentifier found in the last instance of a put localfileidentifier command.

• At least one command of the form put localfileidentifier must appear in the program before any

other puts can appear.

• One can have a program which initially puts to one localfileidentifier files and switches to

another then switches back as illustrated below (putex2.gms)

file my1;

file myfilewithalongname;

put my1, 'First line' /;

put myfilewithalongname, 'First line over there' /;

put my1, 'Second line' /;

put myfilewithalongname, 'Second line over there'/;

which results in file my1.put with contents

First line

Second line

and a file named myfilewithalongname.put with contents

First line over there

Second line over there

• The separators between the items can either be spaces or commas as illustrated above.

14.2.2.2.1 Items w ithin a put

A put may contain items that are quoted text, set element names, set element explanatory text, item
names, parameter data, model solution data, GAMS command line parameters, system information, or
formatting characters. Each will be reviewed below.

14.2.2.2.1.1 Quoted text

One of the allowable types of items in a put command is quoted text. The blue entries just below all
involve instances of quoted text which are used in the example putex1.gms

put 'Run on ' system.date ' using source file ' system.ifile ///;

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

 put @41;

 loop(scenarios,put scenarios.tl:10);

McCarl GAMS User Guide581

© 2022 Prof. Bruce McCarl

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

 put 'Quantity demanded ' @35

The resultant output file follows with the blue entries corresponding to quoted text generated by the put
commands above.

Run on 01/05/02 using source file C:\GAMS\GAMSPDF\PutEX1.GMS

Report for New York ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 50 350 0 0

Incoming From San Diego 275 275 0 525

Quantity demanded 325 625 0 525

• Quoted text may be encased in a pair of single (') or double (") quotes with each the items

needing to use a matching pair. Thus the following three lines are all exactly equivalent.

put 'Run on ' system.date ' using source file ' system.ifile;
put "Run on " system.date " using source file " system.ifile;
put 'Run on ' system.date " using source file " system.ifile;

• Quoted text may be specified with a length as discussed below and a justification as

discussed below using commands like

put 'Marginal Cost of meeting demand ':33 @35);
put 'Marginal Cost of meeting demand ':>33 @35);

14.2.2.2.1.2 Set elements

Another of the allowable types of items in a put command is set element related text. These can
include the names of the set elements or the explanatory text that is associated with a set element.

Sometimes one wishes output wherein the set element names are used in labeling the printed data. In
the put file context this is done by putting an item in a put command which is setname.tl wherein the
named set is varied by a loop command as discussed in the Control Structures chapter. The orange
entries just below all involve instances where the text for set element names is used in putting outt
information within the example putex1.gms.

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

 put @41;

Advanced Language Features 582

© 2022 Prof. Bruce McCarl

 loop(scenarios,put scenarios.tl:10);

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

The resultant output file follows with the orange entries corresponding to set element names generated
by the put commands above.

Report for New York ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 50 350 0 0

Incoming From San Diego 275 275 0 525

Report for Chicago ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 300 0 350 350

Incoming From San Diego 0 0 275 25

Report for Topeka ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From San Diego 275 275 275 0

Notes:

• The extension .tl is used to cause printing of the text giving the set element name.

• The set must be controlled by a loop statement, GAMS will not automatically cover all cases.

• Default field width is 12 characters but alternative widths may be used as discussed below.

• Default justification is left but alternative formatting may be used as discussed below.

• The set element name capitalization rules follow those discussed in the chapter on Rules for Item

Capitalization and Ordering.

• One often finds the names need to be altered or made longer to improve their content. This may be

done using the .te syntax discussed just below.

Sometimes one wishes output wherein the explanatory text associated with set element names is used
in labeling the printed data. In a put file context this is done by entering an item in a put command
which is the setname.te(setname2) wherein the set setname2 is varied by a loop command as
discussed in the Control Structures chapter. The blue entries just below all involve instances where the
explanatory text associated with set element names are used in putting out information within the
example putex3.gms. The red entries identify the loop command and the set under control, the orange
a case where explanatory set element text is used and the blue a case where the set from which the
explanatory set element text is coming differs from the set being varied.

McCarl GAMS User Guide583

© 2022 Prof. Bruce McCarl

set j /a1*a3

 a4 this is element 4

 a5 has a crummy name/;

set i /1,2,3,4 this one is 4/

set newnames(j) /a1 Bolts,a2 Nuts,a3 Cars, a4 Trains, a5 /;

put /

 'Set EL Explanatory Text Exp. Text from Subset' //;

loop(j,put j.tl:10 ' !! ' j.te(j):20 ' $$ 'newnames.te(j):20 /);

The result with the set element names as output by .tl, the original explanatory set element text and the
explanatory set element text coming from a different set which is a subset of the set being varied.

Set EL Explanatory Text Exp. Text from Subset

a1 !! a1 $$ Bolts

a2 !! a2 $$ Nuts

a3 !! a3 $$ Cars

a4 !! this is element 4 $$ Trains

a5 !! has a crummy name $$ a5

Notes:

• The extension .te followed by the name of the set being varied is used to cause printing of the

explanatory text for the set element.

• The set being varied must be controlled by a loop statement, GAMS will not automatically cover all

cases.

• Default width is 12 characters but alternative widths may be used as discussed below.

• Default justification is left but alternative formatting may be used as discussed below.

• The set descriptive text capitalization rules follow those discussed in the chapter on Rules for Item

Capitalization Ordering.

• It is often useful to modify the set element text to improve their content. This may be done using

subsets and the .te syntax as the blue case illustrates.

• Tuples can be used with the .te command not with the .tl. In such cases one gets a printout of

either the set elements in the tuple or the text associated with the tuple element depending on the .tf
setting as discussed next.

• When .te is used but no explanatory text was entered then by default the set element name is used.

 This can be changed using the .tf put file attribute where setting the following influences the text
used to fill the empty explanatory text field via the rules below as used in putex5.gms

� localfileidentifier.tf to 0 suppresses the fill of missing explanatory text with element names
leaving blanks.

� localfileidentifier.tf to 1 results in blank entries when an element is referenced which does not
exist and does the default fill otherwise.

� localfileidentifier.tf to 2 is the default and always fills empty explanatory text with the element

Advanced Language Features 584

© 2022 Prof. Bruce McCarl

name.

� localfileidentifier.tf to 3 always fills the .te output with the element names not using the defined
explanatory text.

� localfileidentifier.tf to 4 puts out the .te as when .tf=3 in quotes with comma separators. This
can be used in generating code for reinclusion in GAMS.

� localfileidentifier.tf to 5 is same as .tf=4 with periods as separators.

� localfileidentifier.tf to 6 is same as .tf=4 with spaces as separators.

• When a tuple is used with .te but no explanatory text is present one gets the names of the set

elements defining the tuple separated by a period.

Example:

In the example putex3.gms which puts to the localfileidentifier file my1 this is done as follows

my1.tf=0;

put / 'Set EL Explanatory Text Exp. Text from Subset' //;

loop(j,put j.tl:10 '!!' j.te(j):20 '$$'newnames.te(j):20/);

yielding the output

Set EL Explanatory Text Exp. Text from Subset

a1 !! $$ Bolts

a2 !! $$ Nuts

a3 !! $$ Cars

a4 !! this is element 4 $$ Trains

a5 !! has a crummy name $$

where in comparison with the output just above the entries for a1-a3 in the second column are suppressed as
is the one for a5 in the last column due to a lack of explanatory text.

GAMS allows one to put out the fully write out the name and set definition of an indexed item like a
parameter, variable, or equation. This is done using the suffix .tn in a put context.

put parametername.tn(setdependency)

where the set deendency is controlled by loop statements.

Examples (putex1.gms):

Suppose one wants to put out the full identiy of items in an array. One can do this in a transport
context as follows

put / "example of .tn use" //;

loop((scenarios,Source,Destinaton)$savtransport(Source,Destinaton,scenarios),

 put savtransport.tn(Source,Destinaton,scenarios):0:0 @50

 " = "

 savtransport(Source,Destinaton,scenarios) /;

McCarl GAMS User Guide585

© 2022 Prof. Bruce McCarl

);

This will produce

example of .tn use

savtransport('Seattle',"New York",'base') = 50.00

savtransport('Seattle','Chicago','base') = 300.00

savtransport("San Diego","New York",'base') = 275.00

savtransport("San Diego",'Topeka','base') = 275.00

savtransport('Seattle',"New York",'scen1') = 350.00

savtransport("San Diego","New York",'scen1') = 275.00

where note the parameter name and associated set elements are printed out for each nonzero item.

14.2.2.2.1.3 Item explanatory text via .ts

Another of the allowable items in a put command is the explanatory text associated with a named item
(a set, file, acronym, parameter, variable, model or equation). These are addressed using the syntax
itemname.ts. An example of such addressing occurs in the putex1.gms example as follows:

put 'Run over scenario set ' scenarios.ts //;

where the resultant put file contains

Run over scenario set Four alternatives

14.2.2.2.1.4 Numeric items

Another of the allowable types of items in a put command is numerical data either for parameters or the
attributes of variables, equations or models.

Parameter values

Model solution status attributes: .Modelstat, .Solvestat, .Tmodstat, .Tsolstat

Variable and equation attributes: .L and .M

Numerical parameter data may be included in a put employing the syntax

Put parametername(setdependency)

where any sets must be controlled in loop statements. The aquamarine entry just below involve
instances where the data for a parameter are reported out within the example putex1.gms. The red
entries identify the loop command and the set under control.

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

Advanced Language Features 586

© 2022 Prof. Bruce McCarl

 put @41;

 loop(scenarios,put scenarios.tl:10);

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

The resultant output file follows with the aquamarine entries corresponding to parameter data generated
by the put commands above.

Report for New York ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 50 350 0 0

Incoming From San Diego 275 275 0 525

Report for Chicago ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From Seattle 300 0 350 350

Incoming From San Diego 0 0 275 25

Report for Topeka ------------ Scenario ------------

 base scen1 scen2 scen3

Incoming From San Diego 275 275 275 0

Notes:

• All sets must be controlled in loop statements, GAMS will not automatically cover all cases.

• Default field width is 12 characters but alternative widths may be used as discussed below.

• Small or large numbers cause exponential format to be used.

• GAMS will print zeros out here exhibiting different behavior than is exhibited in display statements.

• Default number of decimal places is 2 but alternative specifications may be used as discussed

below.

• Default justification is right but alternative formatting may be used as discussed below.

• One can suppress small numbers using the .nz specification as the example putex3.gms

illustrates

my1.nz=0.01;

loop(j, put newnames.te(j):12,data(j) /);

which would cause any entries with absolute value less than 0,01 to be reported as a zero.

McCarl GAMS User Guide587

© 2022 Prof. Bruce McCarl

The attributes of models may be included in a put employing the syntax

Put modelname.attribute

The blue entries below involves the modelstat and solvestat model attributes plus their text counterparts
(Tmodstat, Tsolstat) reporting model and solver solution status as used within the example putex1.gms.

loop(scenarios,

 Need(Destinaton)=demandscen(destinaton,scenarios);

 Solve tranport using LP minimizing totalcost ;

 report("total","cost",scenarios)=totalcost.l;

 report("demand shadow price",Destinaton,scenarios)

 = demandbal.m(Destinaton);

 report("supply shadow price",Source,scenarios)

 = Supplybal.m(Source);

 savtransport(Source,Destinaton,scenarios)

=transport.l(Source,Destinaton);

 put 'Scenario name ' scenarios.te(scenarios):14

 put ' Optimality status ' tranport.modelstat:2:0 /;

 put ' Optimality status text ' tranport.Tmodstat /;

 put ' Solver status ' tranport.solvestat:2:0 /;

 put ' Solver status text ' tranport.Tsolstat /;) ;

The resultant output file follows with the blue entries corresponding to the model solution status attribute
data generated by the put commands above.

Scenario name Base Case Optimality status 1

 Optimality status text 1 OPTIMAL

 Solver status 1

 Solver status text 1 NORMAL COMPLETION

Scenario name No Chicago Optimality status 1

 Optimality status text 1 OPTIMAL

 Solver status 1

 Solver status text 1 NORMAL COMPLETION

Notes:

• Default field width is 12 characters but alternative widths may be used as discussed below.

• The model solution status attributes that can be used are

Modelstat which gives problem optimality status as in the modelstat table

Solvestat which gives solver completion status as in the full list that appears here.
Tmodstat which gives problem optimality status text as in the modelstat table

Tsolstat which gives solver completion status text as in the full list that appears here.

• Many more model attributes may be included. A list appears in the Model Attributes chapter.

• Small or large numbers cause exponential format to be used.

Advanced Language Features 588

© 2022 Prof. Bruce McCarl

• GAMS will print zeros out here but does not in display statements.

• Default number of decimal places is 2 but alternative specifications may be used as discussed

below.

• Default justification for text is left but alternative formatting may be used as discussed below.

The value of numerical results in attributes of variables, and equations may be included in a put
employing the syntax

Put itemname.attribute(setdependency)

where any sets must be controlled in loop statements. The colored entries just below involves the .L
and .M variable and equation attributes reporting optimal variable levels and equation shadow price
marginals as used within the example putex11.gms.

loop(scenarios,

 Need(Destinaton)=demandscen(destinaton,scenarios);

 Solve tranport using lp minimizing totalcost ;

 report("total","cost",scenarios)=totalcost.l;

 report("demand shadow price",Destinaton,scenarios)

 = demandbal.m(Destinaton);

 report("supply shadow price",Source,scenarios)

 = Supplybal.m(Source);

savtransport(Source,Destinaton,scenarios)=transport.l(Source,Destinaton);

 put 'Scenario name ' scenarios.te(scenarios):14

 put @30 ' Optimality status ' tranport.modelstat:2:0 /;

 put @30 ' Optimality status text ' tranport.Tmodstat /;

 put @30 ' Solver status ' tranport.solvestat:2:0 /;

 put @30 ' Solver status text ' tranport.Tsolstat /;

put //;

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15 "demand location in "

 scenarios.te(scenarios):0 " scenario" //;

 loop(source$transport.l(Source,Destinaton),

 put 'Incoming From ' source.tl @35;

 put transport.l(Source,Destinaton):10:0;

 put /;

);

 put 'Quantity demanded ' @35

 put Need(Destinaton):10:0;

 put /;

 put 'Marginal Cost of meeting demand ' @35

 put demandbal.m(Destinaton):10:2;

 put /

 put /;

);

put /);

McCarl GAMS User Guide589

© 2022 Prof. Bruce McCarl

Part of the resultant output file follows with the red entries corresponding to the variable level attribute
data generated by the put commands above and the blue the equation marginal attribute data.

Report for New York demand location in Base Case scenario

Incoming From Seattle 50

Incoming From San Diego 275

Quantity demanded 325

Marginal Cost of meeting demand 250.00

Report for Chicago demand location in Base Case scenario

Incoming From Seattle 300

Quantity demanded 300

Marginal Cost of meeting demand 178.00

Notes:

• Default field width is 12 characters but alternative widths may be used as discussed below.

• Small or large numbers cause exponential format to be used.

• GAMS will print zeros out here but does not in display statements.

• Default number of decimal places is 2 but alternative specifications may be used as discussed

below.

• Default justification is right but alternative formatting may be used as discussed below.

• One can suppress small numbers using the .nz specification.

• The variable and equation attributes that can be used are defined in the Variables, Equations,

Models and Solves chapter and include

.l solution level

.m marginal

.up upper bound

.lo lower bound

.scale scale factor

.prior variable priority in MIPs

14.2.2.2.1.5 System attributes

Another of the allowable types of items in a put command is the group of system attributes such as
today's date and time of day, various file names, solver names and model title. The attributes are
referenced as follows

Put system.attribute;

An example using these items appears in the files putex1.gms and putsystem.gms. The component of
this file involving system attributes in put commands is as follows:

Advanced Language Features 590

© 2022 Prof. Bruce McCarl

put 'Run on ' system.date ' using source file ' system.ifile ///;

The resultant output is placed on the file myputfile.put and is

Run on 01/05/02 using source file C:\GAMS\GAMSPDF\PutEX1.GMS

The complete list of system attributes and their description follows.

.CNS

.Date

,Dirsep

.DNLP

.Fe

.Fn

.Fp

.Gamsrelease

.Gstring

.Ifile

.Iline

.Lice1 .Lice2

.LP

.MIP

.MINLP

.NLP

.MCP

.MPEC

.Ofile

.Opage

.Page

.Pfile

.Platform

.Prline

.Rdate

.Rfile

.RMINLP

.RMIP

.Rtime

.Sfile

.Sstring

.TAB

.Time

.Title

.Version

.Prpage

Solver that is currently active for CNS problems.

Date on which the program executed.

System attribute that provides access to the file/directory separator character used under this
operating system. On Windows platforms this is \ and on Unix and Mac this is /. This helps in
writing platform independent GAMS models.

One can use

x=%system.dirsep% ;

or

put system.dirsep

Solver that is currently active for DNLP problems.

Identifies file extension of input file.

McCarl GAMS User Guide591

© 2022 Prof. Bruce McCarl

Identifies file name stem of input file.

Dollar command which identifies file path of input file.

A system attribute that gives the version number of the current GAMS release. Gives a value like
22.7

Identifies specific GAMS version being used.

Name of GAMS source input file (GMS file) being executed including storage path.

Number of lines in input file.

GAMS license information.

Solver that is currently active for LP problems.

Solver that is currently active for MIP problems.

Solver that is currently active for MINLP problems.

Solver that is currently active for NLP problems.

Solver that is currently active for MCP problems.

Solver that is currently active for MPEC problems.

Name of GAMS output (Lst) file being used including storage path.

Number of the output page.

Page number of the current page being written.

Put file name for currently active file.

Computer operating system information.

Output line number.

Output page number.

Date information from the GAMS restart file being used.

Advanced Language Features 592

© 2022 Prof. Bruce McCarl

Name of the GAMS restart file being used including storage path.

Solver that is currently active for RMINLP problems.

Solver that is currently active for RMIP problems.

Time of day information from the GAMS restart file being used.

Name of the GAMS save file being used including storage path.

Identifies name of last solver used.

Time of day when the program was executed.

Title used in the $title command for this file.

GAMS version being run.

14.2.2.2.1.6 GAMS command line parameters

Another of the allowable types of items in a put command is the group of GAMS command line
parameters such as input file name and page size. The attributes are referenced as follows

Put "%GAMS.commandparameter%";

where we are really addressing the text string in the command line parameter as discussed in the
Conditional Compilation chapter. An example using these items appears in the files putex1.gms. The
component of this file involving command line parameters in put commands is as follows:

put "page size = " "%gams.ps%" /;
put "gams input file = " "%gams.input%" /;
put "gams restart file = " "%gams.restart%" /;

The resultant output is placed on the file myputfile.put and is

page size = 999
gams input file = C:\GAMS\GAMSPDF\BIGONE\PutEX1.GMS
gams restart file =

Note when a parameter is unused it is left blank. The parameter names are all listed in the GAMS
Command Line Parameters chapter.

McCarl GAMS User Guide593

© 2022 Prof. Bruce McCarl

14.2.2.2.1.7 Write position controls

Three types of controls can be used to determine where writing is done in the file. The symbol @
controls the column number while / skips to a new line and # goes to a specified line number. The file
putex1.gms illustrates the use of @ and /

put 'Run on ' system.date ' using source file ' system.ifile ///;

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

 put @41;

 loop(scenarios,put scenarios.tl:10);

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

 put 'Quantity demanded ' @35

Notes on each follow.

Skip to a specified column: @

Skip to a new line: /

Skip to a specified row: #

When GAMS encounters a @ in a put statement, the writing position is moved to that column of the
output file whether it be forward or backward from the current point. Thus, one could do one of the
following putex4.gms

Put 'Hello' @3 'Goodbye';

which would cause an output line as follows

HeGoodbye

while

Put 'Hello' @20 'Goodbye';

yields

Hello Goodbye

Advanced Language Features 594

© 2022 Prof. Bruce McCarl

• Note the example above using @3 shows how one can go back and overwrite earlier text.

• One can use variables or expressions instead of fixed column numbers as in the code below

from putex4.gms.

scalar width /15/;
Put 'Hello' @(width+3) 'Goodbye';

• @ is commonly used to align columns in the face of unequal set element widths.

When GAMS encounters a / in a put statement, the writing position is moved to the next line and placed
in column one. The /'s in putex1.gms skip to the next line or skip several lines depending on the
number of /'s used.

put 'Run on ' system.date ' using source file ' system.ifile ///;

loop(Destinaton,

 put 'Report for ' , Destinaton.tl:15

 put @40 '------------ Scenario ------------' /;

 put @41;

 loop(scenarios,put scenarios.tl:10);

 put /;

 loop(source$sum(scenarios,

 abs(savtransport(Source,Destinaton,scenarios))),

 put 'Incoming From ' source.tl @35;

 loop(scenarios,

 put savtransport(Source,Destinaton,scenarios):10:0);

 put /;

);

 put 'Quantity demanded ' @35

Note GAMS does not skip to a new line unless / is used. Thus, in putex4.gms the line

loop(I, put i.tl);

places all the set element names on one line continuously.

i1 i2 i3 i4 i5 i6

But

loop(I, put i.tl /);

places one element per line due to use of the /.

i1

i2

McCarl GAMS User Guide595

© 2022 Prof. Bruce McCarl

i3

i4

i5

i6

When GAMS encounters a # in a put statement the writing position is moved to that row of the output
file whether it be down or up from the current line. The file putex4.gms shows an example

Put #3 'Hello' #2 'Goodbye' #1 'Hey these are reversed';

which would yield

 Hey these are reversed

 Goodbye

Hello

Notes:

• The above uses of #1 shows how one can go back and write earlier lines.

• One can use variables or expressions instead of fixed column numbers as in the code below from

putex4.gms.

scalar lineonpage /15/;

Put 'Hello' #(lineonpage+3) 'Goodbye';

• The line number is related to the current page.

• When obeying a # GAMS does not reset the column in which printing occurs as illustrated by output

above. One would need to add @1 if also desiring to start in column 1.

A number of put file attributes are available to determine and or set the current position on a page where
items are written or reset the last line.

.Cc

.Cr

.Hdcc

.Hdcr

.Hdll

.Ll

.Lp

.Tlcc

.Tlll

.Tlcr

.Ws

Returns or sets the current write position column in main the window. This attribute is addressed as

Localfileidentifier.cc= value;

Advanced Language Features 596

© 2022 Prof. Bruce McCarl

or

parameteritem = Localfileidentifier.cc;

where the value can be between 1 and the page width.

Note:

The .cc suffix is updated at the conclusion of a put statement. Consequently, the .cc value remains constant
throughout the writing of items for the next put statement, even if multiple items are displayed.

Returns or sets current write position row in main window. This attribute is addressed as

Localfileidentifier.cr= value;

or

parameteritem = Localfileidentifier.cr;

where the value can be between 1 and the page size minus any header, title, and margins.

Note:

The .cr suffix is updated at the conclusion of a put statement. Consequently, the .cr value remains constant
throughout the writing of items for the next put statement, even if multiple items are displayed.

Returns or sets current write position column in the page header. This attribute is addressed as

Localfileidentifier.hdcc= value;

or

parameteritem = Localfileidentifier. hdcc;

where the value can be between 1 and the page width.

Note:

The .hdcc suffix is updated at the conclusion of a puthd statement. Consequently, the .hdcc value remains
constant throughout the writing of items for the next put statement, even if multiple items are displayed.

Returns or sets current write position row in the page header. This attribute is addressed as

Localfileidentifier.hdcr= value;

or

parameteritem = Localfileidentifier. hdcr;

McCarl GAMS User Guide597

© 2022 Prof. Bruce McCarl

where the value can be between 1 and the header size in terms of number of lines.

Note:

The .hdcr suffix is updated at the conclusion of a puthd statement. Consequently, the .hdcr value remains
constant throughout the writing of items for the next put statement, even if multiple items are displayed.

Returns the number of or resets the last row written in the page header. This attribute is addressed as

Localfileidentifier.hdll= value;

or

parameteritem = Localfileidentifier. hdll;

where the value can be between 1 and the header size in terms of number of lines.

Notes:

• Unlike the row and column control, the last line attribute is updated continuously.

• The .hdll attribute does not have values applicable to the current page. It will apply to the next page.

• Not only can this attribute be used to determine the last line used in a header area, but it can also

be used to delete lines within this area. Namely, the header section will be completely deleted by
resetting the hdll attribute to 0 and any non zero specification shorter than the current number of
lines in the header deletes lines in excess of the hdll setting.

Returns the number of or resets the last row written in the page main window. This attribute is
addressed as

Localfileidentifier.ll= value;

or

parameteritem = Localfileidentifier.ll;

where the value can be between 1 and the page height in terms of number of lines less adjustments for
margins, headers and titles.

Notes:

• Unlike the row and column control, the Ll attribute is updated continuously.

• The .Ll attribute may be reset for the current page.

• Not only can this attribute be used to determine the last line used in a page, but it can also be used

to delete lines. Namely, the current writing will be completely deleted by resetting the Ll attribute to
0 and any non zero specification shorter than the current number of lines in the header deletes lines
whose line numbers are in excess of the Ll setting.

Advanced Language Features 598

© 2022 Prof. Bruce McCarl

Put file attribute indicating the number of pages that are already in the put file. This attribute is
addressed as

parameteritem = Localfileidentifier.lp;

Note that setting this to zero does not erase the pages that have previously been written to the file.

Returns or sets current write position column coordinate in the page title.

This attribute is addressed as

Localfileidentifier.tlcc= value;

or

parameteritem = Localfileidentifier. tlcc;

where the value can be between 1 and the title size.

Note:

The .tlcc suffix is updated at the conclusion of a puttl statement. Consequently, the .tlcc value remains constant
throughout the writing of items for the next put statement, even if multiple items are displayed.

Returns the number of or resets the last row written in the page title. This attribute is addressed as

Localfileidentifier.tlll= value;

or

parameteritem = Localfileidentifier. tlll;

where the value can be between 1 and the header size in terms of number of lines.

Notes:

• The .tlll attribute is updated continuously.

• The .tlll attribute may not be reset and have values applicable to the current page because when the

title block is modified, it corresponds to the title block on the next page.

• Not only can this attribute be used to determine the last line used in a title area, but it can also be

used to delete lines within this area. Namely, the title section will be completely deleted by resetting
the .tlll attribute to 0 and any non zero specification shorter than the current number of lines in the
title deletes lines whose numbers are in excess of the .tlll setting.

Returns or sets current write position row coordinate in the page title.

This attribute is addressed as

McCarl GAMS User Guide599

© 2022 Prof. Bruce McCarl

Localfileidentifier.tlcr= value;

or

parameteritem = Localfileidentifier. tlcr;

where the value can be between 1 and the title size in terms of number of lines.

Note:

The .tlcr suffix is updated at the conclusion of a puttl statement. Consequently, the .tlcr value remains constant
throughout the writing of items for the next put statement, even if multiple items are displayed.

The .ws attribute allows the user to determine the number of rows that can be written to the main window
on the current page. This attribute is addressed as

parameteritem = Localfileidentifier.ws;

This attribute shows the number of rows that can be placed on the page, considering the number of lines
that are in the title and header blocks of the current page and the existing page size. The .ws file
attribute is calculated by GAMS and is not changeable by the user.

14.2.2.2.2 Formatting of items

Lines and pages can be formatted on a local or global basis. This formatting permits control of field
width, decimals, and item justification. A number of put page attributes can also be altered including put
page length (lines per page), page with, page footer format, and page header format. Finally, the upper/
lower case characteristics of the font used in the printout can be controlled.

14.2.2.2.2.1 File formatting – append or overw rite

The put writing facility has the ability to append to or overwrite an existing file. The put file attribute .ap
determines which occurs.

The syntax for the .ap attribute is

Localfileidentifier.ap= value;

Where a value of

0 causes the put file to overwrite (replace) the existing
1 causes the information generated by the puts to be appended to the file.

My1.ap = 1;

Notes:

• Any items put into the active put file from that point on will be added to the end of the existing file.

Advanced Language Features 600

© 2022 Prof. Bruce McCarl

• If the file does not exist, it will be created.

14.2.2.2.2.2 Page formatting

Pages can be formatted in terms of height and width using put file attributes. The pages within files can
also be structured using file suffixes to specify many attributes such as the printing format, page size,
page width, margins, and the case which text is displayed in. The following file suffixes can be used for
formatting

.Bm - bottom margin

.Lm - left margin

.Pc - Page control

.Ps or page height

.Pw - page width

.Tm - top margin

This gives the number of blank lines to be placed in the bottom margin of the page. These lines add
lines to the page height beyond the number of lines specified in the .ps command. This is set using the
syntax

Localfileidentifier.bm=number;

or in the example putex5.gms

my1.bm=13;

This only works when the page control (pc) option is 0.

This gives the number of blank columns to be placed on the left of the page. This is set using the
syntax

Localfileidentifier.lm=number;

or in the example putex5.gms

my1.lm=13;

An important attribute that controls how pages appear, as well as whether a number of the other
parameters (.ps, .tm, .bm) even function and whether the data are printed in a comma delimited fashion
is the page control option. This is set using the syntax

Localfileidentifier.pc=number;

or in the example putex5.gms

my1.pc=3;

McCarl GAMS User Guide601

© 2022 Prof. Bruce McCarl

The integer 0-6 are allowable values for number.

Value Resultant effect on Output file

 0 Causes the use of standard paging based on the current page size. Partial
pages are padded with blank lines. Note that the .bm file suffix is only
functional when used with this print control option.

 1 Causes the use of Fortran page format. This option places the numeral one in
the first column of the first row of each page in following standard Fortran
convention.

 2 Causes no paging to be done and is the default setting.
 3 Causes ASCII page control characters to be inserted.
 4 Makes the put file output into a space delimited file. Non-numeric output is

quoted, and each item is delimited with a blank space. Here # and @
commands are ignored.

 5 Makes the put file output into a comma delimited (CSV) file. Non-numeric
output is quoted, and each item is delimited with a comma. Here # and @
commands are ignored.

 6 Makes the put file output into a tab delimited file. Non-numeric output is
quoted, and each item is delimited with a tab. Here # and @ commands are
ignored.

The last three options create delimited files, and are especially useful when preparing output for the
direct importation into other computer programs such as spreadsheets. See the example putex6.gms.

This gives the height of a page in terms of the number of rows (lines) that can be placed on any page of
the document. This is set using the syntax

Localfileidentifier.ps= number;

or in the example putex5.gms

my1.ps=65;

Notes:

• By default GAMS does not try to control pagination of put files making no allowance for paging. This

works well when the user is going to import the file into a word processor and is willing to let the
word processor do the paging.

• The page size commands will be ineffective unless a non default value is used for the page control

(pc) setting. In the example we use

my1.pc=3;

• When earlier pages have been printed out which are shorter than the current page size specified

GAMS generates an error message.

• Maximum page size is 130 lines and the minimum is 60 lines.

Advanced Language Features 602

© 2022 Prof. Bruce McCarl

This gives the width of a put file page in terms of the number of columns that can be placed on a line.
This is set using the syntax

Localfileidentifier.pw=number;

or in the example putex5.gms

my1.pw=81;

Notes:

• GAMS by default allows a 255 character wide page.

• When the material printed out exceeds the current page width specified GAMS generates an error

message and places 4 asterisks (****) in the last 4 columns of the line.

• Maximum page width is effectively unlimited with values up to 32767 allowable.

Number of blank lines to be placed at the top margin of the page. These lines add lines to the page
height above and beyond the number of lines specified in the .ps command. Default value is 0. This is
set using the syntax

Localfileidentifier.tm=number;

or in the example putex5.gms

my1.tm=3;

This works for any of the page control (pc) settings.

14.2.2.2.2.3 Inserting Tabs

When one wishes to include tabs in the put files within the command system.tab can be used as

follows

file test / test.put /;

put test; put "1","%system.tab%","2";

Where the syntax "%system.tab%" results in a tab character being put into the file.

14.2.2.2.2.4 Adding page titles and headers

Pages may be formatted with titles and headers. There are actually three independent writing areas on
each page of a document. These areas are the title block, the header block, and the main window. The
primary purpose for these independent writing areas is to allow the user to create a file where the title
and possibly the header is repeated across multiple pages.

McCarl GAMS User Guide603

© 2022 Prof. Bruce McCarl

The layout of the page is

Title block
Header block
Main window

The Put command writes to the Main window, and there are special commands Puttl and Puthd that
write to the title and header. By default the title and header are empty. The title and header blocks are
essentially the same as the main window and use exactly the same syntax rules. These are discussed
below.

Puttl places information in the title block and is formatted as is the normal put command with the syntax
(putex5.gms)

Puttl Item;

Example:

Puttl "File written on" system.date /

Notes:

• Once a Puttl command is executed the items therein are placed in the title block.

• The title block is displayed on each subsequent page unless modified.

• The heading block can be emptied out using Putclear.

• Once the main window for a page has been written to, any further modifications of the title block will

be shown on subsequent pages and not the current page.

• Every page must have an entry in the main window. When a page has no output in its window, the

page is not written to file regardless of whether there are output items in the title or header blocks.
To force a page that has an empty window out to file, simply write something innocuous to the
window such as:

Put ' ';

• The size of any area within a given page is based entirely on the number of lines put into it.

• The total number of lines for all areas must fit within the specified page size.

• If the total number of lines written to the title and header block equals or exceeds the page size, an

overflow error will be displayed in the program listing.

• Paging occurs automatically whenever a page is full.

• Each area of a page is maintained independently, so we can write with a Puttl for a while then a

Puthd, then back to a Puttl. However once we use Put all subsequent Puttl and Puthd go to the next
and subsequent pages, not the current page.

Advanced Language Features 604

© 2022 Prof. Bruce McCarl

Puthd places information in the heading block and is formatted as is the normal put command with the
syntax

Puthd Item;

Example:

(putex5.gms)

Puthd "Page " system.page /;

Notes:

• Once a Puthd command is executed the items therein are placed in the heading block.

• The heading block is displayed on each subsequent page unless modified.

• The heading block can be emptied out using Putclear.

• Once the main window for a page has been is written to, any further modifications of the header

block will be shown on subsequent pages and not the current page.

• Every page must have an entry in the main window. When a page has no output in its main window,

the page is not written to file regardless of whether there are output items in the title or header
blocks. To force a page that has an empty window out to file, simply write something innocuous to
the window such as: Put '';

• The size of any area within a given page is based entirely on the number of lines put into it.

• The total number of lines for all areas must fit within the specified page size.

• If the total number of lines written to the title and header block equals or exceeds the page size, an

overflow error will be displayed in the program listing.

• Paging occurs automatically whenever a page is full.

• Each area of a page is maintained independently, so we can write with a Puttl for a while then a

Puthd, then back to a Puttl. However once we use Put all subsequent Puttl and Puthd go to the next
and subsequent pages, not the current page.

Putclear removes the contents of the heading and title blocks and is formatted with the syntax

Putclear Item;

An example appears in putex5.gms.

14.2.2.2.2.5 Upper low er font case formatting: .Case and .Lcase

These attributes are used to specify the case in which alphabetic characters are displayed in the output
file. The syntax employed is

Localfileidentifier.case=number;

McCarl GAMS User Guide605

© 2022 Prof. Bruce McCarl

There are 3 allowable values for number.

Value Resultant effect on the put file

 0 causes mixed case to be displayed.
 1 causes the output to be displayed in upper case regardless of the case used for the

input.
 2 causes the output to be displayed in lower case regardless of the case used for the

input.

The Lcase attribute does casing for set element names using the syntax

Localfileidentifier.lcase=number;

There are 3 allowable values for number.

Value Resultant effect on set elements names in the put file

 0 Causes mixed case to be displayed.
 1 Causes lower case to be displayed.
 2 Causes upper case to be displayed.

14.2.2.2.2.6 Width and decimal formatting

Users may desire to control the spacing and decimal format of output items. For formatting purposes,
there are four categories of output items: labels, numeric values, set values, and quoted/explanatory
text. Within GAMS a global width and decimal place default format is assumed for each category and
then a local item dependent choice can be made within a specific put statement.

Both field width and, in the case of numerical data, the number of decimal places may be controlled on a
global basis. The GAMS defaults for these items follow:

Item Default value Symbol

Set element name field width 12 .lw
Numeric field width 12 .nw
Numeric decimal Places (maximum 10) 2 .nd
Set element entry (yes and no) width 12 .sw
Quoted and Explanatory text field width 0 .tw

The general syntax for specifying these formatting items is

Localfileidentifier.symbol=value;

Advanced Language Features 606

© 2022 Prof. Bruce McCarl

The value for the width specified is the exact number of characters that will be employed. However a
specification of 0 causes the field width to be the minimum size that will fully display the item.

Special actions are taken when the item does not fit. If an item containing text contains more
characters than the field width, the text will be printed starting from the left with characters beyond the
width omitted. For items containing numeric values, the decimal portion of a number is rounded or
scientific notation will be used to fit the number within the given field and if that wont work a set of *'s is
entered.

The way of overriding each of these defaults involves use of an attribute of the localfileidentifier put file
name. The attributes that can be used are the symbols listed in the last column of the table above. Use
of each will be discussed below.

This attribute controls the width of set element names in the put output. It is addressed using the
syntax

Localfileidentifier.lw=number;

or in the example putex6.gms

my1.lw=12;

Example:

Using the sequence (putex6.gms)

set mine abcdefghijklmnopqrstuvwxyz

/a12345678901234567890 setaabcdefghijklmnopqrstuvwxyz

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small smallone/;

loop(mine,

put 'start set element text here $' mine.tl '$ end here'/;)

put /;

where the items in orange are the text for set element names and the blue items are statements causing
those to be output into the put file. In turn with the default for .lw of 12 we get

start set element name here $a12345678901$ end here

start set element name here $b12345678901$ end here

start set element name here $small $ end here

where short text entries like small are padded with trailing blanks but the long names like
a12345678901234567890 are truncated to their first 12 positions a12345678901 compared to the full set
element name specified just above.

If we reset lw to 20 we get

start set element name here $a12345678901234567890 $ end here

start set element name here $b12345678901234567890 $ end here

start set element name here $small $ end here

McCarl GAMS User Guide607

© 2022 Prof. Bruce McCarl

It we reset lw to 0 we get

start set element name here $a12345678901234567890$ end here

start set element name here $b12345678901234567890$ end here

start set element name here $small$ end here

showing the exact width and full contents.

This attribute controls the decimals in numerical items in the put output. It is addressed using the
syntax

Localfileidentifier.nd=number;

or in the example putex6.gms

my1.nw=2;

Example:

Using the example putex6.gms

scalar number regnumber /1.2356/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start number here $':0 number '$ end here'/;

put 'start small number here $':0 smallnumber '$ end here'/;

put 'start large number here $':0 largenumber '$ end here'/;

In turn when we run this with the default for .nd of 2 we get

start number here $ 1.24$ end here

start small number here $ 0.00$ end here

start large number here $1.0000000E+9$ end here

showing that by default 2 decimals are printed, unless the number is too large and is moved into exponential
format. It also shows numbers are rounded. Note small numbers can also be suppressed with nz.

If we reset nd to 0 we get

start number here $ 1$ end here

start small number here $ 0$ end here

start large number here $ 1000000000$ end here

This attribute controls the width of numerical items in the put output. It is addressed using the syntax

Localfileidentifier.nw=number;

or in the example putex6.gms

Advanced Language Features 608

© 2022 Prof. Bruce McCarl

my1.nw=12;

Example:

Using the example putex6.gms

scalar number regnumber /1.2356/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start number here $':0 number '$ end here'/;

put 'start small number here $':0 smallnumber '$ end here'/;

put 'start large number here $':0 largenumber '$ end here'/;

where the items in orange are the numerical data and the blue items are statements causing those to be
output into the put file. In turn when we run this with the default for .nw of 12 we get

start number here $ 1.24$ end here

start small number here $ 0.00$ end here

start large number here $1.0000000E+9$ end here

showing that by default 12 characters are always printed, that the number is padded to the left, and reported in
exponential format if too large.

If we reset nw to 0 we get

start number here 1.24 end here

start small number here 0.00 end here

start large number here 1000000000.00 end here

showing the exact width is used with the specified decimals as discussed above.

If we reset nw to 4 we get

start number here 1.24 end here

start small number here 0.00 end here

start large number here $****$ end here

showing that when a number is still too large, asterisks replace the value in the output file.

This attribute controls the width printout for the set element entries that are YES and NO. It is
addressed using the syntax

Localfileidentifier.sw=number;

or in the example putex6.gms

my1.sw=12;

McCarl GAMS User Guide609

© 2022 Prof. Bruce McCarl

Example:

Using the example putex6.gms

set mine abcdefghijklmnopqrstuvwxyz

/a12345678901234567890 setaabcdefghijklmnopqrstuvwxyz

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small smallone/;

set small(mine) /small/;

loop(mine,

put 'start set element here $':0 mine(mine) '$ end here for name ' mine.tl /;)

put /;

loop(mine,

put 'start subset element here $':0 small(mine) '$ end here for name ' mine.tl /;)

put /;

where the items in orange are the sets for which we will put out element indicators and the blue items are
statements causing those to be output into the put file. In turn, when we run this with the default for .sw of 12
we get

start set element value here $ YES$ end here for name a12345678901

start set element value here $ YES$ end here for name b12345678901

start set element value here $ YES$ end here for name small

start subset element value here $ NO$ end here for name a12345678901

start subset element value here $ NO$ end here for name b12345678901

start subset element value here $ YES$ end here for name small

showing that by default a left padded 12 characters are always printed. We could also reset to tw to 20 or 0
with the same effect as discussed for lw or tw above.

This attribute controls the width of explanatory text items, and set element names plus quoted text in
the put output. It is addressed using the syntax

Localfileidentifier.tw=number;

or in the example putex6.gms

my1.tw=12;

Example:

Using the example putex6.gms

set mine abcdefghijklmnopqrstuvwxyz

/a12345678901234567890 setaabcdefghijklmnopqrstuvwxyz

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small smallone/;

set small(mine) /small/;

Advanced Language Features 610

© 2022 Prof. Bruce McCarl

scalar number regnumber /1.23456/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start quoted text here $':0 'Quotedabcedeghijklmnopqrstuvwxyz'

 '$ end here'//;

put 'start item explanatory text here $':0 mine.ts '$ end here'/;

put 'start item explanatory text here $':0 number.ts '$ end here'/;

put /;

loop(mine,

put 'start set element explanatory text here $':0 mine.te(mine) '$ end here'/;)

put /;

where the items in orange are explanatory or quoted text and the blue items are statements causing those to
be output into the put file. In turn, when we run this with the default for .tw of 0 we get

start quoted text here $Quotedabcedeghijklmnopqrstuvwxyz$ end here

start item explanatory text here $abcdefghijklmnopqrstuvwxyz$ end here

start item explanatory text here $regnumber$ end here

start set element explanatory text here $setaabcdefghijklmnopqrstuvwxyz$ end here

start set element explanatory text here $setbabcdefghijklmnopqrstuvwxyz$ end here

start set element explanatory text here $smallone$ end here

showing that by default the full length is always printed.

If we reset tw to 20 we get

start quoted text here $Quotedabcedeghijklmn$ end here

start item explanatory text here $abcdefghijklmnopqrst$ end here

start item explanatory text here $regnumber $ end here

start set element explanatory text here $setaabcdefghijklmnop$ end here

start set element explanatory text here $setbabcdefghijklmnop$ end here

start set element explanatory text here $smallone $ end here

where short text entries like smallone are padded with trailing blanks but the long names like
Quotedabcedeghijklmnopqrstuvwxyz are truncated to their first 20 positions Quotedabcedeghijklmn
compared to the output just above.

While global formatting is nice sometimes certain items require individual attention. GAMS provides
item specific formatting, which overrides global format settings. For text items the syntax of this feature
is as follows:

Put item:width;

While for numeric items it is

Put item:width:decimals;

McCarl GAMS User Guide611

© 2022 Prof. Bruce McCarl

The item, width, and decimals are delimited with colons as shown above. The width is length in
characters and has all the characteristics for sets, numbers and text as discussed above under the
global section. A zero width again causes use of the exact width. The decimals feature behaves as
discussed under the global section above. Examples from putex7.gms follow

set mine abcdefghijklmnopqrstuvwxyz

/a12345678901234567890 setaabcdefghijklmnopqrstuvwxyz

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small smallone/;

set small(mine) /small/;

scalar number regnumber /1.2356/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start quoted text here $':0 'Quotedabcedeghijklmnopqrstuvwxyz':5

 '$ end here'//;

put 'start item explanatory text here $':4 mine.ts:22 '$ end here'/;

put 'start item explanatory text here $':0 number.ts:7 '$ end here'/;

put /;

loop(mine,

put 'start set element name here $'0 mine.tl:0 '$ end here'/;)

put /;

loop(mine,

put 'start set element explanatory text here $':0 mine.te(mine):0 '$ end here'/;)

put /;

loop(mine,

put 'start set element value here $':0 mine(mine):5 '$ end here for name ' mine.tl /;)

put /;

loop(mine,

put 'start subset element value here $':0 small(mine) :0 '$ end here for name ' mine.tl /;)

put /;

put 'start number here $':0 number:10:2 '$ end here'/;

put 'start number here $':0 number:10:4 '$ end here'/;

put 'start number here $':0 number:15:4 '$ end here'/;

put 'start number here $':0 number:0:4 '$ end here'/;

and the result is

start quoted text here $Quote$ end here

starabcdefghijklmnopqrstuv$ end here

start item explanatory text here $regnumb$ end here

start set element naa12345678901234567890$ end here

start set element nab12345678901234567890$ end here

start set element nasmall$ end here

start set element explanatory text here $setaabcdefghijklmnopqrstuvwxyz$ end here

Advanced Language Features 612

© 2022 Prof. Bruce McCarl

start set element explanatory text here $setbabcdefghijklmnopqrstuvwxyz$ end here

start set element explanatory text here $smallone$ end here

start set element value here $ YES$ end here for name a12345678901

start set element value here $ YES$ end here for name b12345678901

start set element value here $ YES$ end here for name small

start subset element value here NO end here for name a12345678901

start subset element value here NO end here for name b12345678901

start subset element value here YES end here for name small

start number here $ 1.24$ end here

start number here $ 1.2356$ end here

start number here $ 1.2356$ end here

start number here 1.2356 end here

showing width and decimal adjusted labels and numbers. The zero width entries cause exact fits as in
the last line.

It is worthwhile reiterating that a width choice of zero allows one to mix GAMS output in without extra
spacing as illustrated by putex8.gms

set i /i1 Nuts

 i2 Bolts/;

parameter jdata Hardware Data

 /i1 22.73

 i2 100.918/;

put 'Here is a report for the ' jdata.ts:0 ' entries in my GAMS code' //;

loop(i,

 put @5 'For element ' i.tl:0 ' named ' i.te(i):0 ' the data are '

 jdata(i) :0:3 ' as entered' /;

);

where the red shows zero with specifications for text data and numerical data. In turn we get

Here is a report for the Hardware Data entries in my GAMS code

 For element i1 named Nuts the data are 22.730 as entered

 For element i2 named Bolts the data are 100.918 as entered

14.2.2.2.2.7 Justif ication

Users may desire to control justification of output items so they are centered, aligned left or aligned
right. Justification may be controlled for four categories of output items: labels, numeric values, set
values, and quoted text. Within put files, a global default justification format is assumed and then a local
item dependent justification choice can be made within a specific put statement.

On a global basis GAMS specifies defaults for the 4 categories of put file items as follows

McCarl GAMS User Guide613

© 2022 Prof. Bruce McCarl

 Default Justification
Item Justification Value Symbol

Set element name Left 2 .lj
Numeric output Right 1 .nj
Set element entry (yes's and no's) Right 1 .sj
Quoted and Explanatory text Left 2 .tj

This can be changed using the format

Localfileidentifier.justificationsymbol=value;

The value specified is

1 for justification to the right of a field
2 for justification to the left of a field
3 for justification in the center of a field

Notes:

• Justification only occurs when the width of the field in which an element is to be placed exceeds the

width of the element to be put into that field.

• The justificationsymbol for overriding each of these defaults is an attribute of the localfileidentifier

put file name and is the symbol in the last column of the table above. Use of each will be
discussed below.

This attribute controls the width of set element names in the put output. It is addressed using the
syntax

Localfileidentifier.lj=number;

or in the example putex9.gms

my1.lj=3;

where 1 is for right, 2 for left and 3 for center.

Example:

Using the sequence (putex6.gms)

set mine abcdefghijklmnopqrstuvwxyz

/a1 seta1

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small/;

Advanced Language Features 614

© 2022 Prof. Bruce McCarl

loop(mine,

put 'start set element name here $':0 mine.tl:20 '$ end here'/;)

put /;

where the items in orange are set element text and the blue items are statements causing those to be output
into the put file. In turn, with the default for .lj of 2 we get

start set element name here $a1 $ end here

start set element name here $b1234567890123456789$ end here

start set element name here $small $ end here

where narrow text entries like a1 and small are flushed left, but the long names like a12345678901234567890
just fill the field.

If we reset lj to 1 we get

start set element name here $ a1$ end here

start set element name here $b1234567890123456789$ end here

start set element name here $ small$ end here

where we see the narrow entries flushed right. If we reset lw to 3 we get

start set element name here $ a1 $ end here

start set element name here $b1234567890123456789$ end here

start set element name here $ small $ end here

showing centering of the narrow entries.

This attribute controls the justification of numerical items in the put output. It is addressed using the
syntax

Localfileidentifier.nj=number;

or in the example putex6.gms

my1.nw=12;

where 1 is for right, 2 for left and 3 for center.

Example:

Using the example putex9.gms

scalar number regnumber /1.2356/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start number here $':0 number:20:4 '$ end here'/;

put 'start small number here $':0 smallnumber:20:4 '$ end here'/;

put 'start large number here $':0 largenumber:20:4 '$ end here'/;

McCarl GAMS User Guide615

© 2022 Prof. Bruce McCarl

In turn, when we run this with the default for .nj of 1 we get

start number here $ 1.2356$ end here

start small number here $ 0.0000$ end here

start large number here $ 1000000000.0000$ end here

start large number here $1.00000E+9$ end here

showing the default flush right for narrow items. If we reset nj to 2 we get

start number here $1.2356 $ end here

start small number here $0.0000 $ end here

start large number here $1000000000.0000 $ end here

start large number here $1.00000E+9$ end here

showing the left flush for narrow items. If we reset nj to 3 we get

start number here $ 1.2356 $ end here

start small number here $ 0.0000 $ end here

start large number here $ 1000000000.0000 $ end here

start large number here $1.00000E+9$ end here

showing centering for narrow items.

This attribute controls the put file justification for the set element entries that are YES and NO. It is
addressed using the syntax

Localfileidentifier.sj=number;

or in the example putex9.gms

my1.sj=2;

where 1 is for right, 2 for left and 3 for center.

Example:

Using the example putex9.gms

set mine abcdefghijklmnopqrstuvwxyz

/a1 seta1

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small/;

set small(mine) smallone /small/;

loop(mine,

put 'start set element here $':0 mine(mine) '$ end here for name ' a /;)

put /;

loop(mine,

put 'start subset element here $':0 small(mine) '$ end here for name ' mine.tl /;)

put /;

Advanced Language Features 616

© 2022 Prof. Bruce McCarl

where the items in orange are the sets for which we will put out element indicators and the blue items are
statements causing those to be output into the put file. In turn when we run this with the default for .sj of 1 we
get

start set element value here $ YES$ end here for name a1

start set element value here $ YES$ end here for name b12345678901

start set element value here $ YES$ end here for name small

start subset element value here $ NO$ end here for name a1

start subset element value here $ NO$ end here for name b12345678901

start subset element value here $ YES$ end here for name small

showing the default flush right. If we reset sj to 2 we get

start set element value here $YES $ end here for name a1

start set element value here $YES $ end here for name b12345678901

start set element value here $YES $ end here for name small

start subset element value here $NO $ end here for name a1

start subset element value here $NO $ end here for name b12345678901

start subset element value here $YES $ end here for name small

showing the left flush. If we reset sj to 3 we get

start set element value here $ YES $ end here for name a1

start set element value here $ YES $ end here for name b12345678901

start set element value here $ YES $ end here for name small

start subset element value here $ NO $ end here for name a1

start subset element value here $ NO $ end here for name b12345678901

start subset element value here $ YES $ end here for name small

showing centering.

This attribute controls the justification of explanatory text for items, and set element names plus quoted
text in the put output. It is addressed using the syntax

Localfileidentifier.tj=number;

or in the example putex9.gms

my1.tj=2;

where 1 is for right, 2 for left and 3 for center.

Example:

Using the example putex9.gms

McCarl GAMS User Guide617

© 2022 Prof. Bruce McCarl

set mine abcdefghijklmnopqrstuvwxyz

/a1 seta1

 b12345678901234567890 setbabcdefghijklmnopqrstuvwxyz

 small/;

set small(mine) smallone /small/;

scalar number regnumber /1.2356/

put 'start quoted text here $':0 'Quot':15 '$ end here'//;

put 'start quoted text here $':0 'Long Quoted Text Entry':15

 '$ end here'//;

put 'start item explanatory text here $':0 mine.ts:20

 '$ end here'/;

put 'start item explanatory text here $':0 number.ts:20 '

 $ end here'/;

loop(mine,

put 'start set element name here $':0 mine.tl:20 '$ end here'/;)

put /;

where the items in orange explanatory or quoted text and the blue items are statements causing those to be
output into the put file. In turn when we run this with the default for .tj of 2 we get

start quoted text here $Quot $ end here

start quoted text here $Long Quoted Tex$ end here

start item explanatory text here $abcdefghijklmnopqrst$ end here

start item explanatory text here $regnumber $ end here

start set element explanatory text here $seta1 $ end here

start set element explanatory text here $setbabcdefghijklmnop$ end here

start set element explanatory text here $small $ end here

showing the default flush left for narrow items.

If we reset tj to 1 we get

start quoted text here $ Quot$ end here

start quoted text here $Long Quoted Tex$ end here

start item explanatory text here $abcdefghijklmnopqrst$ end here

start item explanatory text here $ regnumber$ end here

start set element explanatory text here $ seta1$ end here

start set element explanatory text here $setbabcdefghijklmnop$ end here

start set element explanatory text here $ small$ end here

showing the right flush for narrow items. If we reset tj to 3 we get

start quoted text here $ Quot $ end here

start quoted text here $Long Quoted Tex$ end here

start item explanatory text here $abcdefghijklmnopqrst$ end here

start item explanatory text here $ regnumber $ end here

start set element explanatory text here $ seta1 $ end here

start set element explanatory text here $setbabcdefghijklmnop$ end here

start set element explanatory text here $ small $ end here

Advanced Language Features 618

© 2022 Prof. Bruce McCarl

showing centering for narrow items.

While global formatting is nice sometimes certain items require individual attention. GAMS provides item
specific formatting for this, which overrides global format settings. For text items the syntax of this
feature is as follows:

Put item:justificationsymbol width;

While for numeric items it is

Put item:justificationsymbol width:decimals;

The justificationsymbol is

> for right flush

< for left flush

<> for centering

and the item, width, decimals and colons are as laid out above.

Examples:

(putex10.gms)

file my1;

put my1;

set mine abc

/a1 seta1

 b1234 setbabhijklmnopqrstuvwxyz

 small/;

set small(mine) smallone /small/;

scalar number regnumber /1.2356/

 smallnumber /0.00000001/

 largenumber /1000000000/;

put 'start quoted text here $':0 'Quot':>15 '$ end here'/;
put 'start quoted text here $':0 'Quot':<15 '$ end here'/;
put 'start quoted text here $':0 'Quot': <>15 '$ end here'//;
put 'start item explanatory text here $':0 mine.ts: >20 '$ end here'/;
put 'start item explanatory text here $':0 mine.ts: <20 '$ end here'/;
put 'start item explanatory text here $':0 mine.ts: <>20 '$ end here'//;
put /;

loop(mine,

put 'start set element name here $':0 mine.tl: >20 '$ end here'/;)
put /;

McCarl GAMS User Guide619

© 2022 Prof. Bruce McCarl

loop(mine,

put 'start set element explanatory text here $':0 mine.te(mine):<20 '$ end here'/;)
put /;

loop(mine,

put 'start set element value here $':0 mine(mine): <>10
 '$ end here for name ' mine.tl /;)

put /;

put 'start number here $':0 number: <20:4 '$ end here'/;
put 'start number here $':0 number: >20:4 '$ end here'/;
put 'start number here $':0 number:<>20:4 '$ end here'/;
put 'start large number here $':0 largenumber:10:4 '$ end here'/;

put 'start large number here $':0 largenumber: <10:4 '$ end here'/;
put /;

and the result is

start quoted text here $ Quot$ end here

start quoted text here $Quot $ end here

start quoted text here $ Quot $ end here

start item explanatory text here $ abc$ end here

start item explanatory text here $abc $ end here

start item explanatory text here $ abc $ end here

start set element name here $ a1$ end here

start set element name here $ b1234$ end here

start set element name here $ small$ end here

start set element explanatory text here $seta1 $ end here

start set element explanatory text here $setbabhijklmnopqrstu$ end here

start set element explanatory text here $small $ end here

start set element value here $ YES $ end here for name a1

start set element value here $ YES $ end here for name b1234

start set element value here $ YES $ end here for name small

start number here $1.2356 $ end here

start number here $ 1.2356$ end here

start number here $ 1.2356 $ end here

start large number here $1.00000E+9$ end here

start large number here $1.00000E+9$ end here

where items are flushed right by the use of > , others are flushed left by the use of < and some are centered by
the use of <> . Note the green entries are unaffected since the item fills up the field.

14.2.2.2.2.8 Additional numeric display control

In addition to the field width and justification controls discussed in the previous sections, the following
put file attributes can be globally specified for numeric display.

This is a scientific format toggle. It's use allows one to vary the contents of the puts with respect to the
formatting of numeric values in terms of use of scientific notation (E format) as opposed to GAMS choice
or fixed decimal place format (F). It is addressed using the syntax

Advanced Language Features 620

© 2022 Prof. Bruce McCarl

Localfileidentifier.nr=number;

The potential entries for number and the result are

0 entries displayed in F or E format
1 numbers rounded to fit fields
2 all numbers displayed in scientific notation (E format)
3 numbers with floating decimal and constant precision

Gives the tolerance level below which numbers with smaller absolute values are treated as zero. When
this is set equal to zero, rounding is determined by the field width. The default value for the attribute is
1.0e-5. It is addressed using the syntax

Localfileidentifier.nz=realnumber;

Where realnumber is the value below which any numerical output with smaller absolute values will be
reported as zero.

14.2.2.2.3 Putclose

The Putclose keyword is used to close a file during the execution of program. Otherwise GAMS
automatically closes files when it exits.

Example:

One application where this is useful involves writing an option file that controls a solver from within a GAMS
model. In that case, the file must be closed prior to the SOLVE statement and Putclose allows that to be done.
 The following example shows the creation and closing of an option file for the MINOS solver as implemented
in frstpart.gms.

FILE OPT MINOS option file / MINOS5.OPT /;

Put OPT;

Put 'BEGIN'/

 ' Iteration limit 500'/

 ' Major damping parameter 0.5'/

 ' Feasibility tolerance 1.0E-7'/

 ' Scale all variables'/

 'END';

Putclose OPT;

One may also wish to report what loop one is on in a large model using commands like (comparw.gms)

$set console

$if %system.filesys% == UNIX $set console /dev/tty

$if %system.filesys% == DOS $set console con

$if %system.filesys% == MS95 $set console con

$if %system.filesys% == MSNT $set console con

$if "%console%." == "." abort "filesys not recognized";

McCarl GAMS User Guide621

© 2022 Prof. Bruce McCarl

file screen / '%console%' /;

followed by

loop(scenarios,

 put screen;

 put 'I am on scenario ' Scenarios.tl;

 putclose;

that writes to the screen (or DOS window that must be made visible in the IDE using file options execute). In
this case Putclose is necessary to cause the line to become visible. One can also use Putclose to change the
title of the DOS box.

Notes:

• This program segment would be placed inside the GAMS model prior to the solve statement.

• If the internal file name is omitted from the Putclose statement, the current Put file is closed.

• After using the Putclose command, the file does not have to be redefined in order to use it again.

Simply make the file current and use Put statements as you normally would. The existing file will
either be overwritten or appended to depending on the value of the append file (.ap) suffix.

14.2.2.2.4 Putpage

GAMS does automatic paging when the lines printed reaches the page height (ps) is reached. Through
the use of the command Putpage a page can be terminated and written to the file when the user desires.
 Putpage forces the current page to be immediately written, making a new page available for Put
statements. Putpage can be used with output items. When it is, the page is written including the
output items contained in the Putpage statement.

Putpage OUT 'This text is placed in the window and the page ended';

14.2.3 Putting out a block of text: $onput, $offput, $onputs, $onputv

Sometimes one needs to put out several lines of text just for appearances sake. In such a case using
conventional puts one would have syntax like the following (putex12.gms)

Put 'Line 1 of text' /;
Put 'Line 2 of text' //;
Put 'Line 3 of text' /;
Put 'Line 4 of text' /;

One may use the commands $onput and $offput as an alternative

$onput
Line 1 of text
Line 2 of text

Line 3 of text
Line 4 of text

Advanced Language Features 622

© 2022 Prof. Bruce McCarl

$offput

Yielding idenetical put files. In this case the text block is begun with $onput and ended with $offput.

There is also a variant, 2, that uses substitutable parameters (Parameter substitution is discussed in
the Conditional Compilation chapter). Namely $onputs will cause all parameter statements in it (those
enclosed in % signs) to be replaced with any defined GAMS calling parameters of control variables.
$onputv suppresses any substitution. For example the sequence (putex12.gms)

$setglobal it "from $onputs"
$onputs
substitution
Line 1 of text "%it%"
Line 2 of text %it%
Line 3 of text %it%
Line 4 of text %it%
$offput

Generates the output

substitution

Line 1 of text "from $onputs"

Line 2 of text from $onputs

Line 3 of text from $onputs

Line 4 of text from $onputs

While (putex12.gms)

$setglobal it "from $onputs"
$onputv
No substitution
Line 1 of text "%it%"
Line 2 of text %it%
Line 3 of text %it%
Line 4 of text %it%
$offput

Generates

No substitution

Line 1 of text "%it%"

Line 2 of text %it%

Line 3 of text %it%

Line 4 of text %it%

14.2.4 Making puts conditional

As with other GAMS statements, conditionals can be used with Put statements to control whether

McCarl GAMS User Guide623

© 2022 Prof. Bruce McCarl

particular output items are displayed. In the following example, the Put statement is only displayed if the
dollar condition is true. If it is not, the Put statement is ignored:

Put$(FLAG GT 10) 'some output items';

14.2.5 Output to other programs

There are cases where one wishes to save things to other programs. This is generally done using Put
files. Again one can write customized programs or can use some of Rutherford's tools. Two examples
of the customized puts follow.

Put of data to a regression code

Put file for export to mapping program

14.2.5.1 Put of data to a regression code

(regput.gms)

Here we put data for use in a program like SPSS. We use puts to print out fixed formatted files.

file tosass;

put tosass;

loop(run,

 put run.tl;

 put @12;

put /;

loop(decwant,s= fawelsum("Agconswelf",decwant,run)/1000;put s:13:0;);

put /;

loop(decwant,s= fawelsum("AGGOVTCOST",decwant,run)/1000;put s:13:2;);

put /;

loop(decwant,s= agtable(decwant,"agtradbal",run)/1000;put s:13:2;);

 put / ;

) put / ;

Sample of Data saved

r1

 30 40 50

 60.00 70.00 80.00

 7.56 15.11 22.67

r2

 40 50 60

 70.00 80.00 90.00

 7.56 15.11 22.67

r3

 50 60 70

 80.00 90.00 100.00

 7.56 15.11 22.67

Advanced Language Features 624

© 2022 Prof. Bruce McCarl

Each set of lines gives the case name for one model run followed by the data points.

14.2.5.2 Put file for export to mapping program

(maplink.gms)

Here we put a csv-delimited file for export to a mapping program.

sets meas /nitrogen,phosporous,potassium,cropland,

 watererosn,winderosn,sediment,pub-water,pumpwater,

 chemicalco/;

sets region /EAST,STHEAST,MIDWEST,WEST,STHCENTRAL,NORTHERNPL /

table data(region,meas) data to be put

 nitrogen phosporous potassium chemicalco cropland

EAST 0.96 -0.17 0.52 -0.24 0.00

STHEAST 0.13 0.09 0.13 -0.12 0.02

MIDWEST 0.40 0.36 0.54 -0.03 0.36

WEST 1.74 1.51 1.73 0.59 1.63

STHCENTRAL -0.09 -0.15 0.04 0.17 0.12

NORTHERNPL 3.55 1.70 2.59 3.16 1.65

 + watererosn winderosn sediment pub-water pumpwater

EAST -1.14 0.01 -1.16 0.00 -10.71

STHEAST 3.13 0.67 3.64 0.34 0.00

MIDWEST -0.23 0.59 -0.23 0.00 -1.11

WEST 0.57 0.02 0.74 0.01 0.26

STHCENTRAL -0.16 -1.33 -0.08 0.00 -1.55

NORTHERNPL 0.92 -3.06 0.85 0.00 -0.07

file mapdat;

put mapdat;

mapdat.pw=250;

set s1(meas) /nitrogen,phosporous,potassium,chemicalco,cropland/

put '"region"'; loop(s1,put ' , "' s1.tl '"'); put /;

loop(region,

 put '"' region.tl '"'; loop(s1,put ',' data(region,s1):10:2); put /);

set s2(meas) / watererosn,winderosn,sediment,pub-water,pumpwater/

put '"region"'; loop(s2,put ' , "' s2.tl '"'); put /;

loop(region,

 put '"' region.tl '"'; loop(s2,put ',' data(region,s2):10:2); put /);

the resultant output is

"region","nitrogen","phosporous","potassium","cropland","chemicalco"

"EAST",0.96,-0.17,0.52,0.00,-0.24

"STHEAST",0.13,0.09,0.13,0.02,-0.12

"MIDWEST",0.40,0.36,0.54,0.36,-0.03

"WEST",1.74,1.51,1.73,1.63,0.59

"STHCENTRAL",-0.09,-0.15,0.04,0.12,0.17

McCarl GAMS User Guide625

© 2022 Prof. Bruce McCarl

"NORTHERNPL",3.55,1.70,2.59,1.65,3.16

"region","watererosn","winderosn","sediment","pub-water","pumpwater"

"EAST",-1.14,0.01,-1.16,0.00,-10.71

"STHEAST",3.13,0.67,3.64,0.34,0.00

"MIDWEST",-0.23,0.59,-0.23,0.00,-1.11

"WEST",0.57,0.02,0.74,0.01,0.26

"STHCENTRAL",-0.16,-1.33,-0.08,0.00,-1.55

"NORTHERNPL",0.92,-3.06,0.85,0.00,-0.07

This is also readily importable to a spreadsheet.

14.2.6 Errors that arise during puts

Errors can occur during execution of put commands that are caused when file or page attributes are
violated. These errors are non-fatal and are listed at the end of the program listing. They typically occur
when a put statement attempts to write outside of a page, such as moving the cursor with the @
character to a location beyond the page width. Other typical errors are the inability to open a specified
file, the overflow of a page, or an inappropriate value being assigned to a suffix. For many of these
errors, an additional set of asterisks will be placed at the location of the error in the output file.

Since put errors are non-fatal, their presence is sometimes overlooked without reviewing the program
listing and these put errors might go undetected, especially in large output files. Consequently, GAMS
includes a file attribute to help one detect errors:

localfileidentifier.errors

This attribute allows one to display the number of put errors occurring during execution of put commands
to a file. The attribute is addressed using the syntax

Parametervalue = Localfileidentifier.errors;

Such statements can be inserted at any point of a program to detect the number of errors, which have
occurred up to that location.

14.3 Acronyms

In GAMS an acronym is a special data type that allows the use of character strings as values.

Declaration

Usage

14.3.1 Declaration

Acronyms are defined in a fashion similar to set or parameter definitions. The basic format is

Acronym Itemname Explanatory text;

or

Advanced Language Features 626

© 2022 Prof. Bruce McCarl

Acronyms Itemname Explanatory text;

Where Itemname names the acronym and follows the same rules discussed in the Rules for Item
Names, Element names and Explanatory Text chapter. Explanatory text is associated text that is used
for self-documentation. The Explanatory text entry again must follow the rules given in the Rules for Item
Names, Element names and Explanatory Text chapter.

Examples:

acronym ALABEL Here is a label
acronyms monday, tuesday, wednesday, thursday, friday ;

Notes:

• Acronym or acronyms can be used interchangeably.

• The name of the acronym is also the text it takes on when displayed.

14.3.2 Usage

Acronyms can be used in scalar, parameter and table statements as well as in calculation - assignment
statements and conditionals.

Examples:

(acronym.gms)

acronyms nameforit,nextone;

acronym acronym3 the third one

acronym doit any old acronym

set i /i1, i2, i3 /;

parameter textstrings(i)

 /i1 nameforit, i2 nextone, i3 acronym3/ ;

parameter textstring(i)

 /i1 doit, i2 1, i3 doit/ ;

display textstrings;

file putacronym;

put putacronym;

put nameforit //

loop(i,if(textstrings(i)= nameforit, put 'Something');

put textstrings(i) /);

scalar flagtome;

flagtome=doit;

equation aa(i);

variables x(i);

aa(i)$(textstring(i)=doit).. 3*x(i)=e=1;

display flagtome,textstring;

parameter zz(i),rr(i);

zz(i)=textstring(i) ;

display zz;

McCarl GAMS User Guide627

© 2022 Prof. Bruce McCarl

table acks(i,i)

 i1 i2 i3

i1 doit

i2 doit

i3 doit;

display acks;

Notes:

• Scalar, parameter, or table statements are entered as described in the Data Entry chapter with

acronym names used wherever numbers could be entered.

• Conditionals can be used, but when dealing with acronyms you can only use eq or ne operators not

gt or lt.

• When acronyms are included in Assignment statements the statements can only set other items

equal to acronyms or other parameters containing acronyms.

• Numerical operations (+ - * / **) cannot be done with acronyms.

• Numbers can be mixed in with acronyms in a parameter that is defined over a set or sets, but once

the acronym is in the parameter then that parameter cannot be subsequently manipulated
numerically.

14.4 Conditional Compilation

GAMS provides commands that allow significant compile time changes in the basic structure of any set
of GAMS instructions dependent on user defined items. These features allow one do several things
including

• Simplify maintenance of models that share common features but have significant differences

involving features that could not simultaneously exist in a compiled GAMS code.

• Add memory, execution time or solver requirements that are desirable to avoid if not needed.

• Develop utilities that may be used across a wide variety of applications in different contexts.

Any of these items can be structured so that they can be activated or deactivated by the choice of a
single controlling variable, as I will show below.

Control variables

Environment variables

$If and $Ifi conditionals

Forms of conditionals

Incorporating Goo: $Goto and $Label

Redefining expressions

Running external programs or commands

Writing messages to LST, LOG and other files

End the job: $Exit, $Abort, $Error, $Stop, $Terminate

Longer examples

Advanced Language Features 628

© 2022 Prof. Bruce McCarl

14.4.1 Control variables

Control variables can be used to cause compile time changes in program structure. They can be
defined, listed in terms of current status and used in $If conditionals.

Establishing control variables

14.4.1.1 Establishing control variables

Control variables are defined in three different ways.

$set varname value
$setlocal varname value
$Setglobal varname value
--varname=value

where

varname is any user chosen variable name

value is optional in all cases but the last one and can contain text or a number

The main difference between these definitions involves the accessibility of the control variables within
code brought into a program through the family of include commands.

These variables can be destroyed using

$Drop varname
$Droplocal varname
$Dropglobal varname

where varname is as above.

14.4.1.1.1 $Setglobal

Control variables can be set that are available throughout the code.

These are set using syntax like (control.gms)

$setglobal gg what
$setglobal heregg
--mycommand=value

where

gg and heregg are the names of the two control variables being defined what is the text

being assigned to the control variable gg

the -- syntax is explained here

If one wishes to remove the control variables they are destroyed using

McCarl GAMS User Guide629

© 2022 Prof. Bruce McCarl

$dropglobal varname

Unfortunately GAMS allows one to define scoped local and global variables with the same name but
treats them as different under some cases and prioritizes them when using $ife or $if as discussed
here.

14.4.1.1.2 $Setlocal

Control variables can be set that are available only in the code module where the are defined using
$setlocal defined.

These are set using syntax like (control.gms)

$setlocal yy no
$setlocal hereyy

where

yy and hereyy are the names of the two local control variables being defined

no is the text being assigned to the control variable yy

If one wishes to remove the control variables they are destroyed using

$droplocal varname

Unfortunately GAMS allows one to define local and global variables with the same name but treats
them as different under some cases and prioritizes them when using $ife or $if as discussed here.

14.4.1.1.3 $Set

Control variables can be set which are called scoped and are available in the code module where
defined and any code included therein, but not anywhere in code that includes the module where the
$Set command appears.

These are set using syntax like (control.gms)
$set it 1
$set hereit

where

it and hereit are the names of the two scoped control variables being defined

1 is the text being assigned to the control variable it

If one wishes to remove the control variables they are destroyed using

. $drop varname

Advanced Language Features 630

© 2022 Prof. Bruce McCarl

The -- syntax also defines a scoped variable but it is in the main module and is thus equivalent to a
global variable.

14.4.1.1.4 $EvalGlobal

This evaluates a numerical expression at compile time and places it into a global control variable. In
turn one can use $ife to do numeric testing on the value of this variable.

The format is
$EvalGlobal expression

The expression must consist of constants, functions or other control variables with numerical values.

Example:

$set znumber 4
 $Evalglobal anumber %znumber%+10
 $ife %anumber%>14 display "it exceeds 14" "%anumber%"
 $ife %anumber%<14 display "it is less than 14" "%anumber%"
 $ife %anumber%=14 display "it equals 14" "%anumber%"
 $ife %anumber%<>14 display "it does not equal 14" "%anumber%"

Notes:

• Related functions are

$Eval that works with scoped control variables
$Evallocal that works with local control variables

• Unfortunately GAMS allows one to define scoped local and global variables with the same
name but treats them as different under some cases and prioritizes them when using $ife or
$if as discussed here.

• The calculations can only involve real numbers

• Expression evaluation proceeds from left to right

• When items are not set off in parentheses the operator precedence is:

OR XOR EQV IMP
AND
NOT
< <= = <> >= > LE LE EQ NE GE GT
+ - binary and unary
* /
^ **

• The following functions can be used in expressions:

abs ceil cos exp floor frac IfThen log log2 log10 max
min mod PI power round sign sin sleep sqr sqrt tan

McCarl GAMS User Guide631

© 2022 Prof. Bruce McCarl

 trunk

14.4.1.1.5 $Evallocal

This evaluates a numerical expression at compile time and places it into a local control variable. In
turn one can use $ife to do numeric testing on the value of this variable.

The format is
$EvalLocal expression

The expression must consist of constants, functions or other control variables with numerical values.

Example:

$set znumber 4
 $EvalLocal anumber %znumber%+10
 $ife %anumber%>14 display "it exceeds 14" "%anumber%"
 $ife %anumber%<14 display "it is less than 14" "%anumber%"
 $ife %anumber%=14 display "it equals 14" "%anumber%"
 $ife %anumber%<>14 display "it does not equal 14" "%anumber%"

Notes:

• Related functions are

$Eval that works with local control variables
$Evalglobal that works with global control variables

• Unfortunately GAMS allows one to define scoped local and global variables with the same
name but treats them as different under some cases and prioritizes them when using $ife or
$if as discussed here.

• The calculations can only involve real numbers

• Expression evaluation proceeds from left to right

• When items are not set off in parentheses the operator precedence us

OR XOR EQV IMP
AND
NOT
< <= = <> >= > LE LE EQ NE GE GT
+ - binary and unary
* /
^ **

• The following functions can be used in expressions:

abs ceil cos exp floor frac IfThen log log2 log10 max

Advanced Language Features 632

© 2022 Prof. Bruce McCarl

min mod PI power round sign sin sleep sqr sqrt tan
 trunk

14.4.1.1.6 $Eval

This evaluates a numerical expression at compile time and places it into a scoped control variable.
In turn one can use $ife to do numeric testing on the value of this variable.

The format is
$Eval expression

The expression must consist of constants, functions or other control variables with numerical values.
The following GAMS date and release functions may also be used: jdate, jtime, gyear, gmonth,
gday, gdow, gleap, ghour, gminute, gsecond, gmillisec, jstart, jnow, gamsversion, and gamsrelease

Example:

$set znumber 4
$Eval anumber %znumber%+10
$ife %anumber%>14 display "it exceeds 14" "%anumber%"
$ife %anumber%<14 display "it is less than 14" "%anumber%"
$ife %anumber%=14 display "it equals 14" "%anumber%"
$ife %anumber%<>14 display "it does not equal 14" "%anumber%"

Notes:

• Related functions are

$EvalLocal that works with local control variables
$EvalGlobal that works with global control variables

• Unfortunately GAMS allows one to define scoped local and global variables with the same
name but treats them as different under some cases and prioritizes them when using $ife or
$if as discussed here.

• The calculations can only involve real numbers

• Expression evaluation proceeds from left to right

• When items are not set off in parentheses the operator precedence is:

OR XOR EQV IMP
AND
NOT
< <= = <> >= > LE LE EQ NE GE GT
+ - binary and unary
* /
^ **

McCarl GAMS User Guide633

© 2022 Prof. Bruce McCarl

• The following functions can be used in expressions:

abs ceil cos errorlevel exp fact floor frac gamsrelease
gamsversion gday gdow ghour gleap gmillisec gminute gmonth
gsecond gyear IfThen jdate jnow jobhandle jobkill jobstatus
jobterminate jstart jtime log log2 log10 max min mod PI
power round sign sin sleep sqr sqrt tan trunc

14.4.1.2 Setting environment variables

GAMS recognizes the environment variable GDXCONVERT and GDXCOMPRESS which
control the format with which GDX files are written.

They are set using the syntax

$setenv GDXCOMPRESS number

$setenv GDXCONVERT V#

with the number and v# allowable values as discussed in the Gdxcompress and Gdxconvert
parameters sections.

14.4.1.3 Destroying Contol Variables

These variables can be destroyed using

$Drop varname
$Droplocal varname
$Dropglobal varname

where varname is the control variable name and the .local etc. corresponds to the nature of the control variables/

14.4.1.4 A problem with control variable definitions

Unfortunately GAMS allows one to define scoped local and global variables
with the same name but treats them as different under some cases and
prioritizes them when using $ife or $if.

Namely it appears as if the local setting is always used first then the
scoped then the global. An example appears in setcontrol.gms

Note

In the face of this it may be advisable to only use one type of control
variable in any application or at least only use a name once.

Advanced Language Features 634

© 2022 Prof. Bruce McCarl

14.4.2 Environment variables

Windows NT contains a set of named system and user defined environment variables. A technical
discussion of such items appears at https://support.microsoft.com/?scid=kb;en-us;. GAMS allows one
to specify conditionals in response to environment variable values, set user environment variables to
particular values and destroy user environment variables.

Names of some system environment variables

Defining and destroying user environment variables

Augmenting environment variables

Accessing environment variable status at any point in the code: $Show

14.4.2.1 Names of some system environment variables

The system environment variables contain among other things the ones listed below. A longer list can
be found at https://web.archive.org/web/20081104192846/http://kennethhunt.com/archives/000933.html.

CD %CD% current directory string.

COMPUTERNAME %COMPUTERNAME% name of the computer.

DATE %DATE% current date.

ERRORLEVEL %ERRORLEVEL% error code of the most recently
used command.

HOMEPATH %HOMEPATH% path of user's home directory. .

NUMBER_OF_PROCESS
ORS

%NUMBER_OF_PROCESSORS% number of processors installed on
the computer.

OS %OS% OS name. Windows XP and
Windows 2000 display as
Windows_NT.

PATH %PATH% System specifies the search path
for executable files.

TIME %TIME% current time

Note of caution: The following standard environment variables are not always available:

https://support.microsoft.com/?scid=kb;en-us;
https://web.archive.org/web/20081104192846/http://kennethhunt.com/archives/000933.html

McCarl GAMS User Guide635

© 2022 Prof. Bruce McCarl

CD

CMDCMDLINE

CMDEXTVERSION

DATE

ERRORLEVEL

PROMPT

RANDOM

TIME

14.4.2.2 Defining and destroying user environment variables

Environment variables are defined as follows.

$setenv varname value

where

varname is a user chosen environment variable name

value can contain text or a number

Environment variables are destroyed as follows.

$dropenv varname

where varname is a user chosen environment variable name.

14.4.2.3 Augmenting environment variables

Environment variables may have items added to their beginning or their end as follows.

To add to the beginning

$setenv varname %sysenv.varname% value

To add to the beginning

$setenv varname value %sysenv.varname%

where

Advanced Language Features 636

© 2022 Prof. Bruce McCarl

varname is a user chosen environment variable name

value contains text or a number

%sysenv.varname% is the old text that was in the environment variable.

Note of caution using $SETENV Under windows 2000, XP and vista, environment variables are defined
locally. After the GAMS model finished execution, the setting of the environment variable is lost.
$SETENV can therefore not be used to pass information from a GAMS model to the outside world
outside the confines of the GAMS model itself. Similarly only environment variables defined at core
windows level are available. Even environment variables that were created by spawning an external
program from GAMS are not available.

Example:

$onecho > cmd.cmd

set xxx=test

set xxx > cmd.set

$offecho

$call cmd.cmd

$echo xxx=%sysenv.xxx% > cmd.xxx

The result in cmd.set and cmd.xxx are not identical!!!!

14.4.2.4 Accessing environment variable status at any point in the code: $Show

One may look at environment variable values by displaying them or by creating a simple program that
displays them using an echo command and then using a $call to invoke it.

Examples:

(environvar.gms)

* Display current values of the system environment variables like the PATH variable

display '%sysenv.PATH%'

*display environment varialbe in log file

*first set up a simple command processor

$onechoV > xx.cmd

echo the path is %path%

echo the os is %os%

$offecho

McCarl GAMS User Guide637

© 2022 Prof. Bruce McCarl

*now run it

$call xx.cmd

14.4.3 $If and $Ifi conditionals

One can employ conditional statements using the $If, $Ifi and $Ife possibly with the Not modifier.

$If and $Ifi

$Ife

Not as a modifier

14.4.3.1 $If and $Ifi

The $If statement causes execution of a GAMS statement when a conditional is true. The basic form of
the $If and $Ifi command is

$If conditional statementtoexecute
$Ifi conditional statementtoexecute

or with the instruction on the next line

$If conditional
statementtoexecute

or

$Ifi conditional
statementtoexecute

The net effect is that the code that GAMS will execute will either contain or not contain
statementtoexecute depending on the true false nature of the conditional. In particular, when the
conditional in the $If or $Ifi test is true, then the statementtoexecute will be entered into the source code
to be executed. If not, then the statements statementtoexecute will never be executed.

Notes:

• The $If makes comparisons involving text in a case sensitive fashion. The $Ifi is a case insensitive

variant.

• The conditional is evaluated at compile time, so does not involve GAMS calculated numbers.

• An example is in basicif.gms.

• Surrounding a control variable name with % signs substitutes the text for that control variable in that

place as illustrated and discussed below.

14.4.3.2 $Ife conditionals

This evaluates numerically the conditional at compile time.

Advanced Language Features 638

© 2022 Prof. Bruce McCarl

$Ife conditional statementtoexecute

If the conditional is true, then, the GAMS statement, i.e. statementtoexecute, is added to the GAMS
program at compile time. The conditional can be:

item

or
item == item2

Let's first consider the first alternative:

$Ife item statementtoexecute

The item may be a term or expression. A term may be a control variable value, defined scalar or
constant. An expression consists of:

<term><op><term>

An expression does not allow spaces. Furthermore, we can use functions on a term. The operator
(op) may be one of the following:

= to test equality
> to test greater than
< to test less than
<> to test not equal

Several expressions can be combined by nesting operators, e.g. and and or. Brackets can be used
to separate expressions. Instead of separating the expression with brackets, we can also surround
the sequence of expressions with quotes or double quotes and separate the expressions with spaces.
Consider the following example:

$set a 2
scalar b / 3 /;
$ife (%a%=2)and(b=3)and(sqr(b)=9) $log Test 1 returns true
$ife "%a%=2 and b=3 and sqr(b)=9" $log Test 2 returns true

Test 1 and 2 returns true. Note that, we evaluate a control variable by surrounding it with a percent
sign, e.g. the value of control variable a is referenced by %a%.

Let us now consider the second alternative:

$Ife item == item2 statementtoexecute

For a conditional with numerical evaluation, $ife, the special operator == tests for equality with a
tolerance of 1E-12, however, for a conditional, $if, it denotes a string comparison. In a $ife
statement the special operator == can only be used ones and spaces are allowed on both sides of

McCarl GAMS User Guide639

© 2022 Prof. Bruce McCarl

the special operator. Consider the following example:

$ife 0 == 1E-12 $log Test 3 returns true
$ife 1==1+1E-13 $log Test 4 returns true

Test 3 returns false and test 4 returns true.

Observe that the control variable may obtain its value from a evaluating an expression, see eval,
valglobal or evallocal .

Example: (setcontrol.gms)

$set znumber 4
$Evalglobal anumber %znumber%+10
$Evalglobal vnumber %znumber%+9

$ife %anumber%>14 display "it exceeds 14" ,"%anumber%" ;
$ife %anumber%<14 display "it is less than 14" ,"%anumber%" ;
$ife %anumber%=14 display "it equals 14" ,"%anumber%";
$ife %anumber%<>14 display "it does not equal 14", "%anumber%";
$ife %anumber%>%vnumber% display "it exceeds vnumber", "%anumber%", "%vnumber%";
$ife %anumber% display "anumber is nonzero";
$ife %anumber%<>0 display "anumber is nonzero";

Notes:

• Unfortunately GAMS allows one to define scoped local and global variables with the same
name but treats them as different under some cases and prioritizes them when using $ife or
$if as discussed here.

• When testing whether item == item2 the test is true if abs (item2-item)/ (1+abs(item2)) <
10^(-12)

• When the command is used without an operator as in
 $ife %anumber% display "anumber is nonzero";

 then it is same as
 $ife %anumber% <> 0 display "anumber is nonzero";
 i.e. the program tests whether an item is nonzero.

• The evaluation of expressions follows the rules given under the discussion of $Eval

14.4.3.3 Not as a modifier

The $If statement can contain a Not modifier. If so the GAMS statementtoexecute will be compiled and
executed only when the conditional is false. The basic form of the $If not command is

$If NOT conditional statementtoexecute
$Ifi NOT conditional statementtoexecute

Advanced Language Features 640

© 2022 Prof. Bruce McCarl

Example:

(basicif.gms)

scalar x /1/;

*$ondollar

scalar y /1/;

$Setglobal gg

$Setglobal tt doit

$If setglobal gg display x;

$If not setglobal gg display y;

$If "%tt%" == "doit" x=x*2;

$Ifi "%tt%" == "DOIT" x=y**2;

$If "%tt%" == "DOIT" x=x*100;

$If not "%tt%" == "doit" y=y/4;

$set aa yes

$If "%aa%" == yes y=x;

The resultant effect on the compiled code is

1 scalar x /1/;

2 *$ondollar

3 scalar y /1/;

6 display x;

8 x=x*2;

9 x=y**2;

13 y=x;

Note lines in blue are suppressed because the $If fails while the magenta, orange, red and violet lines occur
since the conditionals are true. The contrast between the lines

$Ifi "%tt%" == "DOIT" x=y**2;

$If "%tt%" == "DOIT" x=x*100;

where the second line fails since tt was set to "doit". This shows the case sensitive nature of $If versus the
case insensitivity of $Ifi.

14.4.4 $ifthen, iftheni, ifthene, else, elseif, endif conditionals

$Ifthen and the other components below are a form of a $IF that controls whether a number of
statements are active. An $IFTHEN must be matched with a $ENDIF. The syntax for the condition
are generally the same as for the $if statement. The $ifthen and $elseif have variants that are case
insensitive ($IFi and $ELSEIFi) or evaluate numerical values of the control variables ($IFe and
$ELSEIFe).

Notes:

• $IFTHENe is used to do numerical comparisons

McCarl GAMS User Guide641

© 2022 Prof. Bruce McCarl

• $IFTHENi is used to do case insensitive comparisons, while $IFTHEN does case
sensitive ones

• $ELSEIF has another comparison behind it as in the example below

• $ELSEIFi is a case insensitive variant of $Eleseif

• $ELSEIFe is a numerical value evaluating variant of $Eleseif

• The statements following directly a $ifthen, $elseif, or $else on the same line can be a
sequence of other dollar control statements or contain proper GAMS syntax. The
statements following directly a $endif can only contain another dollar control statements.

• A NOT maybe used in the commands

• The comparisons allowed are covered in the forms of conditionals section

• One may add a tag to the IFTHEN and ENDIF conditions to force them the match up
such as in (setcontrol.gms)

$ifthen.onea x == x

 display "it";

$ifthen.twoa a == a

 display "it2";

$endif.twoa

$endif.onea

• The evaluation of expressions follows the rules given under the discussion of $Eval

Examples:

(setcontrol.gms)

$setglobal aroundit

$ifthen setglobal aroundit

 display "statement 1";

 display "statement 2";

$else

 display "statment 3";

$endif

Here when aroundit is setglobal then we get the two displays executed. Otherwise the third one
occurs.

Much more complex forms can be used

$maxgoto 10 $set x a

$label two

Advanced Language Features 642

© 2022 Prof. Bruce McCarl

$ifthen %x% == a $set x 'c' $log $ifthen with x=%x%

$elseif %x% == b $set x 'k' $log $elseif 1 with x=%x%

$elseif %x% == c $set x 'b' $log $elseif 2 with x=%x%

$else $set x 'e' $log $else with x=%x%

$endif $if NOT %x% == e $goto two

$eval x 1

$label three

display 'x=%x%';

$ifthen %x% == 1 $eval x %x%+1

$elseif %x% == 2 $eval x %x%+1

$elseif %x% == 3 $eval x %x%+1

$elseif %x% == 4 $eval x %x%+1

$else $set x done

$endif $if NOT %x% == done $goto three

Lengthy and nested ithen/else structures can become difficult to debug. Tagging of the begin, the
$ifthen and the end, the $endif can be helpful. For example, the next line will fail because the tags do
not match:

$ifthen.one x == x

$endif.one

As with the $if statement, the statement on the line with the $ifthen style statements is optional. The
following two statements give the same results:

$iftheni %type% == low $include abc

$elseifi %type% == med $include efg

$else $include xyz

$endif

$iftheni %type% == low

$include abc

$elseifi %type% == med

$include efg

$else

$include xyz

$endif

The statements following directly a $ifthen, $elseif, or $else on the same line can be a sequence of
other dollar control statements or contain proper GAMS syntax. The statements following directly a
$endif can only contain another dollar control statements.

$ifthen.two c==c display 'true for tag two';

$ifthen.three a==a $log true for tag three

display ' then clause for tag three';

$ifthen.four x==x display 'true for tag four';

$log true for tag four

$else

McCarl GAMS User Guide643

© 2022 Prof. Bruce McCarl

display ' else clause for tag four';

$endif.four $log endif four

$endif.three $log endif three

$endif.two $log endif two

This will produce a GAMS program like

1 display 'true for tag two';

3 display ' then clause for tag three';

4 display 'true for tag four';

with the following log output

--- Starting compilation

true for tag three

true for tag four

endif four

endif three

endif two

14.4.5 Forms of conditionals

The conditionals used in $If and $Ifi statements can be of many forms. The principal ones involve:

• Comparisons involving control variables or environment variables testing whether a variable is

defined or whether its contents match a string.

• Characteristics of a named item testing its type, set dependency or declaration status.

• GAMS command line parameters including user defined options.

• The settings of system characteristics.

• Batinclude parameters testing existence, contents, declaration status, or type.

• Error checks.

• File existence status.

Each is discussed below.

Based on control and environment variables

Based on characteristics of named item or parameter

Passed parameter existence

Based on GAMS command line parameters

Based on system characteristics

Based on error and warning checks

Based on file existence

Based on put file status

Advanced Language Features 644

© 2022 Prof. Bruce McCarl

14.4.5.1 Based on control and environment variables

When one inserts conditionals in a GAMS program based on control variables, one either tests for the
existence of a control variable or does tests on the contents of the control variable.

14.4.5.1.1 Existence

One can use a $If or $Ifi with or without the not modifier to test for whether or not the control variable has
been set and if so execute a command otherwise skipping that command. The test to see if a control
variable has been set is of one of three forms:

$If set controlvariablename statementtoexecute;
$If setglobal controlvariablename statementtoexecute;
$If setlocal controlvariablename statementtoexecute;
$If setenv envronmentvariablename statementtoexecute;

The evaluation of each as to whether it is true or false depends on the characteristics of the set
command used in its original definition. Several cases arise:

• If the variable identified by controlvariablename or envronmentvariablename was set by any of

the $set, $setenv, $setlocal, or $Setglobal commands it will render the $If involving the plain
set conditional to be true.

• If the control variable was established using $Setglobal, then any conditional involving the

setglobal test will also be true.

• If the control variable was established using $setlocal, then any conditional using the setlocal

condition would become true.

• If the control variable was not established with any of these statements it will not pass any of

the conditionals.

• $If or $Ifi can be used interchangeably with the not modifier included if desired.

Example:

(basicif.gms)

$setlocal alocal yes

$set aset yes

$Setglobal aglobal yes

acronyms local,global,plainset

scalar type;

*set item

$If set aset type=plainset;

$If setglobal aset type=global;

$If setlocal aset type=local;

*setglobal

$If set aglobal type=plainset;

$If setglobal aglobal type=global;

$If setlocal aglobal type=local;

*setlocal

$Ifi set alocal type=plainset;

McCarl GAMS User Guide645

© 2022 Prof. Bruce McCarl

$Ifi setglobal alocal type=global;

$Ifi setlocal alocal type=local;

*not set

$If set qq type=plainset;

$If setglobal qq type=global;

$If setlocal qq type=local;

$If not set qq display "No qq around";

results in the echo print

 17 *set item

 18 type=plainset;

 21 *setglobal

 22 type=plainset;

 23 type=global;

 25 *setlocal

 26 type=plainset;

 28 type=local;

 29 *not set

 34 display "No qq around";

where line 18 shows that the command variable established with the $set the syntax passes only the $If set
conditional while the setglobal command variable passes both the $If set and the $If setglobal conditionals.
Also $setlocal command variable passes both the $Ifi set and the $Ifi setlocal condition. Finally, the
referenced command variable qq that was never established within a set command did not pass any of the
conditions except the last one with the not in it.

Examples employing the environmental variables appear in environvar.gms.

14.4.5.1.2 Contents

One can test the contents of a control variable by using several syntax forms below

$If %controlvariablename% == texttocompare statementtoexecute;
$If %controlvariablename%" == "texttocompare" statementtoexecute;
$If "%controlvariablename%" == texttocompare statementtoexecute;
$If "%system.environmentvarname%" == "texttocompare" statementtoexecute;

Notes:

• The %controlvariablename% retrieves the text that was placed in the control variable. The %

precedes and succeeds the control variable name. The quotes need to be used when spaces
were included in the text placed therein.

• The texttocompare is a text string to compare the text in the control variable with.

• The == is a symbol saying compare these two strings.

• The % symbol may be redefined using the Escape dollar command.

Advanced Language Features 646

© 2022 Prof. Bruce McCarl

Examples:

(basicif.gms)

*texttocompare

$Setglobal controlvariablename comparethistext

$If %controlvariablename% == "comparethistext" type1=ok;

$If %controlvariablename% == comparethistext type2=ok;

$If "%controlvariablename%" == "comparethistext" type3=ok;

$If "%controlvariablename%" == comparethistext type4=ok;

*add spaces

$Setglobal controlvariablename compare this text

$If "%controlvariablename%" == "compare this text" type1=ok;

$If "%controlvariablename%" == compare this text type2=ok;

generates code that after compilation and looks like the following

39 *texttocompare

41 type1=ok;

42 type2=ok;

43 type3=ok;

44 type4=ok;

45

46 *add spaces

47 type1=ok;

This code shows that the quoted or uncontrolled quoted control variable name and target text works when
spaces are not present. If spaces are present then the text retrieved by use of %controlvariablename% must
be encased in quotes and if the comparison is to work so must be the target text.

Often one may wish to see if the text for an item is blank. This is frequently done with commands like the
following

$If "%controlvariablename%a" == "a" display "blank it is";
$If not "%controlvariablename%a" == "a" display "it is not blank";

which contain the element "%controlvariablename%a" that reduces just to "a" if the named control variable
does not have a text entry.

Examples employing the environmental variables appear in environvar.gms.

14.4.5.1.3 Numerical Value

One can test the numerical value of a control variable by using several syntax forms below

$Ife %controlvariablename% op valuetocompare statementtoexecute;
$Ife %controlvariablename% statementtoexecute;

McCarl GAMS User Guide647

© 2022 Prof. Bruce McCarl

Notes:

• $IFe or $IFTHENe must be used to do numerical comparisons

• The %controlvariablename% retrieves the value that was placed in the control variable. The %

precedes and succeeds the control variable name. .

• The valuetocompare is a numerical value to compare with and can be another control variable

name enclosed in % signs

• The op is a symbol saying compare these two values.and is

= to test equality

 == to test equality with a tolerance

> to test greater than

< to test less than

<> to test not equal

• When == is used the test is when testing whether item1 == item2 the test is true if abs (item2-

item1)/ (1+abs(item2)) < 10 (̂-12)
• When just the control variable name is used then the test is whether or not it holds a non zero value

Examples:

(setcontrol.gms)

$set znumber 4
 $Evalglobal anumber %znumber%+10
 $Evalglobal xnumber %znumber%+9
 $ife %anumber%>14 display "it exceeds 14", "%anumber%";

$ife %anumber% == %anumber2% Display "they are close" ;
 $ife %anumber%<14 display "it is less than 14", "%anumber%"
 $ife %anumber%=14 display "it equals 14", "%anumber%"
 $ife %anumber%<>14 display "it does not equal 14", "%anumber%"
 $ife %anumber%>%xnumber% display "it exceeds xnumber","%anumber%","%xnumber%"
 $ife %anumber% display "anumber is nonzero again";

generates code that after compilation and looks like the following

39 *texttocompare

41 type1=ok;

42 type2=ok;

43 type3=ok;

44 type4=ok;

45

46 *add spaces

47 type1=ok;

This code shows that the quoted or uncontrolled quoted control variable name and target text works when

Advanced Language Features 648

© 2022 Prof. Bruce McCarl

spaces are not present. If spaces are present then the text retrieved by use of %controlvariablename% must
be encased in quotes and if the comparison is to work so must be the target text.

Often one may wish to see if the text for an item is blank. This is frequently done with commands like the
following

$If "%controlvariablename%a" == "a" display "blank it is";
$If not "%controlvariablename%a" == "a" display "it is not blank";

which contain the element "%controlvariablename%a" that reduces just to "a" if the named control variable
does not have a text entry.

Examples employing the environmental variables appear in environvar.gms.

14.4.5.2 Based on characteristics of named item or parameter

One can use a $If or $Ifi with or without the not modifier to test the characteristics of a named item or a
passed parameter in one of the include with arguments (batinclude, libinclude, sysinclude) commands in
terms of

• Type of GAMS symbol (set, parameter, model, variable, equation, or file).

• Item definition and declaration status.

• Number of sets the item is defined with respect to.

• Existence of passed parameters.

14.4.5.2.1 Item type

A named item in a GAMS program can be one of eight fundamental types. They are set, parameter,
model, variable, equation, file, acronym, or function. A conditional can be structured to test whether a
passed argument or named item is of a particular type and in turn invoke type specific processing. The
syntax then would be one of the following where the text in pink is not part of the statement but rather a
definition

$If acrtype itemname gamsstatement is this item an acronym

$If equtype itemname gamsstatement is this item an equation

$If funtype itemname gamsstatement is this item a GAMS function

$If modtype itemname gamsstatement is this item a model

$If filtype itemname gamsstatement is it a local name for put file

$If partype itemname gamsstatement is this item a parameter

$If settype itemname gamsstatement is this item a set

$If vartype itemname gamsstatement is this item a variable

If the item identified by itemname is the type signified by the keyword with the prefix and the word type
the subsequent gamsstatement would be entered into the active code and executed. If not the
command is skipped.

Example:

(iftype.gms)

McCarl GAMS User Guide649

© 2022 Prof. Bruce McCarl

set itemname;

$If acrtype itemname display "itemname is an acronym";

$If equtype itemname display "itemname is an equation";

$If funtype itemname display "itemname is a GAMS function";

$If modtype itemname display "itemname is an model";

$If filtype itemname display "itemname is localname for put file";

$If partype itemname display "itemname is a parameter";

$If settype itemname display "itemname is a set";

$If vartype itemname display "itemname is a variable";

$If xxxtype itemname display "%itemname% is a xxx";

$If pretype itemname display "%itemname% is a pre";

$If protype itemname display "%itemname% is a pro";

results in

 3 set itemname;

10 display "itemname is a set";

One also can use a batinclude version iftypeinc.gms as is included by calliftypeinc.gms

$If acrtype %1 display "%1 is an acronym";

$If equtype %1 display "%1 is an equation";

$If funtype %1 display "%1 is a GAMS function";

$If modtype %1 display "%1 is an model";

$If filtype %1 display "%1 is localname for put file";

$If partype %1 display "%1 is a parameter";

$If settype %1 display "%1 is a set";

$If vartype %1 display "%1 is a variable";

$If xxxtype %1 display "%1 is a xxx";

$If pretype %1 display "%1 is a pre";

$If protype %1 display "%1 is a pro"

along with (iftype.gms)

set aset;

acronym acro;

$batinclude iftypeinc aset

$batinclude iftypeinc acro

$batinclude iftypeinc sqrt

results in

 17 set aset;

 18 acronym acro;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\IFTYPEINC.GMS

 28 display "aset is a set";

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\IFTYPEINC.GMS

 37 display "acro is an acronym";

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\IFTYPEINC.GMS

Advanced Language Features 650

© 2022 Prof. Bruce McCarl

 54 display "sqrt is a GAMS function";

14.4.5.2.2 Definition status: Declared and Defined

A named item or item referenced by a passed parameter may be declared but may never have had any
data put into it or may be both declared and have data. A conditional can be structured to test whether
an argument or named item was ever defined or declared. The syntax then would be one of the following

$If declared itemname gamsstatement

which tests whether the item has been declared in a set, parameter, table, model, equation, file,
acronym, or variable statement

$If defined itemname gamsstatement

that tests whether the item has been defined with data somewhere.

Example

(basicif.gms)

set aaa;

scalar bbb /1/;

$If not declared aaa display 'aaa is not declared';

$If not declared bbb display 'bbb is not declared';

$If not declared ccc display 'ccc is not declared';

$If not defined aaa display 'aaa is not defined';

$If not defined bbb display 'bbb is not defined';

$If not defined ccc display 'ccc is not defined';

yields

59 set aaa;

60 scalar bbb /1/;

63 display 'ccc is not declared';

64 display 'aaa is not defined';

66 display 'ccc is not defined';

where aaa has no data (in this case no assigned set elements) and the $If causes generation of an action (in
this case a display) since it is not being defined and the ccc tests generate both messages since it is not
mentioned anywhere.

14.4.5.2.3 Set dependency: Dimension

An item may be declared as being indexed by zero through 20 sets. A conditional can be structured to
determine how many sets are involved in the declaration. The syntax then would be one of the following

To test if this item of dimension zero (a scalar)

$If dimension 0 itemname gamsstatement

McCarl GAMS User Guide651

© 2022 Prof. Bruce McCarl

To test if this item of dimension 1 (a parameter with one index set -- a(i))

$If dimension 1 itemname gamsstatement

To test if this item of dimension 3 (a parameter a(i,j,k))

$If dimension 3 itemname gamsstatement

Note cases 0-10 are allowed.

Example:

Suppose I use this syntax within a file that I will batinclude. In that file I use conditionally compiled statements
to change formatting of the option relative to the display of an item to reallocate the items in rows and columns
dependent upon the number of sets that defines a passed named GAMS item. In this case the file to
batinclude is dimdisp.gms and call it with a single argument.

*testing %1

$If dimension 0 %1 display '%1 is 0 dimensional',%1;

$If dimension 1 %1 display '%1 is 1 dimensional',%1;

$If dimension 2 %1 option %1:0:1:1;display '%1 is 2 dimensional',%1;

$If dimension 3 %1 option %1:0:1:2;display '%1 is 3 dimensional',%1;

$If dimension 4 %1 option %1:0:1:3;display '%1 is 4 dimensional',%1;

$If dimension 5 %1 option %1:0:1:4;display '%1 is 5 dimensional',%1;

$If dimension 6 %1 option %1:0:2:4;display '%1 is 6 dimensional',%1;

$If dimension 7 %1 option %1:0:2:5;display '%1 is 7 dimensional',%1;

$If dimension 8 %1 option %1:0:2:6;display '%1 is 8 dimensional',%1;

$If dimension 9 %1 option %1:0:2:7;display '%1 is 9 dimensional',%1;

$If dimension 10 %1 option %1:0:2:8;display '%1 is 10 dimensional',%1;

In turn suppose I call the file several times over with different objects are different dimensions (basicif.gms).

scalar eee /1/;

set set1 /a,b/;

set set2 /d,e/;

set set3 /1,2/;

set set4 /g,h/;

parameter fff(set1);

fff(set1)=1;

set ggg(set1,set2,set3,set4);

ggg(set1,set2,set3,set4)=yes;

parameter hhh(set1,set2,set3,set4,set4);

hhh(set1,set2,set3,set4,set4)=ord(set1)+ord(set4);

$batinclude dimdisp eee

$batinclude dimdisp set1

$batinclude dimdisp fff

$batinclude dimdisp ggg

$batinclude dimdisp hhh

Advanced Language Features 652

© 2022 Prof. Bruce McCarl

The resultant code that is executed in the batinclude section is

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\DIMDISP.GMS

 86 display 'eee is 0 dimensional',eee;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\DIMDISP.GMS

 100 display 'set1 is 1 dimensional',set1;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\DIMDISP.GMS

 113 display 'fff is 1 dimensional',fff;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\DIMDISP.GMS

 129 option ggg:0:1:3;display 'ggg is 4 dimensional',ggg;

BATINCLUDE C:\GAMS\GAMSPDF\BIGONE\DIMDISP.GMS

143option hhh:0:1:4;display 'hhh is 5 dimensional',hhh;

Note that each time the batinclude file is called that only one of the 11 different display statements becomes
active. Also note that the one that is chosen corresponds to the dimension of the named item used as an
argument in the batinclude.

14.4.5.3 Passed parameter existence

Conditionals may be structured to examine whether or not one of the allowable parameters passed as an
argument into the include family of commands is in fact omitted or present. In such case, one can use
text comparison syntax as I discussed above and enter a statement of the following form.

$If "a%5" == "a" Display 'argument 5 is blank;

The text on the left hand side of the == comparison will equal just "a" if the fifth argument in the
batinclude is null and will then equal "a" causing the conditional to be true.

14.4.5.4 Based on GAMS command line parameters

One can use a $If or $Ifi with or without the not modifier to test the characteristics of the GAMS
command line parameter appearing on the GAMS call or in the GAMS parameters box in the upper right
corner of the IDE. Such items can be addressed as attributes of the keyword GAMS as follows

%Gams.commandlineparametername%

The parameter names are all listed in the Command Line Parameters chapter.

Example:

(gamsparm.gms)

When I include the statements

$If NOT '%gams.lp%' == '' $set lp %gams.lp%

$If NOT '%gams.rmip%' == '' $set rmip %gams.rmip%

$If NOT '%gams.mip%' == '' $set mip %gams.mip%

$If NOT '%gams.nlp%' == '' $set nlp %gams.nlp%

$If NOT '%gams.dnlp%' == '' $set dnlp %gams.dnlp%

McCarl GAMS User Guide653

© 2022 Prof. Bruce McCarl

$If NOT '%gams.cns%' == '' $set cns %gams.cns%

$If NOT '%gams.mcp%' == '' $set mcp %gams.mcp%

$If NOT '%gams.rminlp%' == '' $set rminlp %gams.rminlp%

$If NOT '%gams.minlp%' == '' $set minlp %gams.minlp%

$If NOT '%gams.lp%' == '' display 'lp command argument used %gams.lp%';

$If NOT '%gams.rmip%' == '' display 'rmip command argument used %gams.rmip%';

$If NOT '%gams.mip%' == '' display 'mip command argument used %gams.mip%';

$If NOT '%gams.nlp%' == '' display 'nlp command argument used %gams.nlp%';

$If NOT '%gams.dnlp%' == '' display 'dnlp command argument used %gams.dnlp%';

$If NOT '%gams.cns%' == '' display 'cns command argument used %gams.cns%';

$If NOT '%gams.mcp%' == '' display 'mcp command argument used %gams.mcp%';

$If NOT '%gams.rminlp%'=='' display 'rminlp command argument used %gams.rminlp%';

$If NOT '%gams.minlp%'== '' display 'minlp command argument used %gams.minlp%';

$If NOT '%gams.ps%' == '' display 'Page size command argument used %gams.ps%';

$If NOT '%gams.pw%' == '' display 'Page width command argument used %gams.pw%';

$show

and use the GAMS command line parameters

lp=bdmlp mip=osl nlp=conopt ps=60 pw=85

the resultant code in the compiler after resolving the above statements that is passed on to execution along
with the report on the control variables becomes

 3 option lp=cplex;

 13 display 'lp command line argument used bdmlp';

 15 display 'mip command line argument used osl';

 16 display 'nlp command line argument used conopt';

 22 display 'Page size command line argument used 60';

 23 display 'Page width command line argument used 85';

---- Begin of Environment Report

LEVEL TYPE LINE FILE NAME

 0 INPUT 23 C:\GAMS\GAMSPDF\GAMSPARM.GMS

LEVEL SETVAL TYPE NUM TEXT

--

 0 lp SCOPED 1 bdmlp

 0 mip SCOPED 1 osl

 0 nlp SCOPED 1 conopt

---- End of Environment Report

Notes:

• The only non blank items that can be found within the Gams.commandlineparametername entries

are those explicitly entered on the command line of the DOS level GAMS command or in the
command line parameters box in the IDE.

• Internal option statements addressing the same items have no effect on the

Advanced Language Features 654

© 2022 Prof. Bruce McCarl

Gams.commandlineparametername entries.

• Default values for the parameters will not be reported.

14.4.5.5 Based on system characteristics

One can use a $If or $Ifi with or without the not modifier to test the characteristics of a number of GAMS
system options. Such items are addressed as an attribute of the keyword system as follows

%system.attribute%

Most of the available words are not useful in conditionals, thus I list the attributes further below and only
deal with the Filesys attribute.

That syntax is

$If %system.filesys% == type gamsstatement

where type can be DOS, MS95, UNIX, MSNT and others that identify the type of system on which the
job is being run. This allows operating specific command inclusion.

Example:

(comparw.gms)

When I include the statements

$set console

$If %system.filesys% == UNIX $set console /dev/tty

$If %system.filesys% == DOS $set console con

$If %system.filesys% == MS95 $set console con

$If %system.filesys% == MSNT $set console con

$If "%console%." == "." abort "filesys not recognized";

file screen / '%console%' /;

that allow definition of a put file destination that is dependent upon the operating system that is being used. In
this case I am setting control variable console to the operating system dependent name of the screen that
users can view when a job is running. In turn, this permits us to use put commands to pass information to the
user on program execution progress during the conduct of a time consuming procedure.

14.4.5.6 Based on error and warning checks

Conditionals may be placed in the GAMS code that do particular things only if compilation up until that
point has been

• free of errors

• a call of an external program resulted in an error or not

• Free of warnings

Such commands are of the form

McCarl GAMS User Guide655

© 2022 Prof. Bruce McCarl

$If errorfree gamsstatement
$If errorlevel n gamsstatement
$If warnings gamsstatement

where

• The first syntax alternative is true if the compilation has been error-free up to the point at

which the statement appears.

• The second syntax alternative is true if the return code of a program is equal to n. n specifies

the return code value. Therefore if 1 was used, the conditional will be true if the return code
value was 1.

• The third syntax alternative is true if the compilation has been warning free up to the point at

which the statement appears.

14.4.5.7 Based on file or directory existence

Conditionals may be placed in the GAMS code that do particular things only if a named file or directory
exists or conversely with the use of the not command if it does not exist. Such commands are of the
form

$If exist fullfilename gamsstatement
$If not exist fullfilename gamsstatement.
$If dexist fulldirectoryname gamsstatement
$If not dexist fulldirectoryname gamsstatement.

where the first of the four syntax alternatives yields a true conditional if the file exists and the second if it
does not. Similarly the third of the four syntax alternatives yields a true conditional if the directory exists
and the last if it does not

Examples:

$If exist c:\myfile $call "copy "c:\myfile con"
$If exist fileexist.gms $call "copy fileexist.gms con"
$If dexist c:\ $call "copy "c:\myfile con" c:\

These statements also show one can include operating system commands as discussed below.

14.4.5.8 Based on put file status

Conditionals may be placed in the GAMS code to do particular things only if some put file is open.
Such commands are of the form

$If putopen gamsstatement
$If not putopen gamsstatement

where the first of the two syntax alternatives yields a true conditional if both a file statement and at least
one put statement have been executed. Note this does not guarantee that a file will be open at runtime.

Advanced Language Features 656

© 2022 Prof. Bruce McCarl

Example:

(putopen.gms)

$If putopen $goto around

file myfile;

put myfile;

$label around

14.4.6 Incorporating Goto: $Goto and $Label

The $If syntax alternatives above only allows conditional execution of a single line of GAMS commands
(actually that line can contain several individual commands separated by one or more ;). This can be an
obstacle and can be overcome using the $Goto and $Label syntax. Specifically, one can incorporate
commands like

$Goto labelname

within a $If conditional or in it's own line in the GMS file that causes branching to a place where the
following command appears

$Label labelname

which identifies a place to which the code can branch.

Note $IFTHEN and variants can get used if one wishes to jump multiple statements.

Example:

(goto.gms)

scalar y /1/;

$Setglobal gg

$If setglobal gg $goto yesgg

y=y+3;

display y;

$label yesgg

display y;

*after yesgg

$If not setglobal gg $goto nogg

y=y/14;

display y;

$label nogg

The effect on the code is

3 scalar y /1/;

6 *after yesgg

8 y=y/14;

McCarl GAMS User Guide657

© 2022 Prof. Bruce McCarl

9 display y;

Note the red lines are suppressed because the true $If causes the $Goto to skip around.

14.4.7 Redefining expressions

It is possible to alter the contents of lines to be compiled by including text strings from system
attributes, GAMS attributes, passed parameters and control variables. The syntax via which one can
include this information is discussed below.

System attributes that can be included

GAMS command line attributes that can be included

Passed parameter inclusion

Control variable inclusion

14.4.7.1 System attributes that can be included

System attributes may be used in conditional compilation. The characteristics of the various attributes
are most comprehensively discussed in the Output via Put Commands chapter. The ones that can be
used and a brief description follows

.DATE Identifies date on which model was run

.ELAPSED Identifies time used

.ERRORLEVEL Identifies error level

.FE Identifies file extension of input file

.FN Identifies file name stem of input file

.FP Identifies file path of input file

.FILESYS Identifies name of the operating system
being used in

.GAMSRELEASE Identifies GAMS release number

.GAMSVERSION Identifies GAMS version number

.GSTRING Identifies exact GAMS version being used
in

.IFILE Identifies main input file

.INCPARENT Identifies parent file that includes this one

.INCNAME Identifies name of file being included

.INCLINE. Identifies line number of include file being
executed

.LICE1 Identifies first license file line

.LICE2 Identifies second license file line

.LINE Identifies line number of overall file being
executed

.LISTLINE Identifies listing file line number

.LICENSESTATUS Identifies if a license error has arisen

(returns a nonzero in such a case)

.LICENSESTATUSTEXT Gives text sting that describes a license

error)if one arose)
.LP,NLP,... For all model types identifies solver
.MEMORY Identifies memory used
.OFILE Identifies LST file

Advanced Language Features 658

© 2022 Prof. Bruce McCarl

.OPAGE Identifies page number in output

.PAGE Identifies output page

.PFILE Identifies current put file

.PLATFORM Identifies computer type

.PRLINE Identifies line in output file

.PRPAGE Identifies page in output file

.RDATE Identifies run date

.REDIRLOG Identifies log file name

.RFILE Identifies restart file

.RTIME Identifies restart file creation time

.SFILE Identifies save file

.SSTRING Identifies last solver used

.TCLOSE Identifies time job ended

.TCOMP Identifies compile time

.TEXEC Identifies execution time

.TIME Identifies time of run

.TITLE Identifies Job title

.TSTART Identifies time job started

.VERSION Identifies GAMS version number

.VERID Identifies GAMS version

These attributes may be included in the command soon using the syntax %system.attribute % or "%
system.attribute%" where the quoted form is preferable if there are spaces in the line.

Examples:

(syschar.gms)

$set systemDATE "%system.DATE%"

$set systemTIME "%system.TIME%"

$set systemINCPARENT "%system.INCPARENT%"

$set systemINCNAME "%system.INCNAME%"

$set systemINCLINE "%system.INCLINE%"

$set systemLINE "%system.LINE%"

$set systemVERSION "%system.VERSION%"

$set systemGSTRING "%system.GSTRING%"

$set systemFILESYS "%system.FILESYS%"

$set systemPRLINE "%system.PRLINE%"

$set systemPRPAGE "%system.PRPAGE%"

$show

display "system.DATE" ,"%system.DATE%" ;

display "system.TIME" ,"%system.TIME%" ;

display "system.INCPARENT" ,"%system.INCPARENT%" ;

display "system.INCNAME" ,"%system.INCNAME%" ;

display "system.INCLINE" ,"%system.INCLINE%" ;

display "system.LINE" ,"%system.LINE%" ;

display "system.VERSION" ,"%system.VERSION%" ;

display "system.GSTRING" ,"%system.GSTRING%" ;

display "system.FILESYS" ,"%system.FILESYS%" ;

display "system.PRLINE" ,"%system.PRLINE%" ;

display "system.PRPAGE" ,"%system.PRPAGE%" ;

McCarl GAMS User Guide659

© 2022 Prof. Bruce McCarl

14.4.7.2 GAMS command line attributes that can be included

Parameters used in the GAMS command line may be used in conditional compilation. The usage of the
various attributes involves the syntax %gams.attribute % or "%gams.attribute%" where the quoted form
is preferable if their spaces in the attribute. This is illustrated above in the section on conditionals based
on GAMS command line parameters. The variety of options available is given in the Command line
parameters chapter.

14.4.7.2.1 Based on user options and command line: -- // -/ /- User1-5

(user.gms)

One can define global control variables and user input variable through the command line and then use
them in controlling the gams code as discussed in the conditional compilation chapter. In particular one
can use - - , //, -/ , or /- parameters plus user1 through user5 in the GAMS call or the parameter box of
the IDE.

For example if one puts --mymodel=yesnonlinear user1=nonlinear in the control box I can treat a model
as either linear or nonlinear depending on the mymodel global variable or the user1 setting

and when the user1 setting is coupled with the following (nlplp.gms)

$If not "%mymodel%" == "yesnonlinear" $goto arond
$If not "%gams.user1%" == "nonlinear" $goto arond

then the NLP form is controlled from command line

gams myrun --mymodel=yesnonlinear user1=nonlinear

One can also use user2, user3, user4, user5. The abbreviation for these items is U1, U2, U3, U4, U5

More generally the setglobal variable syntax is any of the following four

--name=string
//name=string
/-name=string
-/name=string

where name is the name of a control variable chosen by the user and string a text string.

Advanced Language Features 660

© 2022 Prof. Bruce McCarl

For example (minusminus.gms) one could use

--keycity=Boston //myflag=modes /-myvalue=7.6 -/dothis="display x;"

specifying the control variables keycity, myflag, myvalue and dothis with the strings Boston, modes, 7.6
and display x; respectively. In tune when one had a statement

x("%keycity%","%myflag%")=%myvalue%;
%dothis%

it would become

x("boston","mode")=7.6;
display x;

GAMS checks for proper spelling and definition of these items when the dollar command $setddlist is
entered in the code.

14.4.7.3 Passed parameter inclusion

Parameters passed into batinclude files may be used in conditional compilation as discussed in the in
the Including External Files chapter under the parameter substitution section. The usage of the various
attributes involves the syntax %n or "%n" where n is the number of the parameter in the argument list.
The quoted form is preferable if text with spaces is to be included. This is illustrated above in the
section on conditionals based on characteristics of named item or parameter.

14.4.7.4 Control variable inclusion

The text in control variables may be incorporated into statements via conditional compilation. The usage
of the various attributes involves the syntax %controlvariablename% or "%controlvariablename%". The
quoted form is preferable if the control variable contains text with spaces. This is illustrated above in the
section on conditionals based on control variable contents and in the example gamsparm.gms.

14.4.8 Running external programs or commands

One can use the $If tests in conjunction with the $Call and Execute commands to optionally include
execution of external files.

$Call

Execute

Shellexecute

$Setargs

14.4.8.1 $Call

This command uses the syntax

McCarl GAMS User Guide661

© 2022 Prof. Bruce McCarl

$Call commandtoexecuteinOS

or

$Call.Async commandtoexecuteinOS

to execute a program or operating system command specified by commandtoexecuteinOS during
compilation.

· When used without the suffix it halts compilation until that file has run successfully. Thus one can
create a file and then include in into the program.

· When used with the .Async suffix it continues without waiting for the file to run successfully.

Use of $Call is discussed in the Links to Other Programs Including Spreadsheets chapter.

14.4.8.2 Execute

This command uses the syntax

Execute commandtoexecuteinOS

To executes a program or OS command specified by commandtoexecuteinOS during GAMS execution.
 Use of $Call is discussed in the Links to Other Programs Including Spreadsheets chapter.

14.4.8.3 Shellexecute

Allows execution of a program chosen by the operating system given a file name. This is discussed
here.

14.4.8.4 $Setargs

One can use $setargs args to set arguments for batinclude calls as discussed in the Including External
Files chapter.

14.4.9 Writing messages to LST, LOG and other files

Users may also write conditional messages to the Lst, Log and other files.

LST File: $Abort and $Error

LOG file: $Log

Other named files: $Echo, $Offecho, $Onecho

14.4.9.1 LST File: $Abort and $Error

Messages to the LST file may be written on program termination. To stop compilation and write a
message use

$abort message

Advanced Language Features 662

© 2022 Prof. Bruce McCarl

while

$error message

generates a compiler error and outputs the attached message.

$Echo can also be used as discussed below. There is also an execution time Abort that also writes
messages as discussed in the Conditionals chapter.

14.4.9.2 LOG file: $Log

Messages to the LOG file may be written at any time. Use of the syntax

$log message

sends the text message to the log file.

14.4.9.3 Other named files: $Echo, $Offecho, $Onecho

Messages to any named file can be written using $Echo, $Onecho and $Offecho. The $Echo sends one
line and is invoked using the syntax

$echo 'text to be sent' > externalfile

or

$echo 'text to be sent' >> externalfile

where external file can be of unlimited length.

For multi line messages

$onecho > externalfile
line 1 of text to be sent
line 2 of text to be sent
...
last line of text to be sent
$offecho

Notes:

• Both the text and the file name can be quoted or unquoted.

• The file name by default will go in the working directory.

• The file is not closed until the end of the compilation or when a $call or any kind of $include

statement is encountered.

• The redirection symbols > causes any files with the same name to be overwritten.

• The redirection symbols >> causes any files with the same name to be appended to.

McCarl GAMS User Guide663

© 2022 Prof. Bruce McCarl

• An example is at bottom of condcomp.gms.

• One can also use echo to display environment variables as discussed above.

14.4.10 End the job: $Exit, $Abort, $Error, $Stop, $Terminate

One can cause the job to terminate in several ways

To exit compilation use

$exit

To stop compilation and write a message use

$abort message

To generate a compile error with a message use

$error message

To stop without a message use

$stop

To stop compilation and end the job

$terminate

14.4.11 Longer examples

Here I present some examples illustrating various usages.

Changing model type depending on control variable

Changing form of data in model and their use

Having batincludes that deal with different data types

For more examples

14.4.11.1 Changing model type depending on control variable

Here I set up a model as either a linear or nonlinear form depending on the control variable nonlin
(nlplp.gms).

$Setglobal nonlin yes

*$Setglobal nonlin no

variables z objective

Advanced Language Features 664

© 2022 Prof. Bruce McCarl

positive variables x decision variables;

equations obj

 xlim;

$If %nonlin% == yes $goto nonlin

 obj.. z=e=3*x;

$goto around

$label nonlin

 obj.. z=e=3*x-3*x**2;

$label around

 xlim.. x=l=4;

model cond /all/;

$If %nonlin% == yes solve cond using nlp maximizing z;

$If not %nonlin% == yes solve cond using lp maximizing z

When NONLIN is set to yes I get

 3 variables z objective

 4 positive variables x decision variables;

 5 equations obj

 6 xlim;

 8 obj.. z=e=3*x-3*x**2;

10 xlim.. x=l=4;

11 model cond /all/;

13 solve cond using nlp maximizing z;

otherwise

 3 variables z objective

 4 positive variables x decision variables;

 5 equations obj

 6 xlim;

 8 obj.. z=e=3*x;

10 xlim.. x=l=4;

11 model cond /all/;

13 solve cond using lp maximizing z;

14.4.11.2 Changing form of data in model and their use

Here I have a transport model that either works with or without consideration of transport modes
depending on the control variable called mode as illustrated in mode.gms.

$Setglobal mode

Sets Source plants / Seattle, "San Diego" /

 Destinaton markets / "New York", Chicago, Topeka / ;

Parameters Supply(Source) Supply at each source

 /seattle 350, "san diego" 600 /

 Need(Destinaton) Demand at each market

 /"new york" 325, chicago 300, topeka 275 / ;

McCarl GAMS User Guide665

© 2022 Prof. Bruce McCarl

Table distance(Source,Destinaton) distance in thousands of miles

 "new york" chicago topeka

 seattle 2.5 1.7 1.8

 "San diego" 2.5 1.8 1.4 ;

$If setglobal mode $goto mode

Scalar prmilecst freight cost in $ per case per 1000 miles /90/

 loadcost freight loading cost in $ per case /25/ ;

Parameter trancost(Source,Destinaton) transport cost in dollars per case ;

 trancost(Source,Destinaton) =

 loadcost + prmilecst * distance(Source,Destinaton) ;

$goto around

$label mode

set mode /truck,train/

parameter prmilecst(mode) /truck 90,train 70/

 loadcost(mode) /truck 25,train 100/ ;

Parameter trancost(Source,Destinaton,mode) transport cost ;

 trancost(Source,Destinaton,mode) =

 loadcost(mode) + prmilecst(mode) * distance(Source,Destinaton) ;

$label around

Positive Variable

$If setglobal mode transport(Source,Destinaton,mode) shipment quantities in cases;

$If not setglobal mode transport(Source,Destinaton) shipment quantities in cases;

Variable totalcost total transportation costs in dollars ;

Equations Costsum total transport cost -- objective function

 Supplybal(Source) supply limit at source plants

 Demandbal(Destinaton) demand at destinations ;

$If not setglobal mode $goto nomode

Costsum .. totalcost =e= sum((Source,Destinaton),

 sum(mode,trancost(Source,Destinaton,mode)

 *transport(Source,Destinaton,mode)));

Supplybal(Source) ..

 sum((destinaton,mode), transport(Source,Destinaton,mode))

 =l= supply(Source) ;

demandbal(Destinaton) ..

 sum((Source,mode), transport(Source,Destinaton,mode))

 =g= need(Destinaton) ;

$goto modset

$label nomode

Costsum .. totalcost =e= sum((Source,Destinaton),

 trancost(Source,Destinaton)

 *transport(Source,Destinaton));

Supplybal(Source) ..

 sum((destinaton), transport(Source,Destinaton))

 =l= supply(Source) ;

demandbal(Destinaton) ..

 sum((Source), transport(Source,Destinaton))

 =g= need(Destinaton) ;

$label modset

 Model tranport /all/ ;

 Solve tranport using lp minimizing totalcost ;

Advanced Language Features 666

© 2022 Prof. Bruce McCarl

14.4.11.3 Having batincludes that deal with different data types

Here I write some code that puts data using put commands that can either be a set or a parameter and
figures out which then uses the put commands (putcond.gms).

file at

put at

set a1 set to be put/item1 first,item2 second/

parameter r(a1) parameter to be put /item1 5,item2 6/

$batinclude outit a1

$batinclude outit r

where outit.gms is

$If not "a%1" == "a" $goto start

$error Error in outit: item to be printed is not specified.

$label start

$If declared %1 $goto declared

$error Error in outit: identfier %1 is undeclared.

$exit

$label declared

$If defined %1 $goto defined

$error Error in outit: identfier %1 is undefined.

$exit

$label defined

$If settype %1 $goto doset

$If partype %1 $goto dopar

$error Error in outit: identfier %1 is not a set or a parameter.

$exit

$label doset

put /' set %1 ' %1.ts /

loop(%1,put ' Element called ' %1.tl ' defined as ' %1.te(%1) /)

put /

$goto end

$label dopar

$If not dimension 1 %1 $goto badnews

$If not declared wkset1 alias(wkset1,*);

$If not declared wkset2 set wkset2(wkset1);

wkset2(wkset1)=no;

$onuni

wkset2(wkset1)$%1(wkset1)=yes;

display wkset2;

put /' Parameter %1 ' %1.ts /

loop(wkset2,put ' Element ' wkset2.tl ' equals ' %1(wkset2) /)

put /

$offuni

$goto end

$label badnews

$error Error in outit: identfier %1 is not a one dimensional parameter.

McCarl GAMS User Guide667

© 2022 Prof. Bruce McCarl

$label end

which becomes

 1 file at

 2 put at

 3 set a1 set to be put/item1 first,item2 second/

 4 parameter r(a1) parameter to be put /item1 5,item2 6/

BATINCLUDE C:\GAMS\ADVCLASS\CLASS\EXAMPLE\CONDCOMP\OUTIT.GMS

 10 put /' set a1 ' a1.ts /

 11 loop(a1,put 'Element called' a1.tl 'definedas' a1.te(a1) /)

 12 put /

BATINCLUDE C:\GAMS\ADVCLASS\CLASS\EXAMPLE\CONDCOMP\OUTIT.GMS

 21 alias(wkset1,*);

 22 set wkset2(wkset1);

 23 wkset2(wkset1)=no;

 25 wkset2(wkset1)$r(wkset1)=yes;

 26 display wkset2;

 27 put /' Parameter r ' r.ts /

 28 loop(wkset2,put ' Element' wkset2.tl 'equals ' r(wkset2) /)

 29 put /

Note lines 21-25 figure out the set elements r is defined over and put it in set wkset2.

14.4.11.4 For more examples

For more examples see gnuplotxyz.gms, or Rutherford's http://www.mpsge.org/gnuplot.

15 Using GAMS Data Exchange or GDX Files

GAMS can read or write something called a GDX file. The name GDX is an acronym for GAMS Data
eXchange files. A GDX file is a platform independent, binary file that can contain information regarding
sets, parameters, variables and equations. Among other usages GDX files can be used to prepare data
for a GAMS model, pass results of a GAMS model into different programs, and pass results into GAMS
from different programs. Additional information may be found in the GAMS document GDX in GAMS at
GAMS.

Creating a GDX file in GAMS

Inputting data from a GDX file into GAMS

General notes on GDX files

Identifying contents of a GDX file

Using GDX files to interface with other programs

Compressed GDX files

http://www.mpsge.org/gnuplot
https://www.gams.com/latest/docs/UG_GDX.html

Using GAMS Data Exchange or GDX Files 668

© 2022 Prof. Bruce McCarl

15.1 Creating a GDX file in GAMS

A GDX file can be created by GAMS in three alternative forms

A total problem summary GDX file may be created
A GDX point file of solution information can be created
A selected item GDX file may be created

Such files are only created on explicit user request although this may be indirect when a program like
Xlexport is included which in turn creates a GDX file.

Now let's review these cases.

Command line GDX option - GDX dump of the whole problem

GDX Point Solution file

GDX files containing selected items

15.1.1 Command line GDX option - GDX dump of the whole problem

A composite GDX file containing all data items resident at the end of the run of a GAMS code can be
created using the command line GDX parameter. The command line GDX option is invoked by adding
the option GDX=filename to the GAMS command line in DOS or Unix/Linux or by including it in the
command line parameter box in the IDE. The basic command line form is

gams mymodelname GDX=gdxfilename

where

• mymodelname specifies the name of the file of GAMS instructions

• gdxfilename gives the file name and possible path where the GDX file is to be retained. When

no path is specified the default directory is the current working directory or project directory in
the IDE as below.

• Setting GDX to the sting "default" ie gdx=default causes GAMS to create aGDX file with
the GMS file root name and a GDX extension. Thus gams trnsport gdx=default will cause
GAMS to write the reference file trnsport.gdx.

Example:

An example of DOS invocation of the whole problem GDX file for the trnsport.gms model is given in
gamsgdx.bat. When the IDE is used, the GDX file creation is invoked by an entry in the upper right hand corner
of the IDE screen as illustrated below

McCarl GAMS User Guide669

© 2022 Prof. Bruce McCarl

Notes:

• When this option is used the GDX file is created just at the end of the GAMS execution so the data

written will contain the current values for all sets, parameters, variables and equations that are on
hand at the end of the GAMS job.

• The GDX data for the variables and equations contains the levels, marginals, lower bounds, upper

bounds and scales for each item.

• This yields a file that may be automatically opened in the IDE by doing a mouse click on the

highlighted line in the IDE process window.

15.1.2 GDX Point Solution file

A GDX file containing the marginals and levels for all variables and equations at the end of a solve will be
created with the command line parameter, model attribute or option Savepoint before the solve is
invoked. One can save the solution information from the last solve or from every solve. The points that
are saved can be used to provide an advanced basis, integer program starting point or NLP starting
point.

The basic command line form is

gams mymodelname Savepoint=number

the model attribute form is

modelname.savepoint=number;

and the option file form is

option savepoint=number

where

• when number equals 1 a point gdx file is saved from the last solve in the GAMS model and the

file name will be modelname_p.gdx where model name is the name of the model identified in

Using GAMS Data Exchange or GDX Files 670

© 2022 Prof. Bruce McCarl

the solve statement.

• when number equals 2 (gdxsavepoint2.gms) a point gdx file is saved from the every solve in

the GAMS model and the file name will be modelname_pnn.gdx where model name is the
name of the model identified in the solve statement and nn is the internal number of the solve.
 Thus if 10 solves occur one will get 10 files named modelname_p1.gdx through
modelname_p10.gdx.

Example:

An example of invocation of the GDX point file is given in makepointbas.gms, the relevant part of which is

MODEL FIRM /ALL/;
OPTION Savepoint=1;;
solve firm using LP maximizing objfun;

and the file gdxsavepoint2.gms illustrates the case where savepoint is set to 2.

Notes:

• the GDX point file contains numerical records for all variables and equations giving just their levels

and marginals. In a non point GDX file information on bounds and scales are also present, if
defined.

• This GDX point file can be reloaded into GAMS using either the Execute_loadpoint or Execute_load

or $load syntaxes.

• This yields a file that may be automatically opened in the IDE by doing a mouse click on the

highlighted line in the IDE process window.

15.1.3 GDX files containing selected items

Selected items may be placed into a GDX file either at compile time or during execution. The syntax
and effects differ so these are discussed separately.

15.1.3.1 Execution time selected item GDX file creation

An Execute_Unload or a Execute_Unloaddi command creates a GDX file containing selected problem
data. The data in the GDX file are those present at the time that the statement is executed. The results
of all prior calculations and the most recent solve for any model will be reflected.

The basic syntax of the statements are

Execute_Unload 'filename', nameditem1,nameditem2, ... ;
Execute_Unloaddi 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the resultant GDX file. In particular, a file with this name is
created with the extension .GDX and is placed in the current working directory. This opens and closes
the GDX file and does all the writing. Note the Execute_Unload command overwrites any existing file
with the name filename.gdx so all writing to the file must be done in one statement.

McCarl GAMS User Guide671

© 2022 Prof. Bruce McCarl

The second part of the statement is a list of items to be placed in the GDX file and has several variants.
For example, one could use multiple lines and unload several items with the command structure

Execute_Unload 'filename', nameditem1
 nameditem2,
 nameditem3
 nameditem4 ;

When Execute_Unload is used then just the named items are in the GDX file. When the alternative
Execute_Unloaddi is used then all the sets that the named items are defined over are also included in
the GDX file

It is also possible to have different names for parameters in the GDX file and the GAMS program. In
such a case, the syntax is

Execute_Unload 'filename', internalname1=GDXitemname1 i2=gf2;

and would result in the GAMS item called internalname1 being called gdxitemname1 in the GDX file and
i2 being called gf2. This syntax again can be repeated for multiple items.

Finally when the Execute_Unload is run without any items named then the GDX file automatically
contains all items in the GAMS program, ie

Execute_Unload 'filename'

will cause filename to contain all sets, parameters etc.

Example:

In the model gdxexectrnsport.gms we introduce the statement

execute_unload 'tran2',i,j,d,f,a=sup,b=dem,x,supply;

The result of this is the writing of the GDX file tran2.gdx that contains the data for the sets i and j plus the
parameters d, f, a and b as well as the variables x and the equations supply. In that file the a and b items have
been renamed and are identified as sup and dem.

We also add the statement
execute_unloaddi 'tran2di',d, x, item;

which does not have any set names specified within it just parameter and variable names. However the
resultant GDX file tran2di.gdx contains the data for the parameters d, and itemplus variable x . However it also
contains the sets i, j and k since the other items are defined over them.

Notes

• The name of the active file being unloaded to can be changed with the Put_utility 'gdxout' syntax

Using GAMS Data Exchange or GDX Files 672

© 2022 Prof. Bruce McCarl

15.1.3.2 Compile time selected item GDX file creation

A group of dollar commands can be used to write a GDX file containing selected data. The data written
to the GDX file will be those present when the statement is encountered during compilation. The results
of calculations and solves will not be reflected. (Note this should not ordinarily be used, it is safer to use
the Execute_Unload as calculations and solves would be reflected in the result). The only way to
guarantee that the data is current is to use the execution time command or to use a save then restart a
file with the dump commands within them.

The basic syntax involves a three-part sequence

$Gdxout filename
$Unload itemname
$Gdxout

The first part of the sequence is the initial $Gdxout command which also specifies the filename that the
GDX file will be called. A file with this name will be placed in the current working directory with the
extension .GDX. This opens the GDX file and prepares it for writing. Any existing files with the same
name will be overwritten.

The second part of the sequence is one or more $Unload commands. These commands specify the
items to be placed in the GDX file. A statement can specify more than one item. For example, one
could unload four items with the following commands

$Gdxout filename
$unload itemname1
$unload itemname2
$unload itemname3
$unload itemname4
$Gdxout

or could accomplish the same using

$Gdxout filename
$unload itemname1 itemname2 itemname3 itemname4
$Gdxout

It is also possible to have different names for parameters in the GDX file as opposed to the names used
in the GAMS program. In such a case the syntax is

$unload internalname1=gdxfileitemname1 i2=gf2

which would result in the item with internalname1 being called gdxfileitemname1 in the GDX file and i2
being called gf2.

The third part of the sequence simply consists of a $Gdxout command which closes the GDX file.
Actually the statements can be intermixed with GAMS calculations solves etc. but must eventually be
closed with a $Gdxout.

McCarl GAMS User Guide673

© 2022 Prof. Bruce McCarl

Example:

In the model gdxtrnsport.gms we introduce the sequence

d(i,j)=d(i,j)*10;

$GDXout tran

$unload i j

$unload d

$unload f

$unload a=dem b=sup

$GDXout

The result of this is a GDX file named tran.gdx that contains the data for the sets i and j as well as the
parameters d, f, a and b. Note that the a and b items have been renamed dem and sup. Also note
the d items will not have been multiplied by 10 but rather take on their compile time values.

15.2 Inputting data from a GDX file into GAMS

Data in a GDX file can be read during a GAMS compile or a compile/execute sequence. GAMS can only
load data from GDX files into declared items and only on an item-by-item basis. In addition GDX files are
read when Xlimport is included which in turn runs a program that creates a GDX file with Excel contents
and then Xlimport reads the Excel data in that GDX file.

Items may be loaded at compile time or during execution. The syntax differs depending on whether
items are read at compile or execution time so these are discussed separately.

Compile time imports from GDX files

Execution time GDX imports

15.2.1 Compile time imports from GDX files

A set of dollar commands can be used to cause GAMS to read data from a GDX file at compile time.
The data read from the GDX file will be the data present in it at the time that the compile job is begun.

The basic syntax involves a three-part sequence

$Gdxin filename
$Load itemname
$Gdxin

The first part is an initial $Gdxin command which also specifies the filename to be used. A file with this
filename and the extension .GDX is looked for in the current working directory. In turn this command
opens the GDX file and prepares it for reading.

The second part of the sequence is one or more $Load commands or the alternative Loaddc (which
eploys domain checking). These commands specify the items to be read from the GDX file. Several
commands may be used and each line can read more than one item. For example, one could load

Using GAMS Data Exchange or GDX Files 674

© 2022 Prof. Bruce McCarl

several items with the command structure

$Gdxin filename
$load itemname1
$loaddc itemname2
$load itemname3
$load itemname4
$Gdxin

or could use the structure

$Gdxin filename
$load itemname1 itemname2 itemname3 itemname4
$loaddc itemname5 itemname6 itemname7 itemname8
$Gdxin

It is also possible to have different names for parameters in the GDX file and the GAMS program. In
such a case the syntax is

$load internalname1=gdxfileitemname1 i2=gf2

Any parameter data can be loaded as can set data defining domains and variable/equation data.

The third part of the sequence simply consists of another $Gdxin command which closes the GDX file.
Actually the statements can be intermixed with GAMS calculations solves etc. but must eventually be
closed with a $Gdxin.

Example:

In the model gdxintrnsport.gms we introduce the sequence

$gdxin tran2

$LOAD

 Sets

 uni universal set

 i canning plants

 j markets;

$load uni=* i j

 Parameters

 a(i) capacity of plant i in cases

 b(j) demand at market j in cases;

$load a=sup

$loaddc b=dem

 Parameter d(i,j) distance in thousands of miles;

$load d

 Scalar f freight in dollars per case per thousand miles ;

$load f

$gdxin

McCarl GAMS User Guide675

© 2022 Prof. Bruce McCarl

display uni,i,j,a,b,d,f;

This loads data from the GDX file named tran2.gdx that was saved by the example gdxexectrnsport.gms.

Notes:

• Items must be declared with Set, Parameter, Scalar, Variable or Equation statements before the

Load appears.

• When using $load GAMS does not domain check ignoring items that are resident in GDX files for

named set dependent parameters, variables, equations and sets that do not match current set
elements. GAMS will ignore these items and will not create errors or cause generation of any
messages.

• When using $loaddc GAMS does domain checking generating errors for items that are resident in

the GDX files that do not match internal sets.

• One can import items for set positions that are not in existing sets where the set specified for that

position is equivalent to the universal set (i.e. when an * is used or a terms equivalenced to the
universal set or the set is a subset of the universal set).

• When the $Load is not followed by arguments this causes a listing of the GDX file contents to be

generated.

• One can load the level values of a variable into a parameter of the same dimension using the syntax

parametername=var.l as follows

parameter storexlevel(i,j);
$gdxin tran2
$LOAD storexlevel=x.l
$gdxin
display storexlevel;

• Loading the level values for a variable into the same variable (x=x.l) works but loads everything

including bounds, scales, marginals and levels.

15.2.2 Execution time GDX imports

An Execute_Load or an Execute_Loadpoint command can be used to read data from a GDX file. The
data in the GDX file will be the data present in the GDX file at the time that the statement is executed
and could have been updated by Execute_Unload or Execute_Unloaddi statements or solves under the
Savepoint option during the model execution.

15.2.2.1 Execute_Load

When parameter data are loaded using the Execute_Load GAMS acts as if an assignment statement
was present, except that it does not merge the data read with the current data; it is a full replacement.
Sets defining domains cannot be loaded. However sets that are subsets of existing sets and do not
define new elements can be loaded at execution time (Domain defining sets can be loaded can at
compile time using $Load).

The basic syntax of the statement is

Using GAMS Data Exchange or GDX Files 676

© 2022 Prof. Bruce McCarl

Execute_Load 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the GDX file to read. In particular, a file with this filename
with the extension .GDX will be read from the current working directory.

The second part of the statement is a list of items to be read from the GDX file. For example one could
load several items with the command structure

Execute_Load 'filename', nameditem1
nameditem2,
itemname3
itemname4 ;

It is also possible to have different names for parameters in the GDX file and the GAMS program. In
such a case the syntax is

Execute_Load 'filename',internalname1=GDXitemname1 internalname2=GDXitemname2;

Example:

In the model gdxexecintrnsport.gms we introduce the statement

execute_load 'tran2',k=j,d,f,a=sup,b=dem,x,supply;

The result of this is that the k subset and the parameters are loaded. We also get advanced basis information
when we load variables and equations.

Notes:

• Items must be declared with Set, Parameter, Scalar, Variable or Equation statements before the

Execute_Load appears.

• When loading data domain checking is not enforced so that when an item is resident in a GDX file

for set elements not present in the current file these items are ignored and do not create errors or
cause generation of any messages. the Execute_loaddc variant checks to see that the domains
match.

• Execute_Load and Execute_Loaddc replaces data in the subject arrays/.

• The name of the active file being loaded from can be changed with the Put_utility 'gdxin' syntax

• One can load the universe of labels from a GDX file into a set at run-time using the syntax

execute_load 'someFile', someSet=*;

Note in doing this, that only labels known to the GAMS program will be loaded.

15.2.2.2 Execute_loaddc

Parameter data contained in a GDX file can be loaded with checks to make sure the domain matches
up. This is an alternative to using Execute_Load In this case GAMS generates execution errors if the

McCarl GAMS User Guide677

© 2022 Prof. Bruce McCarl

domain does not match up..

The basic syntax of the statement is

Execute_Loaddc 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the GDX file to read. In particular, a file with this filename
with the extension .GDX will be read from the current working directory.

The second part of the statement is a list of items to be read from the GDX file. For example one could
load several items with the command structure

Execute_Loaddc 'filename', nameditem1
 nameditem2,
 itemname3

itemname4 ;

It is also possible to have different names for parameters in the GDX file and the GAMS program. In
such a case the syntax is

Execute_Loaddc 'filename',internalname1=GDXitemname1 internalname2=GDXitemname2;

Example:

In the model gdxexecindctrnsport.gms we introduce the statement

execute_loaddc 'tran2',k=j,d,f,a=sup,b=dem,x,supply;

but as compared to the file gdxexecintrnsport.gms we have deleted the element Topeka from the set
definition while it remains in the GDX file. As a consequence we get execution errors

with messages in the list file like
**** GDX ERROR AT LINE 45 - Domain violation when loading from GDX file
**** 1 Domain errors for symbol k
 topeka

**** GDX ERROR AT LINE 45 - Domain violation when loading from GDX file
**** 2 Domain errors for symbol d

Using GAMS Data Exchange or GDX Files 678

© 2022 Prof. Bruce McCarl

 seattle.topeka
 san-diego.topeka

The job is aborted..

Notes:

• See the execute_load page for a discussion of basic features.

• Domain errors occur whenever set element names are not spelled exactly the same as an element

specified in the corresponding set in GAMS flagging alternative spellings or missing elements.

• Domain errors do not arise when items are not specified with them set to zero (no entery for a set

element leaves to a corresponding value of zero

• The job will abort with an execution error

15.2.2.3 Execute_Loadpoint

When Execute_Loadpoint is invoked GAMS goes through the target GDX file looking for variables and
equations. The items found are merged into the internal data on those variables and equations replacing
the levels and marginals. But

• when variable/equations are present in the GDX file that are not in the current GAMS program

that information is ignored.

• when cases are found with set elements that do not match the definitions inside the current

GAMS information those data are ignored.

• Bounds, and scales are unaffected.

• Variables in the equations that are GAMS program but not in the GDX file are unaffected by

the GDX command.

The basic syntax of the statement is

Execute_Loadpoint 'filename', nameditem1,nameditem2, ... ;

The filename argument specifies the name of the GDX file to read. In particular, a file with this filename
with the extension .GDX will be read from the current working directory. Any GDX file can be read not
only a point file (as saved by the savepoint option).

The second part of the statement is an optional list of items to be read from the GDX file.

• When a list of items to be read is not present as in the statement (loadpointbas.gms) just below than

all variables and equations in the GDX file firm_p will be loaded.

execute_loadpoint 'firm_p';

• One can also specify the loading of parameters and variables in this context using syntax just

like in the Execute_Load syntax above. For example the following command would load the
levels for x , the x information into the variable y and the x marginals into the parameter m.

McCarl GAMS User Guide679

© 2022 Prof. Bruce McCarl

execute_loadpoint 'transport_p2' x.l, y=x, m=x.m;

Notes:

• Items must be declared before the Execute_Loadpoint appears.

• When loading data domain checking is not enforced so that when an item is resident in a GDX file

for set elements not present in the current file these items are ignored and do not create errors or
cause generation of any messages.

• The Execute_loadpoint will work on either point or non point GDX files.

• Loadpoint merges data into arrays that are defined

• The name of the active file being loaded from can be changed with the Put_utility 'gdxin' syntax

15.3 General notes on GDX files

There are several things worth noting about GDX files

• Only one GDX file can be open at a time.

• When the GDX file to be written has the same name as an existing GDX file the existing file

will be overwritten. The resultant file will only contain the new data; there is no merge or
append option.

• A compile time GDX write using the $Unload will only write out data defined in the compilation

at the point where the command appears. No results of any solves or calculations done within
the current GAMS program will be reported with $UnLoad. This is not true with
Execute_Unload or Execute_Unloaddi.

• An execution time GDX write using the Execute_Unload or Execute_Unloaddi will write out

data defined in the execution sequence at the point where the GDX command appears. The
results of the most recent solve command and any parameter calculations occurring before
the GDX write will be reported.

• Any subsequent Execute_Unload or Execute_Unloaddi to a file written earlier will totally

overwrite that file so care must be taken to write all wanted information in the last appearing
Execute_Unload or Execute_Unloaddi.

• A command line GDX write using the GDX=filename command line parameter will write out

data defined at the end of the execution sequence. The results of the most recent solve and
any parameter calculations will be reported.

• When loading data note that domain checking will not be enforced so that when items are

resident in the GDX file for set elements not present in the current file these items will be
ignored. GAMS will not generate any message to tell you items are ignored.

• Additional examples of GDX loads and unloads can be found in the library file qp1x and in the

all the Performance World examples in the linlib make use of the Gdxin feature.

• Option Savepoint and Execute_Loadpoint provide a GDX way of saving and loading a basis.

• The contents as they differ between GDX files can be examined with Gdxmerge. or Gdxdiff

• GDX files as of version 22.3 are written in compressed form unless the environment variable

http://www.gams.com/modlib/libhtml/qp1x.htm
http://www.gamsworld.org/performance/performlib.htm#linlib

Using GAMS Data Exchange or GDX Files 680

© 2022 Prof. Bruce McCarl

GDXCOMPRESS is set to zero.

• Compressed GDX files are not readable by older GAMS versions but the utility gdxcopy allows

one to transform to older versions.

• One can load the universe of labels from a GDX file into a set at run-time using the syntax

execute_load 'someFile', someSet=*;

Note in doing this, that only labels known to the GAMS program will be loaded.

15.4 Identifying contents of a GDX file

Users may wish to examine the contents of a GDX file. However such files are binary and thus do not
reveal information if text edited. But the GAMS system provides four ways of accomplishing this, each
of which is discussed below.

Identifying contents with $Load

Identifying contents with the IDE

Identifying contents with Gdxdump

Identifying differences in contents with Gdxdiff

15.4.1 Identifying contents with $Load

One can have GAMS tell you the general contents of a GDX file by using the $Load command without
the name of a parameter. Namely inserting a sequence like

$GDXin tran2
$load
$GDXin

yields (gdxcontents.gms)

Content of GDX C:\GAMS\GAMSPDF\BIGONE\TRAN2.GDX

 Number Type Dim Count Name

1 Set 1 2 i canning plants

2 Set 1 3 j markets

3 Parameter 2 6 d distance in thousands of miles

4 Parameter 0 1 f freight in dollars per case per thousand miles

5 Parameter 1 2 dem capacity of plant i in cases

6 Parameter 1 3 sup demand at market j in cases

7 Variable 2 6 x shipment quantities in cases

8 Equation 1 2 supply observe supply limit at plant i

which lists the items present by Type, Name, Number of sets the item is defined over(Dim), number of
elements in the file for this item (Count).

McCarl GAMS User Guide681

© 2022 Prof. Bruce McCarl

15.4.2 Identifying contents with the IDE

One can use the IDE to view the exact contents of each item in a GDX file by opening a GDX file with
the Open file dialogue. The resultant display gives the names of the items in the GDX file on left hand
part of the screen while the right part gives the exact data entries for the item highlighted in the left hand
part. Namely opening the file gdxall.gdx and moving the cursor to the set i6 causes the screens to
become

showing the elements in the set as contained within the GDX file. Similarly choosing the object
modedistance yields the screen

Using GAMS Data Exchange or GDX Files 682

© 2022 Prof. Bruce McCarl

showing the data for this item. The data may be reordered via the mouse. For example placing the
mouse on the column containing san francisco and dragging the column up yields

which is the slice of the matrix containing san francisco data. In turn clicking on Brussels yields

Also note that the columns are sortable in the left hand portion of the display. All one needs to do is to
click on the gray boxes (Symbol, Type,...) with the mouse. There is also a search dialog at the bottom
that permits one to look for select items.

Finally note a right mouse click allows one to write the contents of any or all items to HTML format.

15.4.3 Identifying contents with Gdxdump

GAMS distributes a utility, Gdxdump, that will write out data in GMS CSV and other formats

· Data for a selected set, parameter, variable or equation (under all three of the output options when
a specific item is named using the SYMB option)

· Data for all sets, parameters, variables and equations (Under normal option when the SYMB is

McCarl GAMS User Guide683

© 2022 Prof. Bruce McCarl

not used)
· Data on solution items (variables and equations) formatted in a fashion suitable for import as a

basis in another GAMS program where the marginals and levels are output (as discussed in the
Expanded GAMS user guide under the heading Advanced basis formation in GAMS).all of the
scalars, sets and parameters (tables) in a GDX file to standard output formatted as a GAMS
program with data statements or in CSV format. It skips information for variables and equations.
The syntax is

Gdxdump gdxfilename format=choice symb=optional choice

where the gdxfilename is the name of the GDX file to write data from. This output is created to the
screen not to a file. If one wishes to dump this to a file one uses a command like

Gdxdump gdxfilename > filetouse.gms

There are some peculiarities in the GDXDUMP. Namely

· Under the format=CSV choice it only creates output when a symbol is selected
using the SYMB syntax.

· Under the format=CSV choice when the requested symbol is a variable or an
equation one only gets the level values not the marginal, under the other formats
one gets all items.

· Under the format=gamsbas choice one gets all variables and equations when
the SYMB syntax is not used.

One can also write the GDX file contents into a GMS file as in the example below

Further details and additional options are discussed in the document GDXDUMP.

Example:

For example when we use the command

Gdxdump gdxfilename > filetouse.gms

then the contents of filetouse.gms are

* GDX dump of tran2.GDX

* Library version : _GAMS_GDX_V224_2002-03-19

* File version : _GAMS_GDX_V224_2002-03-19

* Producer : GAMS Rev 132 May 25, 2002

* Symbols : 8

* Unique Elements: 5

Set i(*) canning plants/

https://www.gams.com/latest/docs/T_GDXDUMP.html?search=GDXDUMP

Using GAMS Data Exchange or GDX Files 684

© 2022 Prof. Bruce McCarl

 seattle ,

 san-diego /;

Set j(*) markets/

 new-york ,

 chicago ,

 topeka /;

Parameter d(*,*) distance in thousands of miles/

 seattle.new-york 25 ,

 seattle.chicago 17 ,

 seattle.topeka 18 ,

 san-diego.new-york 25 ,

 san-diego.chicago 18 ,

 san-diego.topeka 14 /;

Scalar f freight in dollars per case per thousand miles/

 90 /;

Parameter dem(*) capacity of plant i in cases/

 seattle 350 ,

 san-diego 600 /;

Parameter sup(*) demand at market j in cases/

 new-york 325 ,

 chicago 300 ,

 topeka 275 /;

* skipped Variable x

* skipped Equation supply

where note the variable and equations are skipped at the bottom.

A second Example:

Another example exercising this is (gdxdumpexample.gms)

execute 'gams agreste gdx=junk'

execute 'gdxdump junk format=CSV output=filecsv.csv symb=llab'

execute 'gdxdump junk format=CSV output=filecsv2.csv symb=xcrop'

execute 'gdxdump junk format=CSV output=filecsv3.csv symb=landb'

execute 'gdxdump junk format=gamsbas output=filegamsbas.gms symb=xcrop'

execute 'gdxdump junk format=gamsbas output=filegamsbas2.gms'

execute 'gdxdump junk output=filenormal.gms symb=llab'

execute 'gdxdump junk format=normal output=filenormal1.gms symb=xcrop'

execute 'gdxdump junk output=filenormal2.gms symb=landb'

execute 'gdxdump junk output=fileall.gms'

McCarl GAMS User Guide685

© 2022 Prof. Bruce McCarl

15.4.4 Identifying differences in contents with Gdxdiff

GAMS also distributes a utility that looks for differences in two GDX files creating a list of item
names that differ and yet another GDX file that exactly specifies the differences.

GDXDIFF compares the data of for items in two GDX files and writes a GDX file showing the
differences. In particular for all items with the same name, type and dimension in the two GDX files
the differences in numerical values are written to a third GDX file with A summary report written to
standard output (ordinarily the LOG file).

This utility is used by using $Call or Execute with the line

gdxdiff file1 file2 {diffile} {Eps = value} {RelEps = value} {Field = FieldName}
{ID=Identifier}

GDXDIFF requires the first two file name parameters,

File1 Name of the first GDX file

File2 Name of the second GDX file

The remaining parameters are optional

Diffile An optional third file name that is the name of the GDX file that contains the
differences found in the parameters. If that parameter, is absent the file will be
named 'diffile.gdx' and placed in the current directory.

Eps =
value

A tolerance that is the maximum amount that two numbers may differ by ie given
a1 and a2 then abs(a1-a2) is reported as different if it exceeds this tolerance

RelEps =
value

A tolerance that is the maximum percentage amount that two numbers may differ
by ie given a1 and a2 then abs(a1-a2)/max(abs(a1),abs(a2)) is reported as
different if it exceeds this tolerance. Note this is more complex as discussed in the
gdxutilities document under help and tools.

Field =
FieldNam
e

A field that if specified limits doen between the information for variables and
equations to specific attributes (Lo, L, Up, M, Scale and Prior)

ID=Identif
ier

Limits the comparisons to selected items; items not specified will be ignored.
Multiple items can be specified as: ID=id1 ID=id2 or ID="id1 id2"

More is found on this in the GAMS utilities document at gdxdiff or as found through the IDE help
under docs.

https://www.gams.com/latest/docs/T_GDXDIFF.html

Using GAMS Data Exchange or GDX Files 686

© 2022 Prof. Bruce McCarl

Example:

Suppose we wish to compare the GDX files tran and tran2, then we would use the command

Gdxdiff tran tran2

In turn the output to standard output (nominally the terminal screen) appears as follows

Summary of differences:

 d Data is different

 dem Keys are different

 sup Keys are different

supply Symbol not found in file 1

 x Symbol not found in file 1

and summarizes the differences found. Simultaneously the file diffile.gdx when examined in the IDE contains
the following

which reports on the differences found in the two files.

Notes:

• Some new coding is introduced in the difference GDX file. Namely a new dimension is added to the

parameters being compared which can contain 4 entries

McCarl GAMS User Guide687

© 2022 Prof. Bruce McCarl

� dif1 indicates that the entry occurs in both files and shows the value found in the first file.

� dif2 indicates that the entry occurs in both files and shows the value found in the second file.

� ins1 indicates that the entry only occurs in the first files and shows the value found.

� ins2 indicates that the entry only occurs in the second file and shows the value found.

• Only named items with the same name, type and dimension will be compared in the diffile.gdx

output. Named items that are new or are deleted will only appear in the standard output summary
report

15.5 Merging GDX files

GDXMERGE is a utility distributed with GAMS that can be used to combine the information from several
GDX files into one composite file and in turn can be used to compare their contents. Symbols with
the same name, dimension and type that appear in the separate files are combined into a single symbol
with an added dimension in the first index position that gives the file name.

The procedure is uses as follows :

gdxmerge filepattern1 filepattern2 filepatternn optional-parameters

optional parameters:

id=ident1, ident2 only merge the symbols ident1, ident2 etc

exclude=ident1, ident2 merge all symbols except ident1, ident2

big=integer the size for big symbols (see below)

where the filepattern entries represent are either individual file names or a wildcard representation using ?
and *.

The result will be written to a file called merged.gdx.

In the resultant GDX file one cal find all of the data in the source GDX files plus a set named
Merged_set_1 that contains the names of all the files processed during the merge operation. In that set
the explanatory text contains the date and time of the gdx file processed.

Notes:

• The file merged.gdx will not be used in a merge operation even if the name matches a file pattern.

• Symbols with dimension 20 cannot be merged, because the resulting symbol will have dimension 21

which exceeds the maximum dimension allowed by GAMS.
• By default, the program reads all gdx files once and stores all data in memory before writing the

merged.gdx file. A parameter big=number can be used to specify a cutoff for symbols that will be
written one at a time. Each symbol that exceeds the size specified by big will be processed by
reading each gdx file and only process the data for that symbol. This can lead to reading the same
gdx file many times, but it allows the merging of large data sets. The formula used to calculate the
cutoff is: Dimension * TotalNumberOfElements. The number is doubled for variables and equations.

Example (gdxmerge.gms):

Suppose we solve the trnsport model from the model library using different LP solvers and wish to

Using GAMS Data Exchange or GDX Files 688

© 2022 Prof. Bruce McCarl

compare the runs. To do this After each run, we write all
symbols to a gdx file and then use GDXMERGE to merge the solution information. Then suppose we
compare the results or the two dimensional trnsport model solution variable X reading the X from the
merged GDX file into an array called ALLX that has the file names as its first dimension

$call gamslib trnsport
$call gams trnsport lp=bdmlp gdx=bdmlp
$call gams trnsport lp=cplex gdx=cplex
$call gams trnsport lp=xpress gdx=xpress
$call gams trnsport lp=conopt gdx=conopt
$call gams trnsport lp=minos gdx=minos
$call gams trnsport lp=snopt gdx=snopt
$call gdxmerge bdmlp.gdx cplex.gdx xpress.gdx conopt.gdx
minos.gdx snopt.gdx
set i supply set
 j demand set
 merged_set_1 names of gdx files
variable AllX(merged_set_1,i,j);
*load i and j from one of the solver gdx files
$gdxin bdmlp.gdx
$load i
$load j
*load merged file
$gdxin merged.gdx
$load merged_set_1
$load AllX=X
$gdxin
option AllX:5:1:2;
display i,j,merged_set_1,AllX.L;

Instead of using the display statement, we can also use the GAMSIDE to view the merged.gdx file by
opening it in the editor and looking at X then dragging the indices around into the order wanted.:

McCarl GAMS User Guide689

© 2022 Prof. Bruce McCarl

15.6 Using GDX files to interface with other programs

The very name GDX – GAMS data exchange suggests this is the mechanism via which users will be
able to exchange data with other programs. Today however this usage, while contemplated, is still
under development and only exists for selected cases. In particular, there are mechanisms for
spreadsheets and a couple of other programs plus a general AOI interface. Let me briefly cover these.

Spreadsheets

Other

API to interface from other programs

15.6.1 Spreadsheets

There are currently three GDX supported pathways for data exchange to spreadsheets

• Rutherford's Xlexport, Xldump and Xlimport

• Gdxxrw

• Gdxviewer

All are discussed in the chapter Links to Other Programs Including Spreadsheets.

15.6.2 GEMPACK

GAMS distributes and supports utilities for converting GEMPACK HAR (header array) files to and
from GDX files. These are called gdx2har and har2gdx. Details about these utilities can be found
at http://www.gamsworld.org/mpsge/debreu/gdxhar/index.html.

15.6.3 Other

Utilities for other types of exchanges are now under development as is a general set of procedures for
reading and writing GDX files. Users needing to do such exchanges should contact GAMS
Development.

15.7 Gdxcopy Making GDX files compatable

GDX files can be incompatible between newer and GAMS versions prior to 22.3 due to compression
among other changes. A current GAMS system can read all older GDX file formats. Older file formats
may be written using gdxconvert.

The GDXCOPY utility provides a mechanism to convert GDX files to a format that older GAMS systems
can read. It is used by employing the syntax

gdxcopy outputoption inputfi le outputfi ledir

where the items ate

Outputoption Identifies the type of output file to be created

http://www.gamsworld.org/mpsge/debreu/gdxhar/index.html
mailto:support@gams.com
mailto:support@gams.com

Using GAMS Data Exchange or GDX Files 690

© 2022 Prof. Bruce McCarl

Option Target format

-V5 Version 5

-V6U Version 6 uncompressed

-V6C Version 6 compressed

-V7U Version 7 uncompressed

-V7C Version 7 compressed

inputfi le Name of the input file to be converted . This file must have an .gdx file
extension

outputfi ledir Output directory

Note: Version 7 formatted files were introduced with version 22.6 of GAMS; version 6 formatted
files were introduced with version 22.3 of GAMS. Prior versions used version 5.

Some features introduced in version 7 of the gdx file format cannot be represented in older formats.

Feature Action taken

Dimension > 10 Symbol is ignored

Identifier longer than 31 characters Truncated to 31 characters

Unique element longer than 31
characters

Truncated to 31 characters

Domain of a symbol Domain is ignored

Aliased symbol Symbol is entered as a set

Additional text for symbol Additional text is ignored

Notes:

·
The Macintosh Intel-based system (DII) which was introduced with GAMS 22.6 does not
support gdx conversion into formats version 6 and version 5.

·
The Solaris 10 or higher Intel-based system (SIG) which was introduced with GAMS 22.5 does
not support gdx conversion into formats version 5.

McCarl GAMS User Guide691

© 2022 Prof. Bruce McCarl

·
Solaris 9 or higher on Sun Sparc64 (SOX) which was introduced in GAMS 22.6 does not
support gdx conversion into formats version 6 and version 5.

15.8 Writing older GDX versions with GDXCONVERT

Over time GDX file formats have changed. Some environments have multiple GAMS versions some
of which are older and file format compatibility can become an issue. Consequently one may need
to write GDX files in an older GDX file format. This may be done using the environment variable or
 GAMS parameter gdxconvert and possibly gdxcompress.

Gdx file formats are named v5, v6 or v7 and can be compressed or not compressed.

• v5 applies to GDX files written by GAMS versions 22.2 and earlier.

• v6 were introduced with version 22.3 of GAMS and lasted through 22.5.

• v7 formatted files were introduced with version 22.6 of GAMS.

• GAMS platforms that were introduced after 22.3/22.6 (e.g. Mac Intel or SunSparc64) do
not support V5/V6.

• gdxcompress allows one to tun on and off compression.

There are two ways of implementing this through environment variables and through a GAMS
command line parameter. Command line options have higher precedence than the environment
variables with the same name.

16 Links to Other Programs Including
Spreadsheets

When a modeler wants to link GAMS results or input to other programs, it can be done in several
fundamentally different ways.

• GAMS is in charge and data from other programs is to be incorporated into the GAMS

program as it starts up.

• GAMS is in charge and data from the GAMS results are to be passed to other programs at

the conclusion of the GAMS run.

• GAMS is in charge and the user wants to run another program during a GAMS run.

• GAMS is in charge and the user wishes to pass data interactively to other programs during a

run.

Links to Other Programs Including Spreadsheets 692

© 2022 Prof. Bruce McCarl

• Equations in the user model are defined by an external program.

• Some other program is in charge and the user wants to use GAMS to solve a model.

• A GAMS model needs to be converted to another language for solution.

The first five of these are discussed herein, the other two are discussed in the chapter Controlling GAMS
from External Programs.

Executing an external program

Passing data from GAMS to other programs

Passing data from other programs to GAMS

Customized data interchange links for spreadsheets

Using equations defined by external programs

A wiki is available that provides some information in support of interfacing efforts. see discussion here

16.1 Executing an external program

External programs may be run during a GAMS job either using the $Call, Execute or Put_utility syntax.
 The $Call procedure is executed at the moment that is encountered during compilation. The Execute
and Put_utility commands causes the external program to be run during GAMS program execution. The
contrast between these statements is important in two ways.

• Inability to use results from GAMS program execution-- Anything run with $Call can generate

files that can be included in the subsequent compilation. On the other hand files generated
with Execute and Put_utility cannot be included because $Include operates only at compile
time (unless you use Save and Restart). Note there is one exception using a call of GAMS
with GAMS as discussed below.

• Ability to feed current results into the external program-- Obviously when one is running an

external program there is the desire to pass it data depicting results of the GAMS execution.
$Call cannot do this as the data passed have to exist at compile time and cannot use the
result of any GAMS calculations and solves in the current program. Execute commands on
the other hand can use any data generated during a run which arise before the Execute and
Put_utility command's position in the file through passage via put files or other mechanisms.

The big difference between the $Call and Execute is

• $Call

� can generate results to be immediately incorporated back into GAMS

� cannot use GAMS results generated within this run because the $Call is executed at
compile time.

• Execute and Put_utility

� can cause a program to be started using results generated by the GAMS program (note
such results do have to have been saved in an external file using a command like put)

� cannot generate results which can be immediately reincluded into the GAMS program
because new material can only be added compile time. (Excepting through use of a
GAMS from GAMS approach as discussed below.)

McCarl GAMS User Guide693

© 2022 Prof. Bruce McCarl

$Call

Execute

Put_utility

Timing of execution with $Call and Execute

16.1.1 $Call

The $Call is a dollar command as explained in the Dollar Commands chapter. This command uses the
syntax

$Call commandtoexecuteinOS

or

$Call =commandtoexecuteinOS

to execute a program or operating system command specified by commandtoexecuteinOS during
compilation and before the inclusion of any subsequent include statements. This halts compilation until
the operating system indicates that file has been run (Note the = may be needed to make this always be
true as explained in the Notes section below). One can create a file in the external program and then
use an Include command to bring in that file within the current GAMS program.

Exampes:

(xlimport.gms)

$Call is used in Rutherford's spreadsheet interface Xlimport program. In the current version, two external
programs are used. Namely Gdxxrw is used via a $call to get data out of a spreadsheet and Xldump is used
also via a $call to read the GDX data and convert it into a GAMS readable format in the file xllink.in then those
data are immediately included into the GAMS program permitting range checking.

$call Gdxxrw "%XLS%" @xllink.txt log=xllink.log

* If filtered import, read from GDX

$if %more% == '' $goto unfiltered

$GDXin xllink.gdx

$load %sym%

$GDXin

$goto term

$label unfiltered

$onempty

$if ParType %sym% parameter %sym% /

$if SetType %sym% set %sym% /

$call GDXdump xllink.gdx symb=%sym% noheader > xllink.in

$include xllink.in

Notes:

Links to Other Programs Including Spreadsheets 694

© 2022 Prof. Bruce McCarl

• Generally GAMS will pause until the external job is completed so the next statement after the $Call

can use the GAMS include syntax to incorporate any files created by running the external program.

• The other commands in this sequence are explained in the Conditional Compilation or Dollar

Commands chapters.

• In some applications the $Call statement needs to include an = before the name of the program

called as follows.

$call =XLS2gms "i=c:\my documents\test.xls" o=d:\tmp\test.inc

This may be required to make GAMS wait until a program is finished. This will be needed for
programs that are true windows applications. One can see if this is the case by running a program
from the DOS command prompt. If control is returned to the command prompt before the program
is finished then the = is needed. A technical explanation of why this is necessary can be found in

the Xls2gms section of tools documentation.

16.1.1.1 Spaces in file names and paths

One needs to be cautious in the GAMS commands that address external programs and files in dealing
with spaces in the file names or paths. Namely these need to be encased in quote as in the following

$call =XLS2gms "i=c:\my documents\test.xls" o=d:\tmp\test.inc

However even more complex statements are required in the case of Execute where one would use

Execute '=XLS2gms "i=c:\my documents\test.xls" o=d:\tmp\test.inc'

enclosing the whole thing in single quotes and elements within containing spaces in double quotes.

These practices need to be followed with respect to all places file names can be specified including
$Call, $GDXin, $GDXout, Execute_Load, Execute_Unload, Execute_Unloaddi, XLIMport, Gdxxrw etc.

16.1.2 Execute

This command uses the syntax

Execute commandtoexecuteinOS

or

Execute =commandtoexecuteinOS

or

Execute.ASync commandtoexecuteinOS

or

Execute.ASyncNC commandtoexecuteinOS

https://www.gams.com/latest/docs/T_XLS2GMS.html

McCarl GAMS User Guide695

© 2022 Prof. Bruce McCarl

to execute a program or OS command specified by commandtoexecuteinOS. The execution occurs
during the GAMS program execution.

· The = may be needed to make GAMS wait until the program is done as discussed in the Notes
section below.

· The .Async suffix makes GAMS go ahead without waiting.

· The .ASyncNC option tells the operating system to start the run a new console rather than sharing
the console of the parent process allowing use of multiple processors.

· Since this occurs during execution one cannot use the compile time $Include to incorporate the
results of that external run into the GAMS code except through a GAMS from GAMS approach as
discussed below or through save and restart use (see the Save Restart chapter).

· One can also use the command SplitOption here is one wants to provisionally change calling
parameters for the executable.

· Notes:

• The Execute statement may need to include the suffix .ASync to make GAMS proceed without waiting until a

program is finished .

• The Execute statement may need to include an = before the name of the program called as follows.

Execute '=XLS2gms "i=c:\my documents\test.xls" o=d:\tmp\test.inc'

This is required to make GAMS wait until a program is finished. This is needed for programs that
are true windows applications. One can see if this is the case by running a program from the DOS
command prompt. If control is returned to the command prompt before the program is finished

then the = is needed. A technical explanation of why this is necessary can be found in the Xls2gms
 section of tools documentation

Examples:

(gnuplotxyz.gms)

Execute is used in gnuplotxyz to graph data generated within a GAMS program. It accomplishes this by first
saving the data to a file using put commands then executing the wgnuplot program which in turn reads that
file. The Execute command can also involve DOS commands as illustrated below

put 'plot ';

loop(%gp_scen%,

 if (gp_count > 1, put ',';);

 file.nw = 0

 put '\'/' "gnuplot.dat" index ',(gp_count-1):0:0,

 ' using 1:2 "%lf%lf" title "',%gp_scen%.tl,'"';

 file.nw = 6;

https://www.gams.com/latest/docs/T_XLS2GMS.html

Links to Other Programs Including Spreadsheets 696

© 2022 Prof. Bruce McCarl

 gp_count = gp_count + 1;

); put /;

$if "%gp_term%"=="windows" execute 'if exist gnuplot.ini del gnuplot.ini >nul';

$if "%gp_term%"=="windows" execute 'copy gnuplot.inp gnuplot.ini >nul';

$if "%gp_term%"=="windows" execute 'wgnuplot';

$if not "%gp_term%"=="windows" execute 'wgnuplot gnuplot.inp';

16.1.3 Put_utility

GAMS currently does not allow one to easily manipulate strings however put file commands allow
one to write out strings composing them based on set element text. There are cases where when
executing external programs or in reading and writing information to external files that such string
manipulation can be valuable. For example one might want to read in a large number of GDX files in
a similar manner or execute external programs with altering parameters. The put_utility or
put_utilities commands in GAMS allow such functions.

In general the put_utility language feature works in the following way. Two lines need to be
generated with the put_utility for each command to be executed

· The first line tells what type of put_utility feature to use where the allowed features
and their functions are given below.

· The second line gives the arguments to use with that feature
· The general syntax is

File nameoffiletouse

Put nameoffiletouse

Put_utility localname 'feature1' / 'arguments' ;

Put_utility 'feature2' / 'arguments' ;

 or
put_utility 'key'/ 'arguments'/ 'key' / 'arguments' /.... ;

Notes

The localname is optional and gives the local name of the file that is to be used to pass instructions.
In the put_utility command the "/" separates the lines as in ordinary put commands. Note an ending

"/" is not used although one may stack features as shown in the example below

The names of the features or keys above that can be used and nature of associated arguments are

Feature name Nature of General Function Nature of associated arguments

Exec Causes a command to be
passed to the operating system
for execution. GAMS waits for
command to finish

Command to be executed with
arguments

Exec.ASync Causes a command to be
passed to the operating system
for execution but GAMS does
not wait for execution to finish

Command to be executed with
arguments

McCarl GAMS User Guide697

© 2022 Prof. Bruce McCarl

Exec.ASyncNC Causes a command to be
passed to the operating system
for execution using a different
console than the parent
process. GAMS does not wait
for execution to finish allowing

use of multiple processors

Command to be executed with
arguments

Shell Causes a command to be
passed to the command shell
processor that in turn is passed
to operating system for
execution

Command to be processed by
shell processor then passed on
in processed form to the
operating system (Note
distinctions between shell and
exec are technical and can be
operating system specific.
They typically involve the ability
to use redirect of standard input
output and the error console)

Gdxin Causes subsequent GDX file
loaded by execute_load or
execute_loadpoint to come
from a specified file name

Name of the GDX file that data
will be loaded from

Gdxout Causes subsequent GDX file
unloaded by execute_unload to
come from a specified file name

Name of the GDX file to which
data will be unloaded

Ren Causes put file output to be
directed to a named external
file

File name to use for subsequent
put operations

Inc Causes the contents of a file to
be incorporated into the
currently active put file

File name whose contents are
to be included

Click Causes a clickable file
reference to be added to the
process window

File name for file to which
reference will point

Msg Causes a message to be placed
in the listing file

Text of message

Log Causes a message to be placed
in the log file (also process
window)

Text of message

Msglog Causes a message to be placed
in both the log and listing files

Text of message

Links to Other Programs Including Spreadsheets 698

© 2022 Prof. Bruce McCarl

Title Causes the title on the DOS
window to be changed

New name for window

Glb Used by GAMS to aid in
building model library – not
intended for users

--

Htm Used by GAMS to aid in
building model library – not
intended for users

--

WinMsg Used to send a message to a
Window on windows machine

window name and message/
see example in the test library
model ASYNNTRP. There is
also an example in the file
WindowsReceiver.zip.
One can also recieve these
messages usinf
MessageReceiverWindow as
illustrated in the GAMS Test
Library model MRW01

The arguments are typically in quotes and limited to 255 characters although in the messages, exec
and shell cases multiple quoted elements can be included each up to a maximum of 255 characters
and will be included in information passed on.

The advantage in all of these is that you can assemble the command line at run time (e.g. selecting the
filename or command line arguments based on some set elements).

Examples (pututility.gms)

Examples

*write stuff to different files
 loop(i,

 random = uniformint(0,100);

 put_utility 'shell' / 'echo ' random:0:0 ' > ' i.tl:0;

);

*Put data in several gdx files then reloads it
 file fx2;
 put fx2;

 set ij / 2005*2007 /;

 scalar random;

*put out the data to multiple GDX files
 loop(ij,

McCarl GAMS User Guide699

© 2022 Prof. Bruce McCarl

 put_utility 'gdxout' / 'data' ij.tl:0;

 random = uniform(0,1);

 execute_unload random;

);

*Load the data from multiple GDX files
 loop(ij,
 put_utility 'gdxin' / 'data' ij.tl:0 ;

 execute_load random; display random;

);

 file dummy; dummy.pw=2000; put dummy;

*here I execute some commands with waiting
 put_utility 'exec' / 'gams sets' /

 'shell' / 'dir *.gms' ;

*here I execute some commands without waiting
 put_utility 'exec.async' / 'gams sets' /

 'shell' / 'dir *.gms' ;

*here I enter a clickable link
 put_utility 'click' / 'sets.html' ;

*here I vary where the put file output goes
 loop(i,

 put_utility 'ren' / i.tl:0 '.output' ;

 put "output to file " i.tl:0 " with suffix output " /;

);

*here i put messages in the LOG and LST files
 put_utility 'msg' / 'message to lst file' /
 'log' / 'message to log file' /

 'msglog' / 'message to log and lst file' ;

*here i put some text in the put file
 file junk;

 put junk;

 put_utility 'inc' / 'addit.txt' ;

 put_utility 'inc' / 'sets2putuiliity.gms' ;

16.1.4 Timing of execution with $Call and Execute

The timing of program execution can at times be confusing. Consider the following example
(callexecute.gms)

set i /i1,i2/

$onmulti

parameter a(i) /i1 22, i2 33/;

$gdxout ss

$unload a

Links to Other Programs Including Spreadsheets 700

© 2022 Prof. Bruce McCarl

$gdxOUT

execute 'Gdxxrw ss.gdx par=a Rng=sheet1!a1'

$Call Gdxxrw ss.gdx par=a Rng=sheet2!a1

parameter a/i1 44/;

a(i)=a(i)*2;

$GDXout ss

$unload a

$Gdxout

$Call Gdxxrw ss.gdx par=a Rng=sheet3!a1

execute_unload 'ss.gdx' , a

execute 'Gdxxrw ss.gdx par=a Rng=sheet4!a1'

which uses Gdxxrw as explained below and generates information into four sheets of a spreadsheet
workbook as below

Now let me explain the results. First I should note all $ commands and the item redefinition allowed by
$Onmulti (which should not ordinarily be used) are resolved at compile time before execution begins. So
the statements are implicitly reordered with the $Call and $Unload occurring before the Execute,
Execute_Unload.and Put_utility.

• So the $Unload GDX file creation at the bottom occurs before the Execute Gdxxrw at the top

and before that I redefined the element a(i1) that appears in cell A2 of each spreadsheet.
Thus in sheet1 I have the redefined number for a(i1) (44) that is present at compile time when
the Unload GDX file creation at the bottom appears. But note these numbers are unaffected by
the execution time a(i)=a(i)*2;

McCarl GAMS User Guide701

© 2022 Prof. Bruce McCarl

• The $Unload GDX file creation at the top occurs before the $Call Gdxxrw at the top and before

that I redefined the element a(i1) that appears in cell A2 of each spreadsheet. Thus in sheet2
I have the original number for a(i1) (22) that is present at compile time when the Unload GDX
file creation at the top appears.

• So the $Unload GDX file creation at the bottom occurs before the $Call Gdxxrw at the bottom.

 Thus in sheet3 I have the redefined number for a(i1) (44) that is present at compile time but
note these numbers are unaffected by the execution time a(i)=a(i)*2;

• The Execute Gdxxrw at the bottom follows everything and uses a GDX file created at

execution time by the Execute_Unload and thus sheet4 has the final data. This is also true
of Put_utility

• Obviously this can be confusing with statements below the one at hand influencing its results.

 It is never a good idea to intermix Execute, Execute_load, Execute_unload with $Call, $Load
and $Unload. I feel all the $ commands should be towards the top and the Executes or
Put_utilitys toward the bottom.

16.2 Passing data from GAMS to other programs

GAMS can communicate information to other programs through a variety of mechanisms including

• Put files

• Rutherford's preprogrammed put files

• GDX files

• Specialized links to specific programs like spreadsheets, graphics programs and a few others.

Put file data passage

Rutherford's CSV put: Gams2csv

GDX

Spreadsheet links

Graphics programs

Geographic mapping programs

Gdxviewer links: Access, Excel pivot table, Excel, CSV, GAMS include, HTML, Text files, Plots, XML

Other programs and conversions: Convert, DB2, FLM2GMS, GAMS2TBL, HTML, Latex, MPS, Oracle, XML

A wiki is available that provides some information in support of interfacing efforts. see discussion here

16.2.1 Put file data passage

Put command may be employed to write information to a file that in turn can be read by another
program. This may be done using put commands directly or by using Rutherford's canned Gams2csv
routine as will be discussed later.

Put files offer a lot of flexibility and are extensively discussed in the chapter Output via Put commands
but require programming. Either plain text or CSV delimited files can be generated.

Links to Other Programs Including Spreadsheets 702

© 2022 Prof. Bruce McCarl

16.2.1.1 Plain text

Plain text put files contain information arrayed in a fixed format for passage to another program. For
example, the following segment of code from regput.gms writes data in 13 column wide fields from
various internally calculated arrays into a file called tosass.put for subsequent use in a statistical
program.

file tosass;

put tosass;

loop(run,

 put run.tl;

 put @12;

 put /;

 loop(decwant,

 s= fawelsum("Agconswelf",decwant,run)/1000;

 put s:13:0;);

 put /;

 loop(decwant,

 s= fawelsum("Agprodwelf",decwant,run)/1000;

 put s:13:2;);

 put /;

 loop(decwant,

 s= fawelsum("AGtotwelf",decwant,run)/1000;

 put s:13:0;);

 put /;

);

A portion of the resultant file (tosass.put) contents is

r1

 30 40 50

 60.00 70.00 80.00

 7.56 15.11 22.67

r2

 40 50 60

 70.00 80.00 90.00

 7.56 15.11 22.67

r3

 50 60 70

 80.00 90.00 100.00

 7.56 15.11 22.67

The lines gives the case name for the following lines, which are typically the input and output data for a
modeled scenario, followed by the data characterizing the case. In turn the target program needs to
have instructions prepared that read that data in that format.

McCarl GAMS User Guide703

© 2022 Prof. Bruce McCarl

16.2.1.2 CSV or otherwise delimited

GAMS programmers may be moving data to external routines that facilitate or require the reading of data
in CSV (comma delimited) format (could also involve tab or space delimiters). This may be done by
writing a custom set of put file instructions or through Rutherford's Gams2csv as discussed below.
When writing a put file, data in CSV format are most simply generated by entering the Put file pc
command. This is done in the context of the regput.gms example above by adding a single line as
follows (regputcsv.gms)

file tosass;

put tosass;

tosass2.pc=5;

loop(run,

 put run.tl;

 put @12;

put /;

loop(decwant,s= fawelsum("Agconswelf",decwant,run)/1000;put s:13:0;);

put /;

loop(decwant,s= fawelsum("Agprodwelf",decwant,run)/1000;put s:13:2;);

put /;

loop(decwant,

s= fawelsum("AGtotwelf",decwant,run)/1000;put s:13:0;);

put /;),

A portion of the resultant file (tosass2.put) contents is

"r1"

30,40,50

60.00,70.00,80.00

7.56,15.11,22.67

"r2"

40,50,60

70.00,80.00,90.00

7.56,15.11,22.67

"r3"

50,60,70

80.00,90.00,100.00

7.56,15.11,22.67

Notes:

• When put commands are run with the pc=5 option then the labels are encased in quotes and the

numbers are separated by commas.

• When put commands are run with the pc=5 all the spacing and field widths in the put file will be

suppressed.

• Space delimited files can be generated with pc=4 as discussed in the Output via Put Commands

chapter.

Links to Other Programs Including Spreadsheets 704

© 2022 Prof. Bruce McCarl

• Tab delimited files can be generated with pc=6 as discussed in Output via Put Commands chapter.

16.2.2 Rutherford's CSV put: Gams2csv

GAMS users do not have to do put file programming to move data in CSV format. Rather they can use
a libinclude routine called Gams2csv developed by Rutherford and associates at the University of
Colorado. That program and a write-up is available at http://www.mpsge.org/gams2csv/gams2csv.htm.

Gams2csv is invoked as follows:

FILE localname /externalname/;
PUT localname;
$LIBInclude gams2csv [row domain [column domain]] item[.suffix] [item[.suffix] ...]

• The material in brackets [] is optional

• Before the program can be used a file and initial put command are required as explained in

the Output via Put Commands chapter.

• The gams2csv.gms file must have been obtained from the Rutherford web page and installed

into the place where libinclude files are read from. This location is generally the inclib
subdirectory of the GAMS system directory (as discussed in the Including External Files
chapter).

• Data from a parameter, variable or equation may be output. When a variable or equation is

used, an attribute must be identified such as .L, or .M.

• The routine may be used within a loop or if block only if it is first initialized with a blank

invocation ($LIBInclude gams2csv).

• All items written in a single libinclude must be of the same dimension. To write items of

different dimensions or domains, use multiple libincludes of the routine.

• When row and column domains are specified they can cause less than the full set to be

entered into the CSV file. The domain must be the set defining the item or a subset thereof.

• One can control whether zeros are written to the CSV file through the global environment

variable "zeros" using the syntax

$setglobal zeros yes

• One can specify a prefix to be attached to every line using the syntax

$setglobal prefix text

Example:

(ruthercsv.gms)

put 'x without domain' /;

$libinclude gams2csv x

put / 'x with lesser domain for i' //;

$libinclude gams2csv lessi x

http://www.mpsge.org/gams2csv/gams2csv.htm
http://www.mpsge.org/gams2csv/gams2csv.htm

McCarl GAMS User Guide705

© 2022 Prof. Bruce McCarl

put / 'y without domain' //;

$libinclude gams2csv y

put / 'y with lesser domain for i and j' //;

$libinclude gams2csv lessi,lessj k y

put / 'z without domain' //;

$libinclude gams2csv z

put / 'z with lesser domain for j and k' //;

$libinclude gams2csv i,lessj,lessk z

which yields the output

x without domain

"x","A one-dimensional vector."

,"i1",1.7174713200000E-01

,"i2",8.4326670800000E-01

x with lesser domain for i

"x","A one-dimensional vector."

,"i1",1.7174713200000E-01

y without domain

"y","A three dimensional array written with column headers"

,,,"k1","k2","k3"

,"i1","j1",3.0113790400000E-01,2.9221211700000E-01,2.2405286700000E-01

,"i1","j2",3.4983050400000E-01,8.5627034700000E-01,6.7113723000000E-02

,"i1","j3",5.0021066900000E-01,9.9811762700000E-01,5.7873337800000E-01

,"i2","j1",9.9113303900000E-01,7.6225046700000E-01,1.3069248300000E-01

,"i2","j2",6.3971875900000E-01,1.5951786400000E-01,2.5008053300000E-01

,"i2","j3",6.6892860900000E-01,4.3535638100000E-01,3.5970026600000E-01

y with lesser domain for i and j

"y","A three dimensional array written with column headers"

,,,"k1","k2","k3"

,"i1","j1",3.0113790400000E-01,2.9221211700000E-01,2.2405286700000E-01

z without domain

"z","A three dimensional array written in list form"

,,,"k1","k2","k3"

,"i1","j1",3.0113790400000E-01,2.9221211700000E-01,2.2405286700000E-01

,"i1","j2",3.4983050400000E-01,8.5627034700000E-01,6.7113723000000E-02

,"i1","j3",5.0021066900000E-01,9.9811762700000E-01,5.7873337800000E-01

,"i2","j1",9.9113303900000E-01,7.6225046700000E-01,1.3069248300000E-01

,"i2","j2",6.3971875900000E-01,1.5951786400000E-01,2.5008053300000E-01

,"i2","j3",6.6892860900000E-01,4.3535638100000E-01,3.5970026600000E-01

z with lesser domain for j and k

"z","A three dimensional array written in list form"

,"i1","j1","k2",2.9221211700000E-01

,"i2","j1","k2",7.6225046700000E-01
,"i3","j1","k2",0.0000000000000E+00

16.2.3 GDX

One may also pass information via GDX files as discussed in the Using GAMS Data Exchange or GDX

Links to Other Programs Including Spreadsheets 706

© 2022 Prof. Bruce McCarl

Files chapter. However, GAMS has not yet released general interface routines for use in custom
programs so what one needs to do is write a GDX file then use another GAMS program to write the file
passing the data using CSV or other PUT file related procedures as discussed below.

16.2.4 Spreadsheet links

As discussed below one can pass information to spreadsheets using program specific procedures like
Xldump, Xlexport, Gdxxrw or Gdxviewer. One can also write CSV files as covered above and import
directly or through a spreadsheet importing wizard (for those unfamiliar with such procedures see the
coverage in the document Data Exchange with Excel.

16.2.5 Graphics programs

Statements may be entered into a GAMS program that permit graphical displays of data computed
during a GAMS run directly in a window on a PC using Gnuplot through Gnuplot.gms, gnuplotxyz.gms,
Matlab or Excel.

16.2.5.1 Gnuplot

Three procedures have been developed for interface with Gnuplot. These include Rutherford's
Gnuplot.gms, Uwe Schneider and my gnuplotxyz.gms and the procedures described in the Gnuplot.
section of the GAMS User's Guide or here.

The upstart of this is that by inserting a couple of commands in a GAMS program on a Windows
machine you can get a graph developed and displayed during any PC GAMS run. It will also work on
XWINDOWS under LINUX with a little modification.

16.2.5.1.1 Gnuplot.gms

Tom Rutherford at the University of Colorado originally developed the interface with Gnuplot and
distributes it freely on his web site www.mpsge.org/gnuplot. I will not illustrate it here as it is invoked in a
manner essentially identical to the procedures to invoke gnuplotxyz which are discussed below.

16.2.5.1.2 Gnuplotxyz.gms

Uwe Schneider and I developed a modified version of Rutherford's Gnuplot.gms trying to achieve simpler
syntax (containing more default values than Rutherford) and simpler construction of so called (in
spreadsheets) XY graphs where the X and Y data are not common across lines in the graph. The
package is distributed through http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/gnuplot/.

To graph data in a GAMS program I need to do three basic things to use gnuplotxyz.

• Download the gnuplotxyz software getting both the gms and windows gnuplot executable

(wgnuplot.exe).

• Fill a three-dimensional array. In the example Simplegr.gms I fill an array named graphdata

(you may use any other name) describing the data for the two items to graph where the first
dimension is the name of the line, the second gives the set element names of the points to
use, and third the data for the point giving the x and y coordinates. Such statements appear

https://www.gams.com/latest/docs/UG_DataExchange_Excel.html
https://github.com/uwe-schneider/gnuplotxyz/wiki#gnuplotxyzgms
http://www.mpsge.org/gnuplot
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/gnuplot/

McCarl GAMS User Guide707

© 2022 Prof. Bruce McCarl

below.

LINES Lines in graph /A,B/

POINTS Points on line /1*10/

ORDINATES ORDINATES /X-AXIS,Y-AXIS/ ;

TABLE GRAPHDATA(LINES,POINTS,ORDINATES)

 X-AXIS Y-AXIS 0

A.1 1 1

A.2 2 4

A.3 3 9

A.4 5 25

A.5 10 100

B.1 1 2

B.2 3 6

B.3 7 15

B.4 12 36;

• Then given the data call gnuplotxyz through a libinclude statement

$LIBInclude gnuplotxyz GRAPHDATA Y-AXIS X-AXIS

where the first argument after gnuplotxyz gives the array name, the second name of a set
element in the third array position which contains the data coordinates for the y axis and the
third the name of a set element in the third array position which contains the data coordinates
for the x axis.

In turn when I run I get two new windows that automatically open in front of the IDE.

Links to Other Programs Including Spreadsheets 708

© 2022 Prof. Bruce McCarl

• The window labeled gnuplot graph is the graph of the data and the window labeled gnuplot is a

result of the execution of the wgnuplot executable.

• I can plot more than one line by including the libinclude command more than once.

• I can manipulate labels and set a number of options using setglobal commands as discussed

in the gnuplotxyz http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/gnuplot/
 and as illustrated in the Conditional Compilation chapter. In particular, I draw two graphs and
manipulate labeling in a manner as illustrated below (simplegr2.gms)

$setglobal gp_title "First Graph of data "

$setglobal gp_xlabel "Label for X Axis"

$setglobal gp_ylabel "Label for Y Axis"

$LIBInclude gnuplotxyz GRAPHDATA Y-AXIS X-AXIS

GRAPHDATA("B",POINTS,"Y-axis")

$GRAPHDATA("B",POINTS,"Y-axis")=

100-GRAPHDATA("B",POINTS,"Y-axis");

$setglobal gp_title "Second Graph of data with modified line B "

$LIBInclude gnuplotxyz GRAPHDATA Y-AXIS X-AXIS

where the setglobal commands enter labels for axes and graph title

This yields both the graph above and the graph below generated in 2 windows with 4 total
windows generated.

http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/gnuplot/

McCarl GAMS User Guide709

© 2022 Prof. Bruce McCarl

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

L
a

b
e

l f
o

r
Y

 A
xi

s

Label for X Axis

Second Graph of data with modified line B

A
B

• Many more options are possible as listed in the documentation. Many are embedded in the

file plotopts.gms

• Calculated data from a model solution can be graphed as illustrated in the example

evportfo.gms

LOOP (RAPS,RAP=RISKAVER(RAPS);

SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;

VAR = SUM(STOCK, SUM(STOCKS,

INVEST.L(STOCK)*COVAR(STOCK,STOCKS)*INVEST.L(STOCKS))) ;

OUTPUT("RAP",RAPS)=RAP;

OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);

OUTPUT("OBJ",RAPS)=OBJ.L;

OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS) *

INVEST.L(STOCKS));

OUTPUT("VAR",RAPS) = VAR;

Links to Other Programs Including Spreadsheets 710

© 2022 Prof. Bruce McCarl

OUTPUT("STD",RAPS)=SQRT(VAR);

OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;

OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L);

parameter graphit (*,raps,*);

graphit("Frontier",raps,"Mean")=OUTPUT("MEAN",RAPS);

graphit("frontier",raps,"Var")=OUTPUT("std",RAPS)**2;

*$include gnu_opt.gms

* titles

$setglobal gp_title "E-V Frontier "

$setglobal gp_xlabel "Variance of Income"

$setglobal gp_ylabel "Mean Income"

$libinclude gnuplotxyz graphit mean var

Here a model is repeatedly solved and a three dimensional array called graphit is built which
contains the name of the line to be graphed (frontier) and the mean and variances. These
means and variances were calculated using report writing statements into the array called
output as discussed in the chapters on Improving Output via Report Writing and Doing a
Comparative Analysis with GAMS. The resultant graph is

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 100001200014000160001800020000

M
ea

n
In

co
m

e

Variance of Income

E-V Frontier

Frontier

• Once a graph is in the window, a left click on it makes it available for cut and paste.

• When using gnuplotxyz several things need to be present

� The gnuplot executable needs to be in the GAMS system directory (nominally
c:\program files\gams22.7\). It is downloadable through my website and is called
wgnuplot.exe

� The gnuplotxyz.gms file must be in the inclib directory under the GAMS system
directory = (nominally c:\program files\gams22.7\inclib\).

• Sometimes with Windows 2000 when you graph multiple graphs you have to close the first

one before the second one becomes visible.

McCarl GAMS User Guide711

© 2022 Prof. Bruce McCarl

16.2.5.2 Matlab

Matlab can be used to graph GAMS data in much the same fashion as above. The document
GDXMRW: Interfacing GAMS and MATLAB by Michael C. Ferris, Rishabh Jain and Steven Dirkse
explains the Matlab interface.

16.2.5.3 Spreadsheet graphics

One may also use spreadsheet-based graphics as will be illustrated in the spreadsheet section below.

16.2.6 Geographic mapping programs

Some modelers wish to express things in the form of a map depicting geographic movements of goods,
production etc. Some mapping programs like MAPVIEWER from Golden Software use CSV input
formats and can be directly used with the techniques above once the map has been set up. GAMS
corporation has also released a library include file called GAMSMAP which uses MAPINFO's
PROVIEWER mapping system as described on the GAMS web page at Exporting to MapInfo Maps.

Tom Rutherford has also developed a GAMS interface to Mark Horridge's ShapeMap a tool for shading
or coloring regions of simple maps and this has been extended by Uwe Schneider and called GAMS-
SHADEMAP.

16.2.7 GDX2ACCESS

GDX2ACCESS is a tool that dumps the entire contents of a GDX file into an MS Access file (.mdb or
.accdb file).
Every identifier(set, parameter, variable, equation etc) gets its own table in the database.

GDX2ACCESS is resident in GAMS and documented at gdx2access

16.2.8 Gdx2sqlite

GDX2SQLITE is a tool that dumps select items in a GDX file into a SQLITE file (.db file).

GDX2SQLITE is resident in GAMS is documented further here.

16.2.9 Gdxrrw

GDXRRW is an interface to pass data through GDX files to programs written in the R language.

16.2.10 Gdxviewer links: Access, Excel pivot table, Excel, CSV, GAMS include, HTML,
Text files, Plots, XML

A program called Gdxviewer will move data from a GDX file and place it a number of places including an
Access database. Gdxviewer was developed by Erwin Kalvelagen, at the GAMS Development
Corporation and is part of the GAMS Windows distribution. The GAMS IDE contains a GDX file viewer
which is accessed when one opens a GDX file.

When run, Gdxviewer organizes the symbols in a tree format on the left hand side of the screen.
Simultaneously in the right hand pane, the data for the item selected are shown in tabular format.
However, the display column headers are not very descriptive with names like dim1, dim2, etc. because
the GDX file does not contain information on domains of parameters and other items. Once one selects
an item in the left hand window one can right click on it with the mouse and choose among a number of

https://www.gams.com/latest/docs/T_GDXMRW.html
http://www.goldensoftware.com/products/mapviewer/mapviewer.shtml
http://www.gams.com/contrib/gamsmap/index.html
http://www.mpsge.org/shademap.htm
http://www.copsmodels.com/shademap.htm
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/shademap/GAMS_to_Shademap.htm
http://www.uni-hamburg.de/Wiss/FB/15/Sustainability/schneider/shademap/GAMS_to_Shademap.htm
https://www.gams.com/latest/docs/T_GDX2ACCESS.html

Links to Other Programs Including Spreadsheets 712

© 2022 Prof. Bruce McCarl

export possibilities. Data for the selected object can be plotted or sent to a

• Text file: a plain ASCII file for inclusion into text editors and by programs you write.

• CSV file: a comma separated value files.

• Excel XLS file: a new XLS file ('new workbook') or to a new sheet in an existing spreadsheet.

This option works only if Excel is available on your PC.

• Excel Pivot table. An Excel pivot table within a workbook. This only works for parameters or

variables/equations with 2 dimensions or more. This option works only if Excel is installed on
your PC.

• GAMS include file: for subsequent use through a $Include.

• Access database. A new table will be generated. If the .MDB file does not exist already it

will be created. This option works only if Access is installed on your PC.

• HTML file: Data can be exported to HyperText Markup Language: the language of Web pages.

 Rutherford's GAMS2TBL can also write such files.

• XML file: Data can be exported to XML a web related format to store data.

For more details see the write-up in the gdxviewer.pdf document in the docs\tools sub-directory of your
GAMS system directory.

16.2.11 Other programs and conversions: Convert, DB2, FLM2GMS, GAMS2TBL,
HTML, Latex, MPS, Oracle, XML

Specialized interfaces exist that allow linkage with a number of other programs.

• The Data and Model Exchange with Other Applications discusses interfaces with Excel,

Oracle, Access, DB2, general SQL using procedures, Latex, Gnuplot, HTML, XML and MPS.

• The Application Programming Interfaces to GAMS discusses interfaces with programs in

.NET, Java, Python, Fortran, Visual Basic, Delphi, C, and C++.

• Leo Lopes contributed the software program fml2gms.exe that is in the GAMS distribution

which converts a CoinFML style XML file into a GAMS formatted file. Running it in a DOS
window without parameters gives a rudimentary documentation.

• Thomas Rutherford distributes a utility called GAMS2TBL that can write HTML or Latex

tables.

• Use of the CONVERT solver allows one to change GAMS files to a number of other formats

including AlphaECP, AMPL, BARON, CoinFML, CplexLP, CplexMPS, Dict, FixedMPS,
GAMS Scalar format, LAGO, LGO, LINGO, MINOPT or ViennaDag as further discussed in
the CONVERT solver guide or the Model Types and Solvers Chapter.

16.3 Passing data from other programs to GAMS

GAMS can retrieve or import information from other programs through

• The include file mechanism,

• GDX files or

https://www.gams.com/latest/docs/T_MAIN.html#GAMS_TOOLS_DATA_EXCHANGE
https://www.gams.com/latest/docs/API_MAIN.html
http://www.mpsge.org/inclib/gams2tbl.htm
https://www.gams.com/latest/docs/S_CONVERT.html

McCarl GAMS User Guide713

© 2022 Prof. Bruce McCarl

• Specialized links to spreadsheets, and a few other programs.

Including data

Spreadsheet links

GDX

Mdb2gms

SQL: Sql2gms

Other programs: DB2, Latex, GNETGEN, Gnuplot, Matlab, MPS, NETGEN, Oracle

A wiki is available that provides some information in support of interfacing efforts. see discussion here

16.3.1 Including data

GAMS may include external files that have been written by other programs providing they exist before
the GAMS run instruction is issued, although a trick may be used to get around this as discussed
below. File inclusion may be done using the $include, $batinclude or $libinclude syntaxes as discussed
in the Including External Files chapter. There are also special provisions regarding inclusion of comma-
delimited -CSV- files where such files may be incorporated by using the command $ondelim before
beginning the entry and then $offdelim afterwards. File inclusion is extensively discussed in the
Including External Files chapter.

16.3.2 Spreadsheet links

Spreadsheet data may be imported into GAMS via three procedures. As discussed below one can use
procedures that can either read or write spreadsheet data like Xlimport or Gdxxrw. In addition there is a
Windows oriented program Xls2gms that allows you to extract data from an Excel spreadsheet and
convert it into a GAMS include file and a program Xldata that reads from Excel files on machines that do
not have Excel installed on them. The read/write Xlimport and Gdxxrw procedures are discussed below.
 Here I discuss Xls2gms and XLSDUMP as they can only import data.

One may also deliver all data in a spreadsheet into a GDX file using XLSDUMP.

16.3.2.1 Xls2gms

Xls2gms is a utility developed by Erwin Kalvelagen, GAMS Development Corporation that extracts data
or GAMS instructions from an Excel spreadsheet and converts it into a GAMS include file. Xls2gms is
resident in GAMS and is documented in xls2gms

Xls2gms runs in two different modes – an interactive based windows mode and a batch mode.

16.3.2.1.1 Interactive mode

When Xls2gms.exe is executed without arguments one receives the screen

https://www.gams.com/latest/docs/T_XLS2GMS.html

Links to Other Programs Including Spreadsheets 714

© 2022 Prof. Bruce McCarl

In turn, if one specifies use of the spreadsheet tran.xls, and the range sheet1!a1:d3 one addresses the
spreadsheet area below

and the program generates an include file as follows

* ---

* Xls2gms Version 1.5, August 2002

* Erwin Kalvelagen, GAMS Development Corp.

* ---

* Application: Microsoft Excel

* Version: 9.0

* Workbook: C:\gams\gamspdf\bigone\tran.xls

* Sheet: Sheet1

* Range: A1:D3

* ---

 new-york chicago topeka

seattle 25 17 18

san-diego 25 18 14

*---

This file in turn can be included into GAMS at compile time or at execution time via GDX and the GAMS
to GAMS trick discussed below.

McCarl GAMS User Guide715

© 2022 Prof. Bruce McCarl

Note while the data are output in Table format, the table statement is not present. Thus the user needs
to supply it either in the GAMS file or it can be typed above the table in the spreadsheet and Xls2gms
will copy it. In particular Xls2gms copies all entries longer than 30 columns verbatim into the GMS file
(see the resource.xls example as imported by Xl2gmsresource.gms as discussed below).

There are a number of options in Xls2gms that merit mention

• Checking the quote blanks box causes the program to encapsulate strings that contains

blanks in quotation marks and also deals with strings containing quotation marks.

• The box to the right of separator allows the user to enter a character that will be used to

separate cells in the output file. By default this is a blank. CSV files can be generated by
entering a , (comma) in this field.

• Checking the mute box will reduce the amount of information written to the output file. The

output file then becomes

 new-york chicago topeka

seattle 25 17 18

san-diego 25 18 14

• Checking the No listing box causes the program to enter $offlisting and $onlisting into the

program suppressing the data from the LST file.

• Checking the Ignore language settings box causes the program to convert numbers in the

common European format (where a comma is used for the decimal point --3.14 is written as
3,14) into the US notation using a decimal point employed in GAMS.

16.3.2.1.2 Batch mode

Xls2gms can operate in batch mode. The basic call is of the form

XLS2gms i=inputsheet o=outputinclude r=range

from a DOS prompt or

$call =XLS2gms i=inputsheet o=outputinclude r=range

from within GAMS.

In these cases

• The = is needed to make GAMS wait as discussed above.

• Inputsheet is the name of the .xls spreadsheet file.

• Outputinclude is the name of the file where the include file is to be saved.

• One needs to use quotes for file names and paths with spaces in them as discussed above.

• Range identifies the portion of the sheet to import.

� If range is not specified Xls2gms uses the entire contents of the first sheet in the

Links to Other Programs Including Spreadsheets 716

© 2022 Prof. Bruce McCarl

workbook.

� If no sheet name is specified (i.e. r=a1:b3) then one gets the given range from the first
sheet in the workbook.

� If no range is specified but a sheet is (i.e. r=sheet1!) then one gets the whole sheet.

� Range names are allowed (i.e. r=myrangename).

• Several other parameters may be used

� @filename identifies a file from which to read command line options where within that file
each line contains only one option, typed just as if it were specified on the command
line.

� B causes fields with blanks to be quoted as discussed above.

� S= specifies a field separator (i.e. s=, yields CSV files) as discussed above.

� M turns on mute mode as discussed above.

� L inserts $offlisting and $onlisting as discussed above.

� P converts numbers to decimal point format as discussed above.

16.3.2.1.2.1 GAMS program in Excel sheet

XL2GAMS may also be used to import GAMS instructions. One can maintain a GAMS program in the
spreadsheet and then simply include it in a GAMS program. For example, in resource.xls I imbed
resource.gms (excepting I spaced out the table as one might normally do in Excel in a24:b33). Then I
include and execute it using the following GAMS program (Xl2gmsresource.gms)

$setglobal path "c:\gams\gamspdf\bigone\"
$call =XLS2gms i=%path%resource.xls o=%path%resourceXls2gms.inc
$include %path%resourceXls2gms.inc

It appears as if one needs to specify the full path in such a use.

16.3.2.2 XLSDUMP

One may also deliver all data in a spreasdheet into a GDX file using XLSDUMP.

it is run with the syntax

XLSDump infile outfile

where:

infile is the name of an Excel workbook

outfile is optional and gives the name of the output gdx file.

If no output file name is specified, the name of the input file will be the root of the input file name plus
gdx.

Unlike GDXXRW, the program does not require that Excel is installed.

McCarl GAMS User Guide717

© 2022 Prof. Bruce McCarl

This works only on windows platforms.

16.3.3 Database links

GAMS can link to Access and SQL databases.

Access is interfaced with through GDX2ACCESS, MDB2GMS. and GDXviewer

SQLite is interfaced with through GXS2Sqlite

SQL is interfaced with through SQL2GMS

16.3.3.1 SQL: Sql2gms

Data may be transferred to SQL compatible databases using Sql2gms - a utility developed by GAMS
Development Corporation. Sql2gms extracts data from any SQL relational database via use of the
Windows ADO or ActiveX Data Objects procedures. In turn it converts the results into a GAMS include
file. Sql2gms is part of the GAMS distribution for Windows and is documented in sql2gms.pdf in the
docs\tools directory of the GAMS system directory.

Its function is similar to the Mdb2gms procedure discussed above but with a more complex syntax that
also identifies the database manager to use.

16.3.3.1.1 GDX

One may also pass information via GDX files as discussed in the Using GAMS Data Exchange or GDX
Files chapter. However, GAMS has not yet released general interface routines rateher having particular
ones to MATLAB, ACCESS and Excel so what one needs to do is write a file for GAMS inclusion then
include that file in another GAMS program and create a GDX file for use in the current file as discussed
below.

16.3.3.2 Mdb2gms

Mdb2gms is a utility developed by Erwin Kalvelagen, at the GAMS Development Corporation that
extracts data from an Access database and converts it into a GAMS include file. Mdb2gms is part of
the GAMS distribution for Windows and is documented in mdb2gms/index.html in the docs/tools in the
GAMS system directory. The utility runs in two different modes – an interactive based windows mode
and a batch mode.

16.3.3.2.1 Interactive mode

When Mdb2gms.exe is executed without arguments then one receives the screen

Links to Other Programs Including Spreadsheets 718

© 2022 Prof. Bruce McCarl

In turn, if one specifies use of the database transport.mdb, and the query

select loca,locb,distance from dist

one addresses a data table in Access as follows

and the program generates an include file as follows

* ---

* Mdb2gms Version 1.2.1, September 2000

* Erwin Kalvelagen, GAMS Development Corp

* ---

* DAO version: 3.6

McCarl GAMS User Guide719

© 2022 Prof. Bruce McCarl

* Jet version: 4.0

* Database: c:\gams\gamspdf\bigone\transport.mdb

* Query: select loca,locb,distance from dist

* ---

seattle.new-york 2.5

seattle.chicago 1.7

seattle.topeka 1.8

san-diego.new-york 2.5

san-diego.chicago 1.8

san-diego.topeka 1.4

where in this case the data would need to be input into a parameter with beginning and trailing /'s as
discussed in the Data Entry chapter.

There are a number of options in Xls2gms that merit mention

• Checking the quote blanks box causes the program to encapsulate strings that contains

blanks in quotation marks and also deals with strings containing quotation marks.

• Checking the mute box will reduce the amount of information written to the output file. The

output file then becomes

seattle.new-york 2.5

seattle.chicago 1.7

seattle.topeka 1.8

san-diego.new-york 2.5

san-diego.chicago 1.8

san-diego.topeka 1.4

• Checking the No listing box causes the program to enter $offlisting and $onlisting into the

program suppressing the data from the LST file.

16.3.3.2.2 Batch Mode

Mdb2gms can operate in batch mode. The basic call is of the form

mdb2gms i=Inputdb o=Outputinclude q=Query

from a DOS prompt or

$call =mdb2gms i=Inputdb o=Outputinclude q=Query

from within GAMS where

• The = is needed to make GAMS wait as discussed above.

• Inputdb is the name of the .MDB Access database file.

• Outputinclude is the name of the file where the include file is to be saved.

• One needs to use quotes for file names and paths with spaces in them as discussed above.

Links to Other Programs Including Spreadsheets 720

© 2022 Prof. Bruce McCarl

• Query identifies the database SQL query to use.

� Queries contain spaces and thus have to be surrounded by double quotes.

� The syntax of the SQL queries is not covered here. Users should refer to the Microsoft
Access documentation.

� When field names or table names contain blanks, they can be specified in square
brackets.

� Query examples

Q="select * from mytable"

Q="select year, production from [production table]"

Q="select [GAMS City],value from [example table],CityMapper where [Access City]=city"

• Several other parameters may be used

� @filename identifies a file from which to read command line options where within that file
each line contains only one option, typed just as if it were specified on the command
line.

� B causes the program to enclose fields with blanks in quotes as discussed above.

� M turns on mute mode as discussed above.

� L inserts $offlisting and $onlisting as discussed above.

16.3.4 Gdxrrw

GDXRRW is an interface to pass data from programs written in the R language to GAMS through
GDX files.

16.4 API usage

GAMS offers a low level application programming interface (API) to various programming

languages. Recently GAMS has introduced an object oriented (OO) API that allows to control

GAMS from within different programming languages like C#, Java and Python.

Tutorials for these are included in the GAMS system directory on your computer under the

subdirectory <gams system directory>/docs/API. This document can also be accessed

through the GAMSIDE Help menu under the subdirectory Docs in the subdirectory API.

API usage etc is also discussed here.

16.5 Other programs: DB2, Latex, GNETGEN, Gnuplot, Matlab, MPS,
NETGEN, Oracle

Program or data input style specific interfaces exist with a number of other programs.

• The Data and Model Exchange with Other Applications discusses interfaces with Excel,

https://www.gams.com/latest/docs/UG_DataExchange.html

McCarl GAMS User Guide721

© 2022 Prof. Bruce McCarl

Oracle, Access, DB2, general SQL using procedures, Latex, Gnuplot, HTML, XML and MPS.

• The Application Programming Interfaces to GAMS discusses interfaces with programs in

.NET, Java, Python, Fortran, Visual Basic, Delphi, C, and C++.

• The GAMS Matlab interface is described in "Matlab and GAMS: Interfacing Optimization and

Visualization Software" at the GAMS Support Wiki .

16.6 Customized data interchange links for spreadsheets

Spreadsheet based data interchange procedures are available for inclusion in GAMS programs that in
turn interface with Microsoft Excel. They are designed to take a GAMS data item and place it in a
spreadsheet or retrieve data for a GAMS item from a spreadsheet. There are four types of interchange
procedures available

• Those based on Rutherford's utilities Xlexport, Xldump, Xlimport

• Those utilizing GDX files through the GAMS Gdxxrw program.

• Use of XLS2GAMS

• Use of XLSDUMP

Each is discussed.

Xlexport, Xldump, Xlimport

Gdxxrw

XLS2GAMS

XLSDUMP

Spreadsheet graphics

Interactively including results

16.6.1 Xlexport, Xldump, Xlimport

Tom Rutherford and associates at the University of Colorado developed a set of workbook data
exchange utilities in the late 1990's. These were redeveloped in 2002 in cooperation with the GAMS
Corporation to utilize GDX files (internally they employ the Gdxxrw procedure that I discuss below).
Briefly, the interface routines do the following:

Xlimport reads data from spreadsheets at compile time. It can be used to retrieve
preexisting data from an Excel workbook.

Xldump writes data and element labels into an existing Excel workbook. Row and column
order will follow the internal GAMS order as discussed in the Rules for Item Capitalization and
Ordering chapter.

Xlexport writes data into spreadsheets according to the row and column labels in the specified
target range. The program will transfer data only for the labels are present in the spreadsheet.

 The basic usage of the routines involves use of a libinclude command as follows

$LIBInclude Xlimport Gamsitem Workbookfile Sheetname!Range

https://www.gams.com/latest/docs/API_MAIN.html
http://www.cs.wisc.edu/math-prog/matlab.html
http://www.cs.wisc.edu/math-prog/matlab.html
https://support.gams.com/matlab_and_gams:interfacing_optimization_and_visualization_software_via_the_gdxmrw_utilities
http://www.mpsge.org/mainpage/mpsge.htm

Links to Other Programs Including Spreadsheets 722

© 2022 Prof. Bruce McCarl

$LIBInclude Xlexport Gamsitem Workbookfile Sheetname!Range /m
$LIBInclude Xldump Gamsitem Workbookfile Sheetname!Range

where

Xlexport, Xlexport and Xldump are names of GMS files resident in the inclib directory of the GAMS
system directory (which are automatically placed there when a GAMS release after version
21.0 is installed).

Gamsitem is the name of a parameter, set, variable or equation in the source GAMS program.
Attributes are typically used with variables and equations as discussed in the Variables,
Equations, Models and Solves chapter.

Workbookfile is the name of an Excel workbook file nominally without the XLS extension where one
needs to use quotes for file names and paths with spaces in them as discussed above.

Sheetname!Range is the standard Excel terminology for specification of a set of cells in a
workbook.

/m identifies when Xlexport is being used whether data put into the spreadsheet are to be merged
or replaced. If /m is specified then the program does not erase existing entries and where a
zero is present in an array to be placed in the spreadsheet it will not overwrite an existing
nonzero. On the other hand if /m is not specified (left off) then the entire writing range will be
cleared in the spreadsheet before any data are written.

16.6.1.1 Xlimport

The procedure Xlimport imports data from a spreadsheet into a GAMS program. Its format is that above
requiring specification of the

• Name of the item to have data imported into it.

• The source spreadsheet.

• The location in the sheet including source sheet name and cell range.

Example:

(fromExcel.gms)

set places /newyork,chicago,topeka,totalsupply/

 destinaton(places)

 sources /seattle,sandiego,totalneed/

 source(sources);

destinaton(places)=yes;

destinaton("totalsupply")=no;

source(sources)=yes;

source("totalneed")=no;

parameter trandata (sources,places) transport data from spreadsheet

 Supply(Sources) Supply at each source plant in cases

 Need(places) Amount neeeded at each market destination in cases;

$libinclude xlimport trandata myspread.xls input!a1:e4

This copies the data for the GAMS parameter named trandata from the spreadsheet called myspread.xls from
the sheet called input from the range a1 to e4.

McCarl GAMS User Guide723

© 2022 Prof. Bruce McCarl

Notes:

• The use of Xlimport permits simplicity of data transfer, but is not as versatile as the use of Gdxxrw

as described below.

• Xlimport is designed to allow one to import set names but this only works under a row vector of set

element names. Users wishing to import set element names from the spreadsheet should use
Gdxxrw.

• The use of Xlimport to import data requires that the set elements have already been specified in

explicit set statements.

• Xlimport is restricted to compile time imports only. Data imports during execution time must use

Gdxxrw or the GAMS from GAMS procedure discussed below.

• Xlimport being a compile time import does domain checking to make sure the set element names

in the range match.

• Current procedures do not allow import of attributes of variables or equations but this may be fixed

by the time this manual is made available.

16.6.1.2 Xlexport

The procedure Xlexport can be used to export data from a GAMS program into a spreadsheet. It
writes data into spreadsheets only when it finds row and column labels that match the set elements
within the specified target range. Those elements also control element ordering. Command format is
that above requiring specification of

• Name of the item in the GAMS program to have data exported from it,

• The target spreadsheet,

• The location in the target sheet including the sheet name and cell range.

There is also an optional merge parameter telling whether to leave preexisting data with nonmatching
data elements alone.

Example:

(fromExcel.gms)

Solve tranport using lp minimizing totalcost ;

$libinclude xlexport transport.l myspread.xls output3!a1..d4

$libinclude xlexport transport.m myspread.xls output3!f1..i4

$libinclude xlexport transport.l myspread.xls output3!a6:d8 /m

$libinclude xlexport transport.l myspread.xls output3!f6:i9 /m

This copies the data for the solution levels (.l) or marginals (.m) of the variable named transport into the
spreadsheet called myspread.xls into various ranges depending on the statement. The first command
exports the data after the solve statement into the sheet called output3 in the range a1 to d4. The third
command exports the data after the solve statement into the sheet called output3 in the range a6 to d8
merging in the results.

The output3 sheet before the import looks like

Links to Other Programs Including Spreadsheets 724

© 2022 Prof. Bruce McCarl

and the sheet afterward looks like

where the order of the results varies according the order in which the column labels and row labels appear in
the spreadsheet. Also note under the merge option that the data present in the spreadsheet before the export
remain afterward when the labels do not match as in the case of the random column in column D rows 6-7.
The exports other than the first one do not fully match all of the column dimensionality of the transport.l item
and thus only export subsets of the items.

Notes:

• The use of Xlexport either requires the spreadsheet to be closed or it to be shared through the Excel

Tools Share Workbook option. However, if shared, the data put by GAMS will only be reflected in
the workbook if you do a file save and the procedure may be very slow. Often the best option is to
close the workbook.

• The use of Xlexport permits simplicity of data transfer but is not as versatile as the use of Gdxxrw as

described below.

• Xlexport requires that the set elements have already been specified in the spreadsheet and must

be matched up.

• Xlexport sends whatever data is current for an item at the stage of the program where the libinclude

occurs and reflects any previous calculations and model solutions.

McCarl GAMS User Guide725

© 2022 Prof. Bruce McCarl

• The merge option leaves prior data alone but does wipe out any formulas in the Xlexport range.

• The range should be explicitly specified if one intends to not have the procedure wipe out the data (if

merge is off) and formulae from one row below and one column to the left of the insertion point (if
just j1 is specified then the spreadsheet is wiped from k2 to the bottom and left.

16.6.1.3 Xldump

The procedure Xldump can be used export data from a GAMS program to a spreadsheet. It writes data
and labels to a specified range overwriting what ever is there. GAMS internal rules controls the order of
the items in the output as discussed in the chapter on Rules for Item Capitalization and Ordering.

Example:

(fromExcel.gms)

Solve tranport using lp minimizing totalcost ;

$libinclude xldump transport.l myspread.xls output2!a1

$libinclude xldump transport.l myspread.xls output!a1..d4

$libinclude xldump transport.l myspread.xls output4!a1

This copies the data for the solution levels (.l) of the variable named transport into the spreadsheet called
myspread.xls in the ranges specified. The first command exports the data after the solve statement into the
sheet called output2 in the range starting with a1 and clears the rest of that sheet. The second exports the
data after the solve statement into the sheet called output in the range a1 to d4 leaving the rest of the sheet
alone. The third exports the data after the solve statement into the sheet called output4 and will create that
sheet if it does not already exist.

The output2 sheet before the import looks like

and the output2 sheet afterward looks like

Links to Other Programs Including Spreadsheets 726

© 2022 Prof. Bruce McCarl

while the sheet named output looks like

Also the sheet output4 is created, as it did not previously exist.

Notes:

The order of the results is controlled by internal rules in GAMS as discussed in the chapter on Rules for Item
Capitalization and Ordering.

• When the range is specified just as the upper left corner any entries below and right will be cleared. You

must use a fully specified range if you wish to avoid this.

• The use of Xldump either requires the spreadsheet to be closed or it to be shared through the Excel Tools

Share Workbook option. However, if shared, the data put by GAMS will only be reflected in the workbook if
you do a file save and the procedure may be slow. Often the best option is to close the workbook.

• The use of Xldump permits simplicity of data transfer but is not as versatile as the use of Gdxxrw as

described below.

• Xldump places the whole data parameter into the spreadsheet.

• Xldump sends whatever data is current for an item at the stage of the program where the libinclude occurs

and reflects any previous calculations and model solutions.

16.6.2 Gdxxrw

Gdxxrw is a GAMS Corporation developed utility to read and write Excel spreadsheet data using GDX
files. In turn the associated GDX files can be read or written by GAMS as discussed in the Using

McCarl GAMS User Guide727

© 2022 Prof. Bruce McCarl

GAMS Data Exchange or GDX Files chapter.

Gdxxrw is designed to be called from a DOS prompt. It can also be invoked using the GAMS $Call or
Execute commands as discussed above. There are a lot of options involved with Gdxxrw that are
described in the document GDXXRW. Here we just give a broad treatment of the most important.

GDXXRW can work with .xls, .xlsb, .xlsx and .xlsm formats, GDXXRW will write an Excel files as a
.xlsx file unless a different file extension is specified for the output file.

Gdxxrw uses command line arguments. The basic calling sequence is

Gdxxrw Inputfile Output=filename options

where

Inputfile must have an extension and tells the name of a file to read from or
write to. The read from a spreadsheet occurs if the extension is a
workbook extension (.xls, .xlsb, .xlsx, .xlsm, .wk1, .wk2, .wk3 and
.dbf). The write to the spreadsheet occurs if the file has a GDX
extension. This can also be entered as I=inputfile.

Output=filename is an optional specification of the name of target workbook or GDX file
where the output is to be written. If not present the file name will be
the input file name with a workbook (.XLS or .XLSX, .XLSB, XLSM) or
GDX extension and no path. A shortcut entry occurs with O=filename.

Options are a number of possible options as discussed below.

Notes:

• If no path is specified for the input or output files the file is assumed in the current or project file

directory.

• One needs to use quotes for file names and paths with spaces in them as discussed above.

• Command line parameters can be read from a file or a spreadsheet as discussed below.

16.6.2.1 Command line parameters

The applicable command line parameters in part depend on whether one is reading from or writing to a
spreadsheet. Thus, I treat these items separately for each case. First, however I treat parameters
common to both reading and writing involving

• The target spreadsheet range.

• How one handles GAMS items of various dimensions.

• How one identifies the names of and types of items to transfer.

16.6.2.1.1 Rng=

To write data to or read data from a spreadsheet a range needs to be specified for each GAMS item to

https://www.gams.com/latest/docs/T_GDXXRW.html

Links to Other Programs Including Spreadsheets 728

© 2022 Prof. Bruce McCarl

be transferred. A range is specified using the syntax:

Rng=SheetName!CellRange

where

SheetName!CellRange is standard Excel notation

Rng= (where capitalization does not matter) alerts Gdxxrw that a range name is following

Sheetname is the name of a sheet within the Excel workbook

! is the exclamation point symbol

CellRange is specified by using TopLeft:BottomRight or TopLeft..BottomRight or Rangename
cell notation like A1:C12 or B1..Q221 or Myrange.

but a complete specification is not required. In particular, when

• Sheetname and CellRange or the whole Rng= entry are omitted the first sheet cell A1 is

addressed

• Sheetname is omitted the first sheet is addressed i.e. use of Rng=B2 would address the

first sheet in the B2 cell (Note this can be altered using the NameConv or NC parameter)

• Sheetname is specified and the sheet does not exist, then

� when writing to a spreadsheet a new sheet will be added to the workbook with that
name.

� when reading from a spreadsheet an error will occur if the named sheet is not
present.

• CellRange is omitted cell A1 is addressed

• !CellRange appears the range identified by Cellrange is addressed in the first sheet

• CellRange is specified by Rng=TopLeft only then the program will extend the range as far

down and to the right as needed wiping out all sheet contents below and to the right of the
starting point. (this is also controlled by the skipempty parameter as discussed below)

• CellRange can be specified as Rng=namedrange and the program will search for a

predefined Excel range with that name. When the name does not exist an error will
occur.

16.6.2.1.2 NameConv=: NC=

The interpretation of ranges that do not contain an "!" can be changed through use of the naming
convention command line parameter. This is specified as follows

NameConv=integer

or

NC=integer

Valid values for integer are

McCarl GAMS User Guide729

© 2022 Prof. Bruce McCarl

0 to interpret symbols without ! as CellRanges
1 to interpret symbols without ! as Sheetnames

and the default value is zero.

16.6.2.1.3 GAMS item dimension: Dim=, Rdim=, Cdim=

Nominally, the Gdxxrw program is set up to read and write a 2 dimensional data item i.e. a(i,j). When
the object is more or less than 2 dimensional, then the user must specify the dimension at hand and the
way the data are arrayed in the spreadsheet. Three command line parameters control this

• Dim tells the total dimension i.e. 1 for a vector like r(i), 2 for a two dimensional matrix like a

(i,j), 3 for a three dimensional item like b(i,j,k).

• Cdim dimensions to be placed in columns of spreadsheet where the first Cdim rows of the

data range will be used for labels.

• Rdim dimensions to be placed in rows of spreadsheet where the first Rdim columns of the

data range will be used for labels.

These are specified as

Dim=integer
Rdim=integer
Cdim=integer

Note they do not all need to be specified Dim equals the sum of Cdim and Rdim. and if both Cdim and
Rdim are omitted, the program assumes that Cdim = 1 and Rdim= Dim – 1.

The set up of the Rdim and Cdim parameters is much like the option statement associated with a
display as discussed in the Improving Output via Report Writing chapter. Their use is illustrated below.

16.6.2.1.4 Data specif ication

Data items can be read from the spreadsheet in the form of set elements, set explanatory text,
parameters and data for variables or equations. Such entries have both general and specific
requirements. In general the commands are of the form

DataType=ItemName Rng=DataRange Dimensions SymbolOptions

where

DataType identifies the type of item and is one of the symbols: Par, Set, Dset,
Equ, Text, or Var as discussed below.

Itemname identifies the name of the item in the GDX file. These should follow the
GAMS item naming rules as discussed in the Rules for Item Names,
Element Names and Explanatory Text chapter.

Rng=Datarange is an optional specification of the range where the item is to be placed
or withdrawn from following the practices above where if omitted is cell
A1 of the first sheet in the workbook.

Links to Other Programs Including Spreadsheets 730

© 2022 Prof. Bruce McCarl

Dimensions is an optional specification of item dimensions following the dimension
identification practices identified in the section just above.

SymbolOptions are optional and controls read or write specific options.

There are multiple forms of this command and each will be discussed separately.

16.6.2.1.4.1 Writing Text and Links

GDXXRW allows one to write text or hyperlinks into a spreadsheet

This is done using the syntax

Text = "String of characters" Range=place

or

Text = "String of characters" Range=place Link=Address

or

Text = "String of characters" Range=place LinkID=gamsitem

where the text encased between the " marks is written to the specified range

if link=address is specified then the text is made a hyperlink referring to the location address

 if linkid=gamsitem is specified then the link points to the upper left hand corner of the place
where that item is located in a GDXXRW instruction that is in same GDXXRW
execution

Example:

(gdxxrwwrite.gms)

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls text="This is the link dictionary" rng=linkdictionary!a1 '

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls text="This is the twodim parameter" rng=output!a1 '

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls par=twodim rng=output!b2 text="Link to twodim" rng=linkdictionary!a2 linkid=twodim '

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls text="This is the threedim parameter" rng=output!a10 '

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls par=threedim rng=output!a12 text="Link to threedim" rng=linkdictionary!a3 linkid=threedim'

execute 'gdxxrw gdxxrwwrite.gdx o=gdxxrwss.xls text="Link to threedim second variant" rng=linkdictionary!a4 link=output!a33'

This labels items in the spreadsheetgdxxrwss.xls some with pure text and insetrts three hyperlinks.on a

sheet called dictionary.

Notes:

• The LinkID must be in the same command as the SET, PAR etc that puts the gamsitem

• The text must be encased between " marks.

McCarl GAMS User Guide731

© 2022 Prof. Bruce McCarl

16.6.2.1.4.2 Set data: Set= and Dset=

Sets may be input in two ways depending on whether to permit accommodation of duplicate entries. In
output DSET and SET are the same. The syntax is

Set =nameofset Rng=DataRange Dimensions Values=valueoptions SymbolOptions
Dset=nameofset Rng=DataRange Dimensions SymbolOptions

where

Set= identifies one is to input or output set elements and optionally an associated set of
element explanatory text or indicators. on input duplicates will cause read errors. When
writing the element name is always written and the explanatory text will be written if the
range specification permits. The keyword Set also is associated with option values
which indicates how non zero entries in the range are to be interpreted.

Namely when data are input and valueoptions equals

Auto Based on the range, row and column dimensions for the set, the program
decides on the value type to be used selecting from dense or YN . This is
the default for Values. When Auto or a values entry is not entered and
thus the default is active then the import of data behaves differently
depending on the vaules of rdim and cdim. Namely If

Only one of Rdim and Cdim are non zero (ie if Rdim = 0 or
Cdim = 0 and the data are in vector form) then the import

behaves as if Values=Dense
 Both Rdim and Cdim are non zero and the data are in tabular form

then the import behaves as if Values=YN
NoData The data entries in the range for the set will be ignored and all entries

will be included without reading explanatory text.
YN Only those items will be included that have a non empty data cell in

the range where the cell contents that do not equal '0', 'N' or 'No'.
Sparse Only those items will be included that have a non empty data cell in

the range. The string in the data cell will be used as the explanatory
text for the set entry.

Dense All items will be included that are in the range regardless of whether
they have entries . Any strings in the data cells in the range will be
used as the explanatory text for the set elements.

String Obsolete: Now the same as Dense.
All Obsolete: Now the same as Dense.

However when data are output and the valueoptions equals

Auto Based on the range, row and column dimensions for the set, the
program decides on the value type to be used selecting from dense
or YN . This is the default for Values.
When Auto or a values entry is not entered and thus the default is
active then the import of data behaves differently depending on the
vaules of rdim and cdim. Namely If

Only one of Rdim and Cdim are non zero (ie if Rdim = 0 or
Cdim = 0 and the data are in vector form) then the import behaves
as if

Links to Other Programs Including Spreadsheets 732

© 2022 Prof. Bruce McCarl

Values=Dense
Both Rdim and Cdim are non zero and the data are in tabular

form then the import behaves as if Values=YN
NoData The cells in the range for the set will be blank.
YN Only those items will be included that have a non empty data and the

cell value in the range is Y if the element exists.
Sparse Only those items will be included that have a non empty data and the

cell value in the range is the explanatory text if the element exists.
Dense Only those items will be included that have a non empty data and the

cell value in the range is the explanatory text if the element exists.
String Obsolete: Now the same as Dense.
All Obsolete: Now the same as Dense.

Dset= Reads a set of strings from a field in the spreadsheet and enters the unique ones into
the set. Duplicate labels in the range specified do not generate an error message.
Dset cannot be used to write to the spreadsheet. The values parameter is not used for
Dset.

Examples of data input:

(gdxtuple.gms and trytuple.xlsx)

In the input sheet of the trytuple.xlsx file we have the data for the sets to be imported

McCarl GAMS User Guide733

© 2022 Prof. Bruce McCarl

and we have an index portion of the sheet (as discussed here) telling us how to import with
comments at the far right

then we import the sets in the gams program gdxtuple.gms using the commands

$call gdxxrw trytuple.xlsx o=gdxtuple.gdx index=input!i2

$gdxin gdxtuple.gdx

$load aa1,aa1v2,aa1v3,aa1v4,aa1v5,aa1v6,ab1,tuple1

$load tuple1v2

$load tuple1v3

$load tuple1v4

$load tuple1v5

$load tuple1v6

$load b1

$load b2

$load b3

$load tuple2

$load tuple2v2

$load tuple2v3

$load c1

$load c2

$load c3

$load tuple3

$load tuple3v2

$load tuple3v3

$gdxin

Now let us examine some of the consequences of the value commands.

First let us look at the alternative results for importing the set in the red box below and also look at
the effect of the entries in the blue box

Links to Other Programs Including Spreadsheets 734

© 2022 Prof. Bruce McCarl

When read with the values entry being blank (or the default - auto condition) the put file at the bottom
of the gms file for the set aa1 shows it to contain

 Defined Elements Explanatory Text

 a hello

 b b

 c n

 d y

which shows the reading process went beyond the specified range to the adjacent column and took
entries there as explanatory text using blank entries when none was entered. Note when outputting
to a spreadsheet or using .te in writing a put file that the element name (.tl) is used when the entry is
blank. Also using auto and dense yields the same results.

When read with the values entry being yn we get
 Defined Elements Explanatory Text

 a a

 d d

Note here only a and d entries are defined as they have text entries in the blue column that and not N.
Also this shows that the yn entry is a misnomer but rather the program accepts any entry which is
not blank or N or NO or 0.

When read with the values entry being sparse we get
 Defined Elements Explanatory Text

 a a

 d d

Note here only a and d entries are defined as they have text entries in the blue column that and not N.
Also this shows that the yn entry is a misnomer but rather the program accepts any entry which is
not blank or N or NO or 0.

When read with the values entry being nodata we get
 Defined Elements Explanatory Text

 a a

 b b

 c c

 d d

Here all elements are defined as under dense but the explanatory text is not read and only element
names are used.

Now suppose we turn to two dimensional sets or more generally tuples.

When reading tuple1 from the spreadsheet area in the green box below

McCarl GAMS User Guide735

© 2022 Prof. Bruce McCarl

If we read it with the values entry being blank (or the default - auto condition) the put file at the bottom
of the gms file for the set tuple1 shows it to contain

 Defined Elements Explanatory Text

 a.1 a.1

 a.4 a.4

 b.2 b.2

 b.3 b.3

 c.3 c.3

 d.1 d.1

 d.4 d.4

which shows the reading process operated as yn only defining entries with non blank text and not
using that text for explanatory text. Also using auto and yn yields the same results.

When read with the values entry being dense we get
 Defined Elements Explanatory Text

 a.1 hello

 a.2 a.2

 a.3 no

 a.4 yes

 b.1 b.1

 b.2 w2

 b.3 y

 b.4 b.4

 c.1 n

 c.2 c.2

 c.3 z2

 c.4 c.4

 d.1 y

 d.2 d.2

 d.3 d.3

 d.4 z

Note here only all possible entries are defined with the non empty elements being used as
explanatory text and when that explanatory text is blank then the element tuple becomes is used for
the explanatory text when it is written though put or other means .

When read with the values entry being sparse we get
 Defined Elements Explanatory Text

 a.1 hello

 a.3 no

 a.4 yes

Links to Other Programs Including Spreadsheets 736

© 2022 Prof. Bruce McCarl

 b.2 w2

 b.3 y

 c.1 n

 c.3 z2

 d.1 y

 d.4 z

which defines tuple entries when there is associated text entries including those with N or no.

When read with the values entry being nodata we get
 Defined Elements Explanatory Text

 a.1 a.1

 a.2 a.2

 a.3 a.3

 a.4 a.4

 b.1 b.1

 b.2 b.2

 b.3 b.3

 b.4 b.4

 c.1 c.1

 c.2 c.2

 c.3 c.3

 c.4 c.4

 d.1 d.1

 d.2 d.2

 d.3 d.3

 d.4 d.4

Here all elements are defined as under dense but the explanatory text is not read.

Examples of data output:

This was also run to output items (gdxtuple.gms and trytuple.xlsx) with GDXXRW taking instructions
from the index in the output sheet oftrytuple.xlsx .

When putting out the set tuple1v4 with the value being blank or set to yn or set to auto we get

When putting out the set tuple1v4 with the value set to sparse or dense or string or all we get

McCarl GAMS User Guide737

© 2022 Prof. Bruce McCarl

When putting out the set tuple1v4 with the value set to nodata we get where the range entries
are blank.

Comments:

· The explanatory text is ignored under the nodata option
· When inputting sets only elements with associated text are defined under yn and sparse

· When inputting sets the meanings of the commands have changed over time with the current
entries not being. In particular

Ø Before version 24.3 the command strings was the same as dense above
Ø Starting with 24.3 the command strings became the same as sparse above
Ø Starting with 24.4.1 the command all was introduced and it functioned like dense above
Ø Starting with 24.4.6 the command structure for values became what is documented above

with the option string redefined
ØWith these changes GAMS broke backward compatibility. Because of this, users who

employed the values option for the versions before 24.4.6. need to review the ways their input
is working and in the case where it is not delivering what is desired then either change the
parameters for the GDXXRW call to the appropriate one of those described above or change
the workbook data .

A number of examples are appropriate here.

Loading rows of set elements

Links to Other Programs Including Spreadsheets 738

© 2022 Prof. Bruce McCarl

Loading columns of set elements

Loading set elements only if they have data or text

Writing set elements

Sets and explanatory text – use of Set

Loading by upper left hand corner

Loading sets from data tables

Loading sets from lists with duplicates

Dealing with a tuple

Execution time set reads

Execution time set writes

Loading the set into GAMS

Unloading the set from GAMS

Suppose I have a list of set elements that I wish to read in a spreadsheet such as the section below
from gdxxrwss.xls.

Either of the following 2 statements read it and place it into a GDX file at compile time as in
gdxxrwread.gms

$call "Gdxxrw gdxxrwss.xls set=i1 Rng=a2:c2 cdim=1"
$call "Gdxxrw gdxxrwss.xls dset=i1a Rng=a2:c2 cdim=1"

On the other hand if the elements were listed in a column as in sheet1 of gdxxrwss.xls.

One can read this with either of the below (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls set=j1 Rng=sheet1!a35:a37 rdim=1"
$call "Gdxxrw gdxxrwss.xls dset=j1a Rng=sheet1!a35:a37 rdim=1"

Suppose a spreadsheet contains a potential list of elements names and one only wishes those element
names associated with nonzero data or yes such as the section below from gdxxrwss.xls.

McCarl GAMS User Guide739

© 2022 Prof. Bruce McCarl

One would read this with the statement gdxxrwread.gms

$call "Gdxxrw gdxxrwss.xls set=i2 rng=sheet1!a5:d6 cdim=1 values=yn"

and the resultant i2 set will only have the elements boats and watercraft since the other two elements
are associated with a blank or a no.

One can save set elements to a spreadsheet called gdxxrwss.xls in rows using the commands
(gdxxrwwrite.gms)

execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=i Rng=output2!a1 cdim=1 "

where use of SET generates an associated row of Y entries with explanatory text. DSET cannot be
used.

Similarly one can save the set elements to a spreadsheet in columns using the commands
(gdxxrwwrite.gms)

execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=j Rng=output2!a5 rdim=1"

where use of SET ordinarily generates an associated column or row with explanatory text unless the
values parameter is defined

execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=i rng=output2!a16:d16 cdim=1 values=yn"

where the element and an yes no element indicator will occur.

Finally if the range only leaves room for element names then that is all that will be output as in the
statement below.

execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=i Rng=output2!a15:c15 cdim=1 "

DSET cannot be used.

Explanatory text is read using the command (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls set=i3 Rng=sheet1!a9:e10 cdim=1"

and a spreadsheet segment like the following from sheet1 of gdxxrwss.xls

Links to Other Programs Including Spreadsheets 740

© 2022 Prof. Bruce McCarl

where the resulting set and its explanatory text elements are

Element Explanatory text

new york city1

chicago city2

boston city3

skipme No

skipme2 skipme2

Note here the skipme2 explanatory text is just the element name as it has a blank entry for the
explanatory text.

Sets can be addressed just indicating the upper left hand corner as follows (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls se=0 dset=i4 Rng=sheet1!a13 cdim=1"
$call "Gdxxrw gdxxrwss.xls se=0 set=i4a Rng=sheet1!a13 cdim=1"
$call "Gdxxrw gdxxrwss.xls se=0 set=i5 Rng=sheet1!a16 cdim=1"

This is best done with the skipempty=0 or se=0 option as otherwise Gdxxrw can read more of the sheet
and cause errors.

One may wish to enter a data table and take the sets from it. Given a spreadsheet segment like the
following from sheet1 of gdxxrwss.xls

one can take the set across the top with any of the following

$call "Gdxxrw gdxxrwss.xls set=i6 Rng=sheet1!b20:d20 cdim=1"
$call "Gdxxrw gdxxrwss.xls dset=i6a Rng=sheet1!b20:d20 cdim=1"
$call "Gdxxrw gdxxrwss.xls set=i6c Rng=sheet1!b20:d21 cdim=1"

One can also take a set vertically from Column A as follows (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls dset=j4 Rng=sheet1!a21:a23 rdim=1"

One may wish to extract set elements from a spreadsheet where there is no unique list of elements that
can be read but rather a list where the name is repeated. In the example below note that in rows 26 and
27 there are set elements names but they are duplicated (gdxxrwss.xls)

McCarl GAMS User Guide741

© 2022 Prof. Bruce McCarl

One can read this with DSET as follows (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls dset=i7 Rng=sheet1!b26:e26 cdim=1"
$call "Gdxxrw gdxxrwss.xls dset=i8 Rng=sheet1!b27:e27 cdim=1"

One may wish to read or write a tuple. They can be read using SET (gdxxrwread.gms) but DSET
cannot be used.

$call "Gdxxrw gdxxrwss.xls set=i10 Rng=sheet1!b26:e27 cdim=2"
execute "Gdxxrw gdxxrwss.xls set=i10a Rng=sheet1!b26:e27 cdim=2"

and written as follows (gdxxrwwrite.gms)

execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=ii Rng=output2!a10 rdim=2 "
execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=ii Rng=output2!a20 cdim=2 "

where rdim causes the writing to be oriented in rows and cdim in columns. The written tuple would also
be associated with an added row or column containing explanatory text.

All of the statements up to now have used $Call which executes the Gdxxrw command at compilation
time but some users may wish to load sets at execution time. This is limited to subsets that are
dynamic sets and cannot be used in domains. To do this one simply uses the statements as above, but
substitutes Execute in place of $Call as follows (gdxxrwread.gms) where instead of

$Call "Gdxxrw gdxxrwss.xls set=i9 Rng=sheet1!b20:c21 cdim=1"

one uses

Execute "Gdxxrw gdxxrwss.xls set=i9 Rng=sheet1!b20:c21 cdim=1"

When loading sets it is often desirable to use $Call and allows domain definitions. This is hardly ever
desirable when unloading or writing to a spreadsheet. In such case one uses the Execute syntax as
follows (gdxxrwwrite.gms)

Execute "Gdxxrw gdxxrwss.xls set=i9 Rng=sheet1!b20:c21 cdim=1"

Getting a set from the spreadsheet into a GDX file is only half the battle. One must also use commands
in GAMS to load the data as discussed in the chapter Using GAMS Data Exchange or GDX Files. At

Links to Other Programs Including Spreadsheets 742

© 2022 Prof. Bruce McCarl

compile time this is done using (gdxxrwread.gms)

set i1;
$call "Gdxxrw gdxxrwss.xls set=i1 Rng=sheet1!a2:c2 cdim=1"
$GDXin gdxxrwss.gdx
$load i1

where the set must be declared in a set statement then one can if needed create the GDX file using
GDXRW, then one uses a Gdxin to identify the source and a Load to bring in the data.

At execution time one does the following (gdxxrwread.gms)

set i9(i6a);
*set from data
execute "Gdxxrw gdxxrwss.xls set=i9 Rng=sheet1!b20:c21 cdim=1"
Execute_load 'gdxxrwss' i9;

where the set must be declared as a subset in a set statement then one can if needed create the GDX
file using execution time GDXRW, and an Execute_Load to bring in the data with an identification of the
GDX source file name.

One can load the universe of labels from a GDX file into a set at run-time using the syntax

execute_load 'someFile', someSet=*;

Note in doing this, that only labels known to the GAMS program will be loaded.

Getting a set to the spreadsheet from a GDX file is also only half the battle. One must also use
commands in GAMS to place the data into the GDX file as discussed in the chapter Using GAMS Data
Exchange or GDX Files. This should generally not be done at compile time so one should only use the
execute command as follows following (gdxxrwwrite.gms)

Execute_unload ' ' threedim,i,j,k,ii;
execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls set=i Rng=output2!a1 cdim=1 "

where the Execute_Unload tells what data to place in the GDX file and identifies the GDX source file
name. The matching gdwxrw execution tells the name of the GDX file, the name of the spreadsheet and
identifies the data to unload.

Notes:

• Either the row or the column dimension (Rdim or Cdim) should be set to '1' to specify a row or

column for the set.

• One must be careful when using Gdxxrw as each time the command is executed the GDX file is

erased and only has the current contents and thus should be written just before if reusing the
name.

McCarl GAMS User Guide743

© 2022 Prof. Bruce McCarl

• One also obtains output of sets using the command Execute_Unloaddi where the GDX file

automatically includes all sets associated with unloaded parameters, variables and equations
without need to list the set element names (see the example gdxexectrnsport.gms and the

resultant GDX file tran2di.gdx) where the statement execute_unloaddi 'tran2di',d,

x, item; is used and the sets i,j,k appear in the GDX file even though they were not

specified.

16.6.2.1.4.3 Parameter data: Par

When an item containing data along with identifying set elements is to be read or written one uses

Par=parametername Rng=DataRange Dimensions SymbolOptions

Examples:

Basic parameter writing is done using commands like (gdxxrwwrite.gms)

execute_unload 'Gdxxrwwrite.gdx' twodim,threedim,i,j,k,ii;
execute "Gdxxrw Gdxxrwwrite.gdx o=gdxxrwss.xls par=twodim Rng=output!a1"

which first creates the GDX file called GdxxrwWrite.gdx then uses the Gdxxrw program to save the parameter
called TWODIM into the sheet called output starting at the upper left-hand corner A1 while drawing data from
GdxxrwWrite.gdx and writing into the spreadsheet called GdxxrwSS.xls. The resultant spreadsheet segment in
the output sheet is as follows

Parameters can be read the using essentially the same command with the name of the source spreadsheet
appearing after Gdxxrw as follows (gdxxrwread.gms)

$call "Gdxxrw gdxxrwss.xls par=distance Rng=sheet1!a20:d23 rdim=1 cdim=1"

$GDXin gdxxrwss.gdx

$load distance

execute "Gdxxrw gdxxrwss.xls par=distance2 Rng=sheet1!a20:d23"

execute_load 'gdxxrwss.gdx' distance2

Notes:

• When writing to a GDX file and moving the data on to a spreadsheet, one should use the GAMS

Execute_Unload and Execute commands to ensure that the current parameter data present at the
time the Execute_Unload is saved in the GDX file.

• One needs to watch out for file names and paths with spaces in them as discussed above.

• Use of $Call would write out the data values at compile time not after calculations.

Links to Other Programs Including Spreadsheets 744

© 2022 Prof. Bruce McCarl

• One must use Execute for the Gdxxrw command whenever an Execute_Unload is used. Otherwise

the program will use the last version of the GDX file written by a compile time $Call or a pre-existing
GDX file in existence before the program ran. The GDX file created any Execute_Unload commands
immediately before a $Call would not be used as all $ conditions are resolved at compile time then
at the later execution time all Execute_Unload and Execute statements are resolved.

• GAMS chooses the row and column ordering as well as the way that table is arrayed in the

spreadsheet. Users may contain additional control of the orders using the merge option as
discussed below and additional control over the table layout using the CDIM and RDIM options as
illustrated next.

By default Gdxxrw will choose a layout for multidimensional items that users may wish to change.
Namely

• the last index position is included in a column and all other index positions are included in

rows.

• Thus with a ten dimensional item, each spreadsheet row would depict one combination of the

set elements within the first nine index positions and each column would represent an
element of the last index position.

The layout may be altered using a combination of the CDIM and RDIM parameters. In particular
suppose I have an item x(i,j,k) and wish to place it in or read it from a spreadsheet in varying layouts as
follows (gdxxrwwrite.gms)

execute "Gdxxrw gdxxrwss.gdx par=threedim Rng=output!a1 cdim=3 rdim=0"

execute "Gdxxrw gdxxrwss.gdx par=threedim Rng=output!a8 cdim=2 rdim=1"

execute "Gdxxrw gdxxrwss.gdx par=threedim Rng=output!a15 cdim=1 rdim=2"

execute "Gdxxrw gdxxrwss.gdx par=threedim Rng=output!a30 cdim=0 rdim=3"

where the first creates a row vector of numbers with all indices varied in the columns as in the output
page of the spreadsheet gdxxrwss.xls

the second a matrix with one index in the rows and two in the columns as follows

and the last a column vector with many rows.

McCarl GAMS User Guide745

© 2022 Prof. Bruce McCarl

Reading data from the spreadsheet entails essentially the same commands. For example, in
gdxxrwread.gms the following lines appear which specify data layout

$call "Gdxxrw gdxxrwss.xls par=distance Rng=sheet1!a20:d23 rdim=1 cdim=1"

execute "Gdxxrw gdxxrwss.xls par=distance2 Rng=sheet1!a20:d23"

$call "Gdxxrw gdxxrwss.xls par=modedistance Rng=sheet1!a26:e31 rdim=1 cdim=2"

$call "Gdxxrw gdxxrwss.xls par=modedistance2 Rng=sheet1!a52:e56 rdim=2 cdim=1"

where the second line uses a default rdim=1 cdim=1. One may also use DIM as below

$call "Gdxxrw gdxxrwss.xls par=distance Rng=sheet1!a20:d23 dim=2 cdim=1"

execute "Gdxxrw gdxxrwss.xls par=distance2 Rng=sheet1!a20:d23 dim=2"

$call "Gdxxrw gdxxrwss.xls par=modedistance Rng=sheet1!a26:e31 rdim=1 dim=3"

$call "Gdxxrw gdxxrwss.xls par=modedistance2 Rng=sheet1!a52:e56 dim=3 cdim=1"

Notes:

• When writing to a spreadsheet, special values such as Eps, NA and Inf will be written but this can

be changed as discussed below. When reading data from a spreadsheet, the ASCII strings for
these special character stings will be used to write corresponding special values to the GDX file.

• Cells that are empty or zero will not be written to the GDX file.

The ordering of the set elements within the resultant spreadsheet or within GAMS are controlled by the
GAMS element ordering rules and the unique element list as discussed in the Rules for Item
Capitalization and Ordering chapter. But this may be controlled using merge as discussed below.

Links to Other Programs Including Spreadsheets 746

© 2022 Prof. Bruce McCarl

16.6.2.1.4.4 Variable and equation data: Equ and Var

When data associated with variables or equations are to be read or written one may use

Equ=equationname.attribute Rng=DataRange Dimensions SymbolOptions
Var=variablename.attribute Rng=DataRange Dimensions SymbolOptions

but these only work for going to the spreadsheet at the moment and one should pass such items
through parameters.

Notes:

• When writing an attribute of a variable or equation can be addressed using the attribute names

.L, .M, .Lo , .Up .Prior and .Scale

• The attribute names are not case sensitive.

• Today attributes of variables cannot be read from a spreadsheet and included in the GDX file.

Rather one must bring the item into GAMS as a parameter and use a replacement statement. A
revision is planned in the near future to allow this.

• Today one can only unload a whole variable into a GDX file then save selected attributes. A revision

is planned in the near future to allow this.

16.6.2.1.5 Special options for reading from a spreadsheet: Skipempty= and Se=

Spreadsheet files may contain blank rows or columns as well as columns and rows you do not want to
read.

For blank rows or columns the skipempty command controls the way blank rows or columns are
handled and causes Gdxxrw to either stop when a blank row or column is encountered or skip over that.
 This is done using the syntax

SkipEmpty=integer

or

SE=integer

which must precede any par, set etc statements that will be affected by it

where

The integer value tells the number of maximum number of blank rows or columns that may be
contained within a block of data and that integer value is one less that the number of blank
rows or columns that if found will signal the end of the data block.

Allowable values are 0 to N, and the default is 1.

A value of 0 causes Gdxxrw to stop loading data when an empty row or column is encountered.

A value of 1 causes GDXXRW to skip over incidences of one blank row or column but terminate the
read if 2 or more adjacent blank rows or columns are found.

McCarl GAMS User Guide747

© 2022 Prof. Bruce McCarl

When a the range is specified only in terms of the upper left corner (a single cell), and skip empty
is set to zero an empty row or column will always indicate the end of the row or column range.

For rows or columns that you do not want to read the IgnoreColumns and IgnoreRows commands
identify rows and columns to skip over. This is done using the syntax

IgnoreColumns=comma delimited list of spreadsheet column names
IgnoreRows=comma delimited list of spreadsheet row numbers

where

The comma delimited list of spreadsheet column names gives the names of columns in the range
to skip over and is of the form A,C,Z,ZZ which would cause the reading to skip the columns
labeled A,C,Z, and ZZ in the Excel worksheet

The comma delimited list of spreadsheet row names gives the names of rows in the range to skip
over and is of the form 2,12,210 which would cause the reading to skip the rows labeled 2, 12
and 210 in the Excel worksheet

The specification of ignored rows or columns follows the symbol specification and only applies to
that symbol.

Examples:

For skipempty suppose I have a spreadsheet table that has blank entries in it like the skipempty sheet of the
workbook gdxxrwss.xls

and I read it using the default setting (gdxxrwskipempty.gms)

$call "Gdxxrw gdxxrwss.xls o=GDXse.gdx par=moded4 Rng=skipempty!a2:g69"

or

$call "Gdxxrw gdxxrwss.xls se=1 o=GDXse.gdx par=moded4 Rng=skipempty!a2:g69"

then after loading into GAMS the data become

 ship truck rail

brussels .cleveland 5000.000

brussels .chicago 6000.000

san francisco.cleveland 2200.000 2200.000

san francisco.chicago 2000.000 2000.000

Links to Other Programs Including Spreadsheets 748

© 2022 Prof. Bruce McCarl

On the other hand if I read it with skipempty set to zero

$call "Gdxxrw gdxxrwss.xls se=0 o=GDXse.gdx par=moded3 Rng=skipempty!a2:g69 rdim=2 cdim=1"

the blanks terminate the read not reading the rail column and the san francisco.chicago row and the result is

 ship truck

brussels .cleveland 5000.000

brussels .chicago 6000.000

san francisco.cleveland 2200.000

For IgnoreRows and IgnoreColumns suppose we have a spreadsheet table that has rows and columns we do
not want to read. For this we again employ the skipempty sheet of the workbook gdxxrwss.xls as in the
screenshot below. Suppose in reading this we want to skip the rows in the red boxes and the column in the
blue box

and we read it using the command (gdxxrwskipempty.gms)

$call "gdxxrw gdxxrwss.xls o=gdxignore.gdx se=0 par=moded5 rng=skipempty!a2:g69 rdim=2 cdim=1 IgnoreRows=3,5 IgnoreColumns=D"

then after loading into GAMS the data become

 ship rail

brussels .chicago 6000.000

san francisco.chicago 2000.000

which omits entries from those rows and columns.

Note:

• The skipempty parameters must appear before any parameter, set, dset etc statements that use it

and will persist for the rest of the statements in a command unless it is set to another value.

• The IgnoreRows and IgnoreColumns parameters appear after any parameter, set, dset etc

GDXXRW command instruction and only affect reading of that item.

16.6.2.1.6 Special options for w riting to a spreadsheet

When the input file has an extension '.gdx' then Gdxxrw will read data from a GDX file and in turn will
write data to a '.xls' file interacting with Excel. In such the merge and clear command line parameters
along with consideration of workbook open status are important.

McCarl GAMS User Guide749

© 2022 Prof. Bruce McCarl

16.6.2.1.6.1 Is the w orkbook open or shared?

When one wishes to write to a workbook a question arises as to whether that workbook can be open
and how the workbook will look afterward if it was. Several comments are in order.

• A workbook cannot in general be open unless you have made special provisions with an error

signaled indicating a file sharing conflict will arise when the target file is open in Excel.

• To avoid this the sharing conflict error the user must either close the file or indicate that the

spreadsheet is a shared Excel workbook in using the Excel Tools Share Workbook dialogue.

• In an open shared workbook the contents are not updated until you have done a file save in

Excel.

• Writing to a shared workbook can be painfully slow.

• In general it is best to close the workbook.

16.6.2.1.6.2 Merge

When writing to a spreadsheet one can control data handling and set matching using the Merge
command line parameter. When 'Merge' is active the only data that will be written to the spreadsheet
are those data for which the set element names match row and column labels that are in the
spreadsheet already. Also under Merge spreadsheet cells for which there is no matching row/column
pair will not be changed. Also element ordering is explicitly specified overriding the default that would
occur as controlled by the GAMS element ordering rules and the unique element list as discussed in
the Rules for Item Capitalization and Ordering chapter.

Example:

Suppose I have a range in a spreadsheet that appears as in the sheet2 page of the workbook gdxxrwss.xls
with exactly the same contents in the range i1:n4.

and use the commands (gdxxrwskipempty.gms)

$call"Gdxxrw GDXse.gdx o=gdxxrwss.xls par=moded4 Rng=sheet2!b1:g4 rdim=2 cdim=1 merge"
$call "Gdxxrw GDXse.gdx o=gdxxrwss.xls par=moded4 Rng=sheet2!b8 rdim=2 cdim=1"

then the resultant spreadsheet looks like

Links to Other Programs Including Spreadsheets 750

© 2022 Prof. Bruce McCarl

where the portion in rows b8-f12 is what happens without the merge and the part in rows 1-4 is what
happened with it. Note that the column and row orders vary and the san francisco chicago row is missing
since it is not mentioned in the labels before the merge operation and the horse column is present with it's
data left alone.

Notes:

• Using the merge option will force the data to be presented in the order in which the row and column

labels are entered.

• GDX file contents that do not have matching row/column pair of named elements in the

spreadsheet will be overlooked.

• A write under a merge option addressing a blank area of a spreadsheet will always be blank as

there will not be matching set elements.

• The matching of labels is not case sensitive.

• Warning: The Merge option will clear the Excel formulas in the rectangle used, even if the cells do

not have matching row / column headings in the GDX file. Cells containing strings or numbers are
not affected.

16.6.2.1.6.3 Clear

When writing to a spreadsheet one can also use the Clear option to control data handling and set
matching. When 'Clear' is active the only data that will be written to the spreadsheet are those data for
which the set element names match row and column labels that are in the spreadsheet already but all
data and formulas in the target range will be removed. Element ordering is explicitly specified overriding
the default that would occur as controlled by the GAMS element ordering rules and the unique element
list as discussed in the Rules for Item Capitalization and Ordering chapter.

Example:

Suppose I have a range in a spreadsheet just like that in the spreadsheet above for the merge example
gdxxrwss.xls in the range i1:n4.

McCarl GAMS User Guide751

© 2022 Prof. Bruce McCarl

and use the commands (gdxxrwskipempty.gms)

$call"Gdxxrw GDXse.gdx o=gdxxrwss.xls par=moded4 Rng=sheet2!i1 rdim=2 cdim=1 clear"

then the result is

which shows results similar to those under merge but the old data in the column labeled horse has been
removed.

Notes:

• Using the clear option will force the data to be presented in the order in which the row and column

labels are entered.

• GDX file contents that do not have matching row/column pair of named elements in the

spreadsheet will be overlooked.

• A write under a clear option addressing a blank area of a spreadsheet will always be blank as there

will not be matching set elements.

• The matching of labels is not case sensitive.

• Warning: The Clear option will clear all Excel formulas and values in the rectangle used, even if the

cells do not have matching row / column headings in the GDX file.

16.6.2.1.6.4 Filter

You can cause GDXXRW to write data subject to an automatic filter specified in Excel.

By filtering in Excel, you can find values quicker and control not only what you want to see, but what

you want to exclude. You can filter based on choices you make from a list, or you can create

specific filters to focus on exactly the data you want to see. You can also search for text and

numbers by using the Search box in the filter interface.

When you filter data in Excel, entire rows are hidden if values in one or more columns don't meet the

filtering criteria. You can filter on numeric or text values.

Links to Other Programs Including Spreadsheets 752

© 2022 Prof. Bruce McCarl

The syntax for this involves adding

 filter=n

where n=0 is the default condition and uses no filter

n=1 turns the filter and applies it to the row just above the data

n=2 turns the filter and applies it to the row 2 rows above the data

n=k turns the filter and applies it to the row k rows above the data

to the GDXXRW call.

An example is available in filter.gms

16.6.2.1.6.5 Special value and zero cell w riting options

A number of options can be used to alter the writing of special (INF, NA, EPS, UNDF) or zero values.
Each of these must appear before Par, Set etc statements that are affected by the settings.

Epsout

Naout

Minfout

Pinfout

Undfout

Zeroout

Squeeze

Resetout

The parameter Epsout specifies the string to write to the spreadsheet when GAMS data to be written
contains a value that would have been output as EPS (a number close to zero as set by the solver or
subsequent calculations). The syntax is

EpsOut = String

where String gives the character string to use in place of values that GAMS would report as EPS. By
default this is 'Eps'.

The parameter Naout specifies the string to write to the spreadsheet when data to be written contains a
value that would have been output as NA (a number GAMS considers to be 'Not Available'). The syntax
is

NaOut = String

McCarl GAMS User Guide753

© 2022 Prof. Bruce McCarl

By default this is 'NA'.

The parameter Minfout specifies the string to write to the spreadsheet when data to be written contains a
value that would have been output as –INF (a value of negative infinity which generally is a lower bound
on an unrestricted or non positive variable). The syntax is

MinfOut = String

By default this is '-Inf'.

The parameter Pinfout specifies the string to write to the spreadsheet when data to be written contains a
value that would have been output as +INF (a value of positive infinity which generally is an upper bound
on an unrestricted or non negative variable). The syntax is

PinfOut = String

By default this is '+Inf'.

The parameter Undfout specifies the string to write to the spreadsheet when data to be written contains
a value that would have been output as Undf (a number GAMS could not calculate which it marked as
'Undefined'). The syntax is

UndfOut = String

By default this is 'Undf'.

The parameter ZEROOUT specifies the string to write to the spreadsheet when a variable or equation
attribute is to be written that contains a value of zero. The syntax is

ZeroOut = String

By default this is '0'.

The SQUEEZE option tells Gdxxrw how to handle the writing of zero or default entries for attributes of
variables and equations. A value for the field that is the default value for that variable or equation attribute
will not be written to the spreadsheet. For example, the default for .L (Level value) is 0.0, and therefore
zero will not be written to the spreadsheet. When I set SQ=0, all values will be written to the
spreadsheet. The syntax is

Squeeze = integer

where Integer gives a zero or a one. The default value is one.

The RESETOUT option tells Gdxxrw to reset all the special value indicators. The syntax is

Links to Other Programs Including Spreadsheets 754

© 2022 Prof. Bruce McCarl

Resetout

16.6.2.2 Options for reading in command line parameters

The command line parameter input to Gdxxrw identifying where to put what can be quite long and
impractical for inclusion on a command line. One also can stack multiple Gdxxrw actions into one job.
Two options exist for this. One can place specify Gdxxrw options in a text file or a spreadsheet.

16.6.2.2.1 Command line parameters in a f ile

Command line parameters can be placed in a text file then read. This is indicated by including an entry
in the program invocation that contains an @ followed by the name of the parameter file of instructions to
read.

Example:

Suppose I wish to enter many of the Gdxxrw commands in the gdxxrwread.gms example into a file and
execute all the commands with one execution of Gdxxrw. I can do this using a parameter file gdxxrwparam.txt
and the GAMS code in the example Gdxxrwread3.gms as follows

$call 'gdxxrw gdxxrwss.xls o=gdxall.gdx @gdxxrwparam.txt'

where the parameter file gdxxrwparam.txt is

se=0

set=i1 Rng=sheet1!a2:c2 cdim=1

dset=i1a Rng=sheet1!a2:c2 cdim=1

set=i3 Rng=sheet1!a9:e10 cdim=1

dset=i4 Rng=sheet1!a13 cdim=1

se=0

set=i4a Rng=sheet1!a13 cdim=1 dim=1

se=0

set=i5 Rng=sheet1!a16 cdim=1

set=i6 Rng=sheet1!b20:d20 cdim=1

dset=i6a Rng=sheet1!b20:d20 cdim=1

dset=i6c Rng=sheet1!b20:d21 cdim=1

dset=i7 Rng=sheet1!b26:e26 cdim=1

dset=i8 Rng=sheet1!b27:e27 cdim=1

set=i9 Rng=sheet1!b20:c21 cdim=1

set=i10 Rng=sheet1!b26:e27 cdim=2

set=i10a Rng=sheet1!b26:e27 cdim=2

set=j1 Rng=sheet1!a35:a37 cdim=0 rdim=1

dset=j1a Rng=sheet1!a35:a37 cdim=0 rdim=1

set=j2 Rng=sheet1!a40:b43 cdim=0 rdim=1

set=j3 Rng=sheet1!a46:b50 cdim=0 rdim=1

dset=j4 Rng=sheet1!a21:a23 cdim=0 rdim=1

dset=j5 Rng=sheet1!a53:a56 cdim=0 rdim=1

dset=j6 Rng=sheet1!b53:b56 cdim=0 rdim=1

par=distance Rng=sheet1!a20:d23 cdim=1 rdim=1

par=distance2 Rng=sheet1!a20:d23

McCarl GAMS User Guide755

© 2022 Prof. Bruce McCarl

par=modedistance Rng=sheet1!a26:e31 cdim=2 rdim=1

par=modedistance2 Rng=sheet1!a52:e56 cdim=1 rdim=2

par=modedistance3 Rng=skipempty!a2:g69 cdim=1 rdim=2

par=modedistance4 Rng=skipempty!a2:g69 cdim=1 rdim=2

that will control the Gdxxrw actions.

Notes:

• A parameter file can contain multiple lines to increase readability.

• When reading parameters from a text file, lines starting with an asterisk (*) will be ignored and act

as a comment.

• A put file can be used to write a parameter file can also be written during the execution of a GAMS

model where one must use a Putclose as discussed in the Output using Put Commands chapter in
the option file section or as implemented in Xlexport.gms and the subsequent Gdxxrw commands
must use Execute so the put file is written before it is to be read (This will not happen with $Call).

16.6.2.2.2 Parameters in a spreadsheet

Command line parameters can be placed in a range of a spreadsheet then read. This is indicated by
including the use of the Index command line parameter

Index = ExcelRange

Example:

Suppose I wish to integrate all the features of the gdxxrwread.gms example into an index area of a
spreadsheet. I can do this using the myindex sheet of the gdxxrwss.xls spreadsheet and the GAMS code in
the example gdxxrwread2.gms as follows

$call gdxxrw gdxxrwss.xls o=gdxall.gdx index=myindex!a1

where the myindex sheet looks like

Links to Other Programs Including Spreadsheets 756

© 2022 Prof. Bruce McCarl

Notes:

• The parameters are read using the specified range, and treated as if they appeared directly on the

command line.

• In the spreadsheet the first three columns of the range have a fixed interpretation: DataType (Par,

Set, Dset, Equ, or Var), Item name identifier and spreadsheet data range. The fourth and following
columns can be used for additional parameters like dim, rdim, cdim , merge, clear and skipempty.
The column header contains the keyword when necessary, and the Cell content is used as the
option value.

• When an entry appears in a column without a heading then it is directly copied into the Gdxxrw

parameter file. Thus in the example the items in column G are directly copied into the file.

• Rows do not have to have entries in the first three columns if one just wants to enter persistent

options such as skipempty or some of the special character string redefinitions.

McCarl GAMS User Guide757

© 2022 Prof. Bruce McCarl

Another Example:

The GAMS program gdxxrwwrite2.gms employs the use of an index area in a workbook in writing.
Namely in the writeindex sheet of gdxxrwss.xls I have

which is addressed by the command

$call "gdxxrw i=gdxse.gdx o=gdxxrwss.xls index=writeindex!a2"

and shows how the merge and clear commands are entered.

16.6.2.3 Other Options

Options exist for the control of type of output generated by Gdxxrw and the actions that occur in the
spreadsheet when Gdxxrw runs.

16.6.2.3.1 Tracing Options

There are two options controlling the tracing output that can be created by Gdxxrw. According to the
GAMS document the options are as follows.

16.6.2.3.1.1 Log and Logappend

Specifies the filename of the file to which Gdxxrw write information about its performance. When
omitted, this information will be written to the computer standard output location (usually the screen).
When using Gdxxrw in a GAMS model that is executed from the IDE, the output will be written to the
IDE process window. Using LogAppend will cause the information to be appended to the end of the
named file, while Log will overwrite the file. The syntax is

Log = FileName
LogAppend = FileName

where the filename must be valid on the computer and by default will be placed in the working directory.

16.6.2.3.1.2 Trace

Controls the amount of amount of information on Gdxxrw performance written to the log file or process
window. Naturally error messages always are copied to the log file. The syntax is

Trace = integer

Links to Other Programs Including Spreadsheets 758

© 2022 Prof. Bruce McCarl

where the eligible integer values and the effect on Gdxxrw output are

0 Minimal Gdxxrw information is included in the output (Not even indications of errors).

1 Message appears telling about each Gdxxrw call indicating input file, output file and execution
time (the default).

2 Message appears giving the level 1 output plus workbook name, and ranges worked with.

3 Message appears giving the level 2 output plus cell addresses, and numerical or string values
for every item worked with.

The default value is 1.

16.6.2.3.2 Workbook performance options

There are two options controlling what happens in a workbook when Gdxxrw activates it. According to
the GAMS document the options are as follows.

Updlinks

RunMacros

16.6.2.3.2.1 Updlinks

Specifies how links in a spreadsheet should be updated and is specified using

UpdLinks = integer

where the eligible integer values and the effect on spreadsheet actions are

0 Doesn't update any references (the default)

1 Updates external references but not remote references

2 Updates remote references but not external references

3 Updates both remote and external references

16.6.2.3.2.2 RunMacros

Controls the execution of automatic macros when the spreadsheet is opened and closed during the
Gdxxrw operations. The macros involved are the 'Auto_open' and the 'Auto_close' macros. This is
specified using

RunMacros = integer

where the eligible integer values and the effect on spreadsheet actions are

0 Doesn't execute any macros (default)

1 Executes Auto_open macro

McCarl GAMS User Guide759

© 2022 Prof. Bruce McCarl

2 Executes Auto_close macro

3 Executes Auto_open and Auto_close macro

16.6.2.3.3 Other GDXXRW Options

A number of other options are available in GDXXRW including
· RWAIT parameter that specifies a delay when opening Excel to avoid not ready

problems
· A CheckDate option that will only regenerate output only if the input is more recent than

output file
· Password that couses GAMS to pass a password when opening a protected Excel file

These and a few others are explained in gdxxrw .

16.6.2.4 Debugging Gdxxrw instructions

Just like anywhere else users will make mistakes in specifying Gdxxrw input. Such mistakes cause
error messages in the log file or process window. Several procedures are appropriate when debugging a
set of instructions

• When a new Gdxxrw is being set up users should use a trace value of 2 and then examine the

log file or process window contents to make sure proper actions are being pursued.

• Start simple just getting one or two objects, not all that might be desired and work your way

up.

• Note that when Gdxxrw encounters errors and is reading it does not generate a proper GDX

file and subsequent procedures using that file may encounter errors.

• Be careful in only specifying upper left-hand corners of ranges

� When reading always use this with a setting of skipempty=0.

� When writing recognize the program will clear the entire sheet to the right and below the
corner.

16.6.3 Spreadsheet graphics

May users of procedures such as Gnuplot and gnuplotxyz find themselves wanting more control over the
graphics such as provided by Excel among other packages. One can use the Gdxxrw procedure to gain
access to such graphics. In particular, one can set up a graph in Excel then use Gdxxrw to place new
data in the spreadsheet in the area graphed and whenever the spreadsheet is subsequently opened the
new and improved graph will be ready. Let me illustrate this using a new sheet called mygraph in our
gdxxrwss.xls. Here I prepare a graph that uses the data in b2-d7 for the lines and the labels in a11 and
a12 to describe those lines. I would have also liked to use the labels in a13-a15 to name the graph and
label it's axes but could not figure a strategy to do this with Excel commands or a simple macro.

https://www.gams.com/latest/docs/T_GDXXRW.html

Links to Other Programs Including Spreadsheets 760

© 2022 Prof. Bruce McCarl

In turn I go into a GAMS program in this case graphss.gms and put in GDX file creation and Gdxxrw
commands

set allels /X X values

 Newline1 Data for line 1

 NewLine2 Data for line 2

 Title A graph of 2 GAMS generated lines

 XAXIS Whatever the X axis label

 YAXIS Whatever the X axis label /

 points /i1*i6/;

table mydata(points,allels) data to graph

 x NewLine1 NewLine2

i1 1 1

i2 4 3

i3 7 4

i4 8 5

i5 12 8

i6 14 9 ;

mydata(points,"Newline2")=mydata(points,"x")+mydata(points,"Newline1");

execute_unload 'tograph.gdx' allels, mydata;

execute 'gdxxrw tograph.gdx trace=3 o=gdxxrwss.xls par=mydata Rng=mygraph!a1:d7';

execute 'gdxxrw tograph.gdx trace=3 o=gdxxrwss.xls set=allels Rng=mygraph!a10 rdim=1';

where the Gdxxrw commands save the data to be graphed into the cells a1:d7 and a set using SET

where I placed potential titles as explanatory text in cells a10 and below. In turn when I open the
spreadsheet and the mygraph sheet as reproduced below where I find the data, legend and lines

graphed have been derived from GAMS.

McCarl GAMS User Guide761

© 2022 Prof. Bruce McCarl

16.6.4 Interactively including results

Many users desire to be able to execute another program during a GAMS job using some of the
numbers resident in GAMS at that time then include the results in GAMS and continue onward.
Unfortunately, GAMS has not yet released general interface routines for the GDX file usage from other
programs so one needs to use the existing spreadsheet or GAMS mechanisms. One also can use an
external program for constraint definition as discussed below.

16.6.4.1 Interactive calculations in a spreadsheet

The ability to use Gdxxrw to interact with a spreadsheet at execution time means that it is possible to
have the spreadsheet do some things with data generated by GAMS and pass back the results
interactively during a model run. In addition, there are certain processes that can be used in the
spreadsheet that GAMS does not now contain. One such process is regression function estimation.
Suppose a modeler wished estimate response functions across a group of scenarios run in a GAMS
model. This can be done by interactively passing information to the spreadsheet, which in turn does the
regression then collecting back the regression results. This can be done using a set of Gdxxrw,
Execute_Unload, and Execute_Load commands.

Example:

Suppose I have set up a portfolio selection problem and solved it under alternative risk aversion parameters.
Now I wish to estimate response functions for the individual stocks and the mean income as a function of the
risk aversion parameter. This is done in the following GAMS code (spreadinteract.gms)

LOOP (RAPS,RAP=RISKAVER(RAPS);

 SOLVE EVPORTFOL USING NLP MAXIMIZING OBJ ;

 VAR = SUM(STOCK, SUM(STOCKS,

 INVEST.L(STOCK)*COVAR(STOCK,STOCKS)*INVEST.L(STOCKS))) ;

 OUTPUT("RAP",RAPS)=RAP;

 OUTPUT(STOCKS,RAPS)=INVEST.L(STOCKS);

 OUTPUT("OBJ",RAPS)=OBJ.L;

 OUTPUT("MEAN",RAPS)=SUM(STOCKS, MEAN(STOCKS) * INVEST.L(STOCKS));

 OUTPUT("VAR",RAPS) = VAR;

 OUTPUT("STD",RAPS)=SQRT(VAR);

 OUTPUT("SHADPRICE",RAPS)=INVESTAV.M;

Links to Other Programs Including Spreadsheets 762

© 2022 Prof. Bruce McCarl

 OUTPUT("IDLE",RAPS)=FUNDS-INVESTAV.L

);

 DISPLAY OUTPUT;

set funstoestimate(*);

funstoestimate("mean")=yes;

funstoestimate(stock)=yes;

set regpar /intercept,rap,rapsquare,rapcube,rapfour,rsquare/;

set regres /coef,stderr/

set rsqp /r2/

parameter rsq(rsqp);

PARAMETER estimatedata(RAPS,*) data to estimate regression over

PARAMETER regestimate(Regres,regpar) RESULTS FROM MODEL RUNS WITH VARYING RAP

PARAMETER regestimates(*,Regres,regpar) RESULTS FROM MODEL RUNS WITH VARYING RAP

loop(funstoestimate,

 estimatedata(raps,funstoestimate)=output(funstoestimate,raps);

 estimatedata(raps,'Intercept')=1;

 estimatedata(raps,'rap')=output('rap',raps);

 estimatedata(raps,'rapsquare')=output('rap',raps)**2;

 estimatedata(raps,'rapcube')=output('rap',raps)**3;

 estimatedata(raps,'rapfour')=output('rap',raps)**4;

 execute_unload 'regdata.gdx',estimatedata;

 execute 'gdxxrw regdata.gdx o=gdxxrwss.xls par=estimatedata Rng=regdata!a1';

 execute 'gdxxrw gdxxrwss.xls o=regdata.gdx par=regestimate Rng=regress!a1:f3

 par=rsq Rng=regress!a4:b4 rdim=1';

 execute_load 'regdata.gdx',regestimate,rsq;

 regestimates(funstoestimate,Regres,regpar)=regestimate(Regres,regpar);

 regestimates(funstoestimate,'coef','rsquare')=rsq('r2');

 estimatedata(raps,funstoestimate)=0;

);

option regestimates:4:2:1;display regestimates;

where the portion in

• Red is running the GAMS model repeatedly for different risk aversion parameters.

• Blue is setting up the functions to estimate and the sets of information to pass back and forth and

setting up the data to estimate a fourth order polynomial for the particular function to be estimated
(as controlled by the loop on funstoestimate).

• Orange is unloading that data first to the regdata.gdx file.

• Purple places it into the spreadsheet gdxxrwss.xls on the regdata sheet that will automatically

compute the regression results after the data are entered.

• Brown is loading the regression results from the spreadsheet into regress.gdx

• Pink takes the data from regdata.gdx file loading it into the GAMS program.

The spreadsheet gdxxrwss.xls sheets are

• regdata where the dependent variable goes into column b and the independent variables including

an intercept goes into columns C-G as generated by the Gdxxrw command

McCarl GAMS User Guide763

© 2022 Prof. Bruce McCarl

execute 'gdxxrw regdata.gdx o=gdxxrwss.xls par=estimatedata Rng=regdata!a1';

• the regress one where the data are copied into cells L3:Q28 from the regdata sheet and the Excel

function

=+LINEST(L3:L28,M3:Q28,FALSE,TRUE)

is used to perform the regression and place the results in the range b2:h6 with the labeling
manually entered in row 1 and column A so it corresponds with the GAMS names.

In turn these data are loaded into a GDX file and on to GAMS using (note the Gdxxrw line below
cannot be split into 2 lines when used but is here for readability)

Links to Other Programs Including Spreadsheets 764

© 2022 Prof. Bruce McCarl

execute 'gdxxrw gdxxrwss.xls o=regdata.gdx par=regestimate Rng=regress!a1:f3

 par=rsq Rng=regress!a4:b4 rdim=1';

execute_load 'regdata.gdx',regestimate,rsq;

Finally the result is

---- 119 PARAMETER regestimates RESULTS FROM MODEL RUNS WITH VARYING RAP

 intercept rap rapsquare rapcube rapfour rsquare

mean .coef 133.7605 -27.6837 1.8079 -0.0414 0.0003 0.9711

mean .stderr 2.3321 2.2489 0.2253 0.0061 4.603474E-5

BUYSTOCK1.coef 1.2887 0.1672 -0.0239 0.0007 -5.13349E-6 0.0773

BUYSTOCK1.stderr 0.4190 0.4041 0.0405 0.0011 8.270827E-6

BUYSTOCK2.coef 8.0474 -1.9637 0.1369 -0.0032 2.252415E-5 0.4483

BUYSTOCK2.stderr 0.9416 0.9080 0.0910 0.0025 1.858634E-5

BUYSTOCK3.coef 6.7634 -2.1940 0.1670 -0.0041 2.885521E-5 0.2948

BUYSTOCK3.stderr 1.2139 1.1706 0.1173 0.0032 2.396214E-5

BUYSTOCK4.coef 1.7944 0.8042 -0.0874 0.0024 -1.74360E-5 0.0918

BUYSTOCK4.stderr 0.7616 0.7344 0.0736 0.0020 1.503290E-5

where the spreadsheet was used to do 5 regressions.

16.6.4.2 Calling GAMS from GAMS

Instances certainly arise where one wishes to include information from external programs into the current
GAMS program. This cannot be done with $Include commands unless one uses save and restart since
the $Include action only works at compile time and can only include a file that existed before the GAMS
program began. Furthermore GAMS has not yet released general interface routines that can be called
within programs written in other languages allowing one to extract and rewrite GDX files. However a trick
may be employed to get around this where

• Data are saved using put for external file consumption

• The external program is executed generating a potential include file

• GAMS is executed from within the main GAMS program where in the subservient GAMS

program

� $include is used to bring in the include file data

� Execute_unload is used to place those data in a GDX file

• The main GAMS program loads those data using Execute_Load.

Example:

Suppose for example I wish to invert a matrix and have a Delphi program (invert1.exe) for that. The first GAMS
program (invert.gms) is as follows

set i /i1*i4 /;

alias(i,j);

table a(i,i)

 i1 i2 i3 i4

McCarl GAMS User Guide765

© 2022 Prof. Bruce McCarl

i1 2 0 2 1

i2 0 1 1 1

i3 0 0 1 3

i4 1 0 0 1

file mymatrix;

put mymatrix;

mymatrix.pc=5;

put '';loop(j,put j.tl;); put /;

loop(i,put i.tl;loop(j,put a(i,j));put /);

putclose;

execute_unload 'mygdx.gdx',i

execute 'invert1 i=mymatrix.put o=myinverse.put';

execute 'gams inverse2';

parameter ainv(i,j)

execute_load 'mygdx.gdx', ainv;

display ainv;

This programs proceeds through several steps as color coded to the statements above.

• Writes a put file to pass the matrix to be inverted to the external program.

• Write a GDX file that contains the sets needed by the second GAMS program.

• Executes the external matrix inversion program (invert1.exe) which in turn generates a file in GAMS

format which contains the inverse.

• Executes another GAMS program which will incorporate the file containing the inverse and will write

a GDX file as will be shown below.

• Read the inverse from the GDX file with execute_load.

Simultaneously in the second GAMS program (inverse2.gms) I

• Load in the sets I need from the main GAMS program.

• Include the file with the inverse as generated by the external inverter program.

• Save the inverse in a GDX file for inclusion in the original program.

$gdxin mygdx.gdx

set i;

$load i

$gdxin

alias(i,j);

table ainv(i,j)

$include myinverse.put

display ainv;

execute_unload 'mygdx.gdx', ainv;

Finally in the Delphi program which is in the archive invert.zip I have three basic segments

• One that reads the information form GAMS,

Links to Other Programs Including Spreadsheets 766

© 2022 Prof. Bruce McCarl

• One that does the work of the program inverting the matrix and

• One that writes the information back to GAMS.

Notes:

• This program allows one to include execution time information into GAMS using an $Include which

is not ordinarily allowed. This is achieved by doing an execution time invocation of GAMS from
within GAMS. This allows the second instance of GAMS to work with any files that have been
created up to that point including the inverter created file with the inverse.

• In turn then having the embedded GAMS program write to a GDX file and using Execute_Load in the

original program allows the information to be put back in at execution time.

16.7 Using equations defined by external programs

GAMS permits one to supply model constraint equations using an external custom written program.
Here I will introduce the topic but note that there are a number of programming issues that are beyond
the scope of this manual. Users wishing more details should consult the External Equations in GAMS
section of the GAMS Interfaces Wiki. A more technical discussion is available in the External Functions
document.

Identifying the equations and their contents: =X=

Building the external function evaluator

16.7.1 Identifying the equations and their contents: =X=

Inside GAMS one must tell which equations are to come from the external program. This is done using
a .. specification with an equation relation type of =X=. Thus when one wishes to specify an equation
though an external program one would specify some of the model equations in a manner as follows

zdefX .. sum(i, ord(i)*x(i)) + (card(i)+1)* z =X= 1;

There are special conventions that must be followed in writing ..statements that involve =X=
relationships.

• During the solution of models with external functions GAS will prepare and pass a vector of

solution variables to a user written external function evaluator. The variables in this vector and
the order in which they appear are controlled by the user and is specified during the writing of
the .. =X= relations. In particular the coefficients for the variables in the .. =X= statements
give the position of the variable in the vector.

� This means that if multiple equations are to be defined by the external function evaluator
that one must insure that each variable is always associated with the same number.
Thus the variable x("setindex") must have the same exact integer coefficient "multiplying
it" in every =X= equation in which it appears.

• The mapping between GAMS variables and external variable indices must be one-
to-one. This means that two GAMS columns cannot be mapped into the same
external variable index.

• The external variable indices must be contiguous from one to n (the total number of

https://www.gams.com/latest/docs/UG_ExternalEquations.html
https://www.gams.com/latest/docs/UG_ExternalEquations.html#UG_ExternalEquations_GAMSInterface
https://www.gams.com/latest/docs/UG_ExternalEquations.html#UG_ExternalEquations_GAMSInterface

McCarl GAMS User Guide767

© 2022 Prof. Bruce McCarl

external variables). There can be no holes in the list of external variable indices.

� These coefficients play no direct numerical role in the function evaluation. They just tell
what variables are involved in what function and what the position is of the variables in the
passed vector.

� These coefficients must be integer numbers.

� The true function of the variables is not required to be linear and can be of any allowable
nonlinear form with smooth and continuous first derivatives but cannot involve any other
named GAMS variables beyond those specified with coefficients.

� Thus in the problem above the x(i) will occupy positions 1 through n where n is the
number of elements in i and z is in position n+1.

� The ordering of the variables in the vector is completely specified by the coefficients and
does not depend at all on the internal ordering of GAMS variables and set elements.
However, if one calculates the position using something like the ord function then the
GAMS internal set order will control the order of the elements.

� One must carefully synchronize the GAMS program and the custom written function

evaluation program so that when the 27t h element of the solution vector is addressed
both the GAMS program and external program are dealing with the same variable.

• Multiple equations can be specified. The rhs specified in the =X= equation actually gives the

number of the equation being specified. Thus in the specification

eqnum(k)=103+ord(k);

exteq(k).. sum(j,varnum(j)*x(j))=e=eqnum(k);

the equation associated with the first element of k would correspond to an equation number of
104.

• The actual function is interpreted as an equality constraint with a zero rhs.

� Thus slack variables must be introduced for inequalities.

� Any constants needed should either be embedded in the external evaluator or the
equation decomposed. For example suppose I wished to include the equation

f(x)+g(x)-k1=k2

where f(x) is needed from the external program but the other terms can be kept in the
GAMS program. This can be done by adding a new variable ZZ and specifying two
equations

ZZ-f(x)=0
ZZ+g(x)-k1=k2

where the first equation would then be specified as an =X= equation and the other as a
standard GAMS =e= equation.

Finally the model must be solved with an NLP capable solver.

Links to Other Programs Including Spreadsheets 768

© 2022 Prof. Bruce McCarl

16.7.2 Building the external function evaluator

The user must write a custom DLL to evaluate the functions. It must be callable as the function

GEFUNC (icntr, x, f, d, msgcb)

This code is created in a programming language (C, Delphi, Fortran etc.).

The GEFUNC parameters are

icntr is used to communicate control information between the solver and the DLL and
includes the number of the equation to be evaluated

x is vector of variable values passed from GAMS to the solver
f is evaluated value of the external function value at point x
d is a vector containing derivatives of each variable in the function evaluated at the

point x
msgcb is a parameter that allows messages to be passed

Also the function must return a control code indicating whether any problems were encountered. In
doing this care must be taken to insure that the derivatives and functions are continuous.

Notes:

• The DLL must generally have the extension DLL (note other extensions are used on non windows

platforms).

• The DLL must generally be named with the name of the model solved but one can alter this using a

file statement and including the named file in the Model statement as follows

file mydll /targetname.dll/;
model m /eq1,eq2,mydll/;

where targetname.dll becomes the active name for the DLL.

Example:

(external.gms, extern.zip)

Suppose I use an example from the GAMS web page. Namely suppose I wish to specify the objective function
of a quadratic model via an external function. In such a case one would define the objective function as follows
(external.gms)

zdefX .. sum(i, ord(i)*x(i)) + (card(i)+1)* z =X= 1;

and would also define an external DLL which evaluates this function. A Delphi version of this is in extern.zip.

17 Controlling GAMS from External Programs

When a modeler wants to link GAMS results or input to other programs it can be done in several
fundamentally different ways.

• GAMS is in charge and data from other programs is to be incorporated into the GAMS

McCarl GAMS User Guide769

© 2022 Prof. Bruce McCarl

program as it starts up.

• GAMS is in charge and data from the GAMS results are to be passed to other programs at

the conclusion of the GAMS run.

• GAMS is in charge and the user wants to run another program during a GAMS run.

• GAMS is in charge and the user wishes to pass data interactively to other programs

interactively during a run.

• Equations in the user model are defined by an external program.

• Some other program is in charge and the user wants to use GAMS to solve a model.

• A GAMS model needs to be converted to another language for solution.

The first five of these are discussed in the chapter Links to Other Programs Including Spreadsheets, the
other two are discussed herein.

Calling GAMS from other programs

Transferring models to other systems

17.1 Calling GAMS from other programs

Most of the time GAMS is in charge. However, GAMS can be in the background. In such a setting
another program needs to activate GAMS, provide data, wait until GAMS is done and receive back
solution information. An infinite number of variants with many other programs in charge are possible.
Here I will provide 2 examples

• Excel spreadsheet in charge through Visual Basic Macros

• Compiled program in charge, in this case Delphi

A number of other variants including C++, Java, Visual Basic, and a web server are covered in section
Executing GAMS from other Environments of the GAMS Interfaces Wiki.

Excel spreadsheet in charge

Compiled program in charge – Delphi

Web servers or programs in other languages in charge

17.1.1 Excel spreadsheet in charge

One way GAMS can be used is as a slave to Excel that solves a predefined problem and facilitates data
transfers. A little history is in order before showing exactly how this works. A number of years ago
GAMS Corporation had a section on their web site displaying linkages and an early version of the Excel/
GAMS linkage program was there. However, I was unaware that it was a GAMS / Excel interface. Later
Rob Davis with the Bureau of Reclamation came to one of my classes and told me he had been using an
interface based on that GAMS program. I then looked into it and in the process reprogrammed the
Excel macros slightly to improve the process and separate out the code functions to facilitate use by
others. I also received assistance from Erwin Kalvelagen and Paul van der Eijk at GAMS Corporation in
terms of finding the path for the GAMS system by reading the gamside.ini file. Finally, recent efforts led
to me updating to use the Gdxxrw interface and Tanveer Butt assisted in that effort. So below I discuss
an Excel / GAMS interface which is a product of many.

https://www.gams.com/latest/docs/UG_spawning_gams.html

Controlling GAMS from External Programs 770

© 2022 Prof. Bruce McCarl

The base application involves a spreadsheet (excelincharge.xls) built around a transportation model
implemented in the GAMS program excelincharge.gms. The application is centered around a map.
The first page of the spreadsheet (Mapsheet) appears as follows

In this worksheet pressing each of the colored state maps transfers focus to a worksheet associated
with state. Also pressing the buttons on the right causes macros to run which place you in the Visual
Basic Editor, transfer you to the transport rate page, run GAMS, or exit.

17.1.1.1 Excel part of implementation

Now let us look at some details regarding the spreadsheet part of the implementation.

17.1.1.1.1 Defining the links through the map

The main function of this application is controlled by the Mapsheet worksheet. The map on that
worksheet is actually a collection of objects. It was originally defined in a package like Arcview, and
then imported into Powerpoint and in turn Excel. During that process that map was ungrouped so that it
was composed of individual objects for each state and each state was manipulated to allow the
functionality required. In particular

• the state object was right clicked on (as in the case of Montana below) and given a name in

the spreadsheet range name box as illustrated in the red square below

McCarl GAMS User Guide771

© 2022 Prof. Bruce McCarl

• A worksheet page was defined within the workbook named with just the same spelling as the

state name

• The map object for each state that was to be active (in terms of transferring to a web page)

was right clicked on and associated with the macro called MapSheetGotoState which uses
the range name for the item clicked on to determine the sheet that will be displayed (thus the
requirement that the sheet name and the range name be the same).

Controlling GAMS from External Programs 772

© 2022 Prof. Bruce McCarl

Note the state object Idaho was not associated with a state, nor was a worksheet added
for it since it was not an active part of the model.

• In turn the worksheet with the name of the state was set up to have appropriate content.

17.1.1.1.2 Worksheets present

In addition to the main Mapsheet the program contains

• An individual worksheet for each of the 5 states.

• A worksheet for transportation cost data.

• A sheet called Inputs that transfers data from other sheets so it can be read with Gdxxrw

along as discussed below with an Index set of Gdxxrw instructions for reading.

• A sheet called Results that is addressed by other sheets when they require solution

information that is the place Gdxxrw transfers data into along with an Index set of Gdxxrw
instructions for writing.

McCarl GAMS User Guide773

© 2022 Prof. Bruce McCarl

These sheets are interconnected. For example pressing on the Mapsheet picture of the state of
Washington brings up the sheet

that contains a mixture of solution information and raw data. The solution information in the red box and
is transferred by formula from the results sheet (which contains information passed back from GAMS) as
in cell F14 where the formula is

=Results!C2

The input data in the blue box once entered is transferred to the inputs sheet that in turn will be read by
Gdxxrw by formula. For example in cell C21 of the input data sheet the formula

=wash_supply

appears where wash_supply is the range name for the cell F4 in the Washington sheet.

17.1.1.1.2.1 Inputs sheet structure

The inputs sheet is as follows

Controlling GAMS from External Programs 774

© 2022 Prof. Bruce McCarl

where

• The material in the red box will be read by Gdxxrw

• The worksheet will be saved so that the material read by Gdxxrw is current

• The material in the blue box is the set of commands telling Gdxxrw what types of items, item

names, and ranges to read as covered in the Links to Other Programs Including Spreadsheets
chapter using the index option where the input commands can be imbedded in a spreadsheet.
This will be addressed in the excelincharge.gms file using the command

$Call 'Gdxxrw Excelincharge.XLS skipempty=0 trace=2 index=inputs!g10'

In addition all of the numbers in the red box are the results of formulas that copy the numbers in the
state and trandata sheets.

17.1.1.1.2.2 Results sheet structure

The results sheet is as follows

where

McCarl GAMS User Guide775

© 2022 Prof. Bruce McCarl

• The material in the red box will be placed in this workssheet by Gdxxrw as guided by the

commands in the blue box.

• The material in the blue box is the set of commands telling Gdxxrw what types of items, item

names, and ranges to write into excelincharge.xls as covered in the Links to Other Programs
Including Spreadsheets chapter using the index option where the commands are imbedded in
the spreadsheet. This will be addressed in the excelincharge.gms file using the command.

Execute 'Gdxxrw Excelincharge.gdx skipempty=0 zeroout=0 trace=2 index=results!e1'

• The worksheet is not shared so a trick is used to permit Gdxxrw to write to it. Namely the

macro goes through the following steps

I. The spreadsheet is saved so the current data is on the disk.

II. The spreadsheet is saved as excelincharge.xls. This:

a. Closes the base spreadsheet making it ready for GDXXRW to write

b. Causes the screen to show excelincharge.xls while GAMS is solving causing the
screen image to be preserved while GAMS is running

II. Runs GAMS which in turn uses Gdxxrw

III. Signals completion of the GAMS run

IV. Reopens the base spreadsheet excelincharge.xls which will now contain the solution
passed by Gdxxrw and shows it on the screen

V. Closes excelincharge.xls

17.1.1.1.3 Running GAMS – the main macro

The basic operation of the program is that one uses the map and other sheets to get the data right and
then presses the Run Model button. There is a macro associated with that button called trancode.
There are several main sections in trancode.

17.1.1.1.3.1 Critical user defined items

At the top one finds the only line that most users may need to change in custom applications

' define gams model file name and listing file name
basename = "excelincharge"

which defines the root name of the associated gms file in this case excelincharge.gms.

17.1.1.1.3.2 GAMS run sequence

Further down in trancode is the section that runs GAMS. It consists of the lines below and is not likely
to need to be changed by the user

 'save the file

 ActiveWorkbook.Save

ActiveWorkbook.SaveAs Filename:=ThisWorkbook.Path & "\excelincharge.XLS", FileFormat:= _

Controlling GAMS from External Programs 776

© 2022 Prof. Bruce McCarl

xlNormal, Password:="", WriteResPassword:="", ReadOnlyRecommended:=False _

 , CreateBackup:=False

 savename = ActiveWorkbook.Name

 'run the GAMS job

 'define additional parameters to attach to GAMS Call

 params = ""

 'now run gams

 lGAMSRet = GAMSrun(params, sGAMSFile)

 'reload the file with the data passed from GAMS

 ActiveWorkbook.Save

This progresses through several steps

• The workbook is saved and remaned so that when GAMS runs it can read the latest input

data from the inputs sheet (note Gdxxrw can read from an open workbook but addresses the
data in the saved fiole on disk. Also Gdxxrw cannot write to an open workbook that is not
shared but does so slowly. Thus temporarily rename the worksheet so the source worksheet
can be written to.).

• GAMS is run using the GAMS solution Macro procedure gamsrun that is in the Visual Basic

module also in the spreadsheet called rungams.

• The spreadsheet which now contains the data placed by GAMS into the worksheet is

reloaded by executing a save command.

17.1.1.1.4 Actions involved w ith executing GAMS

When the Run Model button is pushed the steps in the section above are executed. The last of these
causes a job to be run using windows multi-threading capabilities. The big concerns in such a run are

• Making sure the rest of the program waits until GAMS is done

• Being able to detect if GAMS operated properly and messaging the user on model status.

The macro coding takes care of these functions.

During the run of this macro users may see the lower bar on the screen show processes being invoked
indicating GAMS is running. But mainly GAMS runs in the background and users will never know that it
is being used with Excel being in charge.

17.1.1.1.5 Examining the macros

The excelincharge.xls workbook contains a number of macros. To see these one enters the
workbook, presses the button

• Note Gdxxrw use for writing requires the workbook be shared or closed and sharing precludes

inspection of the Visual Basic macros. Thus we do not used the shared option.

Once you have done this you will be placed in the trancode macro in the Visual Basic Editor. In the

McCarl GAMS User Guide777

© 2022 Prof. Bruce McCarl

window at the top left under the menu bar you will find a list of the Visual Basic modules which run this
application.

There are 3 macro modules only one of which you ordinarily need be concerned with.

Visual Basic Segment Code Purpose

trancode Code that runs the transport application. The GAMS file name line at
the top may need to be changed according to application

basemacro Base macros starting up and managing the menu. This is likely generic
but could change if one wished to do more with menu functions.

rungams Code for running the GAMS job. The user should not change this.

17.1.1.2 GAMS part of implementation

There is also a base GAMS model underlying this application which is listed below

SETS Supply Locations of supply points

 Demand Location of Demand markets;

$Call 'Gdxxrw Excelincharge.XLS skipempty=0 trace=2 index=inputs!g10'

$gdxin excelincharge.gdx

$Load supply demand

set tranparm parameters of transport rate function /fixed, permile/

PARAMETERS Available(supply) Supply available in cases

Controlling GAMS from External Programs 778

© 2022 Prof. Bruce McCarl

 Needed(demand) demand requirement in cases

 Distance(supply,demand) distance in thousands of miles

 tranrate(tranparm) transport rate data;

$Load available needed distance tranrate

$gdxin

PARAMETER Cost(supply,demand) transport cost in thousands of dollars per case ;

 Cost(supply,demand) = tranrate("Fixed")

 + tranrate("permile") * Distance(supply,demand) / 1000 ;

positive VARIABLES ship(supply,demand) shipment quantities in cases

variable Z total transportation costs in thousands of dollars ;

EQUATIONS COSTacct define objective function

 SUPPLYbal(supply) observe supply limits at sources

 DEMANDbal(demand) satisfy demand requirements at markets ;

COSTacct .. Z =E= SUM((supply,demand), Cost(supply,demand)*ship(supply,demand)) ;

SUPPLYbal(supply) .. SUM(demand, ship(supply,demand)) =L= Available(supply) ;

DEMANDbal(demand) .. SUM(supply, ship(supply,demand)) =G= needed(demand) ;

MODEL TRANSPORT /ALL/ ;

SOLVE TRANSPORT USING LP MINIMIZING Z ;

parameter misc(*);

misc("cost")=z.l;

misc("modelstat")=transport.modelstat;

Execute_Unload 'excelincharge.gdx',ship, supplybal, demandbal, misc;

Execute 'Gdxxrw Excelincharge.gdx skipempty=0 zeroout=0 trace=2 index=results!e1'

This code goes through several notable stages in terms of the Excel in charge application.

• When the code starts up Gdxxrw is called to transfer data for a number of items the just

saved version of the excelincharge.xlsspreadsheet into a GDX file. These include the
element definitions for the supply and demand sets, along with the data for the available,
needed, distance, and tranrate parameters.

• This transfer is controlled by the index field in the spreadsheet starting in g10 as in the blue

box below.

McCarl GAMS User Guide779

© 2022 Prof. Bruce McCarl

• Subsequently I load that data into sets and parameters that have been declared in GAMS.

• In these first two phases I use $Call and $Load rather than Execute and Execute_Load so

that I may do compile time domain checking and since the data items are fully defined when
the GAMS job starts. (See the discussion of the $Call and Execute choices in the chapter
Links to Other Programs Including Spreadsheets and the discussion of $Load and
Execute_Load in the Using GAMS Data Exchange or GDX Files chapter).

• Later I prepare to pass data back to the spreadsheet using a parameter array called Misc to

pass assorted information including the objective function value and the model solution status
indicator. That solution indicator is used in the Excel macros to see if the model solution is
optimal in the Visual Basic component optstatus below that is part of the rungams macro.
This code searches the results sheet first column for the word Modelstat which is the GAMS
model solution status (this item is discussed in the Model Attributes chapter).

Function optstatus() As String

 Dim oResults As Range, oX As Range, nj As Integer, stat As Integer

 Set oResults = Worksheets("Results").Range("A1").CurrentRegion

 ' for each production center, update the results

 stat = 0

 For nj = 2 To oResults.Rows.Count

 If Trim(UCase(oResults.Cells(nj, 1))) = "MODELSTAT" Then

 stat = oResults.Cells(nj, 2)

 End If

 Next

 optstatus = "Unknown I cant find model stat"

 If stat > 0 Then

 Select Case stat

 Case 1

 optstatus = "Optimal"

 Case 2

 optstatus = "Optimal"

 Case 3

 optstatus = "Unbounded"

 Case 4

 optstatus = "Infeasible"

 Case Else

 optstatus = "Bad Result from GAMS"

 End Select

 End If

End Function

• Next we unload data to a GDX file using Execute_Unload saving the ship variables, the

demandbal and supplybal variables and the Misc parameter.

• Finally Gdxxrw is used to carry the information from the GDX file and place it into the

excelincharge.xls spreadsheet. Note that spreadsheet needs to be shared at the time of
this write.

• The information sent to the results worksheet is the optimal solution levels for the ship variable

and the marginals from the supplybal and demandbal equations as well as the contents of the

Controlling GAMS from External Programs 780

© 2022 Prof. Bruce McCarl

Misc parameter as controlled by the index command and the spreadsheet range in the blue
box below that starts at e1. The clear option is used in these commands to remove the old
content and to assure the item order is the same as expected by the Excel workbook.

• In these last two phases I use Execute and Execute_Unload rather than $Call and $Unload so

that I may do send the latest results from any solves and calculations. (See the discussion of
the $Call and Execute choices in the chapter Links to Other Programs Including
Spreadsheets and the discussion of $Unload and Execute_Unload in the Using GAMS Data
Exchange or GDX Files chapter.

17.1.1.3 Developing Excel in charge – summary steps

There are a number of steps one needs to employ to make a application where Excel is in charge. The
steps are as follows:

I. Set up a GAMS model that will eventually work with a spreadsheet at first ignoring the
presence of a spreadsheet.

a. Define all sets, data items etc just as you would for a stand-alone GAMS model. Such a
model would be like excelincharge1.gms model which does not contain any

• Gdxxrw $Call or Execute sequences

• $Load / Execute_Unload commands

II. Develop a spreadsheet with an inputs sheet but just enter zeros for the results or omit them
on the user pages (ie the state pages above).

a. Format the inputs sheet so it collects all the data to be sent from the spreadsheet to the
GAMS program from the use pages. Develop an index section in that sheet (as in
excelincharge.xls) that will control Gdxxrw actions as discussed in the Links to Other
Programs Including Spreadsheets chapter under the index section.

III. Redevelop the GAMS program so it uses Gdxxrw to read the input data. Use $Gdxin and
$Load to import in the data items as in the top part of excelincharge.gms.

IV. Augment the spreadsheet so it contains a results sheet.

a. Develop an index section in that sheet (as in excelincharge.xls) that will control
Gdxxrw actions as discussed in the Links to Other Programs Including Spreadsheets
chapter under the index section.

b. In setting up the index section do not use clear at first. Rather get the information into

McCarl GAMS User Guide781

© 2022 Prof. Bruce McCarl

the sheet so its format matches what Gdxxrw will unload.

V. Use Gdxxrw to place the information in the Results sheet.

a. After all the data have been satisfactorily unloaded switch to clear in the index section.

b. Include an item that has Modelstat and the value of model stat in the A column of the
spreadsheet.

VI. Make the spreadsheet application adding maps, other pages, sheet movement macros etc.
(You will have to unshare the worksheet to work on the macros).

a. Linking the inputs sheet to other sheets where input data items are added.

b. Link the other sheets to the Results sheet to deliver solution information.

VII. Adapt the trancode macro so it will run your application. Change the file name of the GMS file
in the critical user information section as discussed above.

17.1.2 Excel Spawning Alternative

An example called SpawnGAMSExcel (#84) is in the GAMS Data library that shows 3 different

ways to specify the GAMS System Directory via VBA:

· By using the windows registry

· By using the "gamside.ini" file that is created when the GAMSIDE is opened

· Manually

Notes

· The GAMS model can contain several solve statements.

· The solution is obtained via the VBA code activation of "trace" command line parameter

· The VBA modules can be exported and used in other programs

· If the Excel Workbook is shared, then GDXXRW can be used to write the solution into the
same Workbook

17.1.3 Compiled program in charge – Delphi

Yet another possibility is that a compiled program is to be in charge. Such an effort involves technical
computing expertise that is outside the scope of the GAMS orientation of this document. As a
consequence only a Delphi example will be pursued with a small discussion of the general issues.
Those wishing to do such implementations in other languages should examine that below and the Visual
Basic material above for general insight and look at the referenced in the section on other languages
below.

17.1.3.1 A Delphi example

I have created a Delphi application which uses Kalvelagen's Delphi interface plus some other routines (all
of that is in the module gamsmod.pas which is within the file gamsrun.zip). The problem is a
transportation example, which accepts input and then on command runs the GAMS model, and displays

Controlling GAMS from External Programs 782

© 2022 Prof. Bruce McCarl

the answer. If you start up the file gamsrun.exe you will see the screen

This form that allows input for a simple transport model and is implemented in the module delphgam.pas
which is within the file gamsrun.zip. After data are complete you can press the Run Model button.
GAMS then executes and the screen is expanded with the solution as follows

17.1.3.1.1 Steps in application development

The Delphi implementation is similar in concept to the Visual Basic implementation and involves the
steps

McCarl GAMS User Guide783

© 2022 Prof. Bruce McCarl

I. Develop the underlying GAMS model (trandelp.gms)

a. Initially set it up as a stand alone model.

b. Once the stand alone model works, then convert the program so its gets its data from
CSV files (in the example these are named supplyset.csv, demandset.csv,
supplytbl.csv, demandtbl.csv, distancetbl.csv).

c. Develop a put file in CSV format that contains all the information one would want in the
Delphi program (output.csv). Place the modelstat in the last row.

II. Develop a Delphi program which when told to run GAMS writes data to be passed to GAMS in
CSV format which can also read CSV output from GAMS put files.

III. Develop the rest of the Delphi implementation to support the application.

The procedure is implemented in the gamsrun project in the delphgam.pas code and executes when the
run button (button1) is pressed all of which is within the file gamsrun.zip.

17.1.3.1.2 Passing data to GAMS

In the Delphi program CSV files are created which contain the data to be passed. These CSV files are
written by code such as

 AssignFile(Fiwrite, 'distancetbl.csv');

 Rewrite(fiwrite);

 write(fiwrite,'fromdelphi');

 for j:= 1 to 3 do

 write(fiwrite,',',stringgrid1.cells[j,0]);

 writeln(fiwrite);

 for i:= 1 to 2 do begin

 write(fiwrite,stringgrid1.cells[0,i]);

 for j:= 1 to 3 do

 write(fiwrite,',',stringgrid1.cells[j,i]);

 writeln(fiwrite);

 end;

 closefile(fiwrite);

which writes the distance matrix as stored in stringgrid1.

17.1.3.1.3 Calling GAMS

In the Delphi program GAMS is used via a set of routines embedded in gamsmod.pas. The basic GAMS
execution is activated using the function ExecuteGAMS as follows

gamsfile:='trandelp.gms';
gamsparms:='';
returncode:=ExecuteGAMS(gamsfile,gamspath,gamsparms);

The status of the execution is obtained from another routine in gamsmod.pas as follows

strr:=GamsErrorString(returncode);

Controlling GAMS from External Programs 784

© 2022 Prof. Bruce McCarl

while the optimality etc status comes from reading the modelstat line at the end of the output.csv put file
in the commands

readln(firead,strr);
k:=pos(',',strr);
strr:=copy(strr,k+1,length(strr));
stat:=strtoint(strr);

then calling a utility in gamsmod.pas which gives back a string on optimality status

strr:=optstatus(stat);

17.1.3.1.3.1 Challenges in running GAMS

One of the interesting problems one faces when developing code to run GAMS.EXE from within a
compiled program in a Windows environment is multi-threading. If one does not take precautions, the
program will proceed before GAMS is finished. Thus the code must wait until GAMS is finished. The
module here as well as the macros in Excel illustrate how this can be done.

Another issue that needs to be addressed is GAMS need to store temporary files. By default this will be
done in the current directory, a concept that is not always clear in a windowing environment. Herein the
code uses the startup information that was present when gamsrun.exe was executed.

17.1.3.1.4 Reading the GAMS solution

In the Delphi program the results passed from GAMS are read by code such as

 if FileExists('output.csv') then begin

 AssignFile(firead, 'output.csv');

 reset(firead);

 readln(firead,strr);

 for i:= 1 to 2 do begin

 for j:= 1 to 3 do begin

 readln(firead,strr);

 k:=pos(',',strr);

 strr:=copy(strr,k+1,length(strr));

 k:=pos(',',strr);

 strr:=copy(strr,k+1,length(strr));

 stringgrid2.cells[j,i]:=strr;

 end;

 end;

 for i:= 1 to 2 do begin

 readln(firead,strr);

 k:=pos(',',strr);

 strr:=copy(strr,k+1,length(strr));

 k:=pos('',strr);

 if(k>0) then strr:=copy(strr,k+1,length(strr));

 stringgrid2.cells[4,i]:=strr;

McCarl GAMS User Guide785

© 2022 Prof. Bruce McCarl

 end;

Which makes sure the file is present then reads and decodes the solution and places it in a Delphi
feature called stringgrid2. The code above brings in the solution and supply shadow prices.

17.1.4 Web servers or programs in other languages in charge

Programs in virtually any programming language can be in charge. There are interface routines available
in Visual Basic, Delphi, Visual C++, Oracle, and Java as covered in section Executing GAMS from other
Environments .

There are also web server based implementations including

• GAMS-X developed by Tom Rutherford and Colin Starkweather which is described and

available at https://www.gams.com/latest/docs/UG_Tutorial.html.

• GAMSsm developed by Tom Rutherford which is described and available at http://

www.mpsge.org/gamssm/index.html.

• KESTREL developed by the NEOS group at http://www-neos.mcs.anl.gov/neos/. See also

the KESTREL solver page.

These are all quite technical and those wishing go further are urged to consult the descriptions above
along with technical language and operating system documents.

17.2 Transferring models to other systems

Users may wish to switch a model out of GAMS for solution elsewhere. This may be done using the
solver called CONVERT as described in the document convert or via the NEOS procedures.

CONVERT transforms a GAMS model instance into a format used by other modeling and solutions
systems. CONVERT is designed to achieve three aims:

• Permit users of GAMS to convert a confidential model into a GAMS solvable scalar form with

very little identifying its structure so it can be given to a group for numerical investigation (i.e.
to have someone else help with a solution problem while maintaining confidentiality).

• Give a path to solving with other solvers that may not be available in GAMS to test

performance.

• Give a way of sharing test problems.

Currently, CONVERT can translate GAMS models into the following formats:

• AMPL

• BARON

• CPLEXLP

• CPLEXMPS

• GAMS

• LGO

https://www.gams.com/latest/docs/UG_spawning_gams.html
https://www.gams.com/latest/docs/UG_spawning_gams.html
https://www.gams.com/latest/docs/UG_Tutorial.html
http://www.mpsge.org/gamssm/index.html
http://www.mpsge.org/gamssm/index.html
http://www.neos-server.org/neos/
https://www.gams.com/latest/docs/S_CONVERT.html
http://www.neos-server.org/neos/

Controlling GAMS from External Programs 786

© 2022 Prof. Bruce McCarl

• LINGO

• MINOPT

Models of the types LP, MIP, RMIP, NLP, MCP, MPEC, CNS, DNLP, RMINLP and MINLP can be
converted.

The translator creates a "scalar model" which consists of

• A model without sets or indexed parameters in the scalar models, that is the modeled is

transformed so it does not exploit the more advanced characteristics of any modeling system
and is easily transformable.

• A model with a new set of individual variables depicting each variable in the GAMS model

ending up with potentially 3 variable classes for the positive, integer, and binary variables each
numbered sequentially (i.e. all positive GAMS variables are mapped into n single variables X1 -
Xn thus if we have transport(i,j) and manufacture(k) we would have a set of unindexed scalar
variables X1, X2, ... with i*j+k cases.).

• A model with individual equations depicting each variable in the GAMS model (ie all GAMS

equations are mapped into m constraints E1, E2, ... Em thus if we have demand(j) and
resources(r,k) we would have a new equations E1, E2,... with j+r*k cases).

• The symbolic form of these equations.

• Bounds and starting point values.

• A solve statement for the defined model.

• I should note that in this scalar conversion CONVERT removes most of the logic behind the

structure of the problem making the model very difficult to understand, interpret and debug.

18 Utilities included in GAMS
Several types of utilities are included with GAMS. These include

• Posix file manipulation utilities

• Matrix manipulation utilities

• Interface and other utilities

• GDX related utilities

18.1 Posix utilities

The GAMS system for Windows includes a collection of Posix utilities generally for file manipulation.
 These utilities are typically available on Unix systems and therefore allow one to write platform
independent file manipulation scripts, do file manipulations, compare files and do other things. The
following utilities are available:

A
W

A general purpose programming language that is designed for
processing text-based data, either in files or data streams, and

McCarl GAMS User Guide787

© 2022 Prof. Bruce McCarl

Kwas created at Bell Labs in the 1970s. AWK is described here.

C
A
T

A command to concatenate and display files. CAT is described
here.

C
K
S
U
M

Reads files and calculates a checksum, cyclic redundancy check
and the byte count for each. CKSUM is described here

C
M
P

Compares two files of any type and writes the results to
standard output. CMP results are empty if the files are the same;
if they differ, the byte and line number at which the first
difference occurred is reported. CMP is described here

C
O
M
M

Reads two files as input, then outputs one file with three
columns. The first two columns contain lines unique to the first
and second file, respectively. The last column contains lines
common to both. COMM is described here

C
P

A utility that copies a file to a destination. CP is described here

C
U
T

A utility which extract sections from lines of a file. Extraction of
line segments can typically be done by bytes, characters, or
fields. CUT is described here.

D
I
F
F

A file comparison utility that outputs the differences between two
files, or the changes made to a current file by comparing it to a
former version of the same file. Diff displays the changes made
per line for text files. DIFF is described here. One can also use
the IDE through the Diff Textfiles feature.

E
X
P
R

Evaluates a numerical expression and outputs the corresponding
value. EXPR is described here

F Utility for breaking long lines into lines that have a maximum

http://en.wikipedia.org/wiki/Awk
http://en.wikipedia.org/wiki/Cat_%28Unix%29
http://en.wikipedia.org/wiki/Cksum
http://en.wikipedia.org/wiki/Cmp_%28Unix%29
http://en.wikipedia.org/wiki/Comm
http://en.wikipedia.org/wiki/Cp_%28Unix%29
http://en.wikipedia.org/wiki/Cut_(Unix)
http://en.wikipedia.org/wiki/Diff
http://en.wikipedia.org/wiki/Expr

Utilities included in GAMS 788

© 2022 Prof. Bruce McCarl

O
L
D

width. FOLD is described here.

G
D
A
T
E

Tells the current date and time and is a variant of the UNIX
command DATE which is described here.

G
R
E
P

Finds text within a file. GREP is described here.

G
S
O
R
T

Sorts the lines in a text file. Renamed from the UNIX command
SORT which is described here.

H
E
A
D

Prints the first 10 lines of a file to the GAMS LOG file. The
number of lines printed may be changed with a command line
option. HEAD is described here.

J
O
I
N

Merges the lines of two sorted text files based on the presence
of a common field. JOIN is described here

M
V

Moves files or directories from one place to another. When this
is used the original file is deleted, and the new file may have the
same or a different name. When the original and new files are in
the same directory MV will rename the file instead. MOVE is
described here

O
D

Create an octal, hexadecimal or decimal dump of the data in a
file. HEAD is described here

P
A
S
T

Merges the lines of two files placing the contents of each line of
a file at the end of the corresponding line of another file. PASTE
is described here

http://www.computerhope.com/unix/ufold.htm
http://www.computerhope.com/unix/udate.htm
http://www.computerhope.com/unix/ugrep.htm
http://www.computerhope.com/unix/usort.htm
http://en.wikipedia.org/wiki/Head_%28Unix%29
http://en.wikipedia.org/wiki/Join_%28Unix%29
http://en.wikipedia.org/wiki/Mv
http://en.wikipedia.org/wiki/Od_%28Unix%29
http://en.wikipedia.org/wiki/Paste_%28Unix%29

McCarl GAMS User Guide789

© 2022 Prof. Bruce McCarl

E

P
R
I
N
T
F

Takes an input string and writes it in a formatted fashion
according to a formatting string. Bolded line, font color, numeric
 formats and other things can be specified. PRINTF is
described here

R
M

Deletes files or directories. RM is described here

S
E
D

A batch executed file editor that follows prespecified commands
to make changes to a text file. SED is described here

S
L
E
E
P

A command that causes execution to pause for a specified
amount of time. SLEEP is described here

T
A
I
L

Prints the last 10 lines of a file to the GAMS LOG file. The
number of lines printed may be changed with a command line
option. TAIL is described here.

T
E
E

Reads information from an input source and copies to the LOG
file. Can be used to list all files that match a particular mask.
TEE is described here.

T
E
S
T

A command that tests to see if an expression is true. TEST is
described here.

T
R

Translate characters in a file to other characters using a user
specified translation scheme generating a translated output file.
TR is described here and here

U
N
I
Q

Reports on the incidence of or removes any adjacent duplicate
lines in a file. UNIQ is described here.

http://en.wikipedia.org/wiki/Printf
http://en.wikipedia.org/wiki/Rm_%28Unix%29
http://en.wikipedia.org/wiki/Sed
http://en.wikipedia.org/wiki/Sleep_%28Unix%29
http://www.computerhope.com/unix/utail.htm
http://www.computerhope.com/unix/utee.htm
http://en.wikipedia.org/wiki/Test_%28Unix%29
http://en.wikipedia.org/wiki/Tr_%28Unix%29
http://www.computerhope.com/unix/utr.htm
http://en.wikipedia.org/wiki/Uniq

Utilities included in GAMS 790

© 2022 Prof. Bruce McCarl

W
C

Counts words, lines, and or bytes in a file . WC is described
here.

X
A
R
G
S

Build and execute commands based on a file. XARGS is
described here.

The collection consists of Windows versions of the GNU implementation of these utilities from
Sourceforge. Detailed descriptions of the utilities can be found at the GNU website. The utilities
“gdate” and “gsort” a renamed relative to the LINUX/UNIX commands of “date” and “sort” to
avoid conflicts with the Windows commands “date” and “sort”. For compatibility reasons the GNU
implementation of awk called “gawk” has been renamed to “awk”.

The diff utility can be used to compare files as in the example below or in the file filecompare.gms

*identify name of first file to compare

$setglobal file1 "tranerr.gms"

*identify name of second file to compare

$setglobal file2 "tranport.gms"

*show the control variables so you can check names are rifht

$show

*invoke the difference

$call "diff.exe %file1% %file2%"

*note the differences are shown in the LOG file

One can also ude the GAMSIDE Diff Textfiles option.

Examples can be found in the section GAMS Model Library under the files classified with
application area GAMS Tools. The awk utility can be used to transform a variety of different text
inputs into GAMS readable input files as illustrated in the model library file awkqap.gms.

18.2 Matrix Utilities

GAMS includes a set of matrix utilities. They are

INVERT A routine that calculates the inverse of a matrix
CHOLESK
Y

A routine that does a Cholesky factorization of a symmetric
matrix decomposition retuning a lower triangular matrix (L) such
that the original matrix (A) equals the lower triangular matrix L
times its transpose (A=LL')

http://en.wikipedia.org/wiki/Wc_%28Unix%29
http://en.wikipedia.org/wiki/Xargs
http://sourceforge.net/
http://www.gnu.org/

McCarl GAMS User Guide791

© 2022 Prof. Bruce McCarl

EIGENVAL
UE

A routine that calculates eigenvalues of a symmetric matrix

EIGENVEC
TOR

A routine that calculates eigenvalues and eigenvectors of a
symmetric matrix

All of these require use of a GDX file to first pass the data to the utility than to being back the result.

All make the assumption that the matrix to be worked on is of the form a(i,i) ie that the row and
column index sets are the same. This is not typically the case for matrix inversion and an alternative
inversion routine is given in inverse2.gms.

18.2.1 Invert

INVERT is a utility that calculates the inverse of a matrix

It is used by using $Call or Execute on the command

invert inputgdxfile indexofmatrix matrixtoinvert outputgdxfile resultantinverse

Where the parameters in this line are

inputgdxfile Name of gdxfile sent to invert that has the matrix to be inverted

indexofmatrix Name of set that defines row and column names of the matrix

matrixtoinvert Name of the matrix to invert that must be in inputgdxfile

outputgdxfile Name of gdxfile that has the resultant inverse matrix

resultantinverse Name to call the inverse in the gdx file outputgdxfile

Example inverseexample.gms

Set index /i1*i2/;

Table a(index,index) matrix to invert

 i1 i2

 i1 2 1

 i2 1 3;

parameter ainverse(index,index) matrix that was inverted;

execute_unload 'gdxforinverse.gdx' index,a;

execute 'invert gdxforinverse.gdx index a gdxfrominverse.gdx ainverse';

Utilities included in GAMS 792

© 2022 Prof. Bruce McCarl

execute_load 'gdxfrominverse.gdx' , ainverse;

display a, ainverse;

Users are likely to be constrained by the assumption that the matrix has the same column and row
indices. Also having to define the GDX files every time may be inconvenient. Consequently a
routine (arealinverter.gms) was written that provides a wrapper around the inverse it is called using
the sequence

$batinclude arealinverter matrixtoinvert rowindex colindex resultantinverse

Where the parameters in this line are

matrixtoinve
rt

Name of the matrix to invert that is of dimension (rowindex,colindex)

rowindex Name of set that is the row index for the matrix to invert

colindex Name of set that is the column index for the matrix to invert

resultantinv
erse

Array to receive the inverse that must be predefined and of dimension
(colindex,rowindex)

Internally this procedure generates a matrix of the form required by INVERT and handles the GDX
files.

Note the inverse is of opposite dimension order as compared with original matrix.

Example inverseexample.gms and

Set j /j1*j2/;

Table a2(index,j) second matrix to invert

 j1 j2

 i1 4 2

 i2 1 7;

Parameter a2inverse(j,index) inverse of second matrix

$batinclude arealinverter a2 index j a2inverse

display a2,a2inverse;

18.2.2 Cholesky

CHOLESKY is a utility that calculates the Cholesky decomposition of a symmetric positive-definite
matrix. where given the matrix A one finds the matrix L such that A=LL'.

It is used by using $Call or Execute on the command

McCarl GAMS User Guide793

© 2022 Prof. Bruce McCarl

cholesky inputgdxfile indexofmatrix matrixtodecompose outputgdxfile resultantLmatrix

Where the parameters in this line are

inputgdxfile Name of gdxfile sent to invert that has the matrix to be
inverted

indexofmatrix Name of set that defines row and column names of the matrix

matrixtodecompos
e

Name of the matrix to decompose that must be in inputgdxfile

outputgdxfile Name of gdxfile that has the resultant L matrix

resultantinverse Name to call the L matrix in the gdx file outputgdxfile

Example choleskyexample.gms

Set index /i1*i2/;

Table a(index,index) matrix to decompose

 i1 i2

 i1 2 1

 i2 1 3;

parameter LforA(index,index) L matrix that is a decomposition of A;

execute_unload 'gdxforutility.gdx' index,A;

execute 'cholesky gdxforutility.gdx index A gdxfromutility.gdx LforA';

execute_load 'gdxfromutility.gdx' , LforA;

display a, LforA;

18.2.3 Eigenvalue

EIGENVALUE is a utility that calculates the eigenvalues of a symmetric positive-definite matrix.

It is used by using $Call or Execute on the command

eigenvalue inputgdxfile indexofmatrix matrixtofindeigen outputgdxfile resultanteigenvalues

Where the parameters in this line are

inputgdxfile Name of gdxfile sent to invert that has the matrix for which to
find eigenvalues

Utilities included in GAMS 794

© 2022 Prof. Bruce McCarl

indexofmatrix Name of set that defines row and column names of the matrix

matrixtofindeigen Name of the matrix to find eigenvalues for that must be in
inputgdxfile

outputgdxfile Name of gdxfile that has the resultant eigenvalues

resultanteigenvalues Name to call the eigenvalue vector in the gdx file outputgdxfile

Example eigenexample.gms

Set index /i1*i2/;

Table a(index,index) matrix to find eigenvalues for

 i1 i2

 i1 2 1

 i2 1 3;

parameter eigenvalues(index) vector of eigenvalues of A;

execute_unload 'gdxforutility.gdx' index,A;

execute 'eigenvalue gdxforutility.gdx index A gdxfromutility.gdx eigenvalues';

execute_load 'gdxfromutility.gdx' , eigenvalues;

display a, eifenvalues;

18.2.4 Eigenvector

EIGENVECTOR is a utility that calculates the eigenvalues and eigenvectors of a symmetric positive-
definite matrix.

It is used by using $Call or Execute on the command

eigenvector inputgdxfile indexofmatrix matrixtofindeigen outputgdxfile resultanteigenvalues
resultanteigenvectors

Where the parameters in this line are

inputgdxfile Name of gdxfile sent to invert that has the matrix for which to
find eigenvalues

indexofmatrix Name of set that defines row and column names of the
matrix

matrixtofindeigen Name of the matrix to find eigenvalues for that must be in
inputgdxfile

outputgdxfile Name of gdxfile that has the resultant eigenvalues

McCarl GAMS User Guide795

© 2022 Prof. Bruce McCarl

resultanteigenvalues Name to call the eigenvalue vector in the gdx file
outputgdxfile

resultanteigenvectors Name to call the eigenvector matrix in the gdx file
outputgdxfile

Example eigenexample.gms

Set index /i1*i2/;

Table a(index,index) matrix to find eigenvalues for

 i1 i2

 i1 2 1

 i2 1 3;

parameter eigenvalues(index) vector of eigenvalues of A;

parameter eigenvector(index,index) matrix of eigenvectors of A;

execute_unload 'gdxforutility.gdx' index,A;

execute 'eigenvector gdxforutility.gdx index A gdxfromutility.gdx eigenvalues eigenvectors';

execute_load 'gdxfromutility.gdx' , eigenvalues, eigenvectors;

display a, eigenvalues,eigenvectors;

18.3 GDX Utilities

There are a number of GDX (GAMS Data Exchange) related utilities that are included with GAMS
that work with GDX files.

These are

CSV2
GDX

Converts a CSV file to a GDX file

GDXC
OPY

Copies/Converts one or more GDX files to a different format

GDXD
IFF

Inspects the data within symbols in two different GDX files that have the same
name, type and dimension then writes any cases where differences are found into a
third GDX file

GDXD
UMP

Writes the contents of a GDX file into a GAMS formatted text file.

GDXM
ERGE

Combines the data from multiple GDX files into one file. Symbols with the same
name, dimension and type are combined into a items with the same symbol name
with one additional dimension. The added dimension contains the file name of the
file from which the data came from as the set element name.

GDXR
ANK

Reads one dimensional parameters from a GDX file, sorts each parameter and
writes the sorted indices as a one dimensional parameters to the output GDX file.

GDXR
ENAM
E

Renames set elements in a GDX data-file using the revised names in a two
dimensional set called map in a second GDX file. The GDX file is overwritten by

Utilities included in GAMS 796

© 2022 Prof. Bruce McCarl

the command.

GDXV
IEWE
R

Moves data from a GDX file and places it a CSV,XLS, XLS, GAMS ,Access,
SQL, MS SQL, SQL Insert script, SQL Update script, HTML, or XML.

GDXX
RW

Allows reading and writing of data from and to an Excel spreadsheet. This utility
requires the presence of Microsoft Excel on the computer and therefore can only
be used on a PC running the Windows operating system with Microsoft Excel
installed

GDX2
ACCE
SS

Dumps the contents of a GDX file to an MS Access file (.mdb file).

GDX2
SQLIT
E

Dumps GDX contents into a SQLite database file (.db).

GDX2
XLS

Places the contents of an entire GDX file into a Microsoft Excel spread sheet.

MCFI
LTER

Filters out dominated points

MDB2
GMS

Takes contents from an Microsoft Access database into either a GAMS Include
File or a GAMS GDX File.

SQL2
GMS

Takes contents from an SQL database into either a GAMS Include File or a
GAMS GDX file.

XLS2
GMS

Takes contents from an Excel spreadsheet into either a GAMS include File or a
GAMS GDX File.

· ASK: The ASK utility is a simple tool to ask simple interactive questions to the end-user.
For instance, if your model requires a scalar to be changed regularly, instead of letting the
end-user change the .gms source file, it may be better to pop up a window, with a question

Documentation.

· ShellExecute: ShellExecute is a small wrapper program for the shellexecute Windows
API call. It allows you to spawn an external program based on the file type of the

Documentation.

18.3.1 CSV2GDX

A utility that converts a CSV file to a GDX files called CSV2GDX.

Documentation is described here: csv2gdx

A simple example of its use is in the GAMS data library file called CSV2GDX1 (#85)

https://www.gams.com/latest/docs/T_CSV2GDX.html

McCarl GAMS User Guide797

© 2022 Prof. Bruce McCarl

18.3.2 Gdx2sqlite

GDX2SQLITE is a Tool developed by Erwin Kalvelagen to dump GDX contents into a SQLite
database file.

Usage:

gdx2sqlite -i inputfile -o outputfile {Options}

where

-i gdxinputfile Specifies the input GDX file. Typically this is a file with a
.gdx extension

-o sqloutputfile Specifies the output SQLite database. Typically this file has
a .db extension.

Options include

-debug This is an optional flag that will cause gdx2sqlite
to print additional debugging information.

-expltext This optional flag will export explanatory text for
set elements.

-append Don't delete the database file before processing.
This will allow adding new symbols in new tables.
We will not allow adding data to existing tables.

-small Write data strings in a separate table. A user-
friendly SQL VIEW is created to hide the
complexities of the joins.

-fast Try to speed up writing the data using some non-
standard pragmas. Using both -small -fast will
write the data most efficiently.

Examples are provided here

Some notes

· GAMS does not store zero values and zero entries will not be exported to either the GDX
file or on to the database. To force a zero to be exported, you need to manually set the
values to EPS in GAMS. E.g. using p(i)$(p(i)=0) = EPS;

· N-dimensional sets are stored as tables with n text columns. In case the option -expltext is
used, another column may be added with explanatory text.

· N-dimensional parameters will have n index columns plus a value column. Scalars are
collected in a separate table.

· N-dimensional variables and equations have n index columns and also columns for the level,
the lower and upper-bound and the marginal.

https://www.gams.com/latest/docs/T_GDX2SQLITE.html

Utilities included in GAMS 798

© 2022 Prof. Bruce McCarl

· Scalars are collected in the tables scalarvariables and scalarequations.
· The values INF and -INF are mapped to 1.0e100 and -1.0e100 in the database.
· The special value EPS is exported as zero.
· UNDEF, NA and acronyms are exported as NULL items.
· A database table is not allowed to have columns with the same name. If a name clash is

detected new names may be invented.

More information also appears on Erwin Kalvelagen's blog
see http://yetanothermathprogrammingconsultant.blogspot.com/2014/06/big-data-

cubes.html.
or http://yetanothermathprogrammingconsultant.blogspot.com/2014/07/a-little-bit-

extra-fine-tuning.html.

18.3.3 Gdxcopy

The GDXCOPY utility provides a mechanism to convert GDX files to a prior format, so an older
GAMS system can read these files. A current GAMS system can always handle older GDX file
formats. For details see here.

18.3.4 Gdxdiff

GDXDIFF compares the data of for items in two GDX files and writes a GDX file showing the
differences. For a description see the coverage here.

18.3.5 Gdxdump

GDXDUMP can take the symbols in a GDX file and write them into file that is formatted either
· As txt in GAMS readable commands that can be used in subsequent GAMS

runs or
· As a CSV file.

The information that GDXDUMP will write in the output file is
· Data for a selected set, parameter, variable or equation (under all three of the

output options when a specific item is named using the SYMB option)
· Data for all sets, parameters, variables and equations (Under normal option

when the SYMB is not used)
· Data on solution items (variables and equations) formatted in a fashion suitable

for import as a basis in another GAMS program using the GAMSBAS format
where the marginals and levels are output (as discussed in the Expanded GAMS
user guide under the heading Advanced basis formation in GAMS and also in
the writeup for the now obsolete GAMSBAS solver in http://
agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/550.pdf).

http://yetanothermathprogrammingconsultant.blogspot.com/2014/06/big-data-cubes.html
http://yetanothermathprogrammingconsultant.blogspot.com/2014/06/big-data-cubes.html
http://yetanothermathprogrammingconsultant.blogspot.com/2014/07/a-little-bit-extra-fine-tuning.html
http://yetanothermathprogrammingconsultant.blogspot.com/2014/07/a-little-bit-extra-fine-tuning.html
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/550.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/550.pdf

McCarl GAMS User Guide799

© 2022 Prof. Bruce McCarl

There are some peculiarities in the GDXDUMP. Namely
· Under the CSV format it only creates output when a symbol is selected using the

SYMB syntax.
· Under the CSV format when the requested symbol is a variable or an equation

one only gets the level values not the marginal, under the other formats one gets
all items.

· Under the gamsbas format one gets all variables and equations when the
SYMB syntax is not used.

More options are available and are described in the gdxdump writeup as accessible at
GDXDUMP or through the GAMSIDE help under docs and tools

Usage is discussed here.

18.3.6 Gdxmerge

GDXMERGE combines the information from several GDX files and merges it into one composite file.
Symbols with the same name, dimension and type that appear in the separate files are combined into a
single symbol with an added dimension in the first index position that gives the file name. Its usage is
discussed here.

18.3.7 Gdxrank

GDXRANK will sort all one dimensional parameters in a GDX file, and then write the sorted indices
as one dimensional parameters in an output GDX file.

Usage:

gdxrank inputfile outputfile

Each one dimensional parameter will then be read from the input file, sorted and a corresponding
integer permutation index will be written to the output file using the same name for the symbol.
GAMS special values such as Eps, +Inf and -Inf are recognized.

Example gdxrank.gms

set I /i1 * i6/;

parameter A(I) /i1=+Inf, i2=-Inf, i3=Eps, i4= 10, i5=30, i6=20/;

display A;

* write symbol Array to sort to gdx file

execute_unload "rank_in.gdx", A;

* sort symbol; permutation index will be named A also

execute 'gdxrank rank_in.gdx rank_out.gdx';

* load the permutation index

parameter AIndex(i);

execute_load "rank_out.gdx", AIndex=A;

display AIndex;

https://www.gams.com/latest/docs/T_GDXDUMP.html

Utilities included in GAMS 800

© 2022 Prof. Bruce McCarl

18.3.8 Gdxrename

The gdxrename utility renames the text for set elements in a GDX data-file. The renaming follows
the contents of a two dimensional set called map in a second GDX file.

The renaming of the set elements overwrites the string stored for each element, but does not change
the data order for the data stored in the data-file. These changes are applied to the data-file directly
overwriting its contents.

In the two dimensional set one defines a number of two dimensional tuples that in first position
contains the original name and in the second position contains the new name. For example if one
wants all the set elements called r renamed to red and all the ones called g to green one would have
a two dimensional set called map in the named GDX mapfile that had tuple entries that look like

set map(*,*) /r.red, g.green/;

The replacement would occur in all sets, parameters etc where the specified set element names
appear.

Usage:

gdxrename nameofgdxdatafile nameofgdxmapfile {Options}

where
nameofgdxdatafile is the name of the file where the renaming is to be applied
nameofgdxmapfile is the name of the file where the map set appears containing the

renaming tuples
Options for now only includes -R or -Reverse which can be used to instruct

Gdxrename to reverse the
direction of the rename operation

Example (gdxcreateforrename.gms)

First, create a GDX file called data.gdx (gdxcreateforrename.gms) that the renaming will be applied
to

set c /r, g, b, y/;

parameter A(c);

A(c) = Ord(c);

execute_unload 'data.gdx', A,c;
display a,c

Second, create a map set specifying the renaming rules and save it in a GDX file here using one
named map.gdx (also in gdxcreateforrename.gms)

set map(*,*) /r.red, g.green, b.blue, y.yellow/;

McCarl GAMS User Guide801

© 2022 Prof. Bruce McCarl

execute_unload 'map.gdx' map;

Third, run GDXRENAME which will rename the set elements in a specified GDX file (here
data.gdx) following the rules in the two dimensional set called map in the named GDX mapping here
called map.gdx (also in gdxcreateforrename.gms)

execute 'gdxrename data map';

Fourth, load and display the results (gdxafterrename.gms);
set c;

$gdxin data.gdx
$load c

parameter a(c)

$load a

$gdxin

display a,c;

In turn before the renaming we had
---- 7 PARAMETER A

r 1.000, g 2.000, b 3.000, y 4.000

---- 7 SET c

r, g, b, y
afterwords we get

---- 7 PARAMETER a

red 1.000, green 2.000, blue 3.000, yellow 4.000
---- 7 SET c

red , green , blue , yellow

18.3.9 Gdxrrw

GDXRRW is an interface between GAMS and R. It allows one to transfer data between GDX and
R plus provides a way to call gams from within R.

Like the Excel interface GDXXRW, it is a data interface only with the model itself specified in
GAMS. GDXRRW consists primarily of procedures that can read or write data into and out of
GDX file. It also includes a function to cause GAMS to execute a model plus some utility functions.

GDXRRW is available in R source and binary form, which can be used in interactive R sessions and
in R scripts. It follows the R conventions for building, examples, and documentation.

Documentation is available under the docs and utilities part of the IDE help menu plus at http://
support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r.

There are some examples of use at

https://www.wecr.wur.nl/gamstools/R%20for%20Gams%20Users.docx

http://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r
http://support.gams.com/doku.php?id=gdxrrw:interfacing_gams_and_r
https://www.wecr.wur.nl/gamstools/R%20for%20Gams%20Users.docx

Utilities included in GAMS 802

© 2022 Prof. Bruce McCarl

18.3.10 Gdxviewer

gdx2xls: Converts an entire gdx data container to a Microsoft Excel spread sheet

GDXVIEWER moves data from a GDX file and place it a CSV,XLS, XLS, GAMS ,Access, SQL,
MS SQL, SQL Insert script, SQL Update script, HTML, or XML. Gdxviewer is discussed here.

18.3.11 Gdxxrw

Utility that allows reading and writing of data from and to an Excel spreadsheet. This utility requires
the presence of Microsoft Excel on the computer and therefore can only be used on a PC running
the Windows operating system with Microsoft Excel installed. Its use is discussed here.

18.3.12 Gdx2access

Dumps the contents of a GDX file to an MS Access file (.mdb file). Every identifier gets its own
table in the .MDB file.

18.3.13 Gdx2xls

GDX2XLS places the contents of an entire gdx file into a Microsoft Excel spread sheet. An overall
index sheet is created and a separate sheet for each item in the file. The name of the spreadsheet is
the gdx file root with the extension xls.

Example (gdx2xls.gms)

$call "gdx2xls gdxall.gdx"

Result

The result is a file named gdxall.xls with a first page as follows and note at the bottom separate
sheets for each item in the GDX file.

McCarl GAMS User Guide803

© 2022 Prof. Bruce McCarl

Utilities included in GAMS 804

© 2022 Prof. Bruce McCarl

18.3.14 MCFilter

A GDX utility that filters duplicate and dominated points from a solution set that is contained in a GDX
file. To use this one specifies a array of points, a set of objectives evaluated at those points and a
direction of preference for each objective. Cursory documentation occurs at the end of the gdxutils.pdf

writeup as accessible at MCFILTER or through the GAMSIDE help under docs and tools

18.3.15 MDB2GMS

MDB2GMS is a tool to convert data from an Microsoft Access database into GAMS readable
format.
The source is an MS Access database file (*.MDB) and the target is a GAMS Include File or a
GAMS
GDX File. It is discussed here.

18.3.16 SQL2GMS

SQL2GMS transfers data from SQL compatible databases to GAMS. Its use is
discussed here.

18.3.17 Xls2gms

Copies data from EXCEL to GAMS. It is discussed here.

18.4 Interface utilities

There are several utilities that permit communication with other programs or the user.

ASK Allows one to ask simple interactive questions of the end-user.
MSAPPAVAILChecks which Microsoft Office programs are installed
SHELLEXECU
TE

Allows one to spawn an external program based on the file type of the document to
open

XLSTalk Allows for some simple communication with Excel

· .

· :

· : ShellExecute is a small wrapper program for the shellexecute Windows API call. It allows you to
Documentation.

· : .

18.4.1 Ask

ASK is a utility developed by Erwin Kalvelagen to ask simple interactive questions of the end-user.
For instance, if your model requires a scalar to be changed regularly, instead of letting the end-user
change the .gms source file, it may be better to pop up a window, with a question text, where the

https://www.gams.com/latest/docs/T_MCFILTER.html

McCarl GAMS User Guide805

© 2022 Prof. Bruce McCarl

required number can be entered .

Ask is in the form of a GUI (Graphical User Interface). The main purpose of it is to allow a
developer quickly put an application together such that an end user does not have to edit GAMS
files.

It requires a GAMS model run in the GAMS-IDE and generates a standard GAMS include file, this
file can then be used through a $include statement

Usage
ask <options>

where the options are

T= string where the string identifies the type of input item to go after and can
be

integer when one wants an integer number
float when one wants a real number
radiobutton when one wants a radio button choice
combobox when one wants a combo (drop

down choice) box
checklistbox when one wants a check list box
fileopenbox when one wants the name of a file to

open
filesavebox when one wants the name of a file to

save
For example T=integer

M="string" where the string is the text to in the box
For example M="Enter a number"

O="filename" where the filename is the name of a file in which to place the results
for subsequent inclusion into GAMS
For example O="file.inc"

D="string 1|string

2..."
where the "string 1|string 2|string 3|...|string n" gives the n strings
to be associated with multiple choices when using checkbox,
radiobutton, combobox, or checklistbox. The individual strings
are separated by the delimiter "|"

For example D="Small data set|Medium data set|Large data set"
E="number 1|
number 2..."

where the "number 1|number 2|number 3|...|number n" gives the

n numbers to be returned to GAMS associated with the choices
made when using checkbox, radiobutton, combobox, or
checklistbox. The individual numbers are separated by the
delimiter "|"
For example E="1|2|3|4|5"

I="filepath" where filepath gives the path in which to look for the file under the

Utilities included in GAMS 806

© 2022 Prof. Bruce McCarl

fileopenbox and filesavebox dialogues. If not specified this is the
project directory
For example I="C:\gams\mine"

F="filemask" where filemask gives the mask for acceptable files under the
fileopenbox and filesavebox dialogues. If not specified this is *.*.
For example I="*.gdx"

R="string" where the string gives a line of GAMS code to place in the include
file.
This can contain a %s parameter in which the information to return is
substituted
For example R="$include '%s'" or R="set i /1990*%s/;"

C="string" A title for the dialogue box being used
For example C="Box to ask for a file"

L=number where the number gives a lower bound on a numeric entry
For example L=15

U=number where the number gives an upper bound on a numeric entry
For example U=15

@"filename" where filename gives the name of a file of input instructions
containing the options above in this table
For example @ask.opt

In addition a number by itself can be entered to put multiple entries into columns under the
checkbox, radiobutton, combobox, or checklistbox entries.

One can use GAMS to generate the input instruction file , but note that it is not possible to do this
easily with the PUT facility since $call to ask is handled at compile time, before the PUT statement has
done its work. Rather one must use $onecho and $offecho as follows

$onecho > asktest.opt

T=checklistbox

M=Choose multiple options

D=option 1|option 2|option 3|option 4|option 5

E=1|2|3|4|5

R=%s checked list box choice

O=k2.inc

$offecho

Then one would use the file as follows

$call =ask @asktest.opt

set k2 /

$include k2.inc

/;

display k2;

These options are discussed in ask and illustrated in ask.gms which contains the examples in the

https://www.gams.com/latest/docs/T_ASK.html

McCarl GAMS User Guide807

© 2022 Prof. Bruce McCarl

documentation referred to above.

Example (ask.gms)

$call =ask T=integer M="Enter number of cities" o=n.inc

scalar n 'number of cities' /

$include n.inc

/;

display n;

More examples are in ask.gms and in the GAMS Data Utilities Models choice under model libraries
in the IDE.

18.4.2 Msappavail

MSAPPAVAIL checks which Microsoft Office programs are installed.

The sequence

$call msappavail -option

can be used in GAMS to checks for the presence of the Microsoft Office software package option
on the machine.

Allowable values of option:

-? List all known Office applications and their status

-Access

-Excel

-Explorer

-FrontPage

-Outlook

-PowerPoint

-Project

-Word

Upon return if called with an option other than -? then the GAMS recognized errorlevel is

set to 1 if the program looked for was not found.

set to 0 if found

Whether or not the item was found of not using

$if errorlevel 1 $goto noExcel

which is true if the item is not found. The file CTA.gms from the model library uses this feature.

Utilities included in GAMS 808

© 2022 Prof. Bruce McCarl

18.4.3 Shellexecute

In some cases we want to let the computer figure out what application to start for a given document.
This can be accomplished with ShellExecute written by Erwin Kalvelagen. For instance, when we
call:
h

shellexecute demo.html

Windows will launch the web browser and show demo.html. This works correctly, irrelevant
whether the user installed Microsoft Internet Explorer or Netscape’s web browser.

Usage

The command line for ShellExecute looks like:

SHELLEXECUTE filename args

Additional parameters can be specified as documented in shellexecute They specifiy the action to be
performed. ; how the application is to be displayed when it is opened; and the default directory for
the sub-process.

In many cases you will not need to use these options.

18.4.4 Xlstalk

XLSTalk Allows communication with Excel to have it close files, see what version is running and do
other functions.

Usage:

xlstalk <option> {-V} <file name> {<other parameters>}

where the parameters are

<file> : Optional Name of the Excel file with the file extension

<option> : One of the following options; see following table:

Option Action Parameter Return code

-A Test if Excel is running 0 if Excel not running, 1 if Excel is
running

-C Close file; do not save
changes.

<file name>

https://gams.com/latest/docs/T_SHELLEXECUTE.html

McCarl GAMS User Guide809

© 2022 Prof. Bruce McCarl

-E Test if file exists <file name> 0 if File does not exist, 1 if File
exists

-M Status of file <file name> 0 if file is Not open in Excel
1 if File is open and is not modified
2 if File is open and has been
modified

-O Open file but do not reload <file>
-Q Quit Excel if no workbooks

have been modified
<file> 0 if Excel is closed, 1 if Excel is

still running
-R Run a macro in Excel <file> <macro-

name>
{<macro-
param>}

-S Save and close the file <file>
-V Verbose mode
-W Wait for the user to close the

file
<file>

-X Excel version 0 Excel is not installed
1 Excel is installed; version 2003
or earlier
2 Excel is installed; version 2007
or later

In GAMS, the return value can be obtained by using 'errorlevel'.

execute 'xlstalk.exe -X';

scalar x;

x = errorlevel;

display x;

18.5 Zip Utilities

Versions of zip and unzip are included in the GAMS releases and are called gmszip and gmsunzip.

These programs are located in the GAMS system directory.

To zip files one uses the execute or $call syntax plus the command

gmszip archivename [-options] [-b path] [-t mmddyyyy]
[-n suffixes] [zipfile list] [-xi list]

as documented at http://infozip.sourceforge.net/Zip.html (note you need to add the gms prefix to use
the version released with GAMS)

or in its simplest form

http://infozip.sourceforge.net/Zip.html

Utilities included in GAMS 810

© 2022 Prof. Bruce McCarl

gmszip archivename file1 file2 ... filen

which will place file through filen in the archive named archivename.zip

To unzip files one uses the execute or $call syntax plus the command

gmsunzip file[.zip] [-Z] [-opts[modifiers]] [list] [-x
xlist] [-d exdir]

as documented at http://infozip.sourceforge.net/UnZip.html (note you need to add the gms prefix to
use the version released with GAMS)

or in its simplest form

gmsunzip archivename -d c:\tmp\contentgoes_here

which will place all files in the archive named archivename.zip in the directory c:\tmp
\contentgoes_here

19 Solver Option Files

Most of the GAMS solvers allow users to affect aspects of their operation by specifying an options file.
In general, users do not need to exercise such options, as the default settings are usually appropriate for
most problems. However, in some cases, it is possible to improve solver performance by specifying
non-standard values. This chapter shows how to use option files.

Basics

Option file contents

Writing options during a model run

Transitory nature of options

19.1 Basics

Telling a solver to look for an options file: .Optfile

Option file name

19.1.1 Telling a solver to look for an options file: .Optfile

If you want to cause a solver to use an option file, it is necessary to set the optfile model attribute to a
positive value. For example,

model mymodel /all/ ;
mymodel.optfile = 1 ;
solve mymodel using NLP maximizing dollars ;

http://infozip.sourceforge.net/UnZip.html

McCarl GAMS User Guide811

© 2022 Prof. Bruce McCarl

19.1.2 Option file name

You must also create a file that contains the options to be passed on to the solver. The name of that file
is specific to the solver being used. In particular the file name is

solvername.ext,

where solvername is the name of the solver that is currently being used to solve this problem type and is
either the default solver or the one defined in a statement like:

option modeltype=solvername;

The file extension ext depends on the value to which the optfile model attribute has been set. If the
model contains a statement like

mymodel.optfile = 1 ;

the file extension is opt. Setting this to values other than one changes this extension name in a manner
as covered below.

For example, if we are solving a

• NLP and the active NLP solver is CONOPT the option file would be called conopt.opt;

• LP and the active LP solver is CPLEX the option file would be called cplex.opt.

• MINLP active MINLP solver is DICOPT the option file would be called dicopt.opt.

19.1.2.1 Alternative option file extention names: .Opt, .Op?, .O??, .???

By setting the value of optfile to a number different from 1 then one can have multiple, situation
dependent, option files for the same solver. The following alternatives apply.

Modelname.optfile Resultant File Example

 setting Extension Name

0 -- (no option file) --
1 .opt Minos.opt
2 .op2 Conopt.op2
3 .op3 Cplex.op3
...
10 .o10 Xa.010
...
99 .o99 Dicopt.099
100 .100 Gamschk.100
...
999 .999 Gurobi.999

Solver Option Files 812

© 2022 Prof. Bruce McCarl

In general

• no option file is assumed unless the optfile attribute is set to a non zero value

• if the option value is greater than or equal to 2 it is masked on top of the opt file extension with

999 being the largest value allowed.

• Using such names can be convenient so one can have different option file settings for different

cases.

19.2 Option file contents

Option file contents vary from solver to solver. This section illustrates some of the common features of
the file format. Users should refer to solver manual to discover the solver specific potential contents of
an option file.

The option file is an ASCII text file containing one or more lines. Each line of the file falls into one of two
categories

• A comment line

• An option specification line

Comments: *

Option specifications

19.2.1 Comments: *

A comment line may be inserted into an options file. Such a line begins with an asterisk (*) in the first
column, and is not interpreted by either GAMS or the solver, and is used purely for documentation. One
can also temporarily deactivate options using such an entry.

19.2.2 Option specifications

Each option specification line can contain only one option. The format for specifying options is as
follows,

optionkeyword1 modifier or value
optionkeyword2 modifier or value
optionkeyword3 modifier or value
...

Notes:

• The option keyword may consist of one or more words and is not case sensitive.

• Modifiers are generally text strings but are not always required

• Numerical values are not always required and when entered may be either an integer or a real

constant. Real numbers may be expressed in F, E, or D formats.

• Any errors in the spelling of the keyword(s) or modifiers will lead that option to not be understood

McCarl GAMS User Guide813

© 2022 Prof. Bruce McCarl

and therefore disregarded by the solver.

Examples:

Consider the following CPLEX options file,

* CPLEX options file

barrier

IIS yes

preind 0

The first line begins with an asterisk and therefore contains comments. The barrier entry specifies the use of
the barrier algorithm to solver the linear programming problem, while the IIS indicates the irreducible
infeasible set option is to be used on infeasible models and preind turns off the presolve. Details on these
options can be found in the CPLEX solver manual .

Also consider the following MINOS options file,

Major iterations 2000

Scale all variables

feasibility tolerance 1.0e-5

The first option sets the major iteration limit to 2000. The second line tells MINOS to scale all variables
including the ones with nonlinear terms. The third option sets the feasibility tolerance. Details on these
options can be found in the MINOS solver manual .

19.3 Option file editor

The IDE contains an option file editor that can be used to

• Create a new options file for a solver

• Edit an existing option file.

• Look up option file possibilities and receive information on settings

The option file editor is invoked through the IDE utilities>option editor menu choice.

Once in the editor one can use the file menu to

• Read an existing option file

• Start up a new one for a particular solver or for GAMS although this seems to have no
effect on GAMS execution)

• Save the file

Once an option file has been read or a new option file started with a solver chosen the user gets
• A complete list of all alternatives that can be in the option file for the solver chosen

• A definition of the currently active option and a list of the alternative choices for that
option. For example the following screen comes from a new option file after CPLEX was
the chosen solver and the option LPMETHOD was scrolled down to

https://www.gams.com/latest/docs/S_CPLEX.html
https://www.gams.com/latest/docs/S_MINOS.html

Solver Option Files 814

© 2022 Prof. Bruce McCarl

• One can also do a right mouse click or press F2 and get a further definition of the select
option as below and in fact this opens a document of all options for the solver at hand.

McCarl GAMS User Guide815

© 2022 Prof. Bruce McCarl

• There is no attempt in the option file editor to group the options by function and users
should still go to the solver guides for that material. This is acccessed through the IDE
help menu.

19.4 Writing options during a model run

Users may wish to construct the options file during a job to insure that the option file contents are
always current. This can be done using Put command as discussed in the Output via Put Commands
chapter. In that case, the file must be closed prior to the SOLVE statement using a PUTCLOSE. The
following example shows the creation and closing of an option file for the MINOS solver as implemented
in frstpart.gms.

FILE OPT MINOS option file / MINOS5.OPT /;

PUT OPT;

PUT 'BEGIN'/

 ' Iteration limit 500'/

 ' Major damping parameter 0.5'/

 ' Feasibility tolerance 1.0E-7'/

 ' Scale all variables'/

 'END';

PUTCLOSE OPT;

Solver Option Files 816

© 2022 Prof. Bruce McCarl

Learning about options: Solver manuals

Default settings for Optfile

Defining a central location for the option files: Optdir

19.5 Learning about options: Solver manuals

Each solver manual explains the specific available solver options. They can be obtained off the
distribution disk, in the GAMS systems directory DOCS subdirectory(c:\program files\gams22.7\docs\
today on a Windows machine) or through the IDE.

19.6 Default settings for Optfile

One can preset a value for the optfile command line parameter in the GMSPRMXX.txt customization file
for the computer to provide a default value for optfile of 1 automatically making the solver always look for
the opt file if desired. Procedures for setting such parameters appear in the Customizing GAMS
chapter.

19.7 Defining a central location for the option files: Optdir

One can specify a default location where GAMS will look for option files using the command line
parameter Optdir. If not specified, it will be set to the current working directory. A customization value
of Optdir may also be set in the Gmsprmxx.txt customization file.

19.8 Transitory nature of options

Solvers are continually updated adding new features. This occasionally makes new options available or
changes the format of old ones as solvers are improved. The solver manual is always the best current
reference.

20 Advanced Basis Usage

A substantial amount of the solution time encountered when solving a mathematical programming model
involves finding the appropriate variables to be in the solution. Using common mathematical
programming terminology – this involves a search for the optimal Basis. Often solution time can be
reduced substantially if one can identify what to include a priori by suggesting what is known as an
Advanced Basis. Here I discuss how to do that in GAMS. Note that these techniques do not work
with MIPs or with the non-simplex based algorithms like Barrier in CPLEX. However, they do work quite
well in many LP, NLP, and MCP applications.

Basics

Advanced basis formation in GAMS

Effect of advanced basis on solution performance

Bratio

Providing a basis

Guessing at a basis

McCarl GAMS User Guide817

© 2022 Prof. Bruce McCarl

Problems with a basis

20.1 Basics

Consider the benefits of a basis in a linear programming context. The solution to a linear programming
problem generally has one non-zero variable for each constraint. This means in a model with M
constraints all one really needs to know is exactly which M variables are non-zero.

Generally, linear programming solvers take three or more times as many iterations as the number of
constraints to reach a solution. Simplex based linear programming solvers initially guess which M
variables should be in the solution then one by one insert better variables into the basis until the
ultimate, optimal basis is found.

If one can supply an improved guess specifying the set of variables to be in the basis (those to be non-
zero in the final optimal solution) then solution time can be reduced. An advanced basis is a user-
defined suggestion on variables in the solution. A good advanced basis can reduce solution time by
more than an order of magnitude. In one case within my work advanced basis suggestions caused a
reduction in solution time from 36 hours to 1 hour.

Here I cover how to provide such information and also discuss some of the difficulties that may arise
when using advanced bases.

20.2 Advanced basis formation in GAMS

In GAMS an advanced basis is formed whenever sufficient information is available on the levels and
marginals for basis formation. The exact information used are:

• Variables with non-zero levels are suggested to be basic unless the levels fall at the upper or

lower bounds.

• Variables with non-zero levels equal to their upper or lower bounds – (x.l=x.up or x.l=x.lo) are

not suggested to be basic rather being suggested as held at their bound. Variables held at
bound should also have non-zero marginals (x.m).

• Variables with zero levels and non-zero marginals are not suggested to be in the basis.

• Constraints with zero marginals have their slacks suggested for inclusion in the basis.

• Constraints with non-zero marginals are treated as binding constraints.

Such information is typically not available the first time a model is solved unless the user has explicitly
provided it.

20.3 Effect of advanced basis on solution performance

The effect of an advanced basis on solver performance is best illustrated by example. Suppose I take a
model and solve it twice (twotran.gms) and observe what happens in comparison with solving the model
alone. In particular, I solve a model first then I solve it again then I alter the objective function and solve it
a third time. The code to do this appears below (twotran.gms).

 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

 TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)

Advanced Basis Usage 818

© 2022 Prof. Bruce McCarl

 =TRANSCOST(PRODUCT,TYPE,PLANT,PLANTS)*3;

 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

The first solve of the model takes 11 iterations the second one takes 0 and the third one takes 1. The
model in the third solve when solved all by itself (twotrana.gms) takes 12 iterations.

The reason for fewer iterations when the second and third solves are issued is that GAMS suggested an
advanced basis using the saved solution information from the prior solve.

20.4 Bratio

Generation of a basis is actually controlled by the setting of Bratio.

GAMS will suggest a basis as long as the number of candidates for basis inclusion exceed the number
of needed elements times the value of Bratio. Thus in a 1000 equation LP with the default value of Bratio
(0.25) GAMS will not suggest a basis unless it could find at least 250 elements to include in it.
Generally this would not be the case unless the problem had been previously solved and then all 1000
elements would be known or other efforts are made. This means a basis is always suggested by default
as long as I are dealing with a second or later solve. It also means that by setting Bratio to 1.0 one can
cause the basis to never be suggested and by setting it to a small number (0.01) one can cause GAMS
to use whatever is available.

20.5 Providing a basis

So if you want to suggest a basis how can you do it? This happens under three conditions

• Repeatedly solving

• Using a point GDX file

• Guessing at levels and marginals

each of which is explained below.

Getting a basis through repeated solution

An alternative – use a GDX point file

20.5.1 Getting a basis through repeated solution

GAMS always tries to suggest an advanced basis using the saved solution information from a previous
solve. But if a solve has not been done then a basis cannot be provided. So users wishing to get
whatever gains they can should to the extent possible try to retain a base model solution then execute
subsequent solves.

20.5.1.1 Save files

Often one can retain a base model solution through the use of saved work files and in turn provide a
starting basis for restarted GAMS code modules that contain subsequent solves. An example of this is
inherent in the following DOS bat file (seq.bat).

GAMS frstpart s=f1
GAMS nextpart r=f1

McCarl GAMS User Guide819

© 2022 Prof. Bruce McCarl

where both parts (frstpart.gms, nextpart.gms) have solve statements in them.

In turn, once a modeler is satisfied with the model inherent in the saved work files one can retain that
work file set providing a basis to all restarted GAMS code. Then one can set up alternative runs
modifying model data in files that will be subsequently restarted from those work files. The Achilles heel
in this case is that sometimes the original data or model structure needs to be modified and one must
work within the original file without the possibility of having GAMS automatically retaining the information
from a previous solve.

20.5.2 An alternative – use a GDX point file

For many years applied linear programmers have developed advanced bases by causing a solver to write
out a basis and then load that basis when doing the solution of a related model. This is done under the
assumption that such a solution will be close to the solution for the related model. GAMS can
automatically save and load a file with such information in the form of a GDX point file through the
employment of the Savepoint parameter and the subsequent loading of the GDX file using
Execute_loadpoint. The steps to use the GDX point file are:

I. Run a model from which you wish to save the basis information using the Savepoint option,
model attribute, or command line parameter.

a. Insert the command

option Savepoint=1;

or
option Savepoint=2;

before the solve statement.

This will cause a file to be saved which contains the model solution information. The file name
for savepoint=1 will be your model name plus the suffix _p.gdx. Thus, if your model is named
transport then a file named transport_p.gdx. will be saved and if the model is named farmmod
then the basis file will be named farmmod_p.gdx. In the case of multiple solves, the basis
from the last solve after the command will be the one that is saved. When savepoint=2 is
used files are saved for every solve as discussed in the GDX, option, model attribute, or
command line parameter chapters.

II. Incorporate the basis in any file in which you wish the basis to be used. In particular use the
Execute_loadpoint syntax to incorporate the saved basis file somewhere after the variable and
equation definitions but before the solve statement

Execute_loadpoint 'transport_p.gdx';

Example:

(makepointbas.gms)

First to solve the base problem and save the basis the statements from the model on are

MODEL FIRM /ALL/;

OPTION Savepoint=1;;

Advanced Basis Usage 820

© 2022 Prof. Bruce McCarl

solve firm using LP maximizing objfun;

This solution takes two iterations. The resultant GDX point file contains the marginals and levels for the
variables and equations.

I may now modify my base model to include and Execute_loadpoint command that loads the basis
(loadpointbas.gms). I may or may not continue use of the Savepoint option

 MODEL FIRM /ALL/;

 OPTION SOLPRINT = ON ;

* SECTION D SOLVE THE PROBLEM

 execute_loadpoint 'firm_p';

 SOLVE FIRM USING LP MAXIMIZING NETINCOME;

The resultant solution takes zero iterations. Thus given the basis, I did no work at all.

20.5.3 GAMSBAS

GAMSBAS was an older procedure to write a basis. It was eliminated some time ago but its
functionality can be duplicated with use of GDXDUMP.

20.6 Guessing at a basis

One can try to guess at a solution by specifying

• Non-zero marginals for the constraints that are felt to be binding.

• Non-zero levels for the variables that are felt to be non-zero in the solution as follows.

• Non-zero marginals for variable not felt to be in the solution.

For example,

OBJECTIVE.m = 1 ;

RESOURCE.m ("R1") = 1 ;

RESOURCE.m ("R2") = 1 ;

RESOURCE.m ("R3") = 0 ;

OBJFUN.l = 1 ;

X.l ("X1") = 1 ;

X.l ("X2") = 1 ;

X.m ("X3") = 1 ;

This basis if included would cause the simple problem to solve in zero iterations. But making this kind
of guess for a large model would be hard. Guess in the NLP case must be done with care as the
variable levels are more important and provide the starting point for evaluating the Jacobian.

20.7 Problems with a basis

Provision of an advanced basis does not always help. Solvers may perform poorly encountering
problems because the basis is poor. In addition, certain problem types are not amenable to advanced
basis use (MIPs). Presolves may also cause the basis to be ignored.

McCarl GAMS User Guide821

© 2022 Prof. Bruce McCarl

Symptoms and causes of a poor advanced basis

MIP

NLP

20.7.1 Symptoms and causes of a poor advanced basis

Sometimes a basis may not help and one may find the solver fails or uses excessive iterations. This
can be particularly true in a repeated set of solutions with a radically altered model. For example, one
can observe messages after a solve such as

sorry guys we seem to be stuck or

after 3 factorizations the basis is singular

or the solver may also not make significant progress.

There are a couple of possible underlying causes of such messages

• One may have altered the model size using conditionals which either:

� Eliminated a large number of variables in the basis.

� Deleted a large number of constraints.

• One may also have caused a radical alteration in the model coefficients that compromised the

basis.

• One may be using a basis from a model that was radically altered that possesses many

features that the model on hand does not have.

There are several ways of either avoiding the problems such a basis causes or insuring that an advanced
basis would be more compatible between related models

• To increase compatibility don't change model size, eliminate things economically as

illustrated in the Doing a Comparative Analysis with GAMS chapter.

� Rather than eliminate a variable leave it in the model but alter it's objective function
coefficient so it has a very high cost and will not be desirable to include in the solution.

� Rather than eliminate a constraint make it non-binding by for example in the case of =L=
constraints adding a very large constant to the right hand side.

• Revert to a saved basis from a related but less altered model.

• Tell the solver to dump the basis using the BRATIO=1 option or the model attribute
myModel.defPoint=1.

20.7.2 MIP

Mixed integer programming problem bases may not be all that successful as what's really needed is
storage of the branch and bound tree. The only real success from bases may be giving an initial good
objective function bound and getting the linear programming part of the solver started relatively quickly.

Advanced Basis Usage 822

© 2022 Prof. Bruce McCarl

20.7.3 NLP

In nonlinear models advanced bases are often helpful, but there are cases where they do not contribute
to shortened solution time. There are no general rules. Only experience with a problem will show the
effectiveness of the advanced basis. Nonlinear programming is the place where I have encountered the
biggest solution time reductions.

21 Mixed Integer, Semi, and SOS Programming

There are a number of features within GAMS that are designed for use in formulating and solving mixed
integer, semi integer, semi continuous and specially ordered set (SOS) programming problems all of
which require a mixed integer or MIP solver.

Specifying types of variables

Imposing priorities

GAMS options and model attributes

Branch and bound output

Nonlinear MIPs

Identifying the solver

Model termination conditions and actions

Things to watch out for

Branch and Cut and Heuristic Facility

21.1 Specifying types of variables

The following types of variables fall into the mixed integer programming category in GAMS

• Binary variables (Binary). These can only take on values of 0 or 1.

• Integer variables (Integer). These can take on integer values between a lower and an upper

bound. By default these variables are bounded in GAMS to the interval 0 to 100.

• Specially Ordered Sets Type 1 (SOS1). Groups of variables where only one member in each

group can have a nonzero value in the solution.

• Specially Ordered Sets Type 2 (SOS2). Groups of variables where only two variables in the

group can have nonzero solution levels and they must be adjacent.

• Semi-continuous variables (Semicont). Variables that must either be zero or can take on a

continuous value above a threshold value.

• Semi-integer variables (Semiint). Variables that must be must either be zero or can take on a

integer value above a threshold limit.

Each is discussed below.

Binary variables

Integer variables

Specially ordered set variables of type 1 (SOS1)

Specially ordered set variables of type 2 (SOS2)

McCarl GAMS User Guide823

© 2022 Prof. Bruce McCarl

Semi-continuous variables

Semi-integer variables

21.1.1 Binary variables

These can take on values of 0 or 1 only. Binary variables are declared as follows

Binary Variable s1(i), t1(k,j), w1(i,k,j) ;

Example:

(basint.gms)

POSITIVE VARIABLE X1

INTEGER VARIABLE X2

BINARY VARIABLE X3

VARIABLE OBJ

EQUATIONS OBJF

 X1X2

 X1X3;

OBJF.. 7*X1-3*X2-10*X3 =E= OBJ;

X1X2.. X1-2*X2 =L=0;

X1X3.. X1-20*X3 =L=0;

option optcr=0.01;

MODEL IPTEST /ALL/;

SOLVE IPTEST USING MIP MAXIMIZING OBJ;

Notes:

• The lower bound of zero and upper bound of one restrictions do not need to be added as they are

automatically generated.

• Often such variables are used in generating logical conditions such as imposing mutual exclusivity,

complementarity, or other types of phenomenon as discussed in Chapter 15 of McCarl and Spreen.

• Priorities (.prior attributes of variables) can be used to override binary specifications as discussed

below.

21.1.2 Integer variables

These can take on integer values between specified lower and upper bounds where note the default
upper bound is 100. Integer variables are declared as follows,

Integer Variable s1(i), t1(k,j), w1(i,k,j) ;

Example:

(basint.gms)

POSITIVE VARIABLE X1

INTEGER VARIABLE X2

BINARY VARIABLE X3

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/mccspr/new15.pdf

Mixed Integer, Semi, and SOS Programming 824

© 2022 Prof. Bruce McCarl

VARIABLE OBJ

EQUATIONS OBJF

 X1X2

 X1X3;

OBJF.. 7*X1-3*X2-10*X3 =E= OBJ;

X1X2.. X1-2*X2 =L=0;

X1X3.. X1-20*X3 =L=0;

x2.up=125;

option optcr=0.01;

MODEL IPTEST /ALL/;

SOLVE IPTEST USING MIP MAXIMIZING OBJ;

Notes:

• These variables are automatically bounded by GAMS so they have a default upper bound of 100. If

the user wishes the integer variables to take on values greater than 100, a larger bound must be
specified.

• A lower bound of zero is automatically generated. This may also be changed.

• Priorities (.prior attributes of variables) can be used to override binary specifications as discussed

below.

21.1.3 Specially ordered set variables of type 1 (SOS1)

At most one variable within a specially ordered set of type 1 (SOS1) can have a non-zero value. This
variable can take any positive value. SOS1 variables are declared as follows:

SOS1 Variable s1(i), t1(k,j), w1(i,k,j) ;and

The members of the right-most index for each named item are defined as belonging to the SOS1 group
or set of variables of which at most one of which can be non zero.

For example, in the SOS1 variables defined above,

• s1 forms one group of mutually exclusive SOS1 variables which contains elements for each

member of the set i and thus only one variable for one of the cases of i can be nonzero with
the rest being zero.

• t1 defines a separate SOS1 set for each element of k and within each of those sets the

variables indexed by j are SOS1 or mutually exclusive.

• w1 a separate SOS1 set for each pair of elements in i and k and within each of those sets the

variables indexed by j are SOS1 or mutually exclusive.

Example:

prodschx.gms from the GAMS model library shows formulations with binary, SOS1 and SOS2 sets.

Notes:

McCarl GAMS User Guide825

© 2022 Prof. Bruce McCarl

• By default each SOS1 variable can range from 0 to infinity. As with any other variable, the user may

set these bounds to whatever is required.

• One is required to utilize a mixed integer (MIP) solver to solve any model containing SOS1 variables.

 However, the SOS1 variables do not have to take on integer solution levels.

• The MIP solver is required because the solution process needs to impose mutual exclusivity and to

do this it implicitly defines an additional set of zero one integer variables, then solves the problem
as a MIP.

• The user can provide additional constraints say requiring the sum to the SOS1 variables in a set to

be less than or equal to a quantity (often 1 for convexity). Consider the following example,

SOS1 Variable s1(i) ;

Equation defsoss1 ;

defsoss1.. sum(i,s1(i)) =l= 3.5 ;

Here the equation defsoss1 defines the largest non-zero value that one of the elements of the
SOS1 variable s1 can take.

• A special case of SOS1 variables is when exactly one of the elements of the set has to be nonzero

and equal to a number. In this case, the defSoss1 equation will be

defSoss1.. sum(i,s1(i)) =e= 10 ;

A common use of the use of this type of restriction is for the case where the right hand side in the
equation above is 1. In such cases, the SOS1 variable is effectively a binary variable. In such a
case, the SOS1 variable could just have been binary and the solution provided by the solver would
be indistinguishable from the SOS1 case.

• Not all MIP solvers allow SOS1 variables. Furthermore, among the solvers that allow their use, the

precise definition can vary from solver to solver. A model that contains these variables may not be
perfectly transferable among solvers. You should verify how the solver you are using handles SOS1
variables by checking the relevant section of the solver manual.

21.1.4 Specially ordered set variables of type 2 (SOS2)

At most two variables within a specially ordered set of type 2 (SOS2) can take on non-zero values. The
two non-zero values have to be for adjacent variables in that set. Specially ordered sets of type 2
variables are declared as follows:

SOS2 Variable s2(i), t2(k,j), w2(i,k,j) ;

The members of the right-most index for each named item are defined as belonging to a special (SOS2)
group or set of variables of which at most one of which can be non zero.

For example, in the SOS2 variables defined above,

• s2 forms one group of SOS2 variables of which at most 2 can be non zero and they must be

adjacent in terms of the set i. The adjacency means if the set i has elements /a,b,c,d,f,g/
that one could have any 2 variables like the ones associated with set elements a and b but
never a and c since the set elements are not adjacent. This means the sets used must be
ordered as discussed in the Sets chapter.

• t2 defines a separate SOS2 set for each element of k and within each of those sets no more

Mixed Integer, Semi, and SOS Programming 826

© 2022 Prof. Bruce McCarl

than 2 variables can be non zero. Further, they they must be adjacent in terms of the set j.
The adjacency means if the set j has elements /j1,j2,j3,j4,j5,j6/ that one could have any 2
variables like j3 and j4 but never j1 and j6 since the set elements are not adjacent. This
means the set j must be ordered as discussed in the Sets chapter.

• w2 defines a separate SOS2 set for each pair of elements in i and k. Within each of those

sets no more than 2 variables can be non zero and they must be adjacent in terms of the set
j. The adjacency means if the set j has elements /j1,j2,j3,j4,j5,j6/ that one could have any 2
variables like j3 and j4 but never j2 and j4 since the set elements are not adjacent. This
means the set j must be ordered as discussed in the Sets chapter.

Example:

prodschx.gms from the model library shows formulations with binary, SOS1 and SOS2 sets.

Notes:

• The most common use of SOS2 sets is to model piece-wise linear approximations to nonlinear

functions using separable programming.

• One must use a mixed integer (MIP) solver to solve any model containing SOS2 variables. But, the

SOS2 variables do not have to take on integer solution levels.

• The MIP solver is required because the solution process needs to impose both adjacency

restrictions and the restrictions that no more than 2 nonzero level values can be present and to do
this the solvers implicitly defines an additional set of zero one variables, then solves the problem as
a MIP.

• The default bounds for SOS2 variables are 0 to plus infinity. As with any other variable, the user may

set these bounds to whatever is required.

• Not all MIP solvers allow SOS2 variables. Furthermore, among the solvers that allow their use, the

precise definition can vary from solver to solver. Thus a model that contains these variables may
not be perfectly transferable among solvers. Please verify how the solver you are using handles
SOS2 variables by checking the relevant section of the Solver Manual.

21.1.5 Semi-continuous variables

Semi-continuous variables are restricted, if non-zero, to take on a level above a given minimum and
below given maximum. This can be expressed algebraically as:

Either

x=0

or

x $ a and x < b

By default, the lower bound (a) is 1.0 and the variable is upper bounded at infinity. The lower and upper
bounds are set through the .lo and .up variable attributes as discussed in the Variables, Equations,
Models and Solves chapter. In GAMS, a semi-continuous variable is declared using the reserved phrase
Semicont variable. The following example illustrates its use.

semicont variable x ;

McCarl GAMS User Guide827

© 2022 Prof. Bruce McCarl

x.lo = 1.5 ; x.up = 23.1 ;

The above code declares the variable x to be a semi-continuous variable that can either be 0, or can
behave as a continuous variable between 1.5 and 23.1.

Notes:

• One is required to utilize a mixed integer (MIP) solver to solve any model containing Semi-

continuous variables. However, these variables do not have to take on integer solution levels.

• The MIP solver is required because the solution process needs to impose the discontinuous jump

between zero and the threshold value. To do this solvers implicitly define an additional zero one
variable, and then solve the problem as a MIP.

• The lower bound has to be less than the upper bound, and both bounds have to be greater than 0.

GAMS will flag an error if it finds that this is not the case.

• Not all MIP solvers allow semi-continuous variables. Please verify that the solver you are using can

handle semi-continuous variables by checking the solver manual.

21.1.6 Semi-integer variables

Semi-integer variables are restricted, if non-zero, to take on an integer level above a given minimum level.
 This can be expressed algebraically as:

Either

x=0

or

x $ a and integer

By default, the lower bound (a) is set to 1.0 and the variable is upper bounded at 100. The lower and
upper bounds are set through the .lo and .up variable attributes as discussed in the Variables,
Equations, Models and Solves chapter.

In GAMS, a semi-integer variable is declared using the reserved phrase Semiint variable. The following
example illustrates its use.

semiint variable x ;
x.lo = 2 ; x.up = 23 ;

The above declares the variable x to be a semi-continuous variable that can either be 0, or can behave as
an integer variable between 2 and 23.

Notes:

• One is required to utilize a mixed integer (MIP) solver to solve this problem type.

• The lower bound has to be less than the upper bound, and both bounds have to be greater than 0.

GAMS will flag an error if it finds that this is not the case.

Mixed Integer, Semi, and SOS Programming 828

© 2022 Prof. Bruce McCarl

• The variables are upper bounded at 100. If one wants larger bounds then they need to be specified.

• The bounds for semiint variables have to be set at integer values. GAMS will flag an error during

model generation if it finds that this is not the case.

• Not all MIP solvers allow semi-continuous variables. Please verify that the solver you are interested

in can handle semi-continuous variables by checking the Solver Manual.

21.2 Imposing priorities

In MIP models users can specify an order for picking variables to branch on during a branch and bound
search. This is done through the use of priorities. Without priorities, the MIP algorithm will internally
determine which variable is the most suitable to branch on.

Priorities are set for individual variables through the use of the .prior variable attribute as discussed in
the Variables, Equations, Models, and Solves chapter. As a general rule of thumb, the most important
variables should be given the highest priority which implies they should have the lowest nonzero values
of the .prior attribute. The default value is 1.0. Functionally .prior establishes in what order variables
are to be fixed to integral values while searching for a solution. Variables with a specific .prior value will
remain relaxed until all variables with lower .prior values have been fixed. A .prior value of +Inf indicates
the variable will always be relaxed, ie not discrete.

For priorities other than the infinity one to be used the user must activate them through use of the GAMS
model attribute statement

mymodel.prioropt = 1 ;

where mymodel is the name of the model specified in the model statement for the problem to be solved
as discussed in the Model Attributes chapter. The default value is 0 in which case priorities will not be
used.

Example:

The following example illustrates its use,

mymodel.prioropt = 1 ;

z.prior(i,'small') = 3 ;

z.prior(i,'medium') = 2 ;

z.prior(i,'large') = 1 ;

In the above example, z(i,'large') variables are branched on before z(i, 'small') variables.

Notes:

• The higher the value given to the .prior suffix, the lower the priority for branching.

• Note that there is a prior variable attribute for each individual component of a multidimensional

variable.

• All members of any SOS1 or SOS2 set should be given the same priority value.

McCarl GAMS User Guide829

© 2022 Prof. Bruce McCarl

• The .prior attribute of a discrete variable can be used to relax the discrete restriction on that variable.

 Setting the .prior value to +inf will relax a variable permanently. This relaxation is done independent
of the model attribute .prioropt.

21.3 Branch-and-Cut-and-Heuristic Facility

Hard mixed-integer programming (MIP) problems can be solved faster with the help of user
supplied routines that generate cutting planes and good integer feasible solutions.The GAMS
Branch-and-Cut-and-Heuristic (BCH) facility closes this gap. It automates all major steps necessary
to define, execute and control the use of user defined routines within the framework of general
purpose MIP codes. It is documented at BCH Facility.

21.4 GAMS options and model attributes

GAMS has a number of options and model attributes that can be used to influence MIP solver
performance or report on MIP results. They are invoked as discussed below or in the Model Attributes
chapter.

Modelname.Cheat = x

Modelname.Cutoff = x

Modelname.Nodlim = x

x=Modelname.objest

Modelname.Optca=X Option Optca=X

Modelname.Optcr=X Option Optcr=X

Modelname.Optfile = 1

Modelname.Prioropt = 1

Modelname.Tryint = x

21.4.1 Modelname.Cheat = x

The cheat value requires each new integer solution to be at least x better than the previous one. This
can reduce the number of nodes that the MIP solver examines and can improve problem solving
efficiency. However, setting this option at a positive value (zero is the default) can cause some integer
solutions, including the true integer optimum, to be missed. When a model has been solved with the
cheat parameter set at a nonzero level than all one is able to say is that the optimum solution is within
the cheat parameter or less of the solution found. The cheat parameter is specified in absolute terms
(like the Optca option). Certain solver options override the cheat setting.

Use of this parameter is done using a command like (basint.gms)

iptest.cheat=0.1;

where the model being solved is named iptest and cheat is set to 0.1.

Integer programming solver option file parameters like the CPLEX option objdif can override the cheat

https://www.gams.com/latest/docs/UG_SolverUsage.html#ADVANCED_USAGE_BCHFacility

Mixed Integer, Semi, and SOS Programming 830

© 2022 Prof. Bruce McCarl

attribute value.

21.4.2 Modelname.Cutoff = x

As the branch and bound search proceeds, the parts of the tree with an objective worse than the cutoff
value x are ignored. This can speed up the initial phase of the branch and bound algorithm (before the
first integer solution is found). However, setting this option at a positive value (zero is the default) can
cause some integer solutions, including the true integer optimum, to be missed if in a maximization, it's
value is above the cutoff. In fact, if the If you set cutoff below the optimum, you get no solution -- not just
some missed integer solutions. Cutoff may also cause one to miss finding an initial feasible integer
solution.

The cutoff parameter is specified in absolute terms (like the Optca option).

Use of this parameter is done using a command like (basint.gms)

iptest.cutoff=12;

where the model being solved is named iptest and cutoff is set to 12.

21.4.3 Modelname.Nodlim = x

This attribute specifies the maximum number of nodes to process in the branch and bound tree for a MIP
problem. This can stop solutions that are exhibiting "excessive" iterations and if the limit is reached
causes the algorithm to terminate, without reaching optimality. The Nodlim parameter is specified as an
integer.

Use of this parameter is done using a command like (secur.gms)

security.nodlim=10000;

where the model being solved is named security and nodlim is set to 10000.

21.4.4 x = Modelname.objest

Some MIP capable GAMS solvers generate a bound on the objective function value for the best
possible solution when solving integer programs .

Users can access this bound by using the model attribute objest.

One can access this by setting a parameter equal to Modelname.objest

 xx=mymip.objest;.

or (secur.gms)

McCarl GAMS User Guide831

© 2022 Prof. Bruce McCarl

scalar bestobj solver est of best obj value;
bestobj=security.objest;
display bestobj;

21.4.5 Modelname.Optca=X Option Optca=X

This specifies the absolute optimality criterion for a MIP problem. In general, GAMS tells the solvers to
stop trying to improve upon the integer solution and stop calling the solution close enough to optimal
when

(|BP - BF|) < Optca,

where BF is the objective function value of the current best integer solution while BP is the best possible
integer solution.

This reduces solution time as the solver stops not looking for better solutions. However, setting this
option at a positive value (zero is the default) can cause the true integer optimum to be missed if it's
value is within Optca of the best solution on hand when the problem stops. The final solution could be
the best, but is guaranteed only to be within the tolerance of the "true optimal".

Optca is specified in absolute terms relative to the objective value. Thus a value of 100 means the
objective value will be within the 100 units of the true objective value.

Use of this parameter involves a command like (basint.gms)

iptest.optca=12;

or

Option optca=12;

where the model being solved is named iptest and optca is set to 12.

21.4.6 Modelname.Optcr=X Option Optcr=X

This specifies the relative optimality criterion for a MIP problem. In general GAMS tells the solvers to
stop trying to improve upon the integer solution when

(|BP - BF|)/(|BP|) < Optcr ,

where BF is the objective function value of the current best integer solution while BP is the best possible
integer solution. However some solvers, in particular CPLEX use slightly different definitions. The Optcr
option is used in CPLEX to stop when (|BP - BF|)/(1.0e-10 + |BF|) < Optcr.

In turn the solver stops after finding a solution proven to be "close enough" (within the Optcr tolerance) to
optimal. This reduces solution time as the solver stops not looking for better solutions. However,
setting this option at a positive value (0.1 is the default) can cause the true integer optimum to be
missed if it's value is within Optcr of the best solution on hand when the problem stops. The final
solution could be the best but is guaranteed only to be within the tolerance of the "true optimal".

Mixed Integer, Semi, and SOS Programming 832

© 2022 Prof. Bruce McCarl

The Optcr parameter is specified in proportional terms relative to the objective value thus a value of 0.10
means the objective value will be within the 10% of the true objective value.

Use of this parameter is done using a command like (basint.gms)

iptest.optcr=0.012;

or

Option optcr=0.012;

where the model being solved is named iptest and optcr is set to 0.012 or 1.2%. The default value for
Optcr is large being 0.10 or 10%.

21.4.7 Modelname.Optfile = 1

Instructs the mixed integer solver to read an options file as discussed in the Solver Option Files chapter.
 The name of the option file is solvername.opt (ie cplex.opt or xa.opt or osl.opt). Solver options allow
one to manipulate the way solvers work affecting a number of solver functions including choice of the
branch and bound tree handing strategies. The solver manuals cover the allowable options.

21.4.8 Modelname.Prioropt = 1

Instructs the mixed integer solver to use priority branching information passed by GAMS through the
variable.prior attributes. If used priorities should reflect knowledge of the problem. Variables with higher
priorities – lower values of the ,prior attribute -- will be branched upon before variables of lower priorities.
This information indicates user specified preferred directions for the internal branch and bound tree
search and can dramatically reduce the number of nodes searched.

Problem knowledge may indicate what could be considered first. For example, consider a problem with
a binary variable representing a yes/no decision to build a factory, and other binary variables
representing equipment selections within that factory. You would naturally want to explore whether or
not the factory should be built before considering what specific equipment to be purchased within the
factory so you would set the priority values lower for the build variables. By assigning a higher priority –
lower value of prior- to the build/nobuild decision variable, you can force this logic into the tree search
and speed up computation time by not exploring uninteresting portions of the tree.

Note priorities are not needed and the branch and bound codes used sophisticated branching criteria
involving potential of the variable to affect the objective function value.

21.4.9 Modelname.Tryint = x

Causes the mixed integer solver to try to make use of the available initial integer solution. The exact
form of implementation depends on the solver and can be in part controlled by solver settings or options.
 See the solver manuals for details.

21.5 Branch and bound output

When the model secur.gms was solved with an earlier version of CPLEX it yielded output like the
following

McCarl GAMS User Guide833

© 2022 Prof. Bruce McCarl

 Nodes Cuts/

 Node Left Objective IInf Best Integer Best Node ItCnt Gap

 0 0 2.2303e+007 24 2.2303e+007 0

 100 93 2.2303e+007 1 2.2303e+007 53

 200 193 2.2303e+007 1 2.2303e+007 53

* 280+ 266 2.2303e+007 0 2.2303e+007 2.2303e+007 53 0.00%

 300 270 2.2303e+007 1 2.2303e+007 2.2303e+007 53 0.00%

* 390 65 2.2303e+007 0 2.2303e+007 2.2303e+007 104 0.00%

Fixing integer variables, and solving final LP..

MIP Solution : 22303062.100023 (104 iterations, 391 nodes)

Final LP : 22303062.100023 (0 iterations)

Best integer solution possible : 22303113.765793

Absolute gap : 51.6658

Relative gap : 2.31653e-006

This output will differ across solvers but generally contains the same types of information showing the
branch and bound approach in action. Namely the columns by label are

• Node is number of branch and bound problems examined so far.

• Nodes left is number of problems created during the branching process that are yet to be

examined.

• IInf tells number of integer variables with non-integer solution levels.

• Objective gives the current objective function value.

• Best node gives the current lower bound on the solution. Similarly the column

• Best integer gives the incumbent solution. Note the last solution in that column is not

necessarily global best.

• Gap gives max percentage difference from theoretical optimum.

Here we see, no solution is found for a while (indicated by blank entry in Best Integer until iteration 280),
then one found and another. This shows the common phenomena that MIP solves usually end with a
gap between the solution found and the best possible. This is controlled by iteration limits, resource
limits, solver options, and model attributes like optcr/optca.

21.6 Nonlinear MIPs

Modelers may wish to impose integer restrictions on nonlinear formulations. Today GAMS contains the
DICOPT and CBC solvers that permit this. They tie together other solvers. For example both can use
CONOPT to solve the nonlinear sub-problems. DICOPT also uses MIP solvers on the integer part of the
problem while CBC contains an internal integer solution algorithm.

For example suppose we impose restrictions in a portfolio problem that a minimum of 10 shares be
bought if any and that we buy integer numbers of shares (intev.gms)

 Integer VARIABLES INVEST(STOCKS) MONEY INVESTED IN EACH STOCK

 binary variables mininv(stocks) at least 10 shares bought

 VARIABLE OBJ NUMBER TO BE MAXIMIZED ;

 EQUATIONS OBJJ OBJECTIVE FUNCTION

Mixed Integer, Semi, and SOS Programming 834

© 2022 Prof. Bruce McCarl

 INVESTAV INVESTMENT FUNDS AVAILABLE

 minstock(stocks) at least 10 units to be bought

 maxstock(stocks) Set up indicator variable ;

 OBJJ.. OBJ =E= SUM(STOCKS, MEAN(STOCKS) * INVEST(STOCKS))

 - RAP*(SUM(STOCK, SUM(STOCKS,

 INVEST(STOCK)* COVAR(STOCK,STOCKS) * INVEST(STOCKS))));

 INVESTAV.. SUM(STOCKS, PRICES(STOCKS) * INVEST(STOCKS)) =L= FUNDS;

 minstock(stocks).. invest(stocks) =g= 10*mininv(stocks);

 maxstock(stocks).. invest(stocks)=l=1000*mininv(stocks);

 MODEL EVPORTFOL /ALL/ ;

 SOLVE EVPORTFOL USING MINLP MAXIMIZING OBJ ;

When using DICOPT and CBC it is very important to have the constraints represent to the full extent
possible the link between continuous and integer variables.

21.7 Identifying the solver

MIP problems are sometimes hard to solve and sometimes involve trying out different alternatives.
Option statements are involved as discussed in the options chapter.

MINLP

MIP

RMIP

RMINLP

21.7.1 MINLP

This option specifies what solver GAMS will use when it needs to solve a MINLP type of model. This
option is used by setting

Option MINLP=solvername;

where the solver must be MINLP capable.

21.7.2 MIP

This option specifies what solver GAMS will use when it needs to solve a MIP type of model. This option
is used by setting

Option MIP=solvername;

where the solver must be MIP capable.

21.7.3 RMIP

This option specifies what solver GAMS will use when it needs to solve a RMIP type of model. This
option is used by setting

McCarl GAMS User Guide835

© 2022 Prof. Bruce McCarl

Option RMIP=solvername;

Where the solver must be RMIP capable.

21.7.4 RMINLP

This option specifies what solver GAMS will use when it needs to solve a RMINLP type of model. This
option is used by setting

Option RMINLP=solvername;

Where the solver must be RMINLP capable.

21.8 Model termination conditions and actions

The following termination conditions can occur

Value of Modelstat indicates integer Model Solution Status

 8 Integer solution found

 9 Solver terminated early with a non-integer solution found(only in MIPs)

10 No feasible integer solution could be found

When a number 9 occurs one may need to consider whether the gap is satisfactory or whether the
model has to be run for a longer time. When 10 occurs there truly may be no feasible MIP solution and
this can be hard to diagnose. In such cases one should certainly make sure that the RMIP has a
feasible solution, then try to fix in an integer solution that should be feasible and find out why not.

21.9 Things to watch out for

There are some problems one may have either due to GAMS settings or problem characteristics. I
summarize three of these below.

Default bounds

Ending with a gap – big default for Optcr (10%)

The nonending quest

21.9.1 Default bounds

One needs to be aware that the GAMS default bound used to limit the maximum value of the integer
variables to 100 but as of version 23.1 this can be changed to +inf by altering a parameter.

This is controlled using the GAMS parameter IntVarUp=n or option statement option intvarup=n;. as
discussed for the command line parameter case here or the option statement case here.

Mixed Integer, Semi, and SOS Programming 836

© 2022 Prof. Bruce McCarl

This used to be implemented through a command line parameter pf4.

21.9.2 Ending with a gap – big default for Optcr (10%)

MIPs solves often end with a gap between the solution found and the best possible. This is controlled
by optcr/optca or by non convergence. The default value of Optcr is relatively large being 0.10 or a 10%
gap as discussed above. Users may want to reduce this to a smaller value. The other cause of a gap is
discussed just below.

21.9.3 The nonending quest

Integer programming is a quite desirable formulation technique. But, integer problems can be hard to
solve due to search nature of solution process

Three approaches can help

• Reformulate reflecting as much problem knowledge in the formulation as possible improving

the depiction of the

� Way the integer variables are tied together by the constraints. For example, entering
constraints that reflect that if one size of machine is chosen in the first stage of an
assembly line that it must be matched with a comparable machine in the second stage.

� Way the integer and continuous are tied together by the constraints. For example, one
could achieve benefits by entering constraints indicating that the sum of the continuous
variables depicting volume through a warehouse whose construction is depicted by
integer variable representing warehouse must be no more than capacity times the integer
variable and no less than say 75% of capacity times the integer variable.

� Restricting the values of the integer variables eliminating "unnecessary" cases of integer
variables. For example, in a warehouse location problem if only one warehouse can
practically be built require the sum across the variables to be one. Similarly if
experience says at least 2 machines are necessary but no more than 5 then enter such
constraints.

• Use MIP solver features through options and GAMS. Sometimes spectacular reductions in

solution time can be achieved in very little time by changing solver branch and bound
procedures.

• Expand available resources or allowable iterations.

Also these solves are generally slower so one must be patient.

22 NLP and MCP Model Types

There are a number of items users should be aware of regarding problem set up, termination conditions
and other matters for NLP and MCP problems. Non linear programs or NLPs refer to that class of
programs where either the objective function or constraints contained nonlinear terms. Mixed
Complementarity Problems or MCPs models can also contains such terms. There is nothing special
about the specification of nonlinear terms, as one just uses multiplication(*), exponentiation(**) or
division(/) operators within the algebraic specifications of the ..equation contents. One can also use a
number of the available functions defined (Exp, Log, Log10, Prod, Sqr, and Sqrt, plus others) as covered
in the chapter on calculations.

McCarl GAMS User Guide837

© 2022 Prof. Bruce McCarl

Terminology

Problem setup

Output

NLP and MCP variants

Solvers

22.1 Terminology

Superbasic

Complementarity

22.1.1 Superbasic

Some of the solvers refer to variables that are superbasic. To solve a linear program it is sufficient to
look at basic solutions or "corner points": A set of basic variables (with the number of basic variables
equal to the number of constraints) is used to satisfy the constraints, and the remaining so called non-
basic variables are all at either their upper or their lower bound (frequently zero).

In nonlinear programming, the optimal solution is usually not at a corner point. Some of the variables will
still be at their lower or upper bounds and these variables are again called non-basic variables. The
number of remaining variables will usually be larger than the number of constraints. Some solvers will
split these remaining variables into basic variables, that are adjusted to satisfy the constraints (the
number of basic variables is always equal to the number of constraints), and superbasic variables, that
are adjusted to minimize or maximize the objective function. The number of superbasic variables is
sometimes called the degrees of freedom. It is a measure of the nonlinearity of the solution around the
current point.

22.1.2 Complementarity

Mixed complementarity model types (MCP) require a complementarity between the variables and the
equations where either

a variable is nonzero and a constraint strictly binding

or

the constraint is non binding and the variable zero.

They also require the number of variables in the model to exactly match the number of equations in the
model. This is discussed below.

22.2 Problem setup

Staring points -- initial values

Upper and lower bounds

Scaling

Degenerate cycling blocking

NLP and MCP Model Types 838

© 2022 Prof. Bruce McCarl

Advanced bases

MCP complementarity specification

22.2.1 Starting points -- initial values

One strategy one can use to improve solver performance involves use of starting points where initial
values are provided for the decision variables within the problem. The specification of starting points
involving good initial values for the individual variables is important in a NLP/MCP context for a number of
reasons.

• Non-convex models may have multiple solutions and the solvers generally only try to find one

local one. An initial point in the right neighborhood is more likely to return a desirable
solution.

• Initial values that satisfy or closely satisfy many of the constraints reduce the work involved in

finding a first feasible solution.

• Initial values that are close to the optimal ones reduce the work required to find the optimal

point and therefore the solution time.

• The progress of the optimization algorithm is based on good directional information and

therefore on good derivatives. The derivatives in a nonlinear model depend on the current
point, and an improved initial point can improve solver performance.

Starting points are specified by assigning values to the level attribute of the variables before solution.
Namely, one enters lines like

x.l(setdependency)= startingvalue;

into the code after the definition of the variables, but before the first solve.

The initial values used within one of the nonlinear solvers employed by GAMS are suggested by GAMS
based on the problem formulation and the initial values provided. By default the initial value chosen for
all variables is zero or the lower bound. Unfortunately, zero is in many cases is a bad initial value for a
nonlinear variable. For example, an initial value of zero is especially bad if the variable appears in a
product term since the initial derivative becomes zero, and it appears as if the function does not depend
on the variable. Zero starting values can also cause numerical difficulties when logarithms,
exponentiations or divisions are involved. Also nonzero lower bound derived starting points may not be
desirable as derivatives evaluated at small lower bounds may be very large and provide the algorithm with
misleading information.

Users should endeavor to supply as many sensible initial values for the nonlinear variables as possible
by assignment to the level value, var.L, in GAMS as illustrated in the Basis Chapter. It may be desirable
to initialize all variables to 1, or to the scale factor if employing the GAMS' scaling option. A better
possibility is to select reasonable values for some variables that from the context or from prior solutions
using advanced basis concepts like a GDX solution point file.

Constraint relationships can help in providing initial values. For example if the constraints

eq(i) .. x(i) = log(a(i)*y(i));

were in a model and you have assigned initial values to y.l(i), then you could provide a feasible solution
by assigning x.l(i) = log(a(i)*y.l(i)).

McCarl GAMS User Guide839

© 2022 Prof. Bruce McCarl

One should try to the extent possible to assign initial values to as many as possible of the interrelated
variables. Assume you have assigned a value to y.l(i) in the constraint above and have left x.l at zero.
Commonly when a solver is trying to find a feasible solution, it will adjust one variable for each
constraint. If the solver selects y to be adjusted (a good choice since it is away from its bounds and
therefore free to move) then it will change y to the value that makes the constraint feasible and remove
your starting point.

22.2.2 Computing Derivatives

Ordinarily in GAMS the derivatives and hessians of NLPs are computed analytically for use by
solvers. However GAMS allows extrinsic function libraries that do not have features to return first
derivatives and/or Hessian values plus uses numerical derivatives in some cases with the intrinsic
function. GAMS approximates these using finite differences.

In particular for a univariate function (F(x)) when a derivative is needed around the point x, GAMS
uses a step size parameter d and evaluates the function at f(x-d) and f(x+d) divided by 2d to
develop a numerical gradient. In the Hessian computation GAMS can evaluate these based in
differences in the first derivative f by computing multiple differences based off the function using f(x-
2d), f(x), and f(x+2d). For multi variate functions, the same is done for all the variables involved.

In this procedure users can exercise control over the size of the d parameter (called the step size)
using the option FDDelta. Also users can control the method of calculation of the Hessian plus
cause the first derivative to be computed numerically using FDOpt.

Specifically using the option

FDDelta One can alter the step size (d) used in the numeric gradient and Hessian
calculation as discussed above. The default for FDDelta is 1e-5.

FDOpt Is used to control step size scaling, hessian computation method and possible
numerical first derivative use by specifying two digits: ij.

· Where the first i digit controls whether the step size (FDDelta) is
scaled to reflect the size of the value of the point (x) around which the
derivative is being formed. When i=0 the default state then scaling is
used and d is set to the FDDelta value multiplied by max(1,|x|) (ie.
d=max(1,|x|)*FDDelta). When i is set to 1 this turns off scaling and
d=FDDelta.

· The j digit is mostly for testing, but allows one to influence gradient
computation when the extrinsic function provides gradient but no
Hessian values. The numerical derivatives routine in this case uses the
gradient calculation from the extrinsic function to approximate the
Hessian. If the gradient is expensive to calculate compared to a
function evaluation, it could be beneficial to use multiple function
values to approximate the Hessian. In this case set the j digit to 1.

NLP and MCP Model Types 840

© 2022 Prof. Bruce McCarl

· Here are all possible values for FDopt:

o 0: All derivatives are computed analytically if available, for
numerical Hessian use gradient values, FDdelta will be scaled

o 1: All derivatives are computed analytically if available, for
numerical Hessian use function values, scale delta

o 2: Gradient are computed analytically, force Hessian numerically
using gradient values, scale delta (testing only)

o 3: Gradient are computed analytically, force Hessian numerically
using function values, scale delta (testing only)

o 4: Force gradient and Hessian numerically, scale delta (testing
only)

o 10: Same as 0, but no scale of delta
o 11: Same as 1, but no scale of delta
o 12: Same as 2, but no scale of delta (testing only)
o 13: Same as 3, but no scale of delta (testing only)
o 14: Same as 4, but no scale of delta (testing only)

These options can be set from the command line, in an option statement, or as a model attribute.

An example without derivatives can be found in library file trilib which implements a Sine function
without derivatives leaving their calculation to GAMS.

22.2.3 Upper and lower bounds

Lower and upper bounds in nonlinear models can

• Represent constraints on the reality that is being modeled, e.g. a variable must be positive, or

it must be less than or equal to 10.

• Help the algorithm by preventing it from moving far away from any optimal solution and

avoiding regions where problems are encountered like unreasonably large function or derivative
values as well as singularities in the nonlinear functions. These bounds are called algorithmic
bounds.

• Facilitate solution feasibility since most solvers will honor bounds at all times, but inequalities

are not necessarily satisfied at intermediate points.

• Improve presolve performance since NLP solvers preprocessors incur a computational penalty

when inequalities are present.

Algorithmic bounds merit further discussion. When a model contains the Log or Log10 of a variable it is
generally useful to have that variable be no smaller than a given value like 1.e-3 (x.lo=1.0e-3) as the log
gets very large as zero is approached and is undefined if the variable becomes negative. Similarly use of
Exp of a variable in model equations implies that the variable value should be less than 20-25. Small
values for variables used with negative exponents or in denominators are again not desirable. Solver
performance can be improved and execution errors avoided when one introduces algorithmic bounds on
variables not naturally bounded by the model formulation.

McCarl GAMS User Guide841

© 2022 Prof. Bruce McCarl

22.2.4 Scaling

Nonlinear programming algorithms use the derivatives of the objective function and the constraints to
determine good search directions and to determine how to alter the value of the decision variable levels.
They also use function values to determine if constraints are satisfied or not. The scaling of the variables
and constraints, i.e. the units of measurement used for the variables and constraints, determines the
relative size of the derivatives and function values. They also determine the solution levels and marginals
and the search path taken by the algorithm. Proper, consistent scaling of these items is important to
the success of the solution algorithm and the quality of the answer returned.

In this context proper consistent scaling means one should scale to achieve:

• Solution level values for the variables fall into a range around 1, e.g. from 0.01 to 100.

• Solution values of the nonzero constraint marginals that exhibit absolute values falling into a

range around 1, e.g. from 0.01 to 100.

• Derivatives of nonlinear terms (Jacobian elements) in the model equations that fall in absolute

value around 1, e.g. from 0.01 to 100 both at the starting values and at the optimal solution.

• Constants in the model equations that exhibit absolute values around 1, e.g. from 0.01 to 100.

This generally implies that user defined scaling should be employed as discussed in the Scaling GAMS
Models chapter. Note some of the solvers have internal scaling procedures, but in general users can do
a better job. Scaling factors involve a model level specification of the scaleopt model attribute and an
individual variable-by-variable and equation-by-equation specification of the scaling factors.

22.2.5 Degenerate cycling blocking

Most of the commercial linear programming solvers have provisions within them to temporarily place
small numbers on the right hand sides of problems if during a solution process they sense that
degenerate cycling is occurring. In general, nonlinear programming solvers do not have such an internal
feature. Sometimes nonlinear programming solution success and solver performance can be enhanced
by making model formulation additions along those lines.

In particular, if users find that the nonlinear programming solution process exhibits a large number of
iterations where the solver does not make significant progress in altering the objective function value,
then some action may be in order. I have had success with speeding up the nonlinear solutions by
altering the zero right hand sides in problems. In particular, sometimes I add a relatively small number
to the right hand side of the equation so that instead of

f(x) <= 0

we have

f(x) <= delta*0.001

where delta is set to one if we wish the additions and zero otherwise and the 0.001 is adjusted to the
size needed for the constraint. Such an addition quite frequently reduces solution time by helping the
solver avoid degenerate cycling and if done correctly really does not make a qualitative difference in
resultant model solution. One can also set delta to zero after an optimal solution has been achieved and
resolve to clean out the effects of the small numbers.

NLP and MCP Model Types 842

© 2022 Prof. Bruce McCarl

Notes:

• The magnitudes of the numbers added to the right hand side depend on the model context.

� The numbers should be chosen so they do not introduce significant distortions into the
problem solution.

� One also should not always utilize the same number but perhaps some systematically varying
number or a random number.

• Such actions make the constraints easier to satisfy and helps avoid degenerate cycling.

• I not only use this on problems with right hand sides of zero, but also on problems which have a lot

of common and equal non zero right hand sides where I will add a small number to the right hand
sides.

22.2.6 Advanced bases

In nonlinear models advanced bases are often helpful but there are cases where they do not contribute to
shortened solution time. There are no general rules. Only experience with a problem will show how the
effectiveness of the provision of an advanced basis. Nonlinear programming is the place where I've had
largest gains in terms of solution time reduction with things being reduced from day to hours. Formation
and usage of advanced bases are discussed in the Advanced Basis Usage chapter.

Sometimes advanced bases can cause difficulties in nonlinear programming model types. In such
cases one may need to manage a model so there aren't radical departures in terms of the number of
incorporated variables and equations relative to be saved basis helping avoiding initial singularity. One
may also need to use the Bratio option or the model attribute defPoint to destroy the basis.

22.2.7 MCP complementarity specification

Mixed complementarity problem model types must obey a property where there are exactly as many
variables as there are equations and each variable must be specified as being complementary with one
and only one equation. This is done in the Model statement where one lists the equations to be
included followed by a period(.) and the name of the associated complementary variables as follows
(mcp.gms)

Model qp6 Michael Ferris example of MCP
/ d_x?x, d_w?w, retcon?m_retcon,
budget?m_budget, wdef?m_wdef /;

where the notation has

equation name?complementary variable name

In addition one can use the /all / notation to automatically include all equations and match up
complementary variables. This will work provided that

• All the equations are of the form =e= or =n=.

• The variables are all free (specified as Variables not Positive Variables).

McCarl GAMS User Guide843

© 2022 Prof. Bruce McCarl

• The problem being square with free variables defined with exactly matching subscripts for

each equation.

• This does not fully convey the complementary structure to the solver and is generally inferior

to a user defined specification of the complementary pairs.

This is illustrated in kormcp.gms.

The MCP problem structure imposes particular requirements on specification of the equations in the
problem.

• It is always acceptable to write the equations defining the problem with =N= relations. In this

case, the sign of the associated equation is implied by the equation/variable matching and the
variable bounds.

• If a variable is complementary with an equation and that variable has lower bounds only (e.g if

the variable in GAMS terms is a positive variable) then it is acceptable to write the
complementary equation with =G= relations, since this is consistent with the constraint
implied by the lower bound on the variable.

• A variable bounded only above can be matched with =L= equations.

• Free variables without bounds can be matched with =E= equations.

These restrictions are elaborated on in the Model Types and Solvers chapter.

22.3 Output

Output files associated with nonlinear terms in models contain several unique characteristics.

Problem displays - limrow/limcol marking

Model setup output

Solver results

22.3.1 Problem displays - limrow/limcol marking

Nonlinear terms are marked in the limrow and limcol output. Namely, nonlinear coefficients are enclosed
in parentheses, and the value of the coefficient depends on the level attributes (.l values) of the variables.
 The listing shows the partial derivative of each variable evaluated at their current level values and there is
an implicit unlisted constant involved with the function evaluations. For the example simpnlp.gms with
the equation

Eq1.. 2*sqr(x)*power(y,3) + 5*x - 1.5/y =e= 2;

At the starting point

x.l = 2; y.l = 3 ;

The equation listing contains

Eq1.. (221)*x + (216.1667)*y =2 ; (LHS = 225.5, INFES = 223.5 ***)

NLP and MCP Model Types 844

© 2022 Prof. Bruce McCarl

In this case the 221 against x is the first derivative with respect to x = 2*2*x*power(y,3)+5 (note that the
linear term 5*x is treated as part of the nonlinear function), while the 216.1667 against y is the first
derivative with respect to y = 2*sqr(x)*3*power(y,2) + 1.5/power(y,2) and the 225.5 is the current
evaluation of the function left hand side 2*sqr(x)*power(y,3) + 5*x - 1.5/y and the INFES value is the
LHS evaluation minus the RHS evaluation. The proper interpretation of the x and y above are the
differences from the starting point thus 221 is the change in the function as x incrementally varies from
the starting value of 2.

Note when scaling is present this list will contain the scaled derivatives. The numbers listed are directly
useful in evaluation of the scaling criteria mentioned above.

22.3.2 Model setup output

The model setup output as discussed in the Standard Output chapter also has some other features
influenced by the solution of nonlinear or MCP model types. Namely for the example simpnlp.gms it is

MODEL STATISTICS

BLOCKS OF EQUATIONS 1 SINGLE EQUATIONS 1

BLOCKS OF VARIABLES 2 SINGLE VARIABLES 2

NON ZERO ELEMENTS 2 NON LINEAR N-Z 2

DERIVATIVE POOL 6 CONSTANT POOL 11

CODE LENGTH 54

This output provides details on the size and nonlinearly of the model.

• The non linear n-z entry refers to the number of nonlinear matrix entries in the model.

• The code length entry reports on the complexity of the nonlinear part of the model. The

numerical value reports the amount of code GAMS passes to the nonlinear solver that
describes all the nonlinear terms in the model.

• The derivative pool and constant pool provide more information about the nonlinear information

passed to the nonlinear solver.

22.3.3 Solver results

Nonlinear problem solutions lead to slightly different reports of solver results. These manifest
themselves in the nature of the iteration log, the termination messages that can be encountered, in error
reporting and in the MCP case in the nature of certain items in the output.

22.3.3.1 Iteration log

While the iteration log is certainly different when a nonlinear problem is being solved there is no
standardized output here. Namely the iteration log is constructed by the solver. Thus the exact output
depends on the solver being used and is a user choice. For log file discussion see the solver manuals.

However a general statement can be made. Namely nonlinear programming solution outputs are
somewhat more technical as a gradient based approximating process is usually being employed
involving the presence of superbasic variables. Generally the solver log output is designed to keep the

McCarl GAMS User Guide845

© 2022 Prof. Bruce McCarl

user informed on algorithm related factors including such things as the magnitude of the gradients, the
step size, and the number of superbasic variables in the solution.

22.3.3.2 Termination messages

Nonlinear solvers may terminate in a number of ways. This section will elaborate where needed on the
meaning of the termination messages and in cases point to discussions of corrective actions. This will
be done in terms of the reported Model Status or model attribute .Modelstat, and the reported Solver
Status or .Solvestat model attribute.

• In general users should recognize that nonlinear programming problem optimal solutions will

always be reported as Locally Optimal. This occurs since the solvers and GAMS generally do
not try to verify whether the conditions for true global optimality exist (e.g. does the problem
involve a globally concave function subject to convex constraint set). That does not mean that
the solution found is not a global optimum just that that verification is left to the user.

• Models may be Locally Infeasible. However, this can be misleading. In particular, if the

model is non-convex it may have a feasible solution in a different region and a different starting
point may reveal a feasible solution.

• Models may terminate with an Feasible Solution being terminated by the solver.

Discontinuities, poorly scaled models, or degenerate cycling can cause the problem as can
iteration limits, or time limits.

• Models may be unbounded. This occurs if a variable exceeds a maximum value. This can be

caused by genuine unboundedness or by poor scaling.

22.3.3.3 Function evaluation errors

The solvers may terminate with numerically based errors. These can involve domain errors when the
user defined nonlinear terms are evaluated at solution points that cause under or overflows. In such
cases one often has to add algorithmic bounds as discussed above, or engage in scaling as discussed
in the Scaling Chapter. Further discussion of such errors appears in the Execution Errors chapter. One
can relax the number of these allowed using the Option Domlim. The model attribute domusd gives a
count of the number encountered.

22.3.3.4 MCP difference in Equation and Variable Solution Output

Upon solution the MCP generated answer for the equilibrium problem econequil.gms appears as below.

 LOWER LEVEL UPPER MARGINAL

---- EQU PDemand 6.000 6.000 +INF 10.000

---- EQU PSupply -1.000 -1.000 +INF 10.000

---- EQU Equilibri~ . . +INF 3.000

 LOWER LEVEL UPPER MARGINAL

---- VAR P . 3.000 +INF .

---- VAR Qd . 10.000 +INF .

---- VAR Qs . 10.000 +INF .

NLP and MCP Model Types 846

© 2022 Prof. Bruce McCarl

This does not have an objective function but otherwise is of basically the same form as typical GAMS
output. However there are some interpretation differences.

In the equation output four columns appear for each equation. GAMS transforms each constraint so that
the terms involving variables are collected on the left hand side, and accumulates constants on the right
hand side. The lower and upper bounds give the resultant constants. For equality equations, these are
equal, whereas for inequalities one is infinite. The level value is an evaluation of the left hand side of the
constraint at the current point. The model may be infeasible and if so the unsatisfied equations are
marked with INFES. The Marginal column gives the value of each variable complementary to the
constraint. It is also possible to obtain output indicating equations have been redefined (REDEF). A
technical explanation of this phenomenon appears in the Path manual (PATH) but it is just a warning
and mandates no user action.

In the variable listing, four output items are again provided. The lower, and upper items give the lower
and upper bounds on the variables. The level gives the solution value. The marginal column contains the
value of the slack on the equation that was paired with this variable. The definition of this slack is the
minimum of equ.level - equ.lower and equ.level - equ.upper, where equ is name of the paired equation.
Note that the variable levels and the equation marginals correspond.

A summary report follows that indicates how many errors were found. When the model has
infeasibilities, these can be found by searching for the string "INFES"

More on this can be found in the Path manual.

22.4 NLP and MCP variants

Nonlinear and MCP model types also encompass the forms MCP, NLP, CNS, MINLP, and DNLP
models as well as MPSGE and MPEC models. These are discussed in the Model Types and Solvers
chapter.

22.5 Solvers

These model types require specialized solvers. The applicable solvers and the nonlinear model types
they apply to (note the solvers can also solve linear cases).

The GAMSIDE provides a list of all solvers available and an indication which model types they apply to.

Using the following statement in a GAMS model will also produce a list of solvers and the corresponding
model types:

option subsystems;

23 Model Attributes

Model attributes contain information relative to model solution procedures and results passed back and
forth between GAMS and solvers.

There are two fundamental types of model attributes:

https://www.gams.com/latest/docs/S_PATH.html

McCarl GAMS User Guide847

© 2022 Prof. Bruce McCarl

• Attributes mainly used before a solve statement to provide information to GAMS or the solver link.

• Attributes mainly used after a solve statement to retrieve information about the last solve.

The adressing of model attributes and the use of single attributes will be discussed below.

Attribute addressing

Model Attributes mainly used before solve

Model Attributes mainly used after solve

23.1 Attribute addressing

Model attributes are addressed with modelname.attribute i.e.

X=modelname.attribute;
Modelname.attribute=3;

where modelname is the name used in a model statement and attribute is one of the items listed below.
 More specifically, given the modelname is transport then statements like

x=transport.Modelstat;
transport.holdfixed=1;
transport.bratio=1;

can be specified. Such items

• can be used in displays

• can be used in calculations as data (on the right hand side of assignments)

• may have calculation results assigned to them (on the left hand side of equations)

23.2 Model Attributes mainly used before solve

Attributes mainly used before a solve statement provide information to GAMS or the solver link.
Beside the standard attribute addressing some of these input attributes can also be set via an option
statement or the command line

option reslim = 10

gamsmodel.gms reslim = 10

The third and fourth column of the following table indicate if this ways of setting are possible. Note that a
model specific option takes precedence over the global setting and a setting via an option statement
takes precedence over the setting via the command line.

Attribute Description optio
n

comma
nd

line

Model Attributes 848

© 2022 Prof. Bruce McCarl

bRatio Basis acceptance test. A bratio of 0 accepts any basis, and a bratio of 1
always rejects the basis.
See Advanced Basis Usage.

x x

cheat Cheat value. Requires a new integer solution to be a given amount better
than the current best integer solution. Default value is 0.

cutOff Cutoffvalue. Occasionally used attribute that causes MIP solvers to
delete parts of the branch and bound tree with an objective worse than
the numerical value of the cutoff attribute.

defPoint Determines the point that is passed to the solver as a basis. By default,
the levels and marginals from the current basis is passed to the solver. In
some circumstances (mostly during debugging) it can be useful to pass
a standard default input point, i.e. with all levels set to 0 or lower bound.
When defpoint=1 this results in passing zoro or lower bounf levels and
zero marginals. When defpoint=2 this results in curent variable and
equation levels set by the user and defaults (0) for the marginals.

dictFile Force writing of a dictionary file if dictfile > 0.

domLim Maximum number of domain errors. This attribute allows errors to occur
up to a given number during solution. Default value is 0.

x x

fddelta Step size when computing numerical derivatives x x

fdopt Controls method of computing numerical Hessian x x

holdFixed This attribute can reduce the problem size by treating fixed variables as
constants. Allowable values are
· 0: fixed variables are not treated as constants (default)
· 1: fixed variables are treated as constants

x

integer1 Integer communication cell that can contain any integer number. x x

integer2 Integer communication cell that can contain any integer number. x x

integer3 Integer communication cell that can contain any integer number. x x

integer4 Integer communication cell that can contain any integer number. x x

integer5 Integer communication cell that can contain any integer number. x x

iterLim Iteration limit. The solvers will interrupt the solution process when the
iteration count reaches that limit. The default value is 2 billion.

x x

limCol Maximum number of cases written to the LST file for each named variable
in a model. The default value is 3.

x x

limRow Maximum number of cases written to the LST file for each named
equation in a model. The default value is 3.

x x

nodLim Node limit. This attribute specifies the maximum number of nodes to
process in the branch and bound tree for a MIP problem. The default
value is 0 and is interpreted as 'not set'.

x x

optCA Absolute optimality criterion. This attribute specifies an absolute
termination tolerance for use in solving all mixed-integer models. The
default value is 0.

x x

optCR Relative optimality criterion. This attribute specifies a relative termination
tolerance for use in solving all mixed-integer models. The default value is

x x

McCarl GAMS User Guide849

© 2022 Prof. Bruce McCarl

0.1.

optFile Look for a solver options file if optFile > 0. The value of optfile determines
which option file is used:
· If Optfile = 1 the option file solvername.opt will be used.
· If Optfile = 2 the option file solvername.op2 will be used.
· If Optfile = 3 the option file solvername.op3 will be used.
· If Optfile = 15 the option file solvername.o15 will be used.
· If Optfile = 222 the option file solvername.222 will be used.
· If Optfile = 1234 the option file solvername.1234 will be used.
· If Optfile = 0 no option file will be used. (default)

x

priorOpt Priority option. Variables in mixed integer programs can have a priority
attribute. One can use this parameter to specify an order for picking
variables to branch on during a branch and bound search for MIP model
solutions. The default value is 0 in which case priorities will not be used.

real1 Real communication cell that can contain any real number. x

real2 Real communication cell that can contain any real number. x

real3 Real communication cell that can contain any real number. x

real4 Real communication cell that can contain any real number. x

real5 Real communication cell that can contain any real number. x

reform Reformulation level. x

resLim Maximum time available to solve in seconds. The default value is 1000. x x

savePoint This parameter tells GAMS to save a point format GDX file that contains
the information on the current solution point. One can save the solution
information from the last solve or from every solve. Numeric input with the
following values is expected:
· 0: no point gdx file is to be saved
· 1: a point gdx file called modelname p.gdx is to be saved from the last

solve in the GAMS model
· 2: a point gdx file called modelname pnn.gdx is to be saved from every

solve in the GAMS model, where nn is the solve number as determined
internally by GAMS

x x

scaleOpt This attribute tells GAMS whether to employ user specified variable and
equation scaling factors. It must be set to a nonzero value if the scaling
factors are to be used.
See Scaling GAMS Models.

x x

solPrint This attribute controls the printing of the model solution to the LST file.
Note that the corresponding option expects a text, while the use of
modelname.solPrint and the command line expect a numeric value.
Allowed are
· 0/Off: remove solution listings following solves
· 1/On: include solution listings following solves (default)
· 2/Silent: suppress all solution information

x x

solveLink This attribute controls GAMS function when linking to solve. Allowable
values are:
· 0: GAMS operates as always (default)
· 1: the solver is called from a shell and GAMS remains open

x x

Model Attributes 850

© 2022 Prof. Bruce McCarl

· 2: the solver is called with a spawn (if possible as determined by
GAMS) or a shell (if the spawn is not possible) and GAMS remains
open

· 3: GAMS starts the solution and continues in a Grid computing
environment

· 4: GAMS starts the solution and waits (same submission process as
3) in a Grid computing environment

· 5: the problem is passed to the solver in core without use of temporary
files.

solveOpt This attribute tells GAMS how to manage the model solution when only
part of the variables and equations are in the particular problem being
solved. Note that the corresponding option expects a text, while the use
of model name.solveOpt and the command line expect a numeric value.
Allowed are:
· 0/replace: the solution information for all equations appearing in the

model is completely replaced by the new model results; variables are
only replaced if they appear in the final model

· 1/merge: the solution information for all equations and variables is
merged into the existing solution information; (default)

· 2/clear: the solution information for all equations appearing in the
model is completely replaced; in addition, variables appearing in the
symbolic equations but removed by conditionals will be removed

There is an example called 'solveopt' in the model library.

x

sysOut This attribute controls the incorporation of additional solver generated
output (that in the solver status file) to the LST file. Note that the
corresponding option expects a text, while the use of model
name.sysOut and the command line expect a numeric value. Allowed are
· 0/Off: suppress additional solver generated output (default)
· 1/On: include additional solver generated output

x x

threads This attribute controls the number of threads or CPU cores to be used by
a solver. Allowable values are:
· -n: number of cores to leave free for other tasks
· 0: use all available cores
· n: use n cores (will be reduced to the available number of cores if n is

too large)

x x

tolInfeas Infeasibility tolerance for an empty row of the form a.. 0*x =e= 0.0001;. If
not set, a tolerance of 10 times the machine precision is used. Empty
rows failing this infeasibility check are flagged with the listing file
message 'Equation infeasible due to rhs value'.

tolInfRep This attribute sets the tolerance for infeasible solutions. The default value
is 1.0e-6.

tolProj This attribute controls the tolerance for filtering marginals (i.e. setting
marginals within the tolerance to 0) and projecting levels to the lower or
upper bound that are within the tolerance when reading a solution, default
is 1e-8.

tryInt Signals the solver to make use of a partial or near-integer-feasible
solution stored in current variable values to get a quick integer-feasible
point. If or how tryInt is used is solver-dependent.

McCarl GAMS User Guide851

© 2022 Prof. Bruce McCarl

tryLinear Examine empirical NLP model to see if there are any NLP terms active. If
there are none the default LP solver will be used. To activate use model
name.trylinear=1. Default value is 0. The procedure also checks to see if
QCP, and DNLP models can be reduced to an LP; MIQCP and
MINLP can be solved as an MIP; RMIQCP and RMINLP can be solved as
an RMIP.

workFact
or

This attribute tells the solver how much workspace to allocate for problem
solution relative to the GAMS estimate. default value is 1.0

x

workSpac
e

This attribute tells the solver how much workspace in Megabytes to
allocate for problem solution.

x

23.3 Model Attributes mainly used after solve

The model attributes mainly used after solve are set by GAMS or the solver link and
contain information about the last solve. These attributes are automatically reset during
execution of a solve.
These attributes can be accessed by

X=modelname.attribute;

 as described in Attribute Addressing.

Attribute Description

domUsd Number of domain violations.

etAlg This attribute returns the elapsed time it took to execute the solve
algorithm. The time does not include the time to generate the model,
reading and writing of files etc. The time is expressed in seconds of wall-
clock time.

etSolve This attribute returns the elapsed time it took to execute a solve statement
in total. This time includes the model generation time, time to read and
write files, time to create the solution report and the time taken by the
actual solve. The time is expressed in seconds of wall-clock time.

etSolver This attribute returns the elapsed time taken by the solver only. This does
not include the GAMS model generation time and time taken to report and
load the solution back into the GAMS database. The time is expressed in
seconds of wall-clock time.

handle Every solve gets unique handle number that may be used by handlecollect,
handlestatus or handledelete. See Grid Computing language features

iterUsd Number of iterations used.

line Line number of last solve of the corresponding model.

linkUsed Integer number that indicates the value of solveLink used for the last solve.

Model Attributes 852

© 2022 Prof. Bruce McCarl

maxInfes Max of infeasibilities as reported by a solver

meanInfes Mean of infeasibilities as reported by a solver

modelStat Integer number that indicates the model status. Possible values are:

1 Optimal solution achieved
2 Local optimal solution achieved
3 Unbounded model found
4 Infeasible model found
5 Locally infeasible model found (in NLPs)
6 Solver terminated early and model was infeasible
7 Solver terminated early and model was feasible but not yet optimal
8 Integer solution model found
9 Solver terminated early with a non integer solution found (only in MIPs)
10 No feasible integer solution could be found
11 Licensing problem
12 Error achieved – No cause known
13 Error achieved – No solution attained
14 No solution returned from CNS models
15 Feasible in a CNS models
16 Locally feasible in a CNS models
17 Singular in a CNS models
18 Unbounded – no solution
19 Infeasible – no solution

For more information see Modelstat: Tmodstat

nodUsd The number of nodes used by the MIP solver.

number Model instance serial number. The first model solved gets number 1, the
second number 2 etc. The user can also set a value and the next model
solved will get value+1 as number.

numDepn
d

Number of dependencies in a CNS model.

numDVar Number of discrete variables

numEqu Number of equations.

numInfes Number of infeasibilities.

numNLIns Number of nonlinear instructions.

numNLNZ Number of nonlinear nonzeros.

numNOpt Number of nonoptimalities.

numNZ Number of nonzero entries in the model coefficient matrix.

numRedef Number of MCP redefinitions.

numVar Number of variables.

McCarl GAMS User Guide853

© 2022 Prof. Bruce McCarl

numVarPr
oj

Number of bound projections during model generation.

objEst The estimate of the best possible solution for a mixed-integer model.

objVal The objective function value.

procUsed Integer number that indicates the used model type. Possible values are:

1 LP
2 MIP
3 RMIP
4 NLP
5 MCP
6 MPEC
7 RMPEC
8 CNS
9 DNLP
10 RMINLP
11 MINLP
12 QCP
13 MIQCP
14 RMIQCP
15 EMP

resGen Time GAMS took to generate the model in CPU seconds.

resUsd Time the solver used to solve the model in CPU seconds.

rObj The objective function value from the relaxed solve of a mixed-integer
model when the integer solver did not finish.

solveStat This model attribute indicates the solver termination condition. Possible
values are:

1 Normal termination
2 ran out of iterations (fix with iterLim)
3 exceeded time limit (fix with resLim))
4 quit with a problem (see LST file) found
5 quit with excessive nonlinear term evaluation errors (see LST file)
6 terminated for unknown reason (see LST file)
7 The solver cannot find the appropriate license key needed to use a
specific subsolver.
8 User interrupt
9-13 terminated with some type of failure (see LST file)

For more information see Solvestat: Tsolstat

sumInfes Sum of infeasibilities.

Model Attributes 854

© 2022 Prof. Bruce McCarl

23.3.1 Marginals

This is a model attribute that indicates whether (1) or not (0) a dual solution is returned from the
solver after the solve statement.

When the solver does not provide a dual solution (.m), then GAMS does not print the marginal
column in the solution listing and set the marginal field in variables and equations to NA.

23.3.2 Modelstat: Tmodstat

Upon solution a model attribute indicative of model status (Modelstat) is set by a solver and passed
back to GAMS. This attribute can have the following values

Value of
Modelstat

Indicated Model Solution Status ModelStat Constant

1 Optimal solution achieved ModelStat.Optimal
2 Local optimal solution achieved ModelStat.Locally Optimal
3 Unbounded model found ModelStat.Unbounded
4 Infeasible model found ModelStat.Infeasible
5 Locally infeasible model found (in NLPs) ModelStat.Locally Infeasible
6 Solver terminated early and model was infeasible ModelStat.Intermediate

Infeasible
7 Solver terminated early and model was feasible but

not yet optimal
ModelStat.Feasible Solution

8 Integer solution model found ModelStat.Intermediate Non-
Integer

9 Solver terminated early with a non integer solution
found (only in MIPs)

ModelStat.Integer Infeasible

10 No feasible integer solution could be found ModelStat.Integer Infeasible
11 Licensing problem ModelStat.Licensing Problem
12 Error achieved – No cause known ModelStat.Error Unknown
13 Error achieved – No solution attained ModelStat.Error No Solution
14 No solution returned ModelStat.No Solution

Returned
15 Feasible in a CNS models ModelStat.Solved Unique
16 Locally feasible in a CNS models ModelStat.Solved
17 Singular in a CNS models ModelStat.Solved Singular
18 Unbounded – no solution ModelStat.Unbounded - No

Solution
19 Infeasible – no solution ModelStat.Infeasible - No

Solution

Notes:

• Also the older labeling for condition 7 - ModelStat.Intermediate NonOptimal has a

numerical value of 7

McCarl GAMS User Guide855

© 2022 Prof. Bruce McCarl

• These values are fixed and cannot be manipulated.

In addition, the model attribute .Tmodstat contains internally assigned text describing the model
optimality status and can be used in put files to print out a text indication of model optimality status.

Examples:

(varmodatt.gms)

scalar xx;

xX=transport.Modelstat;

Display xx,transport.Modelstat;

If(transport.Modelstat gt %ModelStat.Locally Optimal%,

 Display '**** Model did not terminate with normal solution',

 transport.Modelstat;)

set scenarios /goodone,toomuchdemand/;

set casewithbadanswer(scenarios,*);

loop (scenarios,

 solve transport using lp minimizing cost;

 demand(sink)=demand(sink)*1.1;

 casewithbadanswer(scenarios,"model")

 $(transport.Modelstat gt 2)=yes;

);

display casewithbadanswer;

Notes:

• In the example above note we are basically using this attribute so I can keep a record or generate

output relative to model solution status.

• The user can assign values to Modelstat, but ordinarily this is not desirable.

• In a set of looped solves this provides the best way to keep track of whether the solves worked

properly and if the numerical values are stored to record an indication of the type of problem.

• .Tmodstat contains internally assigned text describing the model optimality status and can be used

in put files to print out a text indication of that status.

23.3.3 Solvestat: Tsolstat

Upon solution a model attribute indicative of solver termination model status (solvestat) is set by a solver
and passed back to GAMS. This attribute can have the following 13 values.

Value of
Solvestat

Indicated Solver termination condition SolveStat Constant

1 Normal termination Solvestat.Normal Completion
2 Solver ran out of iterations (fix with iterlim) Solvestat.Iteration Interrupt
3 Solver exceeded time limit (fix with reslim) Solvestat.Resource Interrupt
4 Solver quit with a problem (see LST file) found Solvestat.Terminated By

Model Attributes 856

© 2022 Prof. Bruce McCarl

Value of
Solvestat

Indicated Solver termination condition SolveStat Constant

Solver
5 Solver quit with excessive nonlinear term evaluation

errors (see LST file and fix with bounds or domlim)
Solvestat.Evaluation Interrupt

6 Solver terminated for unknown reason (see LST file) Solvestat.Capability Problems
7 Solver terminated with preprocessor error (see LST

file)
Solvestat.Licensing Problems

8 User interrupt Solvestat.User Interrupt
9 Solver terminated with some type of failure (see LST

file)
Solvestat.Setup Failure

10 Solver terminated with some type of failure (see LST
file)

Solvestat.Solver Failure

11 Solver terminated with some type of failure (see LST
file)

Solvestat.Internal Solver
Failure

12 Solver terminated with some type of failure (see LST
file)

Solvestat.Solve Processing
Skipped

13 Solver terminated with some type of failure (see LST
file)

Solvestat.System Failure

These values are fixed and cannot be manipulated.

Examples:

(varmodatt.gms)

scalar xx;

xX=transport.solvestat;

Display xx,transport. solvestat;

If(transport.solvestat gt %Solvestat.Normal Completion%,

 Display '**** Solver did not terminate with normal solution',

 transport. solvestat ;)

set scenarios /goodone,toomuchdemand/;

set casewithbadanswer(scenarios,*);

loop (scenarios,

 solve transport using lp minimizing cost;

 demand(sink)=demand(sink)*1.1;

 casewithbadanswer(scenarios,"solve")

$(transport.solvestat gt 1)=yes;

);

display casewithbadanswer;

Notes:

• In the example above this attribute is used to keep a record of termination status and generate

output relative to solver termination status.

• The user can assign values to solvestat, but ordinarily this would not be the case.

McCarl GAMS User Guide857

© 2022 Prof. Bruce McCarl

• In a set of looped solves this provides another way to keep track of whether the solves worked

properly and if the numerical values are stored to record an indication of the type of problem.

• Tsolstat contains internally assigned text describing the solver termination status and can be used

in put files to print out a text indication of termination status.

24 Application Help: Model Library, Web Sites,
Documentation

GAMS has been used in a lot of settings with many different approaches and procedures used. While
the material above was designed to cover GAMS in a relatively comprehensive manner there are
certainly other sources of information that users will find useful particularly when pursuing specific type
of modeling exercises. Here I provide a guide to additional resources one can pursue in a quest for more
information on GAMS.

Model library

Other general documentation sources

24.1 Libraries

GAMS has been an important vehicle for modeling for more than a decade. As such there are numerous
applications that have implemented. Examination of previous applications allows the user to examine
approaches and techniques that have been tested by others gaining or adapting ideas for the application
at hand. To facilitate such an exercise GAMS Corporation has assembled a library of models,
collectively called GAMSLIB.

The models in the library have been selected because they represent interesting and sometimes classic
problems or illustrate GAMS techniques. Problems in the library depict such diverse applications as

• Production and shipment by firms,

• Investment planning in time and space,

• Cropping pattern selection in agriculture,

• Operation of oil refineries and petrochemical plants,

• Macroeconomics stabilization,

• Applied general equilibrium analysis,

• International trade in commodities,

• Water distribution networks, and

• Relational databases.

Another criterion for including models in the library is that they illustrate the modeling capabilities GAMS
offers. For example, the mathematical specification of cropping patterns can be represented handily in
GAMS. Another example of the system's capability is the style for specifying initial solutions as starting
points in the search for the optimal solution of dynamic nonlinear optimization problems.

Application Help: Model Library, Web Sites, Documentation 858

© 2022 Prof. Bruce McCarl

Finally, some models have been selected for inclusion because they have been used in other modeling
systems. Examples are network problems and production planning models. These models permit the
user to compare how problems are set up and solved in different modeling systems.

Using the GAMS model library

Using another model library

24.1.1 GAMS model library

The library is most conveniently accessed through the IDE. In particular a Windows Explorer like library
manager is present in the IDE. You invoke this by invoking the File menu, choosing the Model Library
line and the Open GAMS Model Library choice

This invokes the Library manager that, once opened, brings up the following screen

McCarl GAMS User Guide859

© 2022 Prof. Bruce McCarl

The grid filled with model names is a scrollable list of files with column entries describing file attributes.
At the bottom is a more lengthy description of the file highlighted. In turn double clicking in a row
causes the file to be loaded in the IDE for editing and into your project directory. Simultaneously all files
it includes and other files the library creator nominated are placed in the project directory.

There are several features of this manager that merit description

• The manager contains a search box as in the blue box below. When one types an entry into

that box the manager automatically scrolls forward to a file that contains the typed text
somewhere in it. For example typing in the string "chem" causes the screen below to appear

Application Help: Model Library, Web Sites, Documentation 860

© 2022 Prof. Bruce McCarl

where the ALYKL command is the first one that contains the string "chem". If one wants to
find the next occurrence of the string one can press the down arrow key while the up arrow
reveals the previous one.

• The gray bar at the top of the grid allows one to alter the tabular sort order. By clicking the

mouse on the gray bar one changes that order. For example touching the word Type causes
the files to be sorted by model type as illustrated below.

The column sorted on is marked with a + if in forward order and a minus if in reverse order.

The sort order also uses a secondary sort key where it remembers the previous columns you
have sorted on. Consequently if you first click on Name then Type you the files will be
arranged by alphabetical order of their names under a problem type. But if you sorted first on
Application Area then most recently on Type they would be organized by Application Area
under each problem type.

• A left click with the mouse on a file name causes its description to be placed in the text box

at the bottom. A double click loads the file into the IDE.

McCarl GAMS User Guide861

© 2022 Prof. Bruce McCarl

• A right click with the mouse brings up a menu box.

If one chooses the view model choice the GAMS code is placed in the box where the
description appeared with a gray background.

Another right click will bring up the box again and the view model choice can be unclicked.

• You may change column widths, allocation of top and bottom screen parts and window size

just as in other programs through use of the mouse. The IDE will remember some but not all
of your choices.

• Users may define their own library by using a GLB file as discussed here.

Application Help: Model Library, Web Sites, Documentation 862

© 2022 Prof. Bruce McCarl

24.1.2 GAMS Test Library

This is a library of GAMS models that is used by GAMS Corporation for quality control and testing.
 Most users will not have a use for this library. It is accessed through the Model Libraries choice on
the IDE menu.

24.1.3 GAMS Data Utilities Library

A library of files that illustrates passing data to and from GAMS. Illustrates ASK, GDXXRW, and
a number of other data passing routines. It is accessed through the Model Libraries choice on the
IDE menu.

24.1.4 GAMS EMP Library

A library of files that illustrates use of the GAMS EMP facility. Illustrates ASK, GDXXRW, and a
number of other data passing routines. It is accessed through the Model Libraries choice on the IDE
menu.

24.1.5 GAMS Financial Library

This library (FINLIB) is an alphabetical listing of the models available in the on-line model library
based on the book by A. Consiglio, S.S. Nielsen and S.A. Zenios, Practical Financial Optimization:
A library of GAMS models, John Wiley, UK, 2009. The models range from simple cashflow
matching models to several variants of Markowitz mean-variance optimization to advanced models
for international asset allocation and currency hedging, corporate bond portfolio management, asset
and liability modeling for insurers as well as for individual investors, and the management of indexed
funds. Some documentation on the library is at https://www.gams.com/latest/finlib_ml/libhtml/
index.html.

It is accessed through the Model Libraries choice on the IDE menu.

24.1.6 Using another model library

Users may address other Library's provided they have been built and supplied by others or the user goes
through the exercise of creating one and defining a GLB file. For details see the following

How the library works: http://www.gams.com/mccarl/uselib.pdf.

How to create libraries: http://www.gams.com/mccarl/createlib.pdf.

A program that creates a library: makeindx at http://www.gams.com/mccarl/
makeindx.zip .

A full example library from McCarl and Spreen book: http://www.gams.com/mccarl/
textprob.zip. (for the book itself see http://agecon2.tamu.edu/people/faculty/mccarl-
bruce)

All the files for library creation are in the directory with the examples for this manual. The library is built
from the $Ontext/$Offtext entries that appear at the bottom of each example referenced herein along

https://www.gams.com/latest/finlib_ml/libhtml/index.html
https://www.gams.com/latest/finlib_ml/libhtml/index.html
http://www.gams.com/mccarl/uselib.pdf
http://www.gams.com/mccarl/createlib.pdf
http://www.gams.com/mccarl/makeindx.zip
http://www.gams.com/mccarl/makeindx.zip
http://www.gams.com/mccarl/textprob.zip
http://www.gams.com/mccarl/textprob.zip
https://agecon.tamu.edu/faculty-staff/faculty/mccarl-bruce/
https://agecon.tamu.edu/faculty-staff/faculty/mccarl-bruce/

McCarl GAMS User Guide863

© 2022 Prof. Bruce McCarl

with the file gamslib1.ini and makeindx.exe.

Such a library has been built for most of the examples used in this manual. You may access that
library through a 2 step process. First you need to inform the IDE about the presence of this library by
using the File option and the model library choice then the Open user model library choice.

In turn you can browse for the directory where a file called modlib.glb resides which will be in the
directory where all of the example problems for this manual appear and double click on that file.
Subsequently the library manager opens and you get a screen as follows

This Library has all the examples in the book and sortable columns giving topics and GAMS commands
used. The 4 columns Features Item 1-4 give specific commands in the examples but contain
overlapping content. Thus one can find references to the same item in all 4 columns. One thus when
questing for help on a command like sameas needs to look across all 4 columns or use the search box.

One may also load this library into the IDE by augmenting the idecfg.ini file.. In particular In

Application Help: Model Library, Web Sites, Documentation 864

© 2022 Prof. Bruce McCarl

particular one can alter the file idecfg.ini so it has contents like

[library1]

text=GAMS Model Library

file=modlib\modlib.glb

[library2]

text=GAMS Test Library

file=gtestlib\testlib.glb

[library3]

text=McCarl GAMS Classes Library

file=mccarlgams\example\modlib.glb

 where the blue content is there by default and the red content is ones additions. In turn today
the glb file for the library and all the library files must be located in the relative path given by
the file=location command which would be a subdirectory of the GAMS system directory
(C:\program files\GAMS22.7 on a US machine). This will change in the next release

24.2 Other general documentation sources

In addition to the material herein there are a number of other sources for documentation and modeling
tips. These are listed and briefly discussed below.

Installation

Latest GAMS version

Solver manuals

GAMS FAQ

GAMS World

Gams-List

Newsletter

Supplemental GAMS Corporation materials

User generated materials

Courses and workshops

24.2.1 Installation

When installing GAMS one needs machine specific instructions on the steps to follow. Unix and PC
based instructions are

• On paper in the source documents sent with the system.

• On the distribution CD.

• In the GAMS system directory under the subdirectory DOCS.

• Accessible through the web on on the GAMS web site (http://www.gams.com/) in the

Documentation (including FAQ) area.

• Accessible through the IDE Help function as explained in the Running Jobs with GAMS and

the GAMS IDE chapter.

http://www.gams.com/
https://www.gams.com/latest/docs/

McCarl GAMS User Guide865

© 2022 Prof. Bruce McCarl

24.2.2 Latest GAMS version

GAMS maintains a set of release notes and a release history on its web page. The release history is on
the main page at https://www.gamsworld.org/. The release notes are clickable links associated with
each release date although to date they are cumulative so by looking at the last one can see the
developments since the version that the user has.

There is also an automatic email based service with which you can discover what updates are available
to GAMS above and beyond those in your current system. It will also tell you whether your license file
is recent enough to allow these updates. You invoke the system as described on https://
www.gams.com/latest/docs/UG_License.html.

• Arrangements can be made to download the latest version through http://www.gams.com/

download/ although one cannot use it unless their license file is current as discussed in the
Model Types and Solvers chapter.

24.2.3 Solver manuals

Users wishing details on solver procedures and options will need to consult the solver reference guides.
These guides are

• On paper in the source documents sent with the system.

• On the distribution CD.

• In the GAMS system directory under the subdirectory DOCS.

• Accessible through the web on the GAMS web site (http://www.gams.com/) in the

Documentation (including FAQ) area.

• Accessible through the IDE Help function as explained in the Running Jobs with GAMS and

the GAMS IDE chapter.

24.2.4 GAMS FAQ

GAMS provides a web list of Frequently Asked Questions and answers at http://www.gams.com/docs/
FAQ/index.htm. Contents are currently present on general GAMS issues, modeling issues, computer
system (platform) issues and solver issues. A sample of the types of questions addressed appears
below

• GENERAL

� Solver option file not found (wrong file extension)

� How can I access environment variables inside GAMS

� Command Line Parameters

� The Solver Option File

� Special MIP features

� GAMS/Virus Scanner incompatibility

� How can I enumerate all possible subsets of a set

� How do I reduce the size of my listing (.LST) file?

https://www.gamsworld.org/
https://www.gams.com/latest/docs/UG_License.html
https://www.gams.com/latest/docs/UG_License.html
http://www.gams.com/download/
http://www.gams.com/download/
http://www.gams.com/
https://www.gams.com/latest/docs/
http://www.gams.com/docs/FAQ/index.htm
http://www.gams.com/docs/FAQ/index.htm

Application Help: Model Library, Web Sites, Documentation 866

© 2022 Prof. Bruce McCarl

• MODELING

� Missing trig functions (arccos, arcsin, tan)

� Sensitivity analysis (parameter ranges) for LP

� How do I model piecewise linear functions?

� Smooth approximations for MAX(X,0) and MIN(X,0)

� MIN function, don't use it

• PLATFORM

� GAMS crash after upgrade to Windows 2000

� How do I run GAMS in the background on a UNIX machine?

� Finding GAMS errors using the vi editor

� Executing GAMS using the run command in Windows

� How to use GAMS from a Unix shell

� How to execute GAMS from different directories

• SOLVER

� Why do various MIP solvers give differing answers to my problem?

� How do I interrupt a solver?

� GAMS/Virus Scanner incompatibility

� Adding a constraint to a model and do a warm start

� How to use option files

24.2.5 GAMS Wiki

GAMS has a support Wiki that contains some material collected from support activities. The wiki
page is mainly designed as internal databases for their support staff but has been made accessible in
the hope that users will find it valuable.

24.2.6 GAMS World

GAMS World is a web site at http://www.gamsworld.org/ designed to "bridge the gap between academia
and industry by providing highly focused forums and dissemination services in specialized areas of
mathematical programming". The web site currently covers

• Global nonlinear optimization World addressing computational methods to find global optimal

solutions to nonconvex nonlinear optimization problems on http://www.gamsworld.org/global/
index.htm. The coverage involves solvers, a library of test problems, a list server mailing list
and a page of links.

• Mixed Integer Nonlinear Programming (MINLP) World addressing computational methods to

find solutions to MINLP type problems on http://www.gamsworld.org/minlp/index.htm. The

https://forum.gamsworld.org/viewforum.php?f=15
http://www.gamsworld.org/
http://www.gamsworld.org/global/index.htm
http://www.gamsworld.org/global/index.htm
http://www.gamsworld.org/minlp/index.htm

McCarl GAMS User Guide867

© 2022 Prof. Bruce McCarl

coverage involves solvers, a library of test problems, a list server mailing list and a page of
links.

• Mathematical Programs with Equilibrium Constraints (MPEC) World addressing computational

methods to find solutions to MPEC type problems on http://www.gamsworld.org/mpec/
index.htm. The coverage involves a library of test problems, a list server mailing list and a
page of links.

• Mathematical Programming System for General Equilibrium (MPSGE) World addressing

economic equilibrium modeling with the Mathematical Programming System for General
Equilibrium (MPSGE) on http://www.gamsworld.org/mpsge/index.htm. The coverage involves a
library of test problems, a list server mailing list and a page of links.

• Performance World addressing performance testing of mathematical programming problems

on http://www.gamsworld.org/performance/index.htm. The coverage includes a set of test
problems, automation tools for collecting performance measurements, and tools for analyzing
and visualizing test results.

• Translation World addressing translation of GAMS models to other formants based on the

"solver" GAMS/CONVERT. The coverage involve an email translation server.

24.2.7 GAMSWorld Google Group

A discussion group associated with https://www.gamsworld.org/, a web site aiming to bridge the gap
between academia and industry by providing highly focused forums and dissemination services in
specialized areas of mathematical programming. Users may subscribe at http://groups.google.de/
group/gamsworld .

24.2.8 Gams-List

GAMS users worldwide use a mailing list named GAMS-L to exchange information about GAMS. One
can subscribe through the GAMS World Page at https://forum.gamsworld.org/viewtopic.php?
f=16&t=11619.

The pdf file for the old archive can be retrievable at https://forum.gamsworld.org/download/file.php?
id=2010.

The new archive is at https://www.listserv.dfn.de/sympa/arc/gams-l.

24.2.9 Newsletter

I issue a newsletter that is designed to provide additional information on the use and features that
emerge as GAMS develops. Short newsletters appear sporadically, when events justify, containing
information on new developments and/or under documented features as well as opportunities to learn
more about GAMS usage. Users may subscribe to Bruce McCarl's GAMS newsletter by filling out a
form found at https://www.gams.com/newsletter/signup/.

http://www.gamsworld.org/mpec/index.htm
http://www.gamsworld.org/mpec/index.htm
http://www.gamsworld.org/mpsge/index.htm
http://www.gamsworld.org/performance/index.htm
https://www.gamsworld.org/
http://groups.google.de/group/gamsworld
http://groups.google.de/group/gamsworld
https://forum.gamsworld.org/viewtopic.php?f=16&t=11619
https://forum.gamsworld.org/viewtopic.php?f=16&t=11619
https://forum.gamsworld.org/download/file.php?id=2010
https://forum.gamsworld.org/download/file.php?id=2010
https://www.listserv.dfn.de/sympa/arc/gams-l
https://www.gams.com/newsletter/signup/

Application Help: Model Library, Web Sites, Documentation 868

© 2022 Prof. Bruce McCarl

24.2.10 Supplemental GAMS Corporation materials

GAMS provides a number of its own and a set of contributed documents on the web site http://
www.gams.com.

24.2.11 User generated materials

A number of users have web sites where GAMS materials appear. These include

• Tom Rutherford

� Tools site at http://www.mpsge.org/inclib/tools.htm

� Web interfaces he developed or helped with on GAMS interfaces at http://
www.mpsge.org/gamssm/index.html

� MPSGE materials at http://www.gams.com/solvers/mpsge/, http://www.gamsworld.org/
mpsge/, and http://www.mpsge.org/mainpage/mpsge.htm

• Michael Ferris

� MATLAB related site http://www.cs.wisc.edu/math-prog/matlab.html

� Complementary problem net http://www.neos-guide.org/content/complementarity-
problems

• Rob Dellink

� GAMS materials at http://www.enr.wur.nl/uk /gams/

• Bruce McCarl

� Agricultural modeling book with Tom Spreen at http://agecon2.tamu.edu/people/faculty/
mccarl-bruce/regbook.htm

� GAMS materials at http://agecon2.tamu.edu/people/faculty/mccarl-bruce/gamsmcc.htm

� Documents in support of newsletter http://www.gams.com/docs/contributed/index.htm

• Materials from a number of others as listed at

� http://www.gams.com/docs/contributed/index.htm

� http://www.gams.com/contrib/contrib.htm

� https://www.gams.com/archives/presentations/

24.2.12 Courses and workshops

A number of short courses catering to general users and users with specific interests are offered. These
are announced on http://www.gams.com/courses.htm

25 Compressed and encrypted files
Models may be developed for distribution but the model developer may wish to limit access to parts of

the model to insure privacy, security, data/model integrity and ownership. To address this one may use

• Compressed and Encrypted Input Files or

http://www.gams.com
http://www.gams.com
http://www.mpsge.org/inclib/tools.htm
http://www.mpsge.org/gamssm/index.html
http://www.mpsge.org/gamssm/index.html
http://www.gams.com/solvers/mpsge/
http://www.gamsworld.org/mpsge/
http://www.gamsworld.org/mpsge/
http://www.mpsge.org/mainpage/mpsge.htm
http://www.cs.wisc.edu/math-prog/matlab.html
http://www.neos-guide.org/content/complementarity-problems
http://www.neos-guide.org/content/complementarity-problems
http://www.enr.wur.nl/uk/gams/
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/regbook.htm
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/regbook.htm
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/gamsmcc.htm
http://www.gams.com/docs/contributed/index.htm
http://www.gams.com/docs/contributed/index.htm
http://www.gams.com/contrib/contrib.htm
https://www.gams.com/archives/presentations/
http://www.gams.com/courses.htm
https://www.gams.com/latest/docs/UG_DollarControlOptions.html

McCarl GAMS User Guide869

© 2022 Prof. Bruce McCarl

• can compress and encrypt GAMS input files as discussed below.

Input file compression and decompression are available to all users. Encryption and secure work files

require special licensing. Three Dollar Control Options control this:

$Compress <source> <target> Causes compression of an input file

$Decompress <source> <target> Causes decompression of an input

file

$Encrypt <source> <target> Causes encryption of an input file

Notes

· Encryption requires a special GAMS license.

· The use of the Plicense parameter specifies the target license to be used as a user key for

decrypting. This must be done with same license as was used in encryption.

· Once a file has been encrypted it cannot be decrypted.

· Decompression and decrypting is done when reading the GAMS system files.

· GAMS recognizes whether a file is compressed or encrypted and will process the files

accordingly.

· All compressed and encrypted files are platform independent.

Following the GAMS example in the document File "Compression and Encryption" that is now Appendix

I in the old GAMS user guide, the model library file TRNSPORT is used to illustrate compression. First

suppose we compress the file using the following GAMS commands as in compress.gms

$call 'gamslib trnsport'

$compress trnsport.gms t2.gms

where the first command retrieves the transport file and the second command compresses it.

Then later we can solve it as follows as in compress.gms

$include t2.gms.

treating the compressed input file like any other GAMS input file. Note here the list file will look just as

it did with the uncompressed file. To hide the listing of parts one can insert $Offlisting and $Onlisting

around the blocks of GAMS code that are not to be echoed.

One can decompress the file and recover the original file as in decompress.gms

$Decompress t1.gms. t4.gms

One can similarly encrypt a file by using

 $encrypt trnsport.gms t1.gms t2.gms

Compressed and encrypted files 870

© 2022 Prof. Bruce McCarl

With the command line parameter plicense=target

The compressed version of t1.gms can only be used with the target license file.

The cefiles.gms model from the GAMS Model Library contains a more elaborate example on

compression while the encrypt.gms model from the GAMS Model Library contains a more elaborate

example on encryption.

26 Grid and Distributed Computing

The GAMS language has been extended to take advantage of systems with multiple CPUs and
threads plus High Performance Computing Grids allowing model solutions tasks to be carried out in
parallel. One can also distribute jobs across multiple CPUs in a much less automated way. In both
cases this allows model solutions tasks to be carried out in parallel.

To see more on this see the sections on

Grid Computing

Distributed Processing

Language features that implement grid/multi threading computing are discussed next.

Users may supply a script to submit jobs using the gridscript option.

Further documentation on the use of this feature appears in the Grid computing section and in the
document here.

26.1 Distributed Processing

GAMS model instances can take a long time to solve and one may need to solve the model for a
number of scenarios with the result taking weeks or months.

GAMS has the GRID computing facility but on PCs use over a network of machines requires
substantial IT involvement. Such an implementation is often impractical. Here we present a semi
automated procedure to accomplish this.

https://www.gams.com/latest/docs/UG_GridComputing.html

McCarl GAMS User Guide871

© 2022 Prof. Bruce McCarl

Basically, the code (merge_control_example.gms) writes GAMS script files to run a distributed set
of jobs on multiple processors/machines involving creating GDX files to pass scenario data and
return scenario results plus writing a GAMS file that runs the scenarios. The procedure also
compresses the files for the remote machines into a zip file for transfer. A run of
merge_control_example.gms also writes a file merge_mergethem.gms that merges all into a unified
file and a script file that runs it.

An example was written that used the AGRESTE.GMS model library file and is available here.

The core code - merge_control_example.gms creates all files used in the whole process. It is
particular to runs with the AGRESTE case.

The example extends the AGRESTE.GMS model library file and is available here.

The core code - merge_control_example.gms creates all files used in the whole process. It is
AGRESTE context specific with AGRESTE related data handling, reporting and scenario
development but also many generic features. Within that code the user tells: a) how to allocate
scenarios to processors, and b) what data to save and load. Then it writes script files for each
processor plus a processor specific GDX file containing the scenario definition data. It also writes a
file that runs the scenarios. In turn it zips the all the relevant files for transfer to the remote machine.

On the distributed processors/machines the user needs to move in the zip files and extract then then
initiate the scrip file whereupon the scenarios are run and as they finish the results are automatically
unloaded into GDX files. Then the user needs to transfer these GDX files back to a location on
which the data will be merged by running merge_mergethem.gms.

Operationally in the main merge_control_example.gms file we

1. Define the scenarios and in this agreste example link them to some alternative
manipulations of the agreste price, land and risk aversion data (see section 1 in the
code).

2. Define the processors to be used and assign scenarios to be run by each processor (see
section 2)

3. Give a name to the procedure that will run the scenarios on the assigned processors (in
this case agreste_loop - see section 3)

4. Identify which report parameter that reflect the solution for each scenario are to be
merged (see section 4).

5. Set up parameters for the data items and sets that define the scenarios (see section 5)
6. Create processor specific GDX files that contain scenario data to be run and processor

specific script files plus create a zip file to pass to the processor (Section 6).
There are a number of subparts to this step. In particular, for each processor we

 a. Set up scenario data and put it in an appropriately named gdx file (section 6a)
b. Create a script file for that processor (section 6b)

Grid and Distributed Computing 872

© 2022 Prof. Bruce McCarl

 7. Create GAMS code in the file merge_mergethem.gms that will merge the results (section
7).
Here there are several steps involved
a. We define a control variable that contains the names of the report items to merge -

section 7a.
b. We declare the parameters and sets that are involved with holding the scenario

dependent reports to be merged (not needed if restarting) - section 7b.
c. We include a statement to load the gdx file data from each processor using $loadm

so the data will be merged - section 7c.
d. We form a set that tells what scenarios have been found - section 7e.
e. We display merged results and write a gdx file of them - section 7f

8. Get agreste.gms from the library and run it to create a restart file - section 8.
9. Create a GMS file that runs the scenarios called agreste_loop - section 9. In doing this

we
a. Set up scenario particulars - section 9a
b. Define the names of the cross scenario reports that are computed and subsequently

passed on for use in the merge operations - section 9b.
c. Load in data that tells what scenarios to use and accompanying data - section 9c.
d. Loop through the scenarios assigned to a processor setting it up, solving it and

computing reports on the results - section 9d.
e. Unload data into the gdx file for subsequent use in the merge operation - section 9e

B. In doing this merge control_example.gms writes several types of files

1. Files for use on each of the remote processors
a. A script file for that processor with a name like script_for_secondprocessor.gms

that when run executes all the GAMS tasks needed to be done on that processor.
One will be generated for each processor identified in the runstodo table.

b. A GDX file for each processor with the scenario data named
send_to_processorname.gdx or in the example send_to_secondprocessor.gdx

c. A gms file that is used on all remote processors to runs the scenarios called
agreste_loop.gms.

d. A restart file that is created after agreste is run (a1.g00).
e. A zip file that contains the 4 files just above for each processor called

zip_to_send_to_processorname.zip or in the example
zip_to_send_to_Secondprocessor.zip.

 2. A file for the merge operation named merge_mergethem.gms that merges the data from
the distributed runs assuming the gdx files of results have been moved to the project
directory.

C. On the remote processor one needs to

1. Copy in and unzip the file zip_to_send_to_processorname.zip. In this example one file is
named zip_to_send_to_processorname.zip. This unpacks the script file
(script_for_second_processor.gms), a1.g00, the agreste_loop.gms file and the

McCarl GAMS User Guide873

© 2022 Prof. Bruce McCarl

send_to_processorname.gdx (e,g, send_to_secondprocessor.gdx)
2. Run the script file which causes a load of the gdx file of data, a run of agreste_loop.gms

executing all assigned scenarios, creation of scenario dependent reports and an
unloading of the results in a gdx file for use in the merge exercise.
(results_processorname.gdx or in the example results_secondprocessor.gdx)

3. Move the results gdx file to the location where the merge is to be run

D. Then back on the main machine

1. One makes sure the results_procssorname.gdx files have been moved.
2. Run the merge_mergethem.gms to obtain the merged results. These will appear in

merge_mergethem.lst or in results_agreste.gdx.
3. Note this procedure can be run at any time even if all the gdx files are not present.

A few notes
· The GAMS command execute_unload is used to place the results into GDX files

since they only exist at execution time.
· The code for loading from the GDX files uses the GAMS command $loadm to

merge the results as that command augments the earlier information merging in the
data.

· merge_mergethem when executed does the merger and it can be followed by
something else to create user reports. For this you may want to restart it from an
agreste , agreste_loop or merge_control_example restart file.

· Much more could be done with this. For example, one could insert commands that
copy the zip file to the remote processors on a network, then unzip and run it.
Additionally one could write code to copy back the GDX files of results. One can
also write a procedure that waits for the GDX files to be present before running
the merge_mergethem.gms file.

·
The example file is available here.

26.2 Introduction to Grid Computing

GAMS allows one to formally solve models across a grid of computers or using multi threading.

 The formal grid features work on all GAMS platforms and have been tailored to many different
environments. Here we overview the Grid computing features. For those wishing more information
and examples see the GAMS web site coverage in the document http://www.gams.com/docs/
gridcomputing.htm.

 The multi threading features are invoked using Solvelink=6 and are supported by the option
ThreadsAsync with documentation here.

Both the grid and multi threading implementations use the general grid computing features as will be

https://www.gams.com/archives/presentations/present_ws_grid.pdf
https://www.gams.com/archives/presentations/present_ws_grid.pdf
https://www.gams.com/latest/docs/UG_GridComputing.html

Grid and Distributed Computing 874

© 2022 Prof. Bruce McCarl

discussed below.

The grid and multi threading facility separates the solution into several steps which are controlled
separately. First note that when GAMS encounters a solve statement during execution it proceeds in
three basic steps:

• Generation. The symbolic equations for a model are used to specify a numerical
counterpart of the model using the current data. GAMS generates files containing all
information needed by a solution method in a form independent of the solver and
computing platform.

• Solution. The numerical model and associated files are handed over to a solver and
GAMS waits until the solver terminates.

• Solution Collection Read and Update Loop. The solutions of the previously submitted
models are collected from the solver and put into the internal GAMS data base as they
become available. It may be necessary to wait for some solutions to complete.

Language features that implement grid computing are discussed next.

Users may supply a script to submit jobs using the gridscript option.

Further documentation on the use of this feature appears in the Grid computing section and in the
document here.

26.2.1 Grid Computing language features

Grid computing involves several functions, a model attribute, a specialized gdx load procedure and
the GAMS option GridDir plus the concept of a handle.

Grid Computing : Invoking using Solvelink Model Attribute

The model attribute .solvelink tells GAMS when Grid computing is to be used altering the behavior
of the solve statement. A value of '3' tells GAMS to generate and submit the model for solution and
continue without waiting for the completion of the solution step as illustrated above.

set pp names of all models to be solved /m1*m100/;
 parameter h(pp) model handles;

minvar.solvelink=3; or 6
Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;
Solve minvar min var using miqcp;
h(pp) = minvar.handle);

https://www.gams.com/latest/docs/UG_GridComputing.html

McCarl GAMS User Guide875

© 2022 Prof. Bruce McCarl

A set of solvelink constants may also be used.

Handles

A handle in the grid environment identifies the particular model and data instances available. The
model attribute .handle contains the unique identification data for each submitted solution request
and is typically stored in a parameter. Such handles are associated with a set that covers all model
instances and are stored in a parameter defined over that set. Their specific numerical values are
assigned by GAMS and in turn can be used to recover solutions and manage models being solved
on the Grid.

parameter h(pp) stored model identifying handles;
minvar.solvelink=3; or 6
Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;
Solve minvar min var using miqcp;
h(pp) = minvar.handle);

Retrieving and Storing Grid solutions

One must interrogate the solution process to see if the models sent to the grid have been solved and
then load in the solutions. This is typically done with the function handlecollect(handle). Users are
responsible for storing grid solutions in GAMS parameters if they want to be able to separately
address the different solutions. This is typically done by defining new parameters for storing
necessary variable/equation levels and marginals. Such parameters typically include the model
identifying set that is associated with the handles.

One can employ the function ReadyCollect(handleParameter [, maxWait]) to find out when models
have finished solving and are ready to be collected. This can be used for both SolveLink = %
solveLink.Async Threads% and SolveLink = %solveLink.Async Grid%. The arguments and return
codes used with it are

handleParameter: which is a parameter holding handles of model instances to eventually
collect

maxWait: which is an optional parameter giving the maximum time to wait which defaults to
+INF if omitted.

On return the ReadyCollect function provides a code which is

· 0: if at least one of the requested jobs is complete and ready to be collected

· 1 if there is no active job to wait for

· 2 if no handle was provided

· 3: if an invalid handle was provided

Grid and Distributed Computing 876

© 2022 Prof. Bruce McCarl

· 4: if the user specified time-out was reached when using a SolveLink = %
solveLink.Async Threads% handle

· 5: if the user specified time-out was reached when using a SolveLink = %
solveLink.Async Grid% handle

· 8: if an unknown error occurred. this should not happen

If the models take a long time to solve then it is likely that when we go to collect the solution that it
may not be ready and will not be retrieved. This means we need to call this loop several times until
all solutions have been retrieved or we get tired of it and quit. One can do this using a repeat-until
construct as shown below:

Repeat
loop(pp$handlecollect(h(pp)),

xlevelres(i,pp) = x.l(i);
ylevelres(i,pp) = xi.l(i);
rmarginalres(i,pp) = r.m(i));
display$handledelete(h(pp)) 'trouble deleting handles' ;
h(pp) = 0) ;

display$sleep(card(h)*0.2) 'sleep some time';
until card(h) = 0 or timeelapsed > 100;
xres(i,pp)$h(pp) = na;

This also deletes completed models and sets variables equal to na when the model was not solved
during the active job time (specified by timeelapsed>100).

Solutions can also be retrieved using GDX files and Handlestatus where one also must identify the
specific handle name to be retrieved and use a slecial gdx load syntax

Repeat
loop(pp$(handlestatus(h(pp)=2),

 minvar.handle = h(pp);
 execute_loadhandle minvar;

xlevelres(i,pp) = x.l(i);
ylevelres(i,pp) = xi.l(i);
rmarginalres(i,pp) = r.m(i));
display$handledelete(h(pp)) 'trouble deleting handles' ;
h(pp) = 0) ;

display$sleep(card(h)*0.2) 'sleep some time';
until card(h) = 0 or timeelapsed > 100;
xres(i,pp)$h(pp) = na;

If the models take a long time to solve then it is likely that when we go to collect the solution that it
may not be ready and will not be retrieved. This means we need to call this loop several times until

McCarl GAMS User Guide877

© 2022 Prof. Bruce McCarl

all solutions have been retrieved or we get tired of it and quit. One can do this using a repeat-until
construct as shown below:

Repeat
loop(pp$handlecollect(h(pp)),

xlevelres(i,pp) = x.l(i);
ylevelres(i,pp) = xi.l(i);
rmarginalres(i,pp) = r.m(i));
display$handledelete(h(pp)) 'trouble deleting handles' ;
h(pp) = 0) ;

display$sleep(card(h)*0.2) 'sleep some time';
until card(h) = 0 or timeelapsed > 100;
xres(i,pp)$h(pp) = na;

This also deletes completed models and sets variables equal to na when the model was not solved
during the active job time (specified by timeelapsed>100).

Solutions can also be retrieved using GDX files and Handlestatus where one also must identify the
specific handle name to be retrieved and use a slecial gdx load syntax

Repeat
loop(pp$(handlestatus(h(pp)=2),

 minvar.handle = h(pp);
 execute_loadhandle minvar;

xlevelres(i,pp) = x.l(i);
ylevelres(i,pp) = xi.l(i);
rmarginalres(i,pp) = r.m(i));
display$handledelete(h(pp)) 'trouble deleting handles' ;
h(pp) = 0) ;

display$sleep(card(h)*0.2) 'sleep some time';
until card(h) = 0 or timeelapsed > 100;
xres(i,pp)$h(pp) = na;

Retrieving and Storing Grid solutions

One must interrogate the solution process to see if the models sent to the grid have been solved and
then load in the solutions. This is typically done with the function handlecollect(handle). Users are
responsible for storing grid solutions in GAMS parameters if they want to be able to separately
address the different solutions. This is typically done by defining new parameters for storing
necessary variable/equation levels and marginals. Such parameters typically include the model
identifying set that is associated with the handles.

Grid and Distributed Computing 878

© 2022 Prof. Bruce McCarl

 Handlestatus constants

A related set of HandleStatus constants is defined

Handlestatus.Unknown is a constant that equals 0.
Handlestatus.Running is a constant that equals 1.
Handlestatus.Ready is a constant that equals 2.
Handlestatus.Failure is a constant that equals 3.

These may be used as follows

loop(pp$(handlestatus(h(pp)=%Handlestatus.Ready%),

These constants are defined at compile time and cannot be manipulated or reassigned.

Execute_loadhandle for Grid Solution Retrieval from GDX

Using the statement

Execute_loadhandle mymodel;

causes GAMS to load the model with the current attribute mymodel.handle from a GDX file
(provided it has been placed there by use of the Handlestatus function) into the GAMS data base.
The command operates otherwise like the execute_loadpoint procedure.

Grid related Functions

Four functions are used to manage the problems in the grid

HandleCollect(handle) tests to see if the solve of the problem identified by the calling argument
handle is done and if so loads the solution into GAMS. In particular it returns.

· 0 if the model associates with handle had not yet finished solution or could not be loaded
· 1 if the solution has been loaded

HandleDelete(handle) deletes the grid computing problem identified by the handle calling
argument and returns a numerical indicator of the status of the deletion as follows

· 0 if the the model instance has been removed
· 1 if the argument handle is not a legal handle
· 2 if the model instance is not known to the system
· 3 if the deletion of the model instance encountered errors.

A nonzero return indicates a failure in the deletion and causes an execution error.

HandleStatus(handle) tests to see if the solve of the problem identified by the calling argument
handle is done and if so loads the solution into a GDX file. A numerical indication of the

McCarl GAMS User Guide879

© 2022 Prof. Bruce McCarl

result is returned as follows

· 0 if a model associated with handle is not known to the system
· 1 the model associaed with handle exists but no solution process is incomplete
· 2 the solution process has terminated and the solution is ready for retrieval
· 3 the solution process signaled completion but the solution cannot be retrieved

An execution error is triggered if GAMS cannot retrieve the status of the handle.

HandleSubmit(handle) resubmits a previously created instance of the model identified by the
handle for solution.

· 0 the model instance has been resubmitted for solution
· 1 if the argument handle is not a legal handle
· 2 if a model associated with the handle is not known to the system
· 3 the completion signal could not be removed
· 4 the resubmit procedure could not be found
· 5 the resubmit process could not be started

In case of a nonzero return an execution error is triggered.

Grid Model Attributes

Three model attributes are associated with the Grid features

mymodel.solvelink specifies tells GAMS how to behave with respect to the solver

· 0 automatic save/restart, wait for completion, the default
· 1 start the solution via a shell and wait
· 2 start the solution via spawn and wait
· 3 start the solution and continue
· 4 start the solution and wait (same submission process as 3)

This is used by specifying

mymodel.solvelink=3;
or

mymodel.solvelink=0;

A set of solvelink constants may also be used.

mymodel.handle gives or specifies the current instance handle

 This is used to either

· retrieve the handle for a specific model passed to a solver.

currenthandle= mymodel.handle;

· identify the handle of the specific model to be retrieved from the GDX file using
execute_loadhandle.

Grid and Distributed Computing 880

© 2022 Prof. Bruce McCarl

i=HandleStatus(currenthandle);
if(i=2,

mymodel.handle=currenthandle;
 execute_loadhandle mymodel;

loop(pp$(savedhandle(pp)=currenthandle),
xlevelres(i,pp) = x.l(i);
ylevelres(i,pp) = xi.l(i);
rmarginalres(i,pp) = r.m(i));

);

mymodel.number gives a current instance number for the model generated by a solve statement

Any time a solve is attempted for mymodel, the instance number is incremented by one and the
handle is updated accordingly. The instance number can be reset by the user which then resyncs the
handle.

Storage location

The grid models for solution and their corresponding solutions are kept in a Grid directory. Each
GAMS job has only one Grid Directory. By default, the grid directory is assumed to be the scratch
directory. Useds can change this by using the GAMS parameter GridDir, or short GDir. For
example:

>gams myprogram ... GDir=gridpath

If gridpath is not a fully qualified name, the name will be completed using the current directory. If
the grid path does not exist, an error will be issued and the GAMS job will be terminated.

Grid output control

The AsyncSolLst option which is also a command line parameter controls whether or not solver
output from problems solved using the grid or multi-threading procedures is passed to the LST file.
When it is set to one the output goes to the LST file and when set to zero it does not. The default
value is zero.

26.2.2 Grid_example

GAMS allows you to solve multiple problems using the multiple cores available on your computer.

This is covered under the Grid computing part of the Expanded User Guide as accessed through the

IDE help menu. An example is provided the file trnsgrid.gms which is a small rewrite of the model

library file with the same name (with a small modification in the definition of repy)

parameter repx(s,i,j) solution report
 repy(s,solveinfo) summary report;
repy(s,'solvestat') = na;

McCarl GAMS User Guide881

© 2022 Prof. Bruce McCarl

repy(s,'modelstat') = na;
*we use the handle parameter to indicate that the solution has been
collected
repeat
 loop(s$handlecollect(h(s)),
 repx(s,i,j) = x.l(i,j);
 repy(s,'solvestat') = transport.solvestat;
 repy(s,'modelstat') = transport.modelstat;
 repy(s,'resusd') = transport.resusd;
 repy(s,'objval') = transport.objval;
 display$handledelete(h(s)) 'trouble deleting handles' ;
 h(s) = 0) ; // indicate that we have loaded the solution
 display$sleep(card(h)*0.2) 'was sleeping for some time';
until card(h) = 0 or timeelapsed > 10; // wait until all models are loaded
display repx, repy;

In this code
· Loop solves each problem where the set s identifies those problems
· Repx saves the solution values of the variable x (note in general all the problem variables would

need to be saved).
· Repy saves overall solution information on the problem (solution termination status, model

optimality etc status, time used and objective function value)
· This code would use each of the multiprocessor cores as they become available.
In general this feature lets you use multiple machines but can take a lot of setup to network the

machines particularly in a Windows environment.

27 Interfacing from other languages with API

GAMS offers a low level application programming interface (API) to various programming languages.
Recently GAMS has introduced an object oriented (OO) API that allows to control GAMS from within
different programming languages like C#, Java and Python.

The first implementation was done for Microsoft's .NET framework and its numerous programming
languages (including C#). GAMS Release 24.0 introduced the Java and Python versions of this API.

The OO GAMS API offers a seamless integration of GAMS into .NET, Java and Python based IT
systems. The API extends the capabilities of GAMS by the addition of the features provided by these
frameworks.

The in-memory representation of a GAMS model can increase performance when solving a model
multiple times with slightly changed data by performing the model creation only once.

Convenient data structures allow random access to data as well as data iteration. Collectively this OO
GAMS API allows the smooth integration of GAMS into applications by providing appropriate classes for
the interaction with GAMS.

A detailed description of the OO APIs can be found at the following places:

.NET API Reference Manual

https://www.gams.com/latest/docs/apis/dotnet/DOTNET_OVERVIEW.html

Interfacing from other languages with API 882

© 2022 Prof. Bruce McCarl

Java API Reference Manual

Python API Reference Manual

These documents also reside in the /docs/API subdirectory of the GAMS system directory or can be
accessed through the IDE help under Docs then API.

In addition to these APIs, there exist more technical, lower level APIs that permit access to GAMS
information from the programming languages C, C++, C#, Delphi, Fortran, Java, Python, and Visual
Basic. These are overviewed with examples in GAMSx API, GDX API, and Option API. Additional
information for GDX interfacing is available in CHM and PDF forms under the GAMSIDE help under API
and EXPERT-LEVEL.

28 Licensing
Use of GAMS for all but very small problems requires purchase of rights to use the software in the
from of a License file.

There are two types of items included in the license file
· Rights to use the overall GAMS system which is required in all cases
· Rights to use an individual solver in association with the GAMS system which is a user choice

On purchase of a file one gets rights to use the software and all versions developed in the next year.

Those versions may be used forever. Users then pay maintainence on their licenses to extend them

for versions developed beyond that initial year. the utility CHK4UPD can be used to see if a newer

GAMS version is available and what the newest version is that can be used with a given license.

This is done by running it without arguments or by giving the name of a local license file.

License files are typically limited to a single computer platform type (e.g. Windows or AIX or

LINUX). But as of version 23.6 GAMS introduced a generic license which supports use on all

platforms on which GAMS runs (ie it can be employed on more than one type of computer

operating system – such as Windows and LINUX). Pricing and details can be gotten from GAMS

sales.

GAMS and its solver partners offer a free academic license to members of the solver partners

academic initiative programs. Details are available through https://support.gams.com/

solver:academic_programs_by_solver_partners

Licenses can be obtained for single and multi user situations.

https://www.gams.com/latest/docs/API_JAVA_OVERVIEW.html
https://www.gams.com/latest/docs/API_PY_OVERVIEW.html
https://support.gams.com/solver:academic_programs_by_solver_partners
https://support.gams.com/solver:academic_programs_by_solver_partners

McCarl GAMS User Guide883

© 2022 Prof. Bruce McCarl

Index
- -
'

Symbol surrounding set element name or
explanatory text that must appear in pairs. 54

Symbol surrounding set element name or text,
rules for using 232

- - -
- 11

LST FIle Navigation Window 69, 71, 241

Remove equations when specifying a model 69,
71, 88, 241

Symbol for subtraction. 241

Symbol that is operator to form set difference.
71

Symbol that signifies a lag operation in a set.
69

--

Command line parameter that allows definition of a
control variable. 363

Symbol that signifies a circular lag operation in a
set. 70

User defined command line parameter. 659

- " -
"

Symbol surrounding set element name or
explanatory text that must appear in pairs. 54

Symbol surrounding set element name or text,
rules for using 232

"%name%"

Syntax to retrieve named control variable,
command line parameter or system attribute and
treat result as text. 645

- # -

Put file command to skip to a row in put file.
595

Use in defining sets 62, 595

- $ -
$

$$ variant to allow $ to begin in columns other
than one 60, 217, 289, 311, 500, 501, 510

Marker for number of compiler error message.
217

Symbol that sets of a compiler time option. 500

Symbol to set off conditionals, use in calculation.
 289

Symbol to set off conditionals, use in set
references. 60

Symbol to set off conditionals. 311

When dollar commands are executed. 501

$$

Allow $ to begin in Columns other than 1 510

$Abort

.noerror to not increase error count 510, 663

Dollar command that can be used in conditional
compilation to issues an error message in LST
file. 663

Dollar command that causes compilation to stop
and issues an error message in LST file. 510

$Batinclude

Dollar command that includes an external file with
arguments. 510

Include an external file with arguments. 494

Repeating use of same code with substituted
arguments. 650

$Call 267

Changing parameters when calling 510, 549,
660, 693, 699

Dollar command that executes a program during
compilation. 510

Dollar command to cause a compile time run of a
command or program. 660

Executing an external procedure at compile time.
 693

Timing of execution. 699

$Call =

Rearranging placement of rows and columns when
writing from Gdxxrw into spreadsheets. 693

$Call.Async

Dollar command that allows ansynchronous job
handling 511, 660

$Call.AsyncNC

Dollar command starting asyncronous jobs 512

$Clear

Index 884

© 2022 Prof. Bruce McCarl

$Clear

Dollar command that resets named items to
default values. Use of the option command clear
is usually preferable. 512

$Comment

Change character used to start a comment in
column 1 which is now an * 235

Dollar command that changes character used to
start a comment in column 1 which is now an *.
513

$Decompress

Decompresses GAMS files 513

$Dollar

Dollar command that resets character that starts
dollar option commands. 514

$Double

Dollar command that starts double spacing of
echo print lines in LST file. 514

Starts double spaced echo print. 137

$Drop

Dollar command to drop a contol variable 544,
629

$Dropenv

Dollar comamnd to drop a control variable that
was defined with $Setenv 547

$Dropglobal

Dollar command to drop a global control variable
 546, 628

$Droplocal

Dollar command to drop a local control variable
547, 629

$Echo

Dollar command that echoes text to a named file.
 514

Dollar command to echo text to a file. 662

$Echon

Dollar command that echoes multiple lines of text
to a named file. 514

$Eject

Dollar command that starts a new page in LST
file. 515

Starts a new page in LST file. 162

$Else

Dollar command that is paired with $Ifthen 254,
522

$Elseif

Dollar command that is paired with $Ifthen 522,
640

$Elseife

Numerical value evaluating variant of $Eleseif
522, 640

$Elseifi

Case insensitive variant of $Eleseif 522, 640

$Endif

Dollar command that is paired with $Ifthen 522,
640

$Eolcom

Change symbol for end of line comments 236

Dollar command that changes symbol for end of
line comments. 515

$Error

Dollar command that causes reporting of compiler
error to LST file but allows continued compilation.
 516, 663

$Escape

Dollar command that causes redefinition if %
symbol to set off control variables. 516

$Eval

Evaluates numerical scoped contol variable
expression 516, 632

$EvalGlobal

Evaluates numerical global contol variable
expression 517, 630

$EvalLocal

Evaluates numerical local control variable
expression 517, 631

$Exit

Dollar command that exits compilation 517

Dollar command to exit a compilation. 663

$Expose

Dollar command that removes privacy restrictions.
 517

$FuncLibIn

Dollar command to bring in function library 508

Including user defined functions 268

$Gdxin

Compile time GDX file naming, opening and
closing 673

Dollar command that opens/closes a GDX file for
input 518

$Gdxout

Compile time GDX file naming, creation and
closing 672

Dollar command that opens/closes a GDX file for
output 519

Problems with compile time write to GDX 672

$Goto

Compile time transfer of compiler position. 656

McCarl GAMS User Guide885

© 2022 Prof. Bruce McCarl

$Goto

Dollar command that transfers control to a line
with an internal label. 519

$Hidden

Dollar command that inserts one line comment
that does not appear in LST file. 520

Insert one line comment that does not appear in
LST file 239

$Hide

Dollar command that hides the objects in a
privacy setting but allows them to be used in
model calculations. 520

$If

Dollar command that causes a statement
executed in compiler if conditional is true. 520

Dollar command that is compile time if test - case
sensitive. 637

$If Not

Dollar command that executes a GAMS
command in compiler if conditional is false. 520

$Ife

Dollar command that executes a GAMS
command if condition is true (expressions in
condition ar evaluated) 520

Form of control variable conditional involving
numbers 637

$Ife not

Dollar command that executes a GAMS
command if condition is false (expressions in
condition ar evaluated) 520

$Ifi

Dollar command that executes a GAMS
command in compiler if conditional is false and is
case insensitive. 520

Dollar command that is compile time if test - case
insensitive. 637

$IFTHEN

Dollar command that controls multiple statments
 522, 640

If - Endif alternative 656

$ifthene

Numerical expression evaluating variant of $Ifthen
 254, 522

$iftheni

Case insensitive variant of $ifthen 522, 640

$Include

Dollar command that includes an external file
without arguments. 523

Include an external file without arguments. 491

$Inlinecom

Change character strings setting off in line
comment 237

Dollar command that changes character strings
setting off in line comment. 523

$Kill

Dollar command that removes all data for an item.
 This should not be used. 523

$Label

Dollar command compile time label for GOTO
jump. 656

Labels a line allowing branching with $goto. 524

$Libinclude

Dollar command that includes a file with
arguments from inclib subdirectory. 524

Include a file with arguments from inclib
subdirectory. 497

$Lines

Dollar command that starts new page if less than
n lines are left on a page. 524

Starts new page if less than n lines are left on a
page. 162

$Load

Compile time read from GDX file element
identification 673

Dollar command that loads data from a GDX file
524

Listing GDX file contents 680

Using to infer sets 525, 673, 680

Variant with domain checking 524, 673, 680

$Loaddc

GDX Load with domain checking 526

$Loaddcm

Dollar command that loads data from a GDX file
merging the contents 526

$Loaddcr

Dollar command that loads data from a GDX file
(mixture of $Loaddc and $Loadr) 527

$Loadm

Dollar command that loads data from a GDX file
and merges it 527

$Loadr

Dollar command that loads data from a GDX file
and replaces sets or parameters with the data
from that file 527

$Log 165

Dollar command that sends specified text to the
LOG file. 528

Sends specified text to the LOG file. 528, 662

Way to send text to the LOG file. 662

$Macro

Index 886

© 2022 Prof. Bruce McCarl

$Macro

Dollar command that defines a new macro 528

$Maxcol

Dollar command that sets right margin for the
input file. 529

Set right margin for the input file and allows
comments 238

$Maxgoto

Maximum number of jumps to the same label
529

$Mincol

Dollar command that sets left margin for the input
file. 529

Set left margin for the input file and allows
comments 238

$Offdelim

Dollar command that deactivates CSV separation
of table data. 529

Turn off GAMS recognition of CSV delimiters.
499

$Offdigit

Dollar command that deactivates significant digit
transformation. 529

$Offdollar

Dollar command that suppresses echo print of
dollar commands in LST file. 530

Stops echo print of dollar command options in
LST file. 137

$Offdotlp

End automalit .l addition 530

$Offecho

Dollar command to stop action of $onecho.
531, 662

$Offembedded

Dollarcommand to disable use of embedded
values in parameter and set data statements
532

$Offempty

Dollar command that prohibits empty data
statements. 532

$Offend

Dollar command that deactivates alternative
syntax for flow control statements. 533

Dollar command which deactivates alternative
syntax for flow control statements. 334

$Offeolcom

Deactivate end-of-line comments 236

Dollar command that deactivates ability to use
end-of-line comments. 533

$Offeps

Dollar command that deactivates treatment of
zeros as EPS. 533

$Offexpand

Dollar command to disable macro expansion
534

$Offglobal

Causes dollar commands in main programs to not
be honored in included files. 499

Dollar command that causes dollar commands in
main programs to not be honored in included files.
 534

$Offinclude

Dollar command that suppresses echo print of
included files in LST file. 534

Remove echo print of included files in LST file.
498

Suppresses echo print of included files. 137

$Offinline

Deactivate in line comments 237

Dollar command that deactivates ability to use in
line comments. 534

$Offlisting

Dollar command that deactivates echo print of
subsequent input lines. 535

Suppress echo print of lines in LST file. 494

Suppresses lines from echo print listing. 137

$Offlocal

Dollar command that limits use of .local on the
same symbol to one in one control stack 535

$Offlog

Dollar command that turns off line logging 535

$Offmacro

Dollar command to disable macros 536

$Offmargin

Deactivate margin marking 238

Dollar command that turns off margin marking.
536

$Offmulti

Dollar command that prohibits multiple data item
definitions. 537

$Offnestcom

Dollar command that prohibits nested in line
comments. 537

Prohibit nested in line comments 237

$offorder

Causes leads and lags to work with unordered
sets 538

$Offput

Dollar command stopping put of text block. 539

$Offrecurse

McCarl GAMS User Guide887

© 2022 Prof. Bruce McCarl

$Offrecurse

Dollar command that disallows a file to include
itself 539

$Offstrictsingleton

Turn off error messages for multientry sinlgetons
 539

$Offsymlist

Dollar command that removes symbol list from
LST file. 540

Removes symbol listing from LST file. 144

$Offsymxref

Dollar command that removes symbol cross
reference from LST file. 540

Removes cross reference listing from LST file.
142

$Offtext

Deactivating blocks of code in memory use
searches 485

Dollar command that ends a multi line comment.
 540

Dollar command that is used to deactivate blocks
of code in speed searches. 471

Ends a multi line comment 236

Stop LST file comment. 137

$Offuellist

Dollar command that removes unique element list
from LST file. 541

Removes unique element listing from LST file.
145

$Offuelxref

Dollar command that removes unique element
cross reference in LST file. 541

Removes unique element cross reference from
LST file. 146

$Offundf

Dollar command that prohibits undf from being
assigned. 541

$Offverbatim

Dollar command used in conjunction with the
GAMS parameter DUMPOPT 541

$Offwarning

Dollar command that activates relaxed domain
checking. 542

$Ondelim

Dollar command that activates CSV separation of
table data. 529

Turn on GAMS recognition of CSV delimiters.
499

$Ondigit

Dollar command that activates significant digit
transformation. 529

$Ondollar

Adds echo print of dollar command options in LST
file. 137

Dollar command that adds echo print of dollar
commands in LST file. 530

$Ondotl

Automatic .l addition 530

$Onecho

Dollar command to start copying succeeding lines
to file. 531, 662

$Onechos

Dollar command that permits parameter
substitution when $echo is used 531

$Onechov

Dollar command that forbids parameter
substitution when $echo is used 531

$Onembedded

Dollarcommand to enable use of embedded values
in parameter and set data statements 532

$Onempty

Dollar command that allows empty data
statements. 532

$Onend

Dollar command that activates alternative syntax
for flow control statements. 533

Dollar command which activates alternative syntax
for flow control statements. 334

$Oneolcom

Activate end-of-line comments 236

Dollar command that activates ability to use
end-of-line comments. 533

$Oneps

Dollar command that activates treatment of zeros
as EPS. 533

$Onexpand

Dollar command to enable macro expansion
534

$Onglobal

Cause dollar commands in main programs to be
honored in included files. 499

Dollar command that causes dollar commands in
main programs to be honored in included files.
534

$Oninclude

Begins echo print of included files. 137

Cause echo print of included files. 498

Dollar command that causes echo print of
included files. 534

Index 888

© 2022 Prof. Bruce McCarl

$Oninline

Activate in line comments 237

Dollar command that activates ability to use in line
comments. 534

$Onlisting

Activate echo print of lines in LST file. 494

Dollar command that activates echo print of
subsequent input lines. 535

Reverses effect of $Offlisting. 137

$Onlocal

Dollar command that allows yunlimited use of
.local on the same symbol in one control stack
535

$Onlog

Dollar command that resets line logging 535

$Onmacro

Dollar command to enable macros 536

$Onmargin

Activate margin marking 238

Dollar command that turns on margin marking.
536

$Onmulti

Allow multiple declarations of a named item. 50

Dollar command that allows multiple data item
definitions. 537

$Onnestcom

Allow nested in line comments 237

Dollar command that allows nested in line
comments. 537

$OnOrder

stops allowing lags on unordered sets 538

$Onput

Dollar command starting put of text block. 539

$Onputs

Dollar command starting put of text block with
parameter substitution. 539

$Onputv

Dollar command starting put of text block without
parameter substitution. 539

$Onrecurse

Dollar command that allows a file to include itself.
 539

$OnStrictSingleton

Turn on error messages for multielement
singletons 539

$Onsymlist

Adds symbol listing to LST file. 144

Dollar command that adds symbol list to LST file.
 540

Dollar command that adds symbol list to output.
 306

$Onsymxref

Adds cross reference listing to LST file. 142

Dollar command that adds symbol cross reference
to LST file. 540

$Ontext

Dollar command that starts a multi line comment.
 540

Dollar command that stops deactivation of blocks
of code in speed searches. 471

Start LST file comment. 137

Start multi line comment 236

Stopping deactivation of blocks of code in memory
use searches 485

$Onuellist

Adds unique element listing to LST file. 145

Dollar command that adds UEL list to output.
310

Dollar command that adds unique element list to
LST file. 541

$Onuelxref

Adds unique element cross reference to LST file.
 146

Dollar command that adds unique element cross
reference in LST file. 541

$Onundf

Dollar command that allows undf to be assigned.
 541

$Onverbatim

Dollar command used in conjunction with the
GAMS parameter DUMPOPT 541

$Onwarning

Dollar command that deactivates relaxed domain
checking. 542

$Phantom

Dollar command that designates a phantom set
element. 542

$Prefixpath

Dollar commands that augments search path in
the windows environment. 543

$Protect

Dollar command that does not allow the objects to
be modified in a privacy setting but allows use in
model calculations. 543

$Purge

Dollar command that removes the objects and all
data associated in a privacy setting. 543

$Remark

McCarl GAMS User Guide889

© 2022 Prof. Bruce McCarl

$Remark

Dollar command that includes a comment with a
substitutable parameter. 544

$Set

Dollar command that defines control variable.
544

Dollar command to set a control variable here and
in included code. 629

$Setargs

Dollar command that redefines arguments to a
text like name in Batincludes. 544

Dollar command to set arguments for external
call. 661

$Setcomps

Dollar command that dissembles period delimited
item into individual components. 545

$Setddlist

Dollar command that causes GAMS to look for
misspelled or undefined "double dash" –
commands. 546

Dollar command to check spelling of - parameters.
 659

$Setenv

Dollar command that defines or changes value of
environment variable. 547

Dollar command to define or alter value of
environment variables 635

$Setglobal

Dollar command that defines global control
variable. 546

Dollar command to set a control variable globally.
 628

$Setlocal

Dollar command that tears apart a file name into
components. 547

Dollar command to set a control variable here.
547, 629

$Setnames

Dollar command that tears apart a file name into
components. 548

$Shift

Dollar command that shifts arguments in include
files. 548

Shift arguments in include files. 495

$Show

Dollar command that shows control variables.
548

Dollar command to show all control variables and
their availability status. 636

$Single

Dollar command that starts single spacing for
subsequent echo print lines in LST file. 548

Starts single spaced echo print. 137

$Stars

Dollar command that redefines characters for four
**** message. 549

Redefines characters for four **** error messages.
 138

$Stitle

Defines subtitle for LST file. 163

Placing a subtitle in a LST file. 549

$Stop

Dollar command that stops compilation. 549

Dollar command to stop a compilation. 663

$Sysinclude

Dollar command that includes file with arguments
from system directory. 550

Include file with arguments from system directory.
 498

$Terminate

Dollar command to stop a compilation. 550,
663

$Title

Defines LST file title. 163

Placing a title in a LST file. 550

$Unload

Compile time write to GDX file element
identification 672

Dollar command that unloads data to a GDX file
550

Problems with compile time write to GDX 672

$Use205

Dollar command that tells GAMS to use version
2.05 syntax. 551

$Use225

Dollar command that tells GAMS to use version
2.25 syntax. 551

$Use999

Dollar command that tells GAMS to use latest
version syntax. 551

$Version

Dollar command to test GAMS compiler version
number 551

- % -
%

Symbol proceeding batinclude parameter number.
 659

Index 890

© 2022 Prof. Bruce McCarl

%

Symbol that sets off names of control variable,
command line parameter or system attribute to be
retrieved. 645

%1

Syntax to retrieve batinclude parameter number 1.
 659

%Gams.item%

Value of GAMS command line parameter named
item. 652

%name%

Syntax to retrieve named control variable,
command line parameter or system attribute.
645

%System.item%

Value of windows system environment variable.
654

- (-
()

Symbol for calculation grouping in equations
interchangeable with [] and { }. 242

- * -
*

Caution against using in input 169

Symbol for multiplication. 241

Symbol in column 1 rendering line in option file a
comment. 812

Symbol that begins a comment, usage to
deactivate code in memory use searches 485

Symbol that begins a comment, usage to
deactivate code in speed searches. 471

Symbol that when used in set declaration is
indicator of universal set. 63

Symbol that will carry out set intersection. 71

Symbol used as to define universal set in report
writing. 293

Symbol when in column 1 that begins one-line
comments 235

**

Symbol for exponentiation. 241

Execution error marker. 441

Marker for compiler error message. 216

- . -
.

Item to set off variable and equation names in
specifying MCP complementarity. 87

Symbol to separate set elements when defining
multidimensional items 73

..

Symbol signifying start of algebraic specification
of a model equation and a dynamic calculation.
240

Symbol signifying start of algebraic specification
of a model equation. 83

.. specifications

Algebraic content, tutorial coverage 33

Tutorial coverage 33

..Equation specification

Algebraic specification of a model equation. 83

.Ap

Put file attribute signaling append option. 599

.Bm

Put file attribute specifying bottom margin. 600

.Case

Put file attribute choosing output case control.
604

.Cc

Put file attribute giving current column. 595

.Cheat

Model attribute requiring each new integer solution
to be at least a tolerance better than the previous
one. 829

.CNS

System attribute usable in a put identifying solver
that is currently active for CNS problems. 590

.Cr

Put file attribute giving current row. 596

.Cutoff

Model attribute causing the MIP solver to
disregard parts of the tree with an objective worse
than a value. 830

.Date

System attribute that identifies date on which
model was run. 657

Using date system attribute which identifies date
on which model was run in Put files. 590

.Defpoint

Redfining advanced basis 848, 851

.Dirsep

McCarl GAMS User Guide891

© 2022 Prof. Bruce McCarl

.Dirsep

Attribute giving seperator used by OS in file
names 590

.DNLP

System attribute usable in a put identifying solver
that is currently active for DNLP problems. 590

.Errors

Put file attribute giving number of put errors
encountered. 625

.Fe

System attribute which identifies file extension of
input file. 590

.Filesys

System attribute that identifies name of the
operating system being used in. 657

.Fn

System attribute giving file name stem of input file.
 591

.Fp

System attribute giving file path of input file.
591

.Fx 79

Fixed bounds in calculations. 287

Possible issues when using for MCPs 287, 388

Variable and equation attribute giving solution
level. 79

Variable attribute fixing the level to a number.
79

.GamsRelease

System attribute usable in a put identifying GAMS
release being used. 657

.GamsVersion

System attribute usable in a put identifying GAMS
version being used. 657

.Gstring

System attribute usable in a put identifying
specific GAMS version being used. 657

.Handle

Model attribute identifying grid problem 875

.Hdcc

Put file attribute giving current column in header.
 596

.Hdcr

Put file attribute giving current row in header.
596

.Hdll

Put file attribute giving header last line. 597

.Ifile

System attribute giving input file name. 591

.Iline

System attribute usable in a put giving number of
lines in input file. 591

.Incline

System attribute that identifies line number of
include file being executed. 657

.Incname

System attribute that identifies name of file being
included. 657

.Incparent

System attribute that identifies parent file that
includes this one. 657

.L

Automatic addition of .L 14, 79, 87, 284, 291,
530, 588

Equation attribute giving the solution level or
starting point. 87

Tutorial coverage 14

Using solution levels in calculations. 284

Using solution levels in put files. 588

Using solution levels in reports. 291

Variable attribute giving the solution level or
starting point. 79

.Lcase

Put file attribute choosing output case control for
set elements. 604

.Len

Set attribute giving length of set element name
64

.Lice1

System attribute usable in a put giving GAMS
license information. 591

.Lice2

System attribute usable in a put giving GAMS
license information. 591

.LicenseStatus

System attribute that identifies if a license
problem has arisen 657

.LicenseStatusText

System attribute that returns text describing
licensing error 657

.Line

System attribute that identifies line number of
overall file being executed. 657

.Lj

Put file attribute specifying Set element name
justification. 613

.Ll

Put file attribute giving last line. 597

.Lo

Lower bounds in calculations. 286

Index 892

© 2022 Prof. Bruce McCarl

.Lo

Variable or equation attribute giving lower limit or
bound. 79

.Lp

Put file attribute giving last page. 598

System attribute usable in a put identifying solver
that is currently active for LP problems. 591

.Lw

Put file attribute specifying set element name
width. 606

.M

Equation attribute giving the solution value for the
marginal or starting point. 87

Using solution marginals in calculations. 285

Using solution marginals in put files. 588

Using solution marginals in reports. 291

Variable attribute giving the solution value for the
marginal or starting point. 79

.MCP

System attribute usable in a put identifying solver
that is currently active for MCP problems. 591

.MINLP

System attribute usable in a put identifying solver
that is currently active for MINLP problems. 591

.MIP

System attribute usable in a put identifying solver
that is currently active for MIP problems. 591

.Modelstat

Model attribute giving model solution status 854

Putting out numerical model solution status.
587

.MPEC

System attribute usable in a put identifying solver
that is currently active for MPEC problems. 591

.Nd

Put file attribute specifying number of decimals.
607

.Nj

Put file attribute specifying numeric field
justification. 614

.NLP

System attribute usable in a put identifying solver
that is currently active for NLP problems. 591

.NodLim

Model attribute limiting the maximum number of
nodes that can be examined in a MIP solution.
830

.Noerror

Extension to $abort 510

.Nr

Put file attribute specifying numeric round option.
 619

.Numvarproj

Model attribute giving count of bound projections
during model generation 90

.Nw

Put file attribute specifying numeric field width.
607

.Nz

Put file attribute specifying tolerance for when
numbers are to be treated as zero. 620

.Off

Set attribute giving ofset position of set elment in
ordered set 64

.Ofile

System attribute usable in a put giving output
page. 591

.Opage

System attribute usable in a put giving output
page. 591

.OptFile 393

Model attribute activating option files for MIP
solvers. 832

Model attribute to specify option file presence and
relevant file extension. 811

.Ord

Set attribute giving poition of set element in
ordered set 64

.Page

System attribute giving current page. 591

.Pc

Put file attribute specifying print control option.
600

.Pdir

Command line parameter specifying where put
files will be saved. 578

Put file attribute redirecting the put file output to
the scratch directory. 578

.Pfile

System attribute usable in a put giving put file
name for currently active file. 591

.Platform

System attribute usable in a put giving computer
operating system information. 591

.Pos

Set attribute giving position of set elment in
unordered set 64

.Ppage

System attribute usable in a put giving output
page 591

McCarl GAMS User Guide893

© 2022 Prof. Bruce McCarl

.Prior

Variable attribute specifying priority for a variable –
the lower the value the higher the priority. 828

.Prioropt

Model attribute activating MIP priorities. 832

.Prline

System attribute that identifies line in output file.
 657

.Prpage

System attribute that identifies page in output file.
 657

.Ps

Put file attribute specifying page height in lines.
601

.Pw

Put file attribute specifying page width in
characters. Max is 32767. 602

.Range

Variable attribute giving difference between upper
and lower bounds 79

.Rdate

System attribute giving restart file date. 591

.Rfile

System attribute giving restart file name. 592

.RMINLP

System attribute usable in a put identifying solver
that is currently active for RMIP problems. 592

.RMIP

System attribute usable in a put identifying solver
that is currently active for RMIP problems. 592

.Rtime

System attribute giving restart file time. 592

.Scale

Calculating variable and equation scaling factors.
 288

Variable and equation attribute telling amount to
scale that variable or equation. 457

.Scaleopt

Model attribute that activates scaling. 457

.Sfile

System attribute giving save file name. 592

.Sj

Put file attribute specifying set yes no element
justification. 615

.Solvestat

Model attribute giving solver termination status
855

Putting out numerical solver termination status.
587

.Sstring

System attribute usable in a put identifying full
name of last solver used. 592

.Sw

Put file attribute specifying set yes no element
width. 608

.Tab

Placing tabs in put files 602

.Te

Element of put command to use set element
explanatory text 233

.Te(setname)

Set attribute giving element explanatory text.
582

.Tf

Put file attribute specifying way to fill missing set
element descriptions. 582

.Time

Putting out program execution time. 592

System attribute that identifies time of run. 657

.Title

System attribute giving model title. 592

.Tj

Put file attribute specifying quoted and
explanatory text justification. 616

.Tl

Set attribute giving element name. 581

.Tlcc

Put file attribute specifying current column in title
block. 598

.Tlcr

Put file attribute specifying current row in title
block. 598

.Tlll

Put file attribute specifying last row in title block.
 598

.Tm

Put file attribute specifying top margin. 602

.Tmodstat

Model attribute that can be used in put
statements giving problem optimality status text
 854

Putting out text for model solution status. 587

.TryInt

Model attribute causing MIP solvers to make use
of current variable values when solving a MIP
problem. 832

.Ts

Identifier containing explanatory text for item.
585

.Tsolstat

Index 894

© 2022 Prof. Bruce McCarl

.Tsolstat

Model attribute that can be used in put
statements giving solver termination status text
855

Putting out text for solver termination status.
587

.Tw

Put file attribute specifying explanatory and
quoted text field width. 609

.Uel

Set attribute giving uniquel element list position of
set elment 64

.Up

Upper bounds in calculations. 287

Variable or equation attribute giving upper limit or
bound. 79

.Val

Set attribute giving numerical counterpart of set
element names that are numeric 64

.Version

System attribute that identifies GAMS version
number. 657

System attribute usable in a put giving GAMS
version being run. 592

.Ws

Put file attribute specifying window size in number
of rows. 599

- / -
/

Put file command to skip to new line. 594

Symbol for division. 241

Symbol to set off explicitly defined set elements.
 54

Symbol to set off file name definitions. 578

Symbol to set off parameter element definitions
73

Symbol to set off scalar element definitions 72

Symbol used to set of list of equations in a model.
 87

/- 659

Command line parameter that allows definition of a
control variable. 363

- - -
-/

A sequence initiating definition of a control variable
 363, 659

User defined command line parameter. 659

- / -
/ Model contents /

Way of declaring equation presence in a model.
87

//

Command line parameter that allows definition of a
control variable. 363

User defined command line parameter. 659

- : -
:

Matching operator for tuples 294, 610, 637

Put file display format delimiter. 610

Symbol that is part of option statement to control
decimals and column/row layout. 294

- ; -
;

Symbol that ends statements and when omitted
or used excessively is common source of error
messages. 221

- ? -
???

Option file name extension when optfile =
100-999. 811

- @ -
@

Gdxxrw command entry alternatives using a text
file. 754

Put file command to skip to a column in the put
file. 593

- [-
[]

McCarl GAMS User Guide895

© 2022 Prof. Bruce McCarl

[]

Symbol for calculation grouping in equations
interchangeable with () and { }. 242

- { -
{ }

Symbol for calculation grouping in equations
interchangeable with () and []. 242

- + -
+

Augment equations when specifying a model
71, 88

Symbol for addition. 241

Symbol that signifies a lead operation in a set.
69

Symbol that will carry out set union. 71

++

Symbol that signifies a circular lead operation in a
set. 70

- < -
<

Put file item left justification symbol. 618

Relation operator in testing whether one item is
less than another. 319

Use in inferring set contents from GDX file 319,
525, 556, 618

Use in option command to project items left to
right. 556

<=

Defining equation as a less than or equal to. 83

Relation operator in testing whether one item is
less than or equal to another. 320

Use in option command to project items right to
left. 556

<=>

Relation operator in testing whether one item is
logically equivalent to another. 320

<>

Put file item center justification symbol. 618

Relation operator in testing whether one item is
not equal to another. 318

- = -
=

Defining equation as an equality relation. 83

Relation operator in testing whether one item is
equal to another. 318

Symbol to rename entries in GDX files 673

Symbol used in replacement statements. 240

Symbol used to set items equal to expressions
72

Use in $Call to make GAMS wait for completion of
an external program. 693

Use in Execute to make GAMS wait for
completion of an external program. 694

==

Symbol used in compile time if test. 645

=b=

Logical equation for EMP model 83

=c=

Symbol identifying equation as a conic equation.
 83

=e=

Symbol identifying equation as an equality
relation. 83

=g=

Symbol identifying equation as an greater than or
equal to. 83

=l=

Symbol identifying equation as an less than or
equal to. 83

=n=

Symbol identifying equation as un specified
relation. Rarely used but can occur in MCP
models. 83

=X=

Equations defined by external programs. 766

Symbol identifying equation as an equation
defined by external program. 83

- > -
>

Put file item right justification symbol. 618

Relation operator in testing whether one item is
greater than another. 319

Index 896

© 2022 Prof. Bruce McCarl

- - -
->

Relation operator in testing whether one item
logically implies another. 320

- > -
>=

Defining equation as a greater than or equal to.
83

Relation operator in testing whether one item is
greater than or equal to another. 319

- 2 -
225a

Temporary GAMS file storage directory 393

- A -
A

Command line parameter that controls the type of
compiling action. 363

Abort

Command to display output and stop job. 294

Command to stop GAMS job and display data
316

Conditional job termination and data display.
316

Execution time command that issues an error
message in LST file and displays data. 661

Abs 297

Function to find absolute value. 253

Access

Interfacing GAMS with Access. 712

Accessing manuals

Look at solver and other manuals 865

Acronym

Command to assign an item that is a text entry
625

Use of acronyms in calculations. 248

Acronym comparisons

Conditionals over acronyms. 325

Acronyms

Command to assign an item that is a text entry
625

Acrtype

Keyword in compile time $If to see if a named
item is an acronym. 648

Action

Command line parameter that controls the type of
compiling action. 363

Advanced basis

Advanced basis usage for NLP/MCP model types
 842

Ae

Append or overwite expand file 364

Al

Command line parameter that controls the
overwriting of the LOG file. 364

Algebra

Tutorial coverage 25

Algebraic

GAMS exploitation of algebraic modeling - tutorial
coverage 25

Algorithmic bounds

Adding bounds to improve solver performance
840

Alias

Command giving more than one name to a set.
66

Tutorial coverage 29

All

Key word to include all equations in a model.
87

ALPHAECP

A solver for mixed integer non-linear problems
111

AMPL

Conversion to/from GAMS 785

Using the CONVERT solver to transform a GAMS
problem to an AMPL type of problem. 712

And

Operator to form set intersection. 71

Relational operator that links sub-logical
conditions being true when all sub conditions are
true. 326

ANTIGONE

Solver for global optimization of nonconvex MINLP
 111

Ao

Command line parameter that controls the
overwriting of the LST file. 364

API to iterface other programs

Interface to GAMS 881

Interface to GDX 881

McCarl GAMS User Guide897

© 2022 Prof. Bruce McCarl

API to iterface other programs

Interface to Solver options 881

Appendexpand

Allow overwrite or append of expand file 364

Appendlog

Command line parameter that controls the
overwriting of the LOG file. 364

Appendout

Command line parameter that controls the
overwriting of the LST file. 364

ArcCos(x)

Function giving arc cosine of x 256

ArcSin (x)

Function giving arc sine of x 256

ArcTan(x)

Function to find arctangent. 256

ArcTan2(y,x)

Function that returns four quadrant arctan 256

Arithmetic errors

Errors due to impossible arithmetic operations.
441

Ask

GUI for asking questions of a user 804

Assigned

GAMS concept that data were placed into object
by a calculation or solve. 227

Assignment statements

Rules for inclusion of acronyms 626

Attribute

Item for a model referenced by
modelname.attribute 846

Solution, bound and scaling factors for a variable.
 79

Solution, bound and scaling factors for an
equation. 87

Augmentation

Expanding a core model - tutorial coverage 45

Automated problem handling

GAMS capabilities 48

- B -
Baron

Using the CONVERT solver to transform a GAMS
problem to a BARON type of problem. 712

BARON solver

A solver for LP, MIP, RMIP, NLP, DNLP, RMINLP,
and MINLP model types that can handle
non-convex problems. 112

Conversion to/from GAMS 785

Basis

Advanced basis usage for NLP model types
842

Avoiding problems with bases in comparative
analysis. 351

Now obsolete procedure in GAMS to generate an
advanced basis and speed up solution. 817

BCH facility

Branch, Cut and Hueristic MIP facility 829

Beta

Beta function. 256

Betareg

Regularized beta function. 256

Binary variable(s)

Declaration of a variable as equal to either zero or
one. 77

Binary variables

Variables that can take on values of 0 or 1 only.
823

Binomial

Binomial coefficient 256

Blocklist

GAMSCHK procedure that gives largest and
smallest coefficients by variable and equation
block. 459

Blockpic

GAMSCHK procedure that gives largest and
smallest coefficients by variable and equation
block as well as within block intersections. 459

Blue line

Colored navigation line in the process window in
the IDE. 183

BONMIN

An experimental MINLP solver 112

BonminD in core link 112

BONMINH a commercial version 112

bool_and

Function that returns 0 if arguments equal zero 1
otherwise 260

bool_eqv

Function that does boolean equivalence 260

bool_imp

Function that does boolean implication 260

bool_not

Function that does boolean not 260

bool_or

Function that does boolean not 260

bool_xor

Function that does boolean xor 260

Index 898

© 2022 Prof. Bruce McCarl

Branch and Cut Facility

BCH 829

Bratio

Command line parameter 364

Model attribute 551, 557, 818, 847

Option command controlling basis formation.
551, 557

Suppressing or requiring a basis 818

Break

Exiting a loop 334

By

Command in for statement indicating amount to
change a scalar varied during each step. 339

- C -
Calendar

Calendar, date and time functions 261

Capitalization

Font case structure that will be used in output.
67

Rules for font case structure that will be used in
output. 306

Card

Function that returns the ASCII number for a
character in a string. 267

Function that returns total number of elements in
a set. 68

Use of function for number of elements in a set in
conditionals. 323

Case

Command line parameter that controls the case of
text in the LST file for the echo print. 365

CBC

A free open source solver for MIP models 113

CbcD in core link 113

CDF

Cumulative Distribution Funcrion 271

Use in Models 271

Cdim

Total dimension of item in columns in Gdxxrw
data specification. 729

Cdir

Command line parameter that gives the name of
the current working directory. 366

Ceil

Function to find smallest greater integer. 256

Centropy

Cross entropy function 256

Cerr

Command line parameter that controls compile
time error limit. 365

Changing load and unload GDX file names

Using put_utility to change GDX file name 696

Changing put file name

Using put_utility to change put file name 696

Charset

Authorizes extended character set including
European and other international characters
232

Command line parameter that allows use of
extended character set including European and
other international characters 365

Customizing compiler so it includes European and
other international characters. 419

cheat

Model attribute that requires a new integer
solution to be better 847

Checkver

Checking available updates and license file
vintage. 174

CHK4UPD

Checking to see if a newer GAMS is available
882

Cholesky

Utility for Cholesky Decomposition 792

Clear

Clearing old solution option 489, 551, 557, 567,
750

Option command that zeros all data for an item.
 551, 557

Option in Gdxxrw. 750

Reducing memory use for an item 489

Click

Put_utility command to put clickable link in
process window 696

CNS

Command line parameter that names CNS solver.
 366

Constrained nonlinear system model form. 105

Customizable command parameter in Gmsprm file
that names CNS solver. 419

Declaration of model type specifying a constrained
nonlinear system. 93

Option command that names CNS solver. 551,
557

COINFML

Interfacing COINFML style XML files with GAMS.
 712

McCarl GAMS User Guide899

© 2022 Prof. Bruce McCarl

COINFML

Using the CONVERT solver to transform a GAMS
problem to a CoinFML type of problem. 712

Column block

Moving rectangular blocks in middle of lines in the
IDE. 195

Comma delimited files

Usage with ondelim/offdelim 499

Command line

Invoking GAMS from the command line. 175

Using command line items in the IDE. 212

Command line entry solver

Altering default solvers through command line
402

Command line GAMS

Tutorial coverage 14

Command line parameters

Alphabetic list of all command line parameters
361

Comments

Why enter 168

Common errors

List of common errors and their cause. 219

Comparative analysis

Analysis over multiple scenarios. 342

Compilation errors

Tutorial coverage 16

Compile errors

Common compilation errors 190, 219

Finding compile errors in the IDE. 190

Complement

Elements that are not in a set. 71

Complementarity

Declaration of complementary relationships. 87

Definition of a complementarity problem. 102

Relationship between variables and equations.
842

Compression

Compress 868

Compressing and encrypting files 868

Conditional

Concept that involves execution of statements
only when logical condition is true. 310

Conditionals

Rules for inclusion of acronyms 626

Tutorial coverage 39

Conic equation

Conic equations in GAMS. 83

CONOPT

A solver for CNS, LP, RMIP, NLP, DNLP, and
RMINLP model types. 114

CONOPTD

Incore version of CONOPT 114

Console

Putting execution location to console or screen.
 352

Constrained nonlinear systems

Constrained nonlinear system model form. 105

Context changes

Changing model domain of applicability -tutorial
coverage 44

Continue

Skipping to the end of a Loop 334

Control Structures

For 339

Loop 334

Repeat 317

Skipping or exiting using break or contiinue 336

While 317

Control variable

Variable used in compile time conditional
operations. 628

CONVERT

A converter that transforms GAMS models into a
format used by other modeling and solution
systems. 114

Conversion to/from GAMS 785

Using the convert solver to transform a GAMS
problem to a AlphaECP, AMPL, BARON,
CoinFML, CplexLP, CplexMPS, Dict, FixedMPS,
GAMS Scalar format, LAGO, LGO, LINGO,
MINOPT or ViennaDag type of problem. 712

CONVERTD

In core version of CONVERT 115

Cos

Function to find cosine. 256

Cosh

Function to find hyperbolic cosine. 256

Cost ranging

Including output on cost ranging. 156

Courses and Workshops

Lists of 868

CPLEX

Free bare bones version 115, 130

Solver for LP, MIP and RMIP model types. 115

CPLEXD
In core version of CPLEX 115

CPLEXLP

Conversion to/from GAMS 785

Index 900

© 2022 Prof. Bruce McCarl

CPLEXLP

Using the CONVERT solver to transform a GAMS
problem to a CplexLP type of problem. 712

CPLEXMPS 130

Conversion to/from GAMS 785

Using the CONVERT solver to transform a GAMS
problem to a CplexMPS type of problem. 785

CPP

cppcclib 275

Function for pdf and cdf gfr normal distributions
275

Cross reference map

Tutorial coverage 17

CSDP

Solver for semidefinite programming 114

CSV files

Passing with GAMS and put. 703

Passing with Rutherford's Gams2csv. 704

Usage with ondelim/offdelim 499

Using to pass information into compiled programs
from GAMS. 784

Using to pass information into GAMS from
compiled programs. 783

CSV2GDX

Utility to convert CSV file to GDX 796

Curdir

Command line parameter that gives the name of
the current working directory. 366

Custom documentation

Providing your own documentation in the IDE.
201

Customize

Procedures to alter GAMS operation on a
machine or for a job. 419

cutoff

Model attribute that causes tree to be cut off
847

cvPower

Function that exponentiates an item to a power
256

- D -
Data entry

Tutorial coverage 29

Data reduction

Strategy to zero data to reduce problem size in
model debugging. 466

Date

Calendar, date and time functions 261

DB2

Interfacing GAMS with DB2. 712

DEA

A solver for data envelopment and slice problems
that uses CPLEX. 116

Decimals

Controlling default decimal places in displays.
297

Option command that controls default decimal
places in displays. 551, 558

DECIS

A solver for stochastic linear programs that uses
CPLEX. 116

DECISC a version of DESIC that uses CPLEX
116

DECISM a vesion that uses MINOS 116

Declaration

Acronym declaration 625

Definition of models. 82

Definition of variables. 77

Parameter declaration 73

Scalar declaration 72

Table declaration 74

Declared

GAMS concept that item was defined by a scalar,
parameter, set, variable, etc. statement. 227

Keyword in compile time $If keyword to see if a
named item was declared by a set, parameter etc
statement. 650

Decompression

Decompress 868

Decompressing and encrypting files 868

Default bounds on integer variables

Controls default upper bound on integer varibles
 559

Defined

Keyword in compile time $If keyword to see if a
named item has data. 650

Defining sets from data

Method to compute sets based on data. 65

Degenerate cycling blocking

Improving solver performance avoiding cycling
841

Delphi 781

Example of running GAMS from compiled program
 781

Programming language that can run GAMS 781

Descriptive text
Why use 166

McCarl GAMS User Guide901

© 2022 Prof. Bruce McCarl

Dexist

Keyword in compile time $If to see if a named
directory exists. 655

Df

Command line parameter that controls compiler
use of alternative date formats 366

Dformat

Command line parameter that controls compiler
use of alternative date formats 366

Customizable command parameter in Gmsprm file
that controls compiler use of alternative date
formats. 419

Diag

Comparing text defining set elements. 69

Function that is a one if text for set elements
match and zero otherwise. 323

DICOPT

A program for solving MINLP model types. 116

Non linear mixed integer solver. 833

Dict

Using the CONVERT solver to transform a GAMS
problem to a Dict type of problem. 712

dictFile

Function that forces writing a dictionary file 847

Dif1, dif2

Markings that indicates difference in entries in
GDX files. 685

Diff

Althernative way to do file comparison 208

Comparing files using the Diff utility 786

Utility to difference two files 786

Diff Textfiles

GAMSIDE feature to difference two files 208

Difference

Elements that differ between sets. 71

Dim

Total dimension of item in Gdxxrw data
specification. 729

Dimension

Keyword in compile time $If keyword to see if a
named item is of a particular dimension. 650

Discontinous NLP

Discontinuous nonlinear programming model form.
 107

Display

Command that causes inclusion of data for an
item in LST file. 293

Conditional data displays. 315

Display execution error results in LST file. 441

Tutorial coverage 40

Dispwidth

Changes display width of set elements in columns
 558

DIstributed Processing

ALternative to grid computing 870

Using multiple processors 870

Div

Function that ratios two entries 256

Div0

Function like Div but with division by zero
protection 256

Dmpopt

List options for a model 559

Dmpsym

Examining memory use by GAMS items 483

Option command that gives data on number of
cases stored (memory use) for all GAMS items.
 551, 559

DNLP

Command line parameter that names DNLP
solver. 367

Customizable command parameter in Gmsprm file
that that names DNLP solver. 419

Declaration of model type specifying a
discontinuous nonlinear program. 93

Discontinuous nonlinear programming model form.
 107

Option command that names DNLP solver.
551, 558

Documentation

Accessing documentation in general. 202

Accessing GAMS documentation in IDE. 196

Supplemental GAMS Corporation materials 868

User generated materials 868

Domain checking

Act of checking if referenced element is in fact in
set or if item is defined over named set. 57

Lack of when reading GDX files 673

Domain error

Error when set element is not a member of a set
referenced for the position being worked with.
222

Error when set name does not match the set in
this position. 223

Domlim

Allowable number of numerical errors in user
model nonlinear terms during problem solution
845

Command line parameter that controls the
maximum number of domain errors 367

Index 902

© 2022 Prof. Bruce McCarl

Domlim

Model attribute 558, 845, 847

Option command that specifies maximum number
of domain errors. 551, 558

Domusd

Number of numerical errors encountered in user
model nonlinear terms during problem solution
845, 851

DOS box

Changing title of during a run. 352

Downto

Command in for statement indicating lower limit
for scalar that is decreased as varied. 339

Dp

Command line parameter to dump all include
names with paths 370

Dset

Reading sets from lists in Gdxxrw. 740

Dualcheck

Option command that controls dual evaluation in
Limcol display. 551, 559

Dumpopt

Keyword that creates a GAMS file of input that will
reproduce results encapsulating all include files
into one GAMS file 367

Dumpparms

Command line parameter to dump all altered
command line parameters 370

Dynamic

Nature of calculations in .. statement. 249

Dynamic set

Calculated set that cannot be used as a domain.
 57

- E -
Echo print

Tutorial coverage 15

Economic equilibrium

Tutorial example 5

Edist

Function to compute squareroot of sum of squares
of arguments. 256

Ef

Command line parameter that specifies the path
name to expand file names with. 374

Eigenvalue

Utility to compute eigenvalues 793

Eigenvector

Utility to compute eigenvectors 794

Eject

Option command that causes a page break in the
LST file. 551, 559

Element definition

Act of putting data or elements in a named item.
 54

Element name

Use longer names 166

Element order

Order set elements will appear in output. 67

Else

Statement that acts in concert with an If and
allows control of multiple lines based on earlier
conditionals not being true. 331

Elseif

Statement executed in an If statement context
when a condition is true and all previous If and
Endif conditions are false. 331

EMP 372

Extended Mathematical Program 107

EMPSP

Stochasic extension of EMP 117

Encryption

Encrypting files 515

Endfor

Alternative syntax which ends for statements
under $Onend. 340

Endif

Alternative syntax which ends If statements under
$Onend. 334

Endloop

Alternative syntax which ends Loop statements
under $Onend. 336

Endogenous function

Indication that GAMS has found nonlinear term in
linear model. 226

Endwhile

Alternative syntax which ends While statements
under $Onend. 338

Entropy

Function to compute entropy. 256

Environment variables

Gdxcompress and Gdxconvert 633

Windows environment variables. 634

Eolonly

Command line parameter that specifies whether a
file defined with pf= has more than one command
per line 372

Eps

McCarl GAMS User Guide903

© 2022 Prof. Bruce McCarl

Eps

Special value depicting a near zero number.
283

Epsout

Writing Eps into spreadsheets with Gdxxrw.
752

Eq

Relation operator in testing whether one item is
not equal to another. 318

Eqname.Varname

Syntax used in MCP models to declare
complementarity. 87

Equ

Reading and writing equations to/from
spreadsheets with Gdxxrw. 746

Equation

Command to declare an equation that can be one
of the constraints in a model. 82

Relation within a model that is one of the
constraints that must be satisfied in choosing the
solution levels. 82

Equation attribute

Solution, bound and scaling factors for an
equation. 87

Equation attributes

Use in put files. 588

Equation listing

Algebra use effects on, tutorial coverage 34

Tutorial coverage 18

Equation solution report

Algebra use effects on, tutorial coverage 36

Tutorial coverage 22

Equation table

Assigning values for equation attributes 81

Equations

Algebraic content, tutorial coverage 32

Command to declare an equation that can be one
of the constraints in a model. 82

Defined by external programs. 766

Supressing with conditionals 314

Tutorial coverage 9

Equtype

Keyword in compile time $If to see if a named
item is an equation. 648

Eqv

Relation operator in testing whether one item is
logically equivalent to another. 320

Er

Command line parameter that controls the error
messages sent to the LOG file. 373

Errmsg

Command line parameter that controls the
position of error messages in the echo print and
through use of Errmsg=1 allows one to reposition
error messages to just after error marking. 372

Customizable command parameter in Gmsprm file
that controls position of error messages in Echo
print and through use of Errmsg=1 allows one to
reposition error messages to just after error
marking. 419

Reposition error messages to just after error
marking. 217

Repositions error messages in echo print. 141

Errnam

Command line parameter that specifies name of a
file containing error messages. 373

Error

Command line parameter that forces a parameter
error with a specified message. 373

IDE facilitation of error discovery. 190

Error message proliferation

Case where one error causes many messages
and other than the first one are not really valid.
219

Error repair

Procedures to find and fix compiler errors 219

Errorf

Function to integrate normal distribution. 256

Errorfree

Keyword in compile time $If to see if a compilation
has been error free so far. 654

Errorlevel

Function to return completion code of most recent
external program called during GAMS run 263

Keyword in compile time $If to execute if less than
a specified number of compile errors have
occurred. 654

Errorlog

Command line parameter that controls the error
messages sent to the LOG file. 373

etAlg

Model attribute - Elapsed time algorithm 851

Etl

Command line parameter that specifies a time
limit 373

Etlim

GAMS parameter for specifying a time limit 373

etSolve

Model attribute - Elapsed time solve 851

etSolver

Index 904

© 2022 Prof. Bruce McCarl

etSolver

Model attribute - Elapsed time solver 851

EXAMINER

A utility that can be used to look at the
characteristics of a model solution. 117

Excel

Alternative example of GAMS called from EXCEL
 781

Running GAMS from a spreadsheet 769

Exec

Put_utility command to execute extenal program
 696

Execerr

Command line parameter that puts a maximum
limit on execution errors. 374

Execerror

Function returning number of execution errors.
450

Function to return number of execution errors or
reset error count to zero. 263

Way to clear execution error status. 451

Execmode

Command line parameter that controls use of
directories and external programs for network
administration. 374

Execseed

Function to reset seed or retrieve seed for random
number generator. 253

Execute

Changing calling parameters 415, 549, 661,
694

Executing an external procedure at execution
time. 694

Executing GAMS from within GAMS 415

Execution time statement that causes a run of an
external command or program. 661

Timing of execution. 699

Wait or not for execution to finish 415, 694, 699

Execute =

Use of = in Execute to make GAMS wait for
completion of an external program. 694

Execute.ASync 661

Telling GAMS to not wait 694

Execute.AsyncNC

Tells GAMS not to wait and to use another
console 696

Execute_Load

Execution time GDX file element reading 675

Variant with domain checking 676

Execute_loaddc

Domain checking at execution time of loaded data
 676

Execute_loadhandle

Causes GAMS to load a grid model solution
874

Execute_Loadpoint

Execution time GDX point file element reading
678

Used to load a basis or saved point file 678

Execute_Unload

Execution time GDX file creation 670

Execute_Unloaddi

GDX file with sets items are defined over 670

Executing jobs with substutable strings

Using put_utility to change strings for executing a
program 696

Execution error

Error message generated when successfully
compiled code is run by GAMS or solver and
numerical or other difficulty arises. 439

Execution output

Tutorial coverage 21

Exist

Keyword in compile time $If to see if a named file
exists. 655

Exp

Function to find exponentiation of a number.
253

Expand

Command line parameter that specifies the path
name to expand file names with. 374

Expandability

Small to large modeling - tutorial coverage 44

Explanatory text

Text which is optional giving explanation of named
element or set element 232

External Program

Executing in GAMS. 692

External Programs

Interactively including results during a GAMS run.
 761

Extrinsic Function

Froming user defined function 268

Notes on controlling derivatives 839

Ey

Command line parameter that specifies whether a
file defined with pf= has more than one command
per line 372

McCarl GAMS User Guide905

© 2022 Prof. Bruce McCarl

- F -
Fact

Function to calculate factorial. 256

Fddelta

Parameter to control numerical gradiant step size
 375

Fdopt

Paramter to influcence numerical hessian
calculation 376

Ferr

Command line parameter that specifies name and
existence of file of compilation error messages.
377

File

Command to define put file names. 578

File comparison 71, 786

Comparing files in the GAMSIDE 208

File not found

Difficulty with IDE project file locations. 213

Filecase

Command line parameter that controls file casing
of GAMS generated files. 377

Fileclose

Scripting command 210

Filecompile

Scripting command 210

Fileopen

Scripting command 210

Filerun

Scripting command 210

Files

Command to define put file names. 578

Filesave

Scripting command 210

Filesaveall

Scripting command 210

Filestem

Renaming LST, LOG and LXI files 377

Filewait

Scripting command 210

Filter

Using GDXXRW to put in an Excel filter 751

Filtype

Keyword in compile time $If to see if a named
item is a local name for a put file. 648

Find

Finding text in IDE. 192

Find in files

Finding text strings in a group of files with IDE.
193

Fixedmps

Using the CONVERT solver to transform a GAMS
problem to a FixedMPS type of problem. 712

Floor

Function to find largest smaller number. 256

For

Executes block of statements for each value of a
scalar incremented over a range. 339

Going to bottom or stopping 336, 339

Forcework

Command line parameter that forces workfile
translation 378

Forlim

Command line parameter that specifies the
maximum number of control structures involving a
For, While or Repeat 378

Limits maximum number of passes through For,
While and Repeat statements. 339

Option command that specifies maximum number
of passes through For, While and Repeat
statements. 551, 559

Format

Improving readability of GAMS files 165

Frac

Function to find fractional part of an argument.
256

Free variable(s)

Command declaring variable as one with no
restriction. 77

Fsave

Command line parameter that forces GAMS to
write a save work file. 378

Function

Command to declare a user defined function
268

User defined functions 268

Function evaluation errors

Numerical errors in user model nonlinear terms
during problem solution 845

Function that tests whether an iten is not = to another
 260

Funtype

Keyword in compile time $If to see if a named
item is a function. 648

Fw

Command line parameter that forces workfile
translation 378

Index 906

© 2022 Prof. Bruce McCarl

- G -
G205

Command line parameter that controls reversions
to older versions. 378

Gamma

Gamma function. 256

Gammareg

Regularized gamma function. 256

GAMS

Calling from compiled programs 785

Calling from spreadsheets 769

Executing GAMS from within GAMS. 764

GAMS model library 858

Installation documents 864

Latest version 865

GAMS documentation

Accessing GAMS documentation in the IDE.
198

GAMS FAQ

Frequently asked questions web site 865

GAMS IDE Help

Documentation on IDE accessible through Help.
 196

GAMS option statement

List of all option commands 555

Gams2csv

Rutherford's libinclude file to pass CSV data.
704

Gams2tbl

Rutherford utility for output table creation 301

GAMSBAS

Old procedure to generate a Basis 820

Using GDXDUMP to make a basis 798

GAMSCHK

A program designed to aid users examine
empirical GAMS models for possible flaws. 117

Procedure that is a GAMS solver that allows one
to get information on scaling. 459

GAMSIDE approach 175

Running GAMS Jobs 15

Tutorial coverage 15

GAMS-List

User mailing list 867

Gamsmap

Creatting map output 711

GamsRelease

Function thar returns GAMS release number
263

GAMSsm

Web server that runs GAMS scenarios 785

GamsVersion

Function that returns GAMS version number
263

GAMSworld Google Group

Website with topical area related GAMS
discussesions 867

GAMS-X

Web server that runs GAMS 785

Gday

Day of month that corresponds to date. 261

GDir

Command line parameter that specifies the grid
file directory 380

Grid computing storage location 880

Gdow

Day of week that corresponds to date
(1=Monday,2=Tuesday,..). 261

Gdx

API 881

Backward compatability - gdxcopy 379, 667,
668, 669, 680, 681, 689, 711

Command line parameter that gives the name of
and forces writing of GAMS data exchange file.
379

Creating GDX files with command line parameter
 668

GAMS data exchange file 667

Interfacing 263, 379, 667, 668, 669, 680, 681,
689, 691, 711, 795

Interfacing with from other programs 263, 379,
667, 668, 669, 680, 681, 689, 691, 711, 795

Reorder viewing of GDX files in the IDE 681

Selected item GDX file 669

Utilities 379, 667, 668, 669, 680, 681, 689, 691,
711, 795

Viewing contents with $Load 379, 667, 668,
669, 680, 681, 711

Viewing GDX files in the IDE 681

Whole problem GDX file 668

Writing GDX data into GMS files 263, 379, 667,
668, 669, 680, 681, 689, 691, 711, 795, 881

Writing older versions 379, 667, 668, 669, 680,
681, 689, 691, 711

Gdx file

Creating a GDX file in GAMS 668

GDX file viewing

McCarl GAMS User Guide907

© 2022 Prof. Bruce McCarl

GDX file viewing

Examining GDX files in IDE. 681

GDX files

Passing information from other programs. 705

Passing information to other GAMS programs.
764

Using Gdxmerge to compare GDX files 687

GDX point file

Creating a GDX solution point file in GAMS 669

Saved basis in GDX format 819

Gdx2access 797

Utility to pass data to the access database 711

Gdx2har

Utility to convert GDX data to GEMPACK header
 689

Gdx2sqlite

Utility to pass data to the SQLITE database
797

Gdx2xls

Utility to put all data in GDX file into Excel 802

Gdxcompress

Writing compressed GDX files 379

Gdxconvert

Writing older GDX file versions 379

Gdxcopy

GDX file backward compatability 689

Gdxdiff

Utility to compare contents differences in two GDX
files 685

Gdxdump

Utility to write out contents of GDX file in GAMS
format 682

Writing a CSV file 798

Writing a GAMSBAS basis file 682

Gdxin

Put_utility command to change active GDX
loading file 696

Gdxmerge

Utility to merge GDX files and compare data items
 687

GDXMRW

Matlab interface 711

Gdxout

Put_utility command to change active GDX unload
file 696

Gdxrank

Sorting one dimensional items 799

Gdxrename

Utility to rename set elements in a GDX file 800

Gdxrrw

Interface ro the R language 801

Gdxuels

Controls UELS written to GDX files 380

Gdxviewer

Program to link to Excel, Access, CSV, or text
files and to plot data. 711

Gdxxrw 777

Command entry alternatives. 754

Command entry using a range in a spreadsheet.
 755

Command entry using a text file. 754

Debugging. 759

Errors due to open workbooks. 749

Gdxxrw commands. 754

Ignoring rows and columns in a spreadsheet
726, 727, 729, 730, 743, 746, 749, 752, 754, 755,
757, 759, 777

Log file. 757

Range specification. 727

Read and write Excel spreadsheet data using
GDX files. 726

Reading and writing equations. 746

Reading and writing parameters. 743

Reading and writing sets. 731

Reading and writing variables. 746

Sharing workbooks. 749

Skipping empty rows and columns 746

Specification of type of data to read or write with
spreadsheets. 729

Tracing performance. 757

Using to pass information to Excel 777

Using to read information from Excel 777

Writing Hyperlinks 730

Writing special values and zeros. 752

Writing text 726, 727, 729, 730, 731, 743, 746,
749, 752, 754, 755, 757, 759, 777

Ge

Relation operator in testing whether one item is
greater than or equal to another. 319

GEMPACK

Utilities to convert header array files 689

Generate

Phase of GAMS execution where problem is
assembled for transfer to solver. 95

Generating
Phase of GAMS execution where problem is
assembled for transfer to solver. 95

Generation listing

Tutorial coverage 18

Index 908

© 2022 Prof. Bruce McCarl

Geographic mapping

Gamsmap 711

Mapping GAMS Output 711

Shademap 711

Ghour

Hour of day that corresponds to date. 261

GLB file 263

Defining a custom user library 862

Gleap

Indicator of whether the year that corresponds to
date is a leap year (0=no leap year, 1=leap year).
 261

Global

Type of control variable defined everywhere in
code. 628

GLOMIQO

Global Mixed-Integer Quadratic Optimizer 118

Gmillisec

Milliseconds that corresponds to date. 261

Gminute

Minute that corresponds to date. 261

Gmonth

Month that corresponds to date. 261

GMS file

Default GAMS file extension. 178

GMS processor

Making IDE the program called when GMS file is
clicked on. 181

Gms2tabl

Use of Ruterfords Gms2tabl to write HTML and
LATEX 712

Gmsprm98.txt

File that can be used to customize GAMS
function on a windows 95/98 machine. 420

Gmsprmnt.txt

File that can be used to customize GAMS
function on a Windows NT machine. 420

Gmsprmun.txt

File that can be used to customize GAMS
function on a Unix or Linux machine. 420

GMSUNZIP

Utility to UNZIP files 809

GMSZIP

Utility to form ZIP files 809

Gnuplot
Procedures to construct graph of GAMS data.
302

Use in GAMS to graph. 706

Use of Rutherford's libinclude to graph. 706

Gnupltxy

Procedures to construct graph of GAMS data.
302

Use of Schneider and McCarl's libinclude to graph.
 706

Good modeling practices

Tutorial coverage 48

GPR file

IDE project file. 177

Gradient

First derivative of nonlinear coefficients at current
or starting point that is used in model solution.
459

Graphics

Entering statements into a GAMS program that
permit graphical displays. 706

Graphing

Procedures to construct graph of GAMS data.
302

Grid Computing

Distributed processing alternative 380, 870,
874, 875, 878, 879, 880

File storage 870, 874, 875, 877, 878, 879, 880

Functions used 870, 878

General use 870, 874, 875, 877, 878, 879

Gridscript 380, 870, 874, 875, 877, 878, 879,
880

Handle definition and use 870, 874, 875, 878,
879

Invoking 870, 874, 878, 879

Load from GDX 870, 874, 875, 877, 878, 879

Solution inclusion in LST file 870, 877

Solution Retrieval 870, 874, 875, 877, 878, 879

Griddir

Command line parameter that specifies the grid
file directory 380

Grid computing directory 880

Gridscript

Command line parameter that provides the name
of a script file to submit grid computing jobs
380

Gscript

Command line parameter that provides the name
of a script file to submit grid computing jobs
380

Gsecond

Second that corresponds to date. 261

Gt

Relation operator in testing whether one item is
greater than another. 319

GUROBI

McCarl GAMS User Guide909

© 2022 Prof. Bruce McCarl

GUROBI

A LP and MIP solver 118

Free bare bones version 118, 130

GUSS

Solver for repeated scenarios 118

Gyear

Year that corresponds to date. 261

- H -
Handle

Identifies problems in grid computing 875

Model attribute - Every solve gets a unique handle
number 851

HandleCollect

Function that retrieves Grid Computing solutions
 263

HandleDelete

Function that deletes Grid Computing problems
263

HandleStatus

Constants 878

Function that retrieves Grid solutions into GDX file
 263

Status of model solve in Grid computing 263,
874

HandleSubmit

Function that resubmits Grid Computing problems
 263

Har2gdx

Utility to convert GEMPACK header array to GDX
 689

heapFree

Function giving allocated memory which is not in
use but is not freed yet 263

HeapLimit 252

Command line parameter for limiting GAMS
memory use 381

Function to control memory use 263

Heapsize

Function to recover the heap size in million bytes.
 263

Hierarchy

Hierarchy of GAMS customization procedures.
423

Hl

Command line parameter for limitting Gams
memeory use 381

holdFixed

Command line parameter that controls treatment
of fixed variables as constants 381

Possible issues with MCP complementarity
102, 381

Treat fixed variables as constants 847

HTML

Interfacing GAMS with HTML. 712

Writing items in GDX file to HTML in the IDE
681

- I -
I

Command line parameter giving the input file name
 382

ICDF

Inverse Cumulative Probability Distribution
Function 271

Use in Models 271

Icon

Making IDE icon. 214

IDE

Command line parameter controlling output of
special instructions to the log file 381

GAMS integrated development environment
program that allows editing and execution. 175

Putting execution location to IDE process window.
 352

Viewing GDX files in the IDE 681

IDE documentation

Accessing documentation in the IDE. 197

Discussion of IDE features. 175

IDE refreader

Use of refreader program for unraveling complex
files in IDE. 202

Idir

Change where included and Batincluded files
come from. 494

Command line parameter which gives directory
where included and batincluded files are kept. Can
include multiple directories. 382

Idir1 to Idir40

Command line parameters that gives input search
path where included and batincluded files are
kept. 383

If

Conditional control of multiple lines. 316

Statement that allows control of multiple lines
based on conditional. 331

Ifthen

Index 910

© 2022 Prof. Bruce McCarl

Ifthen

Function setting a value to one of two expressions
depending on a conditional. 254

IgnoreColumns

Ignoring columns when reading a spreadsheet
746

IgnoreRows

Ignoring rows when reading a spreadsheet 746

Imp

Relation operator in testing whether one item
logically implies another. 320

Inc

Put_utility command to include file in put file
696

Include data

Including data from other programs. 713

Indenting

Improving readability of GAMS files 171

Index

Gdxxrw command entry alternatives using a range
in a spreadsheet. 755

Inf

Depicts number as infinity in assignment
statement. 297

Special value depicting infinity can be used in
replacement statement. 283

-Inf

Special value depicting negative infinity can be
used in replacement statement. 283

Initial values

Starting values provided for the decision variables
within the problem 838

Initialized

GAMS concept that data were placed into object
when type was declared (by scalar, parameter ...
statement). 227

Input

Command line parameter givin the input file name
 382

Inputdir

Command line parameter that gives input search
paths where included and batincluded files are
kept. Can include multiple directories. 382

Customizable command parameter in Gmsprm file
that gives input search paths. Can include several
search paths separated by OS specific symbols.
 419

Inputdir1 to 40

Command line parameters that give input search
path. 383

Customizable command parameter in Gmsprm file
that gives input search path names to be used.
 Default is no search path. 419

Ins1, ins2

Markings that indicates inserts or deletions in
GDX files. 685

Installation

GAMS installation documents 864

Integer variable(s)

Command declaring variable as equal to a
non-negative integer. 77

Integer variable bounds 77, 835

Integer variables

Variables that must take on integer values 823

integer1-5

Integer communication cell 383, 847

Interface other programs with GAMS

API to interface with GAMS 881

API to interface with Solver options 881

API to read/write GDX files 881

Intersection

Method to define common set elements. 71

IntVarUp

Contorls bounds on integer variable 383, 559

Setting in an option statement 383

Stting in command line 559

Invert

Matrix inversion 791

IPOPT

A free open source interior point solver for NLP
models. 126

CoinIpoptD an in core link 126

IPOPTH a commercial version 126

Item name

Names for sets, scalars, put files, parameters,
tables, acronyms, variables, equations and
models 232

Use longer names 166

Item order

Rearranging in Gdxxrw. 749

Iteration log

Influence of NLPs 844

Iterlim

Command line parameter that specifies the
maximum number of allowable solver iterations
384, 440, 551, 560

Expand maximum number of solver iterations.
440

Model attribute 440, 560, 847

McCarl GAMS User Guide911

© 2022 Prof. Bruce McCarl

Iterlim

Option command that specifies maximum number
of solver iterations. 551, 560

iterUsd

Model attribute - Number of iterations used 851

- J -
JAMS

Solver for EMP problems 126

Java

Web based Programming language that can run
GAMS 785

Jdate

Gregorian date corresponding to year, month and
day. 261

Jnow

Current time. 261

jobHandle

Function that returns the Process ID of last job
started 263

jobKill

Function that sends a kill signal to the runnuing
job 256

jobStatus

Function that status of a job 263

jobTerminate

Function that kills a job 263

Jobtrace

Command line parameter that specifies a string
written to the trace file 384

Jstart

Time of the start of the GAMS job. 261

Jt

Command line parameter that specifies a string
written to the trace file 384

Jtime

Fraction of a day that corresponds to this hour,
minute and second. 261

- K -
keep

Command line paramater that tells GAMS to keep
temporary files 385

KESTREL 127

Web server that runs GAMS 785

Kill

Option command that removes all data for an
item. This should not usually be used. Use Clear
instead. 551, 560

Removing memory use for an item 489

KNITRO

A solver for NLP model types 127

- L -
Lago

Using the CONVERT solver to transform a GAMS
problem to a LAGO type of problem. 712

Large model facilities

Tutorial coverage 47

Latex

Interfacing GAMS with Latex. 712

Ldir

Change where Libincluded files come from. 498

Command line parameter that gives directory for
libincluded files. 385

Le

Relation operator in testing whether one item is
less than or equal to another. 320

Level

Solution value for variable 42, 118

Use in GUSS 118

Lf

Command line parameter that gives name of the
LOG file. 386

LGO

A solver for LP, NLP, DNLP, RMINLP, and RMIP
model types that can handle non-convex
problems. 127

Conversion to/from GAMS 785

LGOD an in core link 127, 785

Using the CONVERT solver to transform a GAMS
problem to a LGO type of problem. 712

Libincdir

Command line parameter that gives directory
where libincluded files are kept. 385

Customizable command parameter in Gmsprm file
which gives directory for libincluded files. 419

Library

Defining your own library 48, 178, 861

GAMS Data Utilities Library 862

GAMS EMP Library 862

GAMS Financial Library 862

GAMS model library 858

Index 912

© 2022 Prof. Bruce McCarl

Library

GAMS or user defined collection of GMS and
other files accessed through IDE. 178

GAMS Test Library 48, 178, 858, 861, 862

Tutorial coverage 48

License

Command line parameter that gives name of the
GAMS license file. 385

Gaining access to solvers. 108

General comments 882

License file

Checking available updates and license file vintage
with Checkver. 174

Maintaining license files on computer. 174

LicenseLevel

Function that returns indicator of license error
263

LicenseStatus

Function that returns non zero under a license
error 263

Licensing

Gaining access to solvers. 108

Limcol

Command line parameter that includes the first n
cases for each named variable in the LST file.
385

Control length of variable print out in output. 163

Customizable command parameter in Gmsprm file
that that controls number of variables printed out
under each variable block. 419

Model attribute 847

Nonlinear item marking 151, 163, 385, 419,
458, 551, 560, 843

Option command that that controls number of
variables printed out under each variable block.
551, 560

Tool to examine scaling. 458

Variable print out in output. 151

Limrow

Command line parameter that includes the first n
cases for each named equation in the LST file.
386

Control length of equation print out in output.
163

Customizable command parameter in Gmsprm file
that controls number of equations printed out in
each equation block. 419

Equation print out in output. 149

Model Attribute 847

Nonlinear item marking 149, 163, 386, 419,
458, 551, 560

Option command that controls number of
equations printed out in each equation block.
551, 560

Tool to examine scaling. 458

LINDO/LINDOGLOBAL

LINDOGLOBAL solver for MINLP problems 128

line

Model attribute - Line number of last solve 851

Linear programs

Linear programming model form. 99

LINGO

Conversion to/from GAMS 785

Using the CONVERT solver to transform a GAMS
problem to a LINGO type of problem. 712

linkUsed

Model attribute - SolveLink used for the last solve
 851

Ll

Command line parameter that controls line tracing
 386

Lo

Command line parameter destination for the LOG
file, used with setting of 0 or 2 to permit
Unix/Linux jobs to operate in background. 387

Local

Type of control variable defined locally in code.
629

Log

Adding message to LOG file 254, 352, 579,
696, 757

Directing put output to log file. 579

Function to find logarithm base e of a number.
254

Gdxxrw Log. 757

Putting execution location to log file. 352

LOG file

File created when GAMS runs which is echoed to
the screen and IDE process window. 134

Log10

Function to find logarithm base 10 of a number.
254

Log2

Function to find logarithm base 2 of a number.
254

Logappend

Appending to Gdxxrw Log. 757

Logbeta

Log of beta function. 256

McCarl GAMS User Guide913

© 2022 Prof. Bruce McCarl

Logfile

Command line parameter that gives name of the
LOG file. 386

Renaming with Filestem 377, 386

Loggamma

Log gamma beta function. 256

Logline

Command line parameter that controls line tracing
 386

Logoption

Command line parameter controls destination for
the LOG file, used with setting of 0 or 2 to permit
UNIX jobs to operate in background. 387

Customizable command parameter in Gmsprm file
that controls destination for the Log file, used with
setting of 0 or 2 to permit Unix jobs to operate in
background. 419

Loop

Executes block of statements for each element of
a set. 334

Exiting early with Break or Continue 336

Use in comparative analysis. 348

LP

Command line parameter that names LP solver.
387

Customizable command parameter in Gmsprm file
that names LP solver. 419

Declaration of model type specifying a linear
program. 93

Linear programming model form. 99

Option command that names LP solver. 551,
561

LST file

Main output file for a GAMS run. 134

Navigation Window 185

Renaming with Filestem 134, 185, 377

Lt 185

Relation operator in testing whether one item is
less than another. 319

LXI file

Navigating LST using LXI file 185

Renaming with Filestem 377

- M -
Macro

Multi-line macros 571

Running GAMS through predefined script 569

Macros

Showing active macros 548, 569

Using macros to define terms in equations 569

Mapping Programs

Drawing geographic maps from GAMS. 711

Mapval

Function that returns numeric codes for special
values. 256

Marginal

Recovering marginals from solution 42

Use in GUSS tuple 118

Marginals

Atrribute telling if solver retruned dual solution
854

Match parentheses

Parentheses matching with IDE. 194

Matching operator :

Defing a tuple with : 62

Matchit

GAMSCHK procedure that gives largest and
smallest coefficients by variable and equation.
459

Matlab

Interface with Matlab software. 711

Matrix utilities

Cholesky factorization 790, 791

Eigenvalue 790, 791, 793

Eigenvector 790, 791, 793, 794

Invert 790, 791

Max

Component of model statement indicating model
is to be maximized. 93

Function to find maximum among numbers.
254

Maxexecerror

Function to read or reset number of execution
errors. 263

Maximizing

Component of model statement indicating model
is to be maximized. 93

Maxinfes 851

Solver reported maxinfes 851

Solver reported value of maxinfes 851

Maxprocdir

Maximum number of 225a, 225b etc directories
387

MCfILTER 389

Filter dominated points from GDX file 804

MCP

Command line parameter that names MCP solver.
 387

Index 914

© 2022 Prof. Bruce McCarl

MCP

Complementarity issues 93, 102, 387, 419,
551, 561

Customizable command parameter in Gmsprm file
that names MCP solver. 419

Declaration of mixed complementarity problem
model type. 93

Mixed complementarity problem model form.
102

Option command that names MCP solver. 551,
561

MCP complementarity

Difficulties and MCPrHoldFx 102, 842

Specifying complementarity. 842

MCP solution output

Differences in output when MCP models are
solved 845

MCPrHoldFx

Lists equations complementary with fixed
variables 388

Mdb2gms

A program to generate an include file from
contents of an Excel spreadsheet. 717

Meaninfes

Solver reported value of meaninfes 851

Measure

Option command that causes output of time and
memory since last measure command or program
beginning. 551, 561

Memory problems

Investigating excess memory use 478

Merge

Keyword for Solveopt option causing merging of
solution information. 567

Option in Gdxxrw. 749

Solveopt option that causes solution to be
merged. 97

Message

Scripting command 210

MessageReceiverWindow

Making windows recieve a meassage from GAMS
 698

MILES

A solver for MCP model types. 128

MILESE

The newest version of MILES. 129

MILESOLD

A discontinued version of MILES. 129

Min

Component of model statement indicating model
is to be minimized. 93

Function to find minimum among numbers. 254

Minfout

Writing -Inf into spreadsheets with Gdxxrw. 753

Minimizing

Component of model statement indicating model
is to be minimized. 93

MINLP

An option keyword used to define the currently
active MINLP solver. 834

Command line parameter that names MINLP
solver. 388

Customizable command parameter in Gmsprm file
that names MINLP solver. 419

Declaration of model type specifying a mixed
integer nonlinear program. 93

Mixed integer nonlinear programming model form.
 103

Option command that names MINLP solver.
551, 561

MINOPT

Conversion to/from GAMS 785

Using the CONVERT solver to transform a GAMS
problem to a MINOPTtype of problem. 712

MINOS

A solver for DNLP, NLP and RMINLP model types.
 129

MINOSD- an in core verision 129

MINOS5

An older version of MINOS. 129

MIP

An option keyword used to define the currently
active MIP solver. 834

Branch, Cut and Hueristic MIP facility 93, 100,
388, 419, 551, 561, 821, 829, 834

Command line parameter that names MIP solver.
 388

Customizable command parameter in Gmsprm file
that names MIP solver. 419

Declaration of model type specifying a mixed
integer program. 93

Discussion of a basis in a MIP context. 821

Mixed integer programming model form. 100

Option command that names MIP solver. 551,
561

MIQCP

Command line parameter that names MIQCP
solver 388

McCarl GAMS User Guide915

© 2022 Prof. Bruce McCarl

MIQCP

Relaxed mixed integer quadratically constrained
programming model form. 104

Mismatched parentheses

Common source of errors. 224

Mixed complementarity programming

Mixed complementarity programming model form.
 102

Mixed integer NLP programming

Mixed integer nonlinear programming model form.
 103

Mixed integer programming

Mixed integer programming model form. 100

Mod

Function to find modulus of a number. 256

Model

Command that groups a number of equations into
a named item that can be solved. 87

Tutorial coverage 11

Model attribute

Way of addressing solution status and model
options for a particular model. 289

Model attributes

Attribute of a model giving solution performance or
specifying procedures 847

Use in put files. 587

Model library 858

GAMS model library 858

GAMS or user defined collection of GMS and
other files accessed through IDE. 178

Library of models in this manual 862

Tutorial coverage 48

User defined model library 858

Model readability

Enhancing through formatting 165

Model setup output

Influence of NLPs 844

Model statistics

Tutorial coverage 21

Model type

Form of problem to be solved: LP, NLP, MIP etc.
 93

Model types

Alternative problem types that can be solved.
99

Models
Command that groups a number of equations into
a named item that can be solved. 87

Modelstat

Indicator of solution status 854

Model attribute indicating the model status 851

Modtype

Keyword in compile time $If to see if a named
item is a named model. 648

MOSEK

A solver for LP, MIP, RMIP, NLP, DNLP, and
RMINLP model types. 129

Free bare boines version 129

Mp

Command line parameter that causes GAMS to
employ a quick syntax check. 389

MPEC

Command line parameter that names MPEC
solver. 388

Customizable command parameter in Gmsprm file
that names MPEC solver. 419

Declaration of model type specifying a
mathematical program with equilibrium
constraints. 93

MPEC models

Mathematical program with equilibrium constraints
model form. 106

MPS

Interfacing GAMS with MPS based solvers. 712

MPSGE

A preprocessor that aids in formulation and
solution of general equilibrium models. 129

Msappavail

Checks for presence of Microsoft office software
 807

Msg

Put_utility command to put message in LST file
696

Msglog

Put_utility command to add message to LOG anf
LST files 696

MSNLP

A solver for NLP, DNLP, RMINLP, and MINLP
model types that can handle non-convex
problems. 130

Multi dimensional set

Set that is defined with respect to more that one
other set. 56

Multi_threading

Including solutions in LST file 400

Invoking using Solvelink=6 400

Multipass

Command line parameter that that causes GAMS
to only do a quick syntax check. 389

Multiple solve

Index 916

© 2022 Prof. Bruce McCarl

Multiple solve

Procedure containing more than one execution of
solve statement. 96

- N -
Na

Depicting a number as unavailable in assignment
statement. 297

Special value depicting an unavailable number,
can be used in assignment statement. 283

NameConv

Changing range specification convention in
Gdxxrw 728

Naout

Writing Na into spreadsheets with Gdxxrw. 752

Navigate

Aids to access LST and GMS file in IDE. 183

Nc

Changing range specification convention in
Gdxxrw 728

Ncpcm

Function for use in smoothing functions in MPEC
models with Chen-Mangesarian approach. 256

Ncpf

Function for use in smoothing functions in MPEC
models with Fisher approach. 256

ncpVUpow

Function for NCP Veelken-Ulbrich smoothed min
 256

ncpVUsin

Alternative function for NCP Veelken-Ulbrich
minimum 256

Ne

Relation operator in testing whether one item is
not equal to another. 318

Negative variable(s)

Command declaring variable as non-positive. 77

Nested conditionals

Use of multiple layers of conditionals. 326

Newsletter

Bruce McCarl's newsletter 867

NLP

Command line parameter that that names NLP
solver. 389

Computing derivatives 93, 99, 389, 551, 562,
822, 839

Declaration of model type specifying a non linear
program. 93

Discussion of a basis in a NLP context. 822

Nonlinear programming problem form. 99

Option command that names NLP solver. 551,
562

NLP and MCP variants

Nonlinear and mixed complementarity problem
forms 846

NLPEC

A solver for MPEC models. 130

No

Removes a set element through a calculation.
284

Special value that indicates an element is not in a
set, can be used in assignment statement. 56

nodLim

Command line parameter that controls the
maximum number of nodes in a branch an bound
tree 389

Model attribute for maximum number of branch
and bound nodes 847

nodUsd

Model attribute - Number of nodes used by MIP
solver 851

Nonewvarequ

Prohibits adding variable and equations 389

Nonlinear equation system

Tutorial example 6

Nonlinear MIPs

Integer programming problems with nonlinear
terms. 833

Nonlinear program

Nonlinear programming model form. 99

NonNegative Variable

Specifies variable as greater than or equal to zero
 77

Normal

Bivariate distribution 275

Function to generate a random normal number.
256

PDF and CDF generation 256, 275

Trivariate distribution 275

Not

Operator to form set complement. 71

Relation operator that makes a condition true what
a logical condition is false. 328

Relation operator that makes a condition true
when a $If logical condition is false. 639

number

Model attribute containing a serial model number
 851

NumCores

McCarl GAMS User Guide917

© 2022 Prof. Bruce McCarl

NumCores

Number of logical cores on computer 267

numDepnd

Model attribute - Number of dependencies in a
CNS model 851

numDVar

Model attribute - Number of discrete variables
851

numEqu

Model attribute - Number of equations 851

numInfes

Model attribute - Number of infeasibilities 851

numNLIns

Model attribute - Number of nonlinear instructions
 851

numNLNZ

Model attribute - Number of nonlinear nonzeros
851

numNOpt

Model attribute - Number of nonlinear nonzeros
851

numNZ

Model attribute - Number of nonzero entries in the
model coefficient matrix 851

numRedef

Model attribute - Number of MCP redefinitions
851

numVar

Model attribute - Number of variables 851

numVarProj

Model attribute - Number of bound projections
during model generation 851

- O -
O

Command line parameter that gives the name of
the file containing the output. 391

O??

Option file name extension when optfile = 10-99.
 811

objEst

Model Attribute - Estimate of the best possible
solution for a mixed-integer model 851

objVal

Model attribute - Objective function value 851

Offput

Dollar command stopping put of text block. 621

On115

Command line parameter tha generates errors for
unknown unique element in an equation 390

Onput

Command starting put of text block. 621

Onputs

Command starting put of text block with
parameter substitution. 621

Onputv

Command starting put of text block without
parameter substitution. 621

Op?

Option file name extension when optfile = 2-9.
811

Opt

Default extension for option file names when
optfile=1. 811

Optca

Comamnd line parameter that specifies an
absolute termination tolerance 390

Model attribute or option command telling the
solver to stop when best solution is no more than
a given amount away from the best solution.
831, 847

Option command that specifies absolute
optimality tolerance in a MIP. 551, 562

Optcr 831

Command line parameter that specifies a relative
optimality criterion 390

Default value. 831

Model attribute or option command telling the
solver to stop when best solution is no more than
a given proportion of the best solution away from
the best solution. 831, 847

Option command that specifies relative optimality
tolerance in a MIP. 551, 562

Optdir

Command line parameter that gives the name of
the directory to be used by GAMS for solver
option files. 390

Command line parameter to define a central
location for option files. 816

Optfile

Command line parameter that gives the number to
use for model.optfile. 391

Command line parameter to specify option file
presence and relevant file extension. 816

Customizable command parameter in Gmsprm file
that specifies default value for model.Optfile, can
be set to 1 if one always wants GAMS to look for
option file. 419

Model attribute 391, 419, 816, 847

Index 918

© 2022 Prof. Bruce McCarl

Optfile =0

Optfile setting that results in no option file used.
 811

Optfile > 1

Option file setting that renders file extension
op2-op9, o10-o99, or 100-999. 811

Optfile=1

Optfile setting that results in option file "Opt"
being used. 811

Optimization problem

Tutorial example 5

Option

Command that invokes GAMS execution options.
 552

List all options 552, 559

Option <

Project items left to right. 556

Option <=

Project items right to left. 556

Option file

Option file editor 810, 813, 815

Solver Option files 810, 815

Writing in job. 815

Option itemname

Command to format display appearance. 294

Option itemname:d

Option command controlling display item
formatting. 555

Option itemname:d:r:c

Option command controlling display item
formatting. 555

Options

Command that invokes GAMS execution options.
 552

Or

Relational operator that links sub-logical
conditions being true when at least one sub
condition is true. 327

ORACLE

Database that can control GAMS runs 785

Interfacing GAMS with Oracle. 712

Ord

Function that returns number of element in set.
323

Function that returns position number of set
element in total set. 67

Function that returns the ASCII code numbers for
a character in a string. 266

Probems with unordered sets 67, 230, 266, 323

Ordascii

Function that returns the ASCII code numbers for
a character in a string. 266

Ordebcdic

Function that returns the EPCDIC code numbers
for a character in a string. 266

Order

Order of set elements as they will appear in the
output. 67

Ordering of set elements and item names in
output. 307

Ordered set

Problems with ORD and unordered sets 67,
230

Set that has ordered elements and can be used
with Ord, leads and lags. 67

Ordering

Ordering of set elements and item names in
output. 307

OSICPLEX

Free bare bones version of CPLEX 130

OSIGUROBI

Free bare bones verion of GUROBI 130

OSIMOSEK

Free version of MOSEK 131

OSISOPLEX

Free LP solver 131

OSIXPRESS

Free bare bones version of XPRESS 131

Output

Command line parameter that gives the name of
the file containing the output. 391

Output navigation

Navigating LST file using LXI file 185

Output to other programs

Procedures to send data to other programs.
302

- P -
Page height

IDE page height setting. 180

Page width

IDE page width setting. 180

Pagecontr

Command line parameter that tells the default put
file page control to use. 391

Pagesize

McCarl GAMS User Guide919

© 2022 Prof. Bruce McCarl

Pagesize

Command line parameter that tells the default
number of lines per page. If less than 30 it will be
reset to the default of 9999. 391

Pagewidth

Command line parameter that tells the default
number of columns on a page. 392

Par

Reading and writing parameters to/from
spreadsheets with Gdxxrw. 743

Param

Use in GUSS tuple 118

Parameter

Command to define a data item 73

Parameters

Command to define a data item 73

Tutorial coverage 30

Parentheses match

Parentheses matching with IDE. 194

Parmfile

Command line parameter that gives the name of
the GAMS supplemental command line parameter
file to use. 392

Partype

Keyword in compile time $If to see if a named
item is a parameter. 648

PATH

A MCP, CNS, and NLP (through PATHNLP)
solver. 131

PATHC

The latest version of PATH. 132

PATHNLP

A variant of PATH that can solve LP, NLP, RMIP
and RMINLP model types. 132

PATHOLD

A discontinued, older version of PATH. 132

Pc

Command line parameter that tells the default put
file page control to use. 391

PDF

Use in models 271

Pdir

Command line parameter that gives the name of
the directory where files generated by the Put
command will be stored. 395

Customizable command parameter in Gmsprm file
that identifies put directory. If not specified, it will
be set to the work directory. 419

Percentage change

Computing percentage changes. 346

Pf

Command line parameter that gives the name of
the GAMS supplemental command line parameter
file to use. 392

Customizable command parameter giving a name
of a file that contains command line parameters.
 420

pf4

Abbreviation for Intvarup 835

Pi

Function to deliver value of pi-3.141716…. 256

Picture

GAMSCHK procedure that gives indication of
coefficient magnitude for variables and equation
plus reveals structure. 459

Pinfout

Writing +Inf into spreadsheets with Gdxxrw.
753

Plicense

Privacy license command line parameter 393

Poly

Polynomail expansion function 256

Portability

Platform independence 48

Positive variable(s)

Command declaring variable as non-negative.
77

Posix

File maipulation utilities 786

Power

Function to exponentiate a number. 256

Precedence order

Precedence order incorporating numbers and
logical conditions. 329

Prefix for dumped command line parameters 371

Presolve

Problem preprocessing done by solvers. 447

Priorities

Way of specifying an order for picking variables to
branch on during a MIP branch and bound
solution. 828

priorOpt

Model attribute on MIP priorities 847

Probability functions

PDF, CDF, ICDF 268, 271

Random Numbers From 275

Use in model equations 268, 271

ProcDir
Way of changing temporary file name 393

Process window

Index 920

© 2022 Prof. Bruce McCarl

Process window

IDE version of LOG file. 181

Putting execution location to IDE process window.
 352

procUsed

Model attribute - Used model type 851

Prod

Function to multiply elements over a set. 254

Profile

Command line parameter that causes GAMS to
include information on statement execution time
and memory use in LST file allowing one to find
slow or large memory using statements. 393

Customizable command parameter in Gmsprm file
that causes GAMS to include information on
statement execution time and memory use in Lst
file allowing one to find slow or large memory
using statements. 419

Generates execution time and memory usage
reports for GAMS statements. 468

Generates output on execution time and memory
usage for GAMS statements 480

Option command that controls inclusion of
statement execution time and memory use
information. 551, 562

Profilefile

Name a file to recieve profile information 394

Profiletol

Command line parameter that specifies the
minimum time a statement must use to appear in
the profile generated output 394

Option command that specifies minimum
execution time for inclusion of a statement in
Profile output. 551, 563

Places lower limit on time use for statements in
profile output and must be used carefully for
memory searches 483

Places lower limit on time use for statements
included in profile output. 470

Project

Difficulties with IDE project. 213

IDE storage file and file location definition. 177

Use of option command to project items. 555

Projected

Count of Levels set to bounds 93, 161

Levels reset when below tolproj 93

Ps

Changes length of output page in lines. 162

Command line parameter that tells the default
number of lines per page. If less than 30 it will be
reset to the default of 9999. 391

Customizable command parameter in Gmsprm file
that specifies page size. If less than 30 it will be
reset to 9999. 419

Ptol

Command line parameter that specifies the
minimum time a statement must use to appear in
the profile generated output 394

Put

Adding tabs 575, 602, 618, 701, 704

Command to assign current file and write to
window. 618

Item formatting. 575

Rutherford's preprogrammed put files. 704

Using to pass data to other programs. 701

Put_utility

Add clickable link in process window 696

Add message to Log and LST file 696

Change put file name 696

Execute programs with strings as parameters
696

Execute with and without GAMS waiting for
program to finish 696

Include file in put file 696

Reading multiple GDX files 696

Putclear

Command to remove all put headers and titles.
604

Putclose

Command to close file. 620

Puthd

Command to write to header block. 604

Putopen

Keyword in compile time $If to see if a put file is
active. 655

Putpage

Command to assign current file and write to
window with form feed. 621

Puttl

Command to write to title block. 603

Pw

Changes width of output page in columns. 162

Command line parameter that tells the number of
columns on a page. 392

Customizable command parameter in Gmsprm file
that specifies print width. 419

- Q -
QCP

McCarl GAMS User Guide921

© 2022 Prof. Bruce McCarl

QCP

Command line parameter that names QCP solver
 395

Quadratically constrained programming model
form. 100

- R -
R

Abbreviation for restart. 413

Command line parameter that gives the name of
the restart file. 396

RandBinomial

Random numbers from binomial distribution 256

randLinear

Function for a random number from a linear
distribution 256

Random number 256

Function to generate a random normal number.
256

Function to generate uniform random number.
256

Function to reset seed or retrieve seed for random
number generator. 253

Generation from probability disributions 253,
256, 275, 564

Option command that specifies random number
seed. 564

randTriangle

Function for a random number from triangular
distribution 256

Ranging analysis

Cost and RHS ranging. 156

Rank

Ranking parameters in GDX files 304, 799

Ruterford and van der Eijk procedure to sort
GAMS data. 304

Rdim

Rearranging placement of rows and columns when
writing from Gdxxrw into spreadsheets. 744

Total dimension of item in rows in Gdxxrw data
specification. 729

ReadyCollect

Function to collect grid and async jobs 874,
875

real1-5

Real communication cell 847

Rectangle

Moving rectangular blocks in middle of line with
IDE. 195

Red line

Colored navigation line in IDE. 183

Reference

Command line parameter that gives the name of
the file to receive extensive reference map
information. 395

reform

Model attribute for reformularion 847

Refreader

Program for unraveling complex files in IDE.
202

rel_eq

Function that tests equality 260

rel_ge

Function that tests whether an iten is >= another
 260

rel_gt

Function that tests whether an iten is >another
260

rel_le

Function that tests whether an iten is <= another
 260

rel_lt

Function that tests whether an iten is < another
260

rel_ne 260

Ren

Put_utility command to change active put file
696

Repeat

Statement that executes multiple lines repetitively
until a conditional is true. 317

Repeated static

Nature of calculations in Loop, For or While
statements. 249

Replace

Keyword for Solveopt option causing replacement
of solution information. 567

Solveopt that causes solution replacement. 97

Report writer

Cross scenario reports. 345

Report writing

Tutorial coverage 42

resGen

Model attribute - Model generation time 851

Reslim

Command line parameter specifies the maximum
time in seconds that the computer can run during
execution of a solver 395

Index 922

© 2022 Prof. Bruce McCarl

Reslim

Expand maximum seconds job can execute.
440

Expand time with ETLIM 373, 440, 551, 563

Model attribute 847

Option command that specifies maximum
seconds job can execute. 551, 563

Restart

Command line parameter that gives the name of
the restart file. 396

GAMS command line parameter that restarts from
a work file. 413

resUsd

Model attribute - Model solution time (only solver)
 851

Rf

Command line parameter that gives the name of
the file to receive extensive reference map
information. 395

RHS ranging

Including output on RHS ranging. 156

RMINLP

Command line parameter that names the RMINLP
solver. 396

Customizable command parameter in Gmsprm file
that names RMINLP solver. 419

Declaration of model type specifying a relaxed
mixed integer nonlinear program. 93

Keyword used to identify RMINLP solver name.
835

Option command that names RMINLP solver.
551, 564

Relaxed mixed integer nonlinear programming
model form. 104

RMIP

Command line parameter that names the RMIP
solver. 396

Customizable command parameter in Gmsprm file
that names RMIP solver. 419

Declaration of model type specifying a relaxed
mixed integer program. 93

Keyword used to identify RMIP solver name.
834

Option command that names RMIP solver. 551,
563

Relaxed mixed integer programming model form.
 101

RMIQCP

Command line parameter that names RMIQCP
solver 396

Mixed integer quadratically constrained
programming model form. 105

Rng

Specifying a range in Gdxxrw. 727

rObj

Model attribute - Objective function value from the
relaxed solve if the MIP solver did not finish 851

Round

Function to round numbers. 255

Rounding function. 297

rPower

Function that exponentiates an item to a power
256

Run button

Button to execute GAMS in IDE. 181

RunMacros

Specify how links in a spreadsheet should be
updated during Gdxxrw operations. 758

Running a job

Tutorial coverage 14

- S -
S

Abbreviation for save. 413

Command line parameter that gives the name of
save file. 397

Sameas

Comparing text defining set elements. 68

Function that tests if text for set elements match
and false otherwise. 323

Save

ALtering names in save file 397, 405, 413

Command line parameter that gives the name of
save file. 397

GAMS command line parameter that saves a
binary format work file. 413

Save and restart

Save restart strategy to help isolate problem code
in model debugging. 464

Savepoint

Command line parameter that causes a point GDX
file to be saved with the current solution point.
397

Creating a GDX solution point file in GAMS 669

Customizable command parameter in Gmsprm file
that causes a point GDX file to be saved with the
current solution point. 419

Model Attribute 397, 419, 551, 564, 669, 819

McCarl GAMS User Guide923

© 2022 Prof. Bruce McCarl

Savepoint

Option command that causes a point GDX file to
be saved with the current solution point. 551,
564

Saving a basis/current solution file 819

SBB

Mixed Integer Nonlinear solver 132, 833

Scalar

Command to define an item that is not dependent
on sets 72

Scalar format

Using the CONVERT solver to transform a GAMS
problem to a GAMS scalar format type of problem.
 712

Scalar model

Definition and creation by CONVERT 785

Scalars

Command to define a data item that is not
dependent on sets 72

Tutorial coverage 30

scaleOpt

Model attribute that tells Gams whether to use
scaling factors 847

Scaling

Exercise of trying to reduce disparity of numbers
in a model. 451

Improving scaling of nonlinear models 841

Scenario

Modifier to Solve statement 118

Scenario analysis

Addressing scenario analysis using the DEA
solver. 116

Using GUSS 116, 118

SCENRED

A tool for scenario reduction in stochastic
programming. 132

SCIP

Constrained Integer Programming solver 132

Scntr

Command line parameter that specifies the solver
control file name 402

Scoped

Type of control variable defined only in parts of
code. 629

Scrdir

Command line parameter that gives the name of
the directory to be used by GAMS for temporary
files generated during execution. 398

Screen

Directing put output to console screen. 579

Putting execution location to console or screen.
 352

Scrext

Command line parameter that gives the name of
the extension for the GAMS temporary files
generated during execution 398

Script

Command line parameter that specifies the script
mailbox file name 399

GAMS run from predefined script 210

Scriptexit

Command line parameter that specifies an exit
script 398

Scriptfrst

Command line parameter that specifies the first
line written to gamsnext 398

Scriptnext

Command line parameter that specifies the script
mailbox file name 399

Scrnam

Command line parameter that gives the name
stem to complete the names of intermediate work
files 399

Sd

Command line parameter that gives the name of
the directory to be used by GAMS for temporary
files generated during execution. 398

Sdict

Command line parameter that specifies the solver
dictionary file name 402

Sdir

Change where Sysinclude files come from. 498

Command line parameter that gives the directory
where sysinclude files are kept. 406

Se

Command line parameter that gives the name of
the extension for the GAMS temporary files
generated during execution 398

Skipping blank rows or columns in Gdxxrw. 746

Seed

Command line parameter that specifies the
random seed number 399

Option command that specifies random number
seed. 551, 564

Self-documenting nature

Tutorial coverage 47

Semicont variable(s)

Command declaring variable as semi-continuous.
 77

Semicont variables

Index 924

© 2022 Prof. Bruce McCarl

Semicont variables

Variables that are zero or continuous above a
threshold value. 826

Semiint variable(s)

Command declaring variable as semi-integer.
77

Semiint variables

Variables that are zero or are integer above a
threshold value. 827

Sends specified text to the LOG file.

Using $log to send text to log file 165

Sensitivity analysis

Addressing sensitivity analysis using the DEA
solver. 116

Cost and RHS ranging. 156

Set

Command that specifies a grouping of named
elements. 49

Group of indices. 242

Inferring contents from a GDX file 49, 242, 525,
731, 738

Reading and writing sets in Gdxxrw with
spreadsheets. 731

Reading sets from columns from spreadsheets in
Gdxxrw. 738

Reading sets from rows from spreadsheets in
Gdxxrw. 738

Singleton set - one element 49, 51, 242, 525,
731, 738

Set attributes

Set attribute giving position, length and value of
set elements 64

Set element

Names of set elements 232

Set element text

Text which explains an item or set element 233

Set table

Using table command to define set elements
55

Set under control

Set inside set varying statement like sum or loop
or a set on right hand side of statement indexed
on left hand side over that set. 223

Set. 29, 30

Defining parameter values for all elements sof a
set 74

Way of addressing an entire set when defining set
elements 51

Setenv

Use in $IF to test for existence of environmental
variables. 644

Sets

Command that specifies a grouping of named
elements. 49

Loading from GDX files into GAMS. 741

Tips on defining 170

Tutorial coverage 28

Unloading into GDX files from GAMS. 742

Settype

Keyword in compile time $If to see if a named
item is a set. 648

Sf

Command line parameter that specifies the first
line written to gamsnext 398

Shademap

A tool for mapping GAMS results 711

Shared workbooks

Issues in Gdxxrw. 749

Shell

Put_utility command to invoke shell processor
696

Shellexecute

Executes external program chosen by operating
system 808

Shuffle

Option to randomly rearrage a parameter 564

Sigmoid

Function to compute sigmoid. 256

Sign

Function to find sign of a number. 256

signPower

Signed power 256

Sin

Function to find sine. 256

Singleton set

Set with a sinlge element 51

Sinh

Function to find hyperbolic sine. 256

Sinst

Command line parameter that specifies the solver
instruction file name 402

Skipempty

Skipping blank rows or columns in Gdxxrw. 746

Sl

Command line parameter that controls whether
the GAMS program stays open during a solve.
400

Sleep(sec)

Function that causes GAMS to pause 263

McCarl GAMS User Guide925

© 2022 Prof. Bruce McCarl

slexp

Function giving linearly smoothed exponentiation
 256

SLICE

Solving slice problems using DEA and CPLEX.
116

sllog10

Function for linearly smoothed log base 10 256

slrec

Function giving linearly smoothed reciprocal
256

Small to large

Modeling strategy to help in model debugging.
463

Smatr

Command line parameter that specifies the solver
matrix file name 403

Smax

Function to find a maximum value over a set.
255

Smin

Function to find a minimum value over a set.
255

Sn

Command line parameter that gives the name
stem to complete the names of intermediate work
files 399

SNOPT

A LP, NLP, DNLP, RMIP, and RMINLP model
type solver. 133

Solprint

Command line parameter that controls the printing
of the solution report 399

Model attribute 847

Option command that suppresses solution
printout in LST file. 551, 566

Solprint constants 155, 400, 551, 566

Suppresses solution in the output. 155

Solslack

Option and command line parameter that adds
slack variable report to output. 156

Option command that includes slacks in solution
output. 551, 567

Solution characteristics

Use of EXAMINER utility to examine solution
adequacy. 117

Solution output

Differences in output when MCP models are
solved 845

Solution Summary

Tutorial coverage 21

Solve

Command causing GAMS to invoke a solver.
93

Modification for GUSS 12, 93, 118

Tutorial coverage 12

Solvelink

Command line parameter that controls whether
the GAMS program stays open during a solve.
400

Constants 401, 551, 565

Model attribute controling GAMS solver function
400, 565, 847

Option command that controls whether the GAMS
program stays open during a solve. 565

Solveopt

Option command and model attribute controlling
handing of solution information. 97, 847

Option command that controls way solution is
placed into storage. 551, 567

Solver

GAMS use of solvers. 95

Making a solver default for all applicable model
types 402, 567

Solver capabilities matrix

Solver ability capability. 108

Solver choice

Choosing the solver to use. 134

Solver choice in GAMS and IDE. 214

Solver documentation

Accessing solver documentation in the IDE.
200

Solver manuals 865

Accessing manuals 816

Places where solver options are fully defined.
816

Solver report

Tutorial coverage 21

Solver versions

Explanation of naming of multiple solvers. 109

Solvercntr

Command line parameter that specifies the solver
control file name 402

Solverdict

Command line parameter that specifies the solver
dictionary file name 402

Solverinst

Command line parameter that specifies the solver
instruction file name 402

Solvermatr

Index 926

© 2022 Prof. Bruce McCarl

Solvermatr

Command line parameter that specifies the solver
matrix file name 403

Solvers

MCP and NLP solvers 846

Solversolu

Command line parameter that specifies the solver
solution file name 403

Solverstat

Command line parameter that specifies the solver
status file name 403

Solvestat

Constants 855

Model attribute - Solver termination condition
851

Solver solution status 855

SOPLEX

Another name for OSISOPLEX 133

Solver for LP problems 133

Sorteduels

Printing the sorted order of an unordered set.
67

Sorting

Methods to sort data in GAMS. 303

SOS1 variable(s)

Command declaring variable as one of a group of
variables only one of which can be non zero. 77

SOS1 variables

Variables in groupings where only one variable in
the group can be nonzero. 824

SOS2 variable(s)

Command declaring variable as one of a group of
variables only two adjacent ones of which can be
non zero. 77

SOS2 variables

Variables in groupings where only two variables in
the group can be nonzero they must be adjacent.
 825

Sp

Command line parameter that causes a point GDX
file to be saved with the current solution point.
397

Speed

Finding and fixing speed problems 466

Speed implications of conditional placement.
317

Spell checking

Spell checking in GAMS IDE 210

SplitOption

Using parameters when executing external
programs 549

Spreadsheet

Running GAMS from a spreadsheet 769

Spreadsheet graphics

Use of through Gdxxrw. 759

Spreadsheets

Interactively including results during a GAMS run.
 761

Passing data to and from Excel spreadsheets.
721

sqexp

Function giving quadratically smoothed
exponentiation 256

SQL

Interfacing GAMS with SQL based databases.
717

Sql2gms

Interfacing GAMS with SQL based databases.
717

sqlog10

Function giving quadratically smoothed logarithm
base 10 256

Sqr

Function to square a number. 255

sqrec

Function giving quadratically smoothed reciprocal
 256

Sqrt

Function to find square root of a number. 255

Squeeze

Writing of zero or default entries for attributes of
variables and equations into spreadsheets with
Gdxxrw. 753

Ssolu

Command line parameter that specifies thesolver
solution file name 403

Sstat

Comamnd line parameter that specifies the solver
status file name 403

Starting points

Values provided for the decision variables within
the problem 838

Static

Nature of calculations in = statement. 249

Static calculations

Static calculations, data buildup and comparative
analysis. 347

Stepsum

McCarl GAMS User Guide927

© 2022 Prof. Bruce McCarl

Stepsum

Command line parameter that controls creation of
a step summary file 403

Stochastic programming

SCENRED tool for scenario reduction. 132

Strategic subsetting

Set use strategy to help in model debugging.
465

Strictsingleton

Optin controlling handling of multiple entries in
singletons 404

Stringchk

Command line parameter that tells GAMS how to
perform a string substitution check for %xxx%
symbols. 404

Subset

Concept where one set is a subset of another.
324

Set made up of all or part of elements of another
set. 53

Use of subsets to address portion of a set. 246

Subsets

Improving data input through subset use 170

Subsys

Command line parameter that gives configuration
file name that contains solver defaults and other
information. 405

Subsystems

Option command that causes GAMS to list all
solvers and current default solvers in LST file.
551, 568

Sum

Function to add over a set. 256

SumInfes

Model attribute - Sum of infeasibilities 851

Sums

Tutorial coverage 25

Superbasic

Variable in NLP above and beyond number that
would be basic 837

Suppress

Command line parameter that tells GAMS whether
to suppress the compiler echo print. 405

Symbol

Command line parameter that gives name of the
symbol table written in conjunction with reference
files. 405

Symbol list

List of all named items known to the program in
order and capitalization that they will appear in
output. 306

Tutorial coverage 17

Symprefix

Prefix for items in save file 405

Syntax coloring

IDE color coding of GAMS syntax. 195

Sys10 559

Command line option 405, 551, 568

Option command that alters exponentiation.
405, 551, 568

Sysdir

Command line parameter that gives the name of
the directory where the GAMS executable
resides. 406

Sysincdir

Command line parameter that gives the directory
where sysinclude files are kept. 406

Sysout

Adds additional solver reporting. 154

Command line parameter that controls the
incorporation of additional solver generated output
to the listing file 407

Model attribute 154, 569, 847

Option command that adds solver status file to
LST file. 551, 569

System attributes

Use in put files. 589

System default settings

Way of customizing GAMS function. 141

- T -
Tab

Including tabs in put files 602

Tabin

Command line parameter that tells GAMS how to
deal with tabs. 407

Table

Command to define a data item that is dependent
on two or more sets 74

Use of table command to define set elements
55

Tables

Tutorial coverage 31

Tan(x)

Function giving tangent of x 256

Tanh

Index 928

© 2022 Prof. Bruce McCarl

Tanh

Function to find hyperbolic tangent. 256

Termination messages

Influence of NLPs 845

Tf

Command line parameter that controls time
format. 407

Tformat

Command line parameter that controls time
format. 407

Customizable command parameter in Gmsprm file
that identifies time format. 419

Threads

Command line parameter that controls the number
of threads to be used by a solver 407

Controls use of multip CPU cores 407

Model attribute 407, 847

ThreadsAsync

Number of threads to reserve for Async computing
 408

Time

Calendar, date and time functions 261

Timeclose

Function to recover the model closing time. 263

Timecomp

Function to recover the model compilation time.
263

Timeelapsed

Function to recover elapsed execution time.
263

Timeexec

Function to recover the model execution time.
263

Timer

Comamnd line parameter that specifies an
instruction timer threshold 409

Timestart

Function to recover the model startup time. 263

Title

Put_utility command to change title of DOS
window 696

To

Command in for statement indicating upper limit
on scalar that is increased as it is varied. 339

Tolinfeas

Model attribute on infeasibility tolerance for an
empty row 847

Tolinfrep

Model attribute giving infeasibility tolerance 847

tolProj

Model attribute giving tolerance on when a level
gets projected to a bound and marginals are set to
0 when reading a solution 847

Number of levels set to lower or upper bound 93

Trace

Command line parameter that controls name and
writing of a trace file. 409

Controls amount of amount of information in
Gdxxrw log file. 757

Traceopt

Command line parameter that controls format of a
trace file. 409

Trunc

Function to truncate a number. 256

Tryint

Model attribute to try a partial or near-integer
solution 847

TryLinear

model attribute 847

Sees if MINLP, or MIQCP can be solved as MIP
 90, 93

Sees if NLP, DNLP or QCP can be solved as LP
 93

Sees if RMINLP, RMIQCP can be solved as
RMILP 93

Tuple

Calculating a tuple 62, 246, 330, 741

Concept where a multi dimensional set is used to
encode a conditional. 330

Defining using # and set names 62, 246, 330,
741

Defining with : matching operator 62, 246, 330,
741

Reading tuples from spreadsheets with Gdxxrw.
 741

Set that is defined with respect to more that one
other set and can be used in controlling sets.
246

Use in GUSS 118

Using tuples 62, 246, 330, 741

- U -
U1 to U5

Command line parameter that permits entry of text
for up to 5 user defined options. 409

Using user defined options. 659

Uel

List of all set element names in model. 67

McCarl GAMS User Guide929

© 2022 Prof. Bruce McCarl

Uel

List of all set elements names known to the
program in order and capitalization that they will
appear in output. 307

Uncontrolled set

Set in a statement that is not subject to set
varying statement like sum or loop or a set on
right hand side of statement that is not indexed on
left hand side. 224

Undf

Special value depicting an undefined number.
283

Undfout 256

Writing Undf into spreadsheets with Gdxxrw.
753

Uniform

Function to generate uniform random number.
256

UniformInt

Function to generate an integer uniform random
number 256

Union

Method to define total set of elements across
sets. 71

Unique element list

List of all set element names in model. 67

List of all set elements names known to the
program in order and capitalization that they will
appear in output. 307

Universal set

List of all set elements names known to the
program in order and capitalization that they will
appear in output. 63

Universal sets

Caution against using in input 169

Unknown symbol

Indication that GAMS is looking for a declared
named item and spelling of this one doesn't match
known items. 227

Unordered set 67

Set that has ordered elements and cannot be
used with Ord, leads and lags. 67

Using sorteduels for printing the sorted order of an
unordered set. 67

Unpack software

IDE assistance to unpack software. 216

Unravel

Unraveling complex files in with refreader. 202

Updlinks

Specify how links in a spreadsheet should be
updated during Gdxxrw operations. 758

Upper and lower bounds

Adding bounds to improve nonlinear solver
performance 840

Use by Others

Tutorial coverage 49

User

Using user defined options (user1-user5). 659

User defined functions

Adding a custom function 268

User Model Library

Defining your own library 862

User1 to User5

Command line parameter that permits entry of text
for up to 5 user defined options. 409

User1 to User5

Using user defined options. 659

Using

Component of model statement indicating model
type. 93

- V -
Values=

Controls set elements and explanatory text read
from spreadsheet 731

Var

Reading and writing variables to/from
spreadsheets with Gdxxrw. 746

Variable

Quantity that can be manipulated in the solution of
a model. 77

Variable attribute

Solution, bound and scaling factors for a variable.
 79

Variable attributes

Use in put files. 588

Variable listing

Algebra use effects on, tutorial coverage 36

Tutorial coverage 19

Variable solution report

Algebra use effects on, tutorial coverage 36

Tutorial coverage 23

Variable table

Assigning values for variable attributes 81

Variable(s)

Command declaring variable as one with no
restriction. 77

Variables

Algebraic content, tutorial coverage 32

Index 930

© 2022 Prof. Bruce McCarl

Variables

Tutorial coverage 7

Vartype

Keyword in compile time $If to see if a named
item is a variable. 648

vcPower

Function that takes a number to a power 256

Viennadag

Using the CONVERT solver to transform a GAMS
problem to a ViennaDag type of problem. 712

Viewclose

Scripting command 210

VISUAL BASIC

Programming language that can run GAMS 785

Running GAMS from macros in Excel 776

VISUAL C++

Programming language that can run GAMS 785

- W -
Warnings

Command line parameter that specifies the
maximum number of warnings allowed 410

Keyword in compile time $If to see if a compilation
has been warning free so far. 654

Wdir

Command line parameter that gives the name of
the working directory. 410

Web sites

Sources of additional information 868

While

Ending early with Break or Continue 317, 336,
337

Executes block of statements as long as
conditional is true. 337

Statement that executes multiple lines repetitively
while a conditional is true. 317

Wiki 867

Interface Wiki 866

Support Wili 866

Work

Giving a solver more memory. 440

Option command that controls solver memory
availability. 551

Workdir

Command line parameter that gives the name of
the working directory. 410

Workfactor

Command line parameter that gives a multiplier for
the GAMS solver memory estimate. 410

Model attribute 847

Workspace

Command line parameter that specifies the
workspace in Mb for a solver 410

Model attribute for solver work space 847

- X -
XA

A solver of LP, MIP and RMIP model types.
133

XAPAR

A parallel processor version of XA. 133

Xldump

Exporting data to Excel spreadsheets with
Rutherford's utilities. 725

Xlexport

Exporting data to Excel spreadsheets with
Rutherford's utilities. 723

Xlimport

Importing data from Excel spreadsheets with
Rutherford's utilities. 722

Xls2gms

A program to generate an include file from
contents of an Excel spreadsheet. 713

XLSDUMP

Dump all data in a spreadsheet to GDX 716

Xlstalk

Utility that communicates with Excel 808

XML 712

Interfacing COINFML style XML with GAMS.
712

Interfacing GAMS with XML. 712

Xor

Relational operator that links sub-logical
conditions being true when only one sub condition
is true. 327

XPRESS

A LP, MIP, and RMIP problem solver. 133

Free bare bones version 133

Xs

Command line parameter that specifies the name
of a save file written in ASCII format so it is
platform independent. Note restart automatically
will read this file type 411

Restart files transferable between operating
systems. 414

Writing compressed restart files 411, 414

McCarl GAMS User Guide931

© 2022 Prof. Bruce McCarl

Xsave

Command line parameter that specifies the name
of a save file written in ASCII format so it is
platform independent. Note restart automatically
will read this file type. 411

Restart files transferable between operating
systems. 414

Writing compressed restart files 411, 414

- Y -
Yes

Defines presence of a set element in a
calculation. 284

Special value that indicates set element
membership, can be used in assignment
statement. 56

- Z -
Zeroout

Writing zeros into spreadsheets with Gdxxrw.
753

Zerores 411

Command line parameter that specifies the
threshold value for internal rounding to zero 411

Zeroresrep

Command line parameter that controls warnings
when Zerores is used 411

Zeros

Skipping of zeros in display statements. 293

ZIP files

Utilities to ZIP and UNZIP 809

	McCarl GAMS User Guide
	Forword
	Introduction

	Quick Start Tutorial
	Basic models
	Solving an optimization problem
	Solving for an economic equilibrium
	Solving a nonlinear equation system

	Dissecting the simple models
	Variables
	What is the new Z variable in the optimization problem?

	Equations
	.. specifications
	Model
	Solve
	Why does my nonlinear equation system maximize something?

	What are the .L items

	Running the job
	Command line approach
	IDE approach

	Examining the output
	Echo print
	Incidence of compilation errors

	Symbol list and cross reference maps
	Generation listing
	Equation listing
	Variable listing
	Model statistics

	Execution output
	Solver report
	Solution summary
	Equation solution report
	Variable solution report

	Exploiting algebra
	Equation writing – sums
	Revised algebra exploiting optimization example
	Revised equilibrium example

	Dissecting the algebraic model
	Sets
	Alias

	Data entry
	Scalars
	Parameters
	Tables
	Direct assignment
	Algebraic nature of variable and equation specifications
	Algebra and model .. specifications

	Output differences
	Equation listing
	Variable list
	Equation solution report
	Variable solution report

	Good modeling practices
	Structure of GAMS statements, programs and the ;
	Adding complexity
	Conditionals
	Conditionally execute an assignment
	Conditionally add a term in sum or other set operation
	Conditionally define an equation
	Conditionally include a term in an equation

	Displaying data
	Report writing

	Why use GAMS and algebraic modeling
	Use of algebraic modeling
	Context changes
	Expandability
	Augmentation

	Aid with initial formulation and subsequent changes
	Adding report writing
	Self-documenting nature
	Large model facilities
	Automated problem handling and portability
	Model library and widespread professional use
	Use by Others
	Ease of use with NLP, MIP, CGE and other problem forms
	Interface with other packages

	Language Basics
	Sets
	Set declaration
	Singleton Sets
	Subsets
	Element definition
	Explicit element definition
	Set definition through Tables

	Element definition by computation

	Multi dimensional sets
	Domain checking
	Set element referencing
	Whole sets
	Single elements
	Operating over part of a set
	Using subsets
	Using conditionals
	Sameas and Diag
	Ord and Card

	Using tuples
	Defining a tuple with the matching and # operators

	Universal Set: * as a set identifier
	Using set attributes
	Finding sets from data
	Using another name or an alias
	Element order and capitalization in output
	Functions specifically referencing sets
	Ord
	Ordered and Unordered sets

	Card
	Sameas
	Diag

	Indexing sets defined over time
	Leads and Lags: + / -
	Circular or Equilibrium Leads and Lags: ++ / --
	Element Position

	Set Arithmetic
	Unions
	Intersections
	Complements
	Differences

	Data Entry
	Scalars
	Parameters
	Table
	Calculated data

	Variables, Equations, Models and Solves
	Variables
	Variable Declaration
	Variable attributes
	Assigning variable and equation attributes

	Equation
	Equation Declaration
	.. Equation specifications
	Equation attributes
	Assigning equation attributes

	Model
	Model attributes
	List of attributes

	Solve: Maximizing, Minimizing, and Using
	Actions on executing solve
	Programs with multiple solve statements
	Multiple solve management - merge replace

	Choosing a solver

	Model Types and Solvers
	Model Types
	Linear programs (LP)
	Nonlinear program (NLP)
	Quadratically constrained program (QCP)
	Mixed integer programming (MIP)
	Relaxed mixed integer programming (RMIP)
	Mixed complementarity problem (MCP)
	Mixed integer nonlinear program (MINLP)
	Relaxed mixed integer nonlinear program (RMINLP)
	Mixed integer quadratically constrained program (MIQCP)
	Relaxed mixed integer quad. constrain program (RMIQCP)
	Constrained nonlinear systems (CNS)
	Mathematical program with equilibrium constraints (MPEC)
	Nonlinear programming with discontinuous derivatives (DNLP)

	Relaxed mathematical program with equilibrium constraints (RMPEC)
	Extended Mathematical Programs (EMP)

	Solver capabilities matrix
	Solvers
	General notes on solver licensing
	General notes on solver versions
	Available solvers
	ALPHAECP
	ANTIGONE
	BARON
	BONMIN/BONMINH
	CBC
	CSDP
	CONOPT
	CONOPTD

	CONVERT
	CONVERTD

	CPLEX
	CPLEXD

	DE
	DEA
	DECIS/DECISC/DECISM
	DICOPT
	EMP
	EMPSP
	EXAMINER
	GAMSCHK
	GLOMIQO
	GUROBI
	GUSS
	IPOPT/IPOPTH
	JAMS
	KESTREL
	KNITRO
	LGO
	LINDO/LINDOGLOBAL
	LOGMIP
	MILES
	MILESE
	MILESOLD

	MINOS
	MINOS5

	MOSEK
	MPSGE
	MPS2GMS
	MSNLP
	NLPEC
	OSICplex
	OSIGurobi
	OSIMosek
	OSIXPRESS
	OSISOPLEX
	PATH/PATHNLP
	PATHC
	PATHNLP
	PATHOLD

	SBB
	SCENRED
	SCIP
	SNOPT
	SOPLEX
	XA
	XAPAR

	XPRESS

	Choosing a solver

	Standard Output
	Where is my output? LOG and LST files
	Output overview and navigation
	GAMS phases and output generated
	Compilation phase output
	Echo print of the input file
	Compilation phase error messages
	Repositioning error messages

	Symbol reference map
	Symbol listing
	Unique element list
	Unique element cross reference

	Execution output
	Display output
	Execution error output
	Symptoms of the presence of an execution error

	Output produced by a solve statement
	Model generation error listing
	Equation listing
	Variable listing
	Model characteristics statistics
	Model generation time
	Solve summary
	Common solver report
	Solver report

	The variable and equation solution listing
	Including slacks in the output

	Ranging analysis
	Final execution summary
	Report summary
	File summary

	Managing output pages
	Page width and height
	New pages
	Adding an output title to each page

	Managing output volume
	Eliminate model listing
	Eliminate cross reference map
	Eliminate symbol list
	Eliminate solution output
	Eliminate echo print
	Restrict output just to a few displays

	Adding slack variables to the output
	Sending messages to the LOG file

	Writing Models and Good Modeling Practices
	Formatting models - my recommendations
	Use longer names and descriptions
	Basic point

	Include comments on procedures and data nature and sources
	Entering raw versus calculated data
	Avoiding use of * in input data set specification
	Making sets work for you
	Making subsets work for you
	Formatting the typing of files to improve model readability
	Other possible conventions

	Changing licenses
	Licenses on IDE
	Licenses outside of IDE—Windows and Unix/Linux

	Running Jobs with GAMS and the GAMS IDE
	Basic approaches to GAMS usage
	Running GAMS from the command line
	IDE concept and usage
	Steps to using IDE
	Create a project
	Defining a project name and location.
	Creating or opening an existing GMS file

	Preparing file for execution
	Select default IDE functions
	Page size and LST file opening
	Make IDE the default GMS file processor

	Run GAMS by clicking the run button
	Open and navigate around the output
	Using the process window
	Using the LST file navigation window
	Finding the Active Location

	Working with your own file
	Fixing compilation errors
	Selected techniques for use of the IDE
	Ways to find and/or replace text strings
	Search menu and find in files

	Matching parentheses
	Moving column blocks
	Altering syntax coloring

	Finding out more through help
	Help on the IDE
	Help on GAMS
	Accessing help on solvers
	Adding your own documentation
	Accessing documentation outside the IDE

	Unraveling complex files: Refreader
	Basic output
	Symbol Tab
	Files used Tab
	Sets, Parameters etc. Tabs
	Unused Tab

	Steps to Using Refreader
	Saving the Refreader output

	Differencing files
	Spell checking in files
	Saving and Using a Script
	When is it not worth using?
	Employing command line parameters
	A difficulty you will have using IDE
	Installation
	Install GAMS and on Windows machines the IDE
	On Windows machines make IDE icon
	On Linux/Unix run Gamsinst
	Choosing solvers
	Solver choice outside of IDE

	Unpacking software on Windows machines

	Fixing Compilation Errors
	Don’t bark up the wrong tree
	Finding errors: ****
	Finding errors: $
	Repositioning error messages: Errmsg
	Improperly placed semi colons - error A
	Error message proliferation
	Commonly found errors and their cause
	Other common errors
	Excess or insufficient semi colons - error B
	Spelling mistakes - error C
	Omitted Set elements - error D
	Indexing problems - error E
	Summing over sets already indexed - error F
	Neglecting to deal with sets - error G
	Mismatched parentheses - error H
	Improper equation ".." statements - error I
	Entering improper nonlinear expressions - error J
	Using undefined data - error K
	Improper references to individual set elements - error L
	No variable, parameter, or equation definition - error M
	Duplicate names - error N
	Referencing item with wrong set - error O
	ORD on an unordered set - error P

	More Language Basics
	Rules for Item Names, Element Names and Explanatory Text
	Item name rules
	Element name rules
	Explanatory text rules

	Including Comments
	Blank lines
	Single line comments
	Multiple line comments
	End of line comments
	In line comments
	Outside margin comments
	Hidden comments

	Calculating Items
	Basic components of calculations
	Operators
	=
	.. statements
	Basic arithmetic + - * / **
	Arithmetic hierarchy
	Changing hierarchy using parentheses

	Operations over set dependent items
	= replacement or .. statements
	Sum , Smax, Smin, Prod
	Sum
	Smin Smax
	Prod

	Alternative set addressing schemes
	Avoiding set domain errors
	Multiple sets
	Conditionals to restrict set coverage
	Tuples and subsets to restrict set coverage

	Items that can be calculated
	Sets
	Data
	Equation calculations
	Acronyms

	Cautions about calculations
	Dynamic
	Static
	Repeated static
	Cautions about dynamic /static calculations

	Potential other components in calculations
	Mixing logical expressions, sets and numbers
	Functions
	Intrinsic Functions
	Common mathematical functions
	Abs
	Execseed
	Exp
	Ifthen
	Log, Log10, Log2
	Max , Min
	Prod
	Round
	Smin , Smax
	Sqr
	Sqrt
	Sum

	Other Mathematical functions
	Logical Functions
	Time and Calender functions
	GAMS utility and performance functions
	String manipulation functions: Ord, Ordascii, Ordebcdic
	String manipulation functions: Card
	Computer Characteristic Functions

	Extrinsic Functions
	Probability Distribution Function use in models
	Random Numbers from Functions
	Defining an Extrinsic Function

	Special values
	Inf, -Inf
	Na
	Eps
	Undf
	Yes/No

	Model and optimal solution items
	Attributes of variables and equations
	L
	M
	Lo
	.range
	Up
	Fx
	Scale
	Prior

	Attributes of models

	Including conditionals
	Right and left hand side conditionals

	Improving Output via Report Writing
	Adding report writing
	Basics of solution based report writing calculations
	Adding a report
	Notes on indefinite sets in parameter statements

	Using displays
	Abort
	Controlling displays
	Formatting display decimals and layout
	Taking control of display decimals
	Controlling item ordering
	Controlling item capitalization

	Formatting pages and lines
	Output via put commands
	Reordering set order in output
	Preprogrammed table making utility: Gams2tbl
	Output to other programs
	Obtaining graphical output
	Sorting output
	Sorting in GAMS
	Rank

	Rules for Item Capitalization and Ordering
	Item capitalization
	Reviewing capitalization: $Onsymlist and $Onuellist

	Set element order
	Reviewing set element ordering: $Onuellist

	Conditionals
	Basic forms of conditionals
	$ conditionals
	Ways $ conditionals are employed
	Suppressing calculation of items (left hand side)
	Suppressing terms in equations (right hand side)
	Controlling indices in sums etc
	Suppressing model equations (left hand side)
	Conditionally displaying information
	Terminating a program: Abort

	If, Else, and Elseif
	While
	Repeat

	Conditional placement and program execution speed
	Forms of conditional / logical true false statements
	Numerical comparisons
	Eq: =
	Ne:<>
	Gt: >
	Lt: <
	Ge: >=
	Le: <=
	Eqv: <=> Imp: ->

	Data existence
	Existence/nonzero data item or result
	Computation over a set

	Set comparisons
	Element position: Ord and Card
	Element text comparison: Sameas and Diag
	Subset or tuple membership

	Acronym comparisons

	Nesting logical conditions
	Nesting operators
	And
	Or
	Xor
	Not

	Nested $ conditionals
	Nested Operators and precedence order
	Note of caution

	The conditional alternative: the tuple

	Control Structures
	If, Else, and Elseif
	Alternative syntax
	Endif

	Loop
	Alternative syntax
	Endloop

	While
	Alternative syntax
	Endwhile

	For, To, Downto, and By
	Alternative syntax
	Endfor

	Repeat, Until

	Doing a Comparative Analysis with GAMS
	Basic approaches
	Manual approach
	Introducing cross scenario report writing
	Percentage change cross scenario reports

	Preserving changed data

	An automated approach - avoiding repeated work
	Adding a scenario
	Changing model structure

	Where am I?

	GAMS Command Line Parameters
	Important parameters
	Compiler function – regional settings
	Error detection and correction
	LST and LOG output content and format control
	Solver name choice
	Option file presence
	Directory management
	Saves and restarts
	More Secure "obfuscated" saves and restarts
	User defined options

	Alphabetic list of all GAMS command line parameters
	-- // -/ /-- on command lines
	Action: A
	Appendexpand: Ae
	Appendlog: Al
	Appendout: Ao
	Bratio
	Case
	Cerr
	Charset
	CNS
	Curdir: Cdir
	Dformat: Df
	DNLP
	Domlim
	Dumpopt
	Dumpparms: Dp
	DumpParmsLogPrefix: DPLP
	EMP
	Eolonly: Ey
	Errmsg
	Errnam
	Error
	Errorlog: Er
	Etlim: Etl
	Execerr
	Execmode
	Expand: Ef
	FDDelta
	FDOpt
	Ferr
	Filecase
	FileStem
	Forcework: Fw
	Forlim
	Fsave
	G205
	Gdx
	Gdxcompress
	Gdxconvert
	GdxUELs
	Griddir: Gdir
	Gridscript: Gscript
	HeapLimit: Hl
	Holdfixed
	Ide
	Input: I
	Inputdir: Idir
	Inputdir1 to inputdir40: Idir1 to idir40
	Integer1 to Integer5
	IntVarUp
	iterlim
	Jobtrace: Jt
	Keep
	Libincdir: Ldir
	License
	Limcol
	Limrow
	Logfile: Lf
	Logline: Ll
	Logoption: Lo
	LP
	MaxProcDir
	MCP
	McprHoldFx
	MINLP
	MIP
	MIQCP
	MPEC
	Multipass: Mp
	NLP
	Nodlim
	NoNewVarEqu
	On115
	Optca
	Optcr
	Optdir
	Optfile
	Output: O
	Pagecontr: Pc
	Pagesize: Ps
	Pagewidth: Pw
	Parmfile: Pf
	Plicense
	ProcDir
	Profile
	Profilefile
	Profiletol: Ptol
	Putdir: Pdir
	QCP
	Reference: Rf
	Reslim
	Restart: R
	RMINLP
	RMIP
	RMIQCP
	RMPEC
	Save: S
	Savepoint: Sp
	Scrdir: Sd
	Scrext: Se
	Scriptexit
	Scriptfrst: Sf
	Scriptnext: Script
	Scrnam: Sn
	Seed
	Solprint
	Solvelink: Sl
	Solver
	Solvercntr: Scntr
	Solverdict: Sdict
	Solverinst: Sinst
	Solvermatr: Smatr
	Solversolu: Ssolu
	Solverstat: Sstat
	Stepsum
	strictSingleton
	Stringchk
	Subsys
	Suppress
	Symprefix
	Symbol
	Sys10
	Sys11
	Sysdir
	Sysincdir: Sdir
	Sysout
	Tabin
	Tformat: Tf
	Threads
	ThreadsAsync
	Timer
	Trace
	Traceopt
	User1 to user5: U1 to U5
	Warnings
	Workdir: Wdir
	Workfactor
	Workspace
	Xsave: Xs
	Zerores
	Zeroresrep

	Saves and Restarts
	Save Restart Basics
	Save: S
	Restart: R
	Xsave: Xs

	Use of save and restarts and their effect
	Save and restart on command line
	IDE usage
	Save and restart calling GAMS from within GAMS

	Why use save and restart?
	Increasing run efficiency
	Output management
	Separation of code function
	Save study results
	Comparative statics analysis
	Compiled code
	Fast related solutions

	Customizing GAMS
	What types of options are there?
	Possible command line parameters to customize
	How can these options be set?
	To set in command line via pf=
	To set in Gmsprmxx.txt parameter file
	To set in IDE

	Hierarchy for customizing options
	List of all customizing options

	Finding and Fixing Errors or Performance Problems
	Fixing Execution Errors
	GAMS limit errors
	Arithmetic errors during GAMS execution
	Execution errors during model generation
	Execution errors during model solution
	Solver function evaluation errors
	Symptoms
	Allowing errors to occur
	Repair

	Presolve errors
	Problem eliminated
	No feasible mixed integer solution
	No feasible continuous solution

	Solver specific limits

	Basing conditionals on number of errors
	Clearing error conditions

	Scaling GAMS Models
	Basics
	Theory of scaling
	Scaling a variable
	Scaling equations

	Simultaneous equation and variable scaling
	Example of scaling

	Scaling of GAMS models
	Scaling in GAMS solvers

	Using GAMS scaling assistance
	Why should you scale?

	Effect of scaling on GAMS output
	How do you know how much to scale?
	A caution when scaling – runaway cases
	User defined data scaling
	Nonlinear scaling

	Small to Large: Aid in Development and Debugging
	Basics
	Expandability in an example

	Essence of the small to large approach
	Steps for working from small to large.
	Making small parts of large models
	Save and restart to isolate problem areas
	Strategic sub-setting
	Data reduction

	Speeding up GAMS
	Basics
	Finding where excessive time is being used
	Screen watching and LOG file examination
	Profile
	Use of profile to find slow statements
	Invoking profile
	On the GAMS command line
	In the IDE GAMS parameters box
	As an internal option

	What should the number be
	Limiting profile output: Profiletol

	Isolating terms in slow statements
	It takes too long - searching

	Why programs can be slow and their repair
	Set addressing and references
	Avoiding considering unnecessary cases
	Calculation statements
	Equation existence limited using conditionals
	Equation term consideration limited using conditions
	Variable specification - suppression
	Watch out for incomplete suppression

	Post solution report writing computations

	Trading memory for time
	Other speed ups

	Memory Use Reduction in GAMS
	Basics
	Finding where excessive memory is being used
	Screen watching and LOG file examination
	Profile
	Profiling to find memory hogging statements
	Invoking profile
	On the GAMS command line
	In the IDE GAMS parameters box
	As an internal option

	What should the profile number be
	Limiting profile output: Profiletol

	Memory use dumps: Dmpsym
	Looking within memory hogs to find offending term
	My code won’t work - searching

	Causes of excessive memory use and repair
	Avoiding considering unnecessary cases
	Calculation statements
	Equation existence using conditionals
	Equation term consideration limited using conditions
	Variable specification - suppression
	Watch out for incomplete suppression

	Memory traps to watch out for

	Clearing memory of unnecessary items

	Limiting memory use with HeapLimit

	More Language Features
	Including External Files
	Inclusion without arguments
	$Include
	Includes that cause compiler error messages

	Suppressing the listing of include files
	Redefining the location of include files - Idir
	Include with arguments
	$Batinclude
	How parameter inclusion works

	$Libinclude
	Ldir

	$Sysinclude
	Sdir

	Influence on LST file contents: $Oninclude and $Offinclude
	Passing $ commands between code segments: $Onglobal and $Offglobal
	Special provision for CSV files
	$Ondelim and $Offdelim

	Dollar Commands
	Basics
	When do dollar commands occur?

	Categories of $ commands
	Commands for inclusion of comments
	LST and other output file contents control
	Ways of including external files
	Contents dependent compilation
	Alter numerical procedures used
	Alter data for items
	GDX file read/write
	Alter compiler procedures
	Cause execution of an external program
	Restrict access to data
	Tear apart strings
	Compress and encrypt files
	Handling and definition of macros
	Include user defined function

	Detailed description of dollar commands
	$$
	Abort
	Batinclude
	Call
	Call.Async
	Call.AsyncNC
	Clear
	Clearerror
	Comment
	Compress
	Decompress
	Dollar
	Double
	Echo, Echon
	Eject
	Encrypt
	Eolcom
	Error
	Escape
	Eval
	Evalglobal
	Evallocal
	Exit
	Expose
	Gdxin
	Gdxout
	Goto
	Hidden
	Hide
	If, If not, Ifi, Ifi not, Ife, Ife not
	Ifthen, Iftheni, Ifthene, Else, Elseif, Elseifi, Elseife, Endif
	Include
	Inlinecom
	Kill
	Label
	Libinclude
	Lines
	Load
	Loaddc
	Loaddcm
	Loaddcr
	Loadm
	Loadr
	Log
	Macro
	Maxcol
	Maxgoto
	Mincol
	Ondelim and Offdelim
	Ondigit and Offdigit
	Ondollar and Offdollar
	Ondotl and Offdotl
	Onecho and Offecho
	Onembedded and Offembedded
	Onempty and Offempty
	Onend and Offend
	Oneolcom and Offeolcom
	Oneps and Offeps
	Onexpand and Offexpand
	Onglobal and Offglobal
	Oninclude and Offinclude
	Oninline and Offinline
	Onlisting and Offlisting
	Onlocal and Offlocal
	Onlog and Offlog
	Onmacro and Offmacro
	Onmargin and Offmargin
	Onmulti and Offmulti
	Onnestcom and Offnestcom
	OnOrder and OffOrder
	Onput, Onputs, Onputv, Offput
	Onrecurse and Offrecurse
	OnStrictSingleton and OffStrictSingleton
	Onsymlist and Offsymlist
	Onsymxref and Offsymxref
	Ontext and Offtext
	Onuellist and Offuellist
	Onuelxref and Offuelxref
	Onundf and Offundf
	Onverbatim and Offverbatim
	Onwarning and Offwarning
	Phantom
	Prefixpath
	Protect
	Purge
	Remark
	Set and Drop
	Setargs
	Setcomps
	Setddlist
	Setglobal and Dropglobal
	Setenv and Dropenv
	Setlocal and Droplocal
	Setnames
	Shift
	Show
	Single
	SplitOption
	Stars
	Stop
	Stitle
	Sysinclude
	Terminate
	Title
	Unload
	Use205
	Use225
	Use999
	Version
	Warning

	The Option Command
	Basics
	Options by function
	Options for control of solver choice
	Options including debugging information in LST file
	Options influencing LST file contents
	Options influencing solver function
	Other options altering GAMS settings
	Options affecting data for items in memory
	Options that form projections of data items

	Description of options
	Option itemname:d and Option itemname:d:r:c
	Option itemname < or <= itemname2
	Bratio
	Clear
	CNS
	Decimals
	Dispwidth
	DNLP
	Domlim
	DmpOpt
	Dmpsym
	Dualcheck
	Eject
	Forlim
	IntVarUp
	Iterlim
	Kill
	Limcol
	Limrow
	LP
	MCP
	Measure
	MINLP
	MIP
	NLP
	Oldname
	Optca
	Optcr
	Profile
	Profiletol
	Reslim
	RMIP
	RMINLP
	Savepoint
	Seed
	Shuffle
	Solvelink
	Solprint
	Solslack
	Solveopt
	Solver
	strictSingleton
	Subsystems
	Sys10
	Sysout

	Advanced Language Features
	Macros in GAMS
	Output via Put Commands
	Basics of put
	Details on put related commands
	File
	Putdr: Pdir
	.Pdir
	Sending output to the LOG file
	Sending output to the SCREEN

	Put
	Items within a put
	Quoted text
	Set elements
	Set element names via .tl
	Set element explanatory text via .te and .tf
	Putting out set elements for parameters via .Tn

	Item explanatory text via .ts
	Numeric items
	Parameter values
	Model solution status attributes: .Modelstat, .Solvestat, .Tmodstat, .Tsolstat
	Variable and equation attributes: .L and .M

	System attributes
	.CNS
	.Date
	.Dirsep
	.DNLP
	.Fe
	.Fn
	.Fp
	.Gamsrelease
	.Gstring
	.Ifile
	.Iline
	.Lice1 .Lice2
	.LP
	.MIP
	.MINLP
	.NLP
	.MCP
	.MPEC
	.Ofile
	.Opage
	.Page
	.Pfile
	.Platform
	.Prline
	.Prpage
	.Rdate
	.Rfile
	.RMINLP
	.RMIP
	.Rtime
	.Sfile
	.Sstring
	.Time
	.Title
	.Version

	GAMS command line parameters
	Write position controls
	Skip to a specified column: @
	Skip to a new line: /
	Skip to a specified row: #
	Other positioning parameters
	.Cc
	.Cr
	.Hdcc
	.Hdcr
	.Hdll
	.Ll
	.Lp
	.Tlcc
	.Tlll
	.Tlcr
	.Ws

	Formatting of items
	File formatting – append or overwrite
	.Ap

	Page formatting
	.Bm - bottom margin
	.Lm - left margin
	.Pc - Page control
	.Ps or page height
	.Pw - page width
	.Tm - top margin

	Inserting Tabs
	Adding page titles and headers
	Puttl
	Puthd
	Putclear

	Upper lower font case formatting: .Case and .Lcase
	Width and decimal formatting
	Global formatting
	.Lw set element name width
	.Nd number of decimals
	.Nw number width
	.Sw set indicator width
	.Tw explanatory and quoted text width

	Local formatting
	Continuous vs fixed width

	Justification
	Global formatting
	lj set element name justification
	nj number justification
	sj set indicator justification
	tj explanatory and quoted text justification

	Local formatting

	Additional numeric display control
	.nr
	.nz

	Putclose
	Putpage

	Putting out a block of text: $onput, $offput, $onputs, $onputv
	Making puts conditional
	Output to other programs
	Put of data to a regression code
	Put file for export to mapping program

	Errors that arise during puts

	Acronyms
	Declaration
	Usage

	Conditional Compilation
	Control variables
	Establishing control variables
	$Setglobal
	$Setlocal
	$Set
	$EvalGlobal
	$Evallocal
	$Eval

	Setting environment variables
	Destroying Contol Variables
	A problem with control variable definitions

	Environment variables
	Names of some system environment variables
	Defining and destroying user environment variables
	Augmenting environment variables
	Accessing environment variable status at any point in the code: $Show

	$If and $Ifi conditionals
	$If and $Ifi
	$Ife conditionals
	Not as a modifier

	$ifthen, iftheni, ifthene, else, elseif, endif conditionals
	Forms of conditionals
	Based on control and environment variables
	Existence
	Contents
	Numerical Value

	Based on characteristics of named item or parameter
	Item type
	Definition status: Declared and Defined
	Set dependency: Dimension

	Passed parameter existence
	Based on GAMS command line parameters
	Based on system characteristics
	Based on error and warning checks
	Based on file or directory existence
	Based on put file status

	Incorporating Goto: $Goto and $Label
	Redefining expressions
	System attributes that can be included
	GAMS command line attributes that can be included
	Based on user options and command line: -- // -/ /- User1-5

	Passed parameter inclusion
	Control variable inclusion

	Running external programs or commands
	$Call
	Execute
	Shellexecute
	$Setargs

	Writing messages to LST, LOG and other files
	LST File: $Abort and $Error
	LOG file: $Log
	Other named files: $Echo, $Offecho, $Onecho

	End the job: $Exit, $Abort, $Error, $Stop, $Terminate
	Longer examples
	Changing model type depending on control variable
	Changing form of data in model and their use
	Having batincludes that deal with different data types
	For more examples

	Using GAMS Data Exchange or GDX Files
	Creating a GDX file in GAMS
	Command line GDX option - GDX dump of the whole problem
	GDX Point Solution file
	GDX files containing selected items
	Execution time selected item GDX file creation
	Compile time selected item GDX file creation

	Inputting data from a GDX file into GAMS
	Compile time imports from GDX files
	Execution time GDX imports
	Execute_Load
	Execute_loaddc
	Execute_Loadpoint

	General notes on GDX files
	Identifying contents of a GDX file
	Identifying contents with $Load
	Identifying contents with the IDE
	Identifying contents with Gdxdump
	Identifying differences in contents with Gdxdiff

	Merging GDX files
	Using GDX files to interface with other programs
	Spreadsheets
	GEMPACK
	Other

	Gdxcopy Making GDX files compatable
	Writing older GDX versions with GDXCONVERT

	Links to Other Programs Including Spreadsheets
	Executing an external program
	$Call
	Spaces in file names and paths

	Execute
	Put_utility
	Timing of execution with $Call and Execute

	Passing data from GAMS to other programs
	Put file data passage
	Plain text
	CSV or otherwise delimited

	Rutherford's CSV put: Gams2csv
	GDX
	Spreadsheet links
	Graphics programs
	Gnuplot
	Gnuplot.gms
	Gnuplotxyz.gms

	Matlab
	Spreadsheet graphics

	Geographic mapping programs
	GDX2ACCESS
	Gdx2sqlite
	Gdxrrw
	Gdxviewer links: Access, Excel pivot table, Excel, CSV, GAMS include, HTML, Text files, Plots, XML
	Other programs and conversions: Convert, DB2, FLM2GMS, GAMS2TBL, HTML, Latex, MPS, Oracle, XML

	Passing data from other programs to GAMS
	Including data
	Spreadsheet links
	Xls2gms
	Interactive mode
	Batch mode
	GAMS program in Excel sheet

	XLSDUMP

	Database links
	SQL: Sql2gms
	GDX

	Mdb2gms
	Interactive mode
	Batch Mode

	Gdxrrw

	API usage
	Other programs: DB2, Latex, GNETGEN, Gnuplot, Matlab, MPS, NETGEN, Oracle
	Customized data interchange links for spreadsheets
	Xlexport, Xldump, Xlimport
	Xlimport
	Xlexport
	Xldump

	Gdxxrw
	Command line parameters
	Rng=
	NameConv=: NC=
	GAMS item dimension: Dim=, Rdim=, Cdim=
	Data specification
	Writing Text and Links
	Set data: Set= and Dset=
	Examples
	Loading rows of set elements
	Loading columns of set elements
	Loading set elements only if they have data or text
	Writing set elements
	Sets and explanatory text – use of Set
	Loading by upper left hand corner
	Loading sets from data tables
	Loading sets from lists with duplicates
	Dealing with a tuple
	Execution time set reads
	Execution time set writes
	Loading the set into GAMS
	Unloading the set from GAMS

	Parameter data: Par
	Rearranging rows and columns

	Variable and equation data: Equ and Var

	Special options for reading from a spreadsheet: Skipempty= and Se=
	Special options for writing to a spreadsheet
	Is the workbook open or shared?
	Merge
	Clear
	Filter
	Special value and zero cell writing options
	Epsout
	Naout
	Minfout
	Pinfout
	Undfout
	Zeroout
	Squeeze
	Resetout

	Options for reading in command line parameters
	Command line parameters in a file
	Parameters in a spreadsheet

	Other Options
	Tracing Options
	Log and Logappend
	Trace

	Workbook performance options
	Updlinks
	RunMacros

	Other GDXXRW Options

	Debugging Gdxxrw instructions

	Spreadsheet graphics
	Interactively including results
	Interactive calculations in a spreadsheet
	Calling GAMS from GAMS

	Using equations defined by external programs
	Identifying the equations and their contents: =X=
	Building the external function evaluator

	Controlling GAMS from External Programs
	Calling GAMS from other programs
	Excel spreadsheet in charge
	Excel part of implementation
	Defining the links through the map
	Worksheets present
	Inputs sheet structure
	Results sheet structure

	Running GAMS – the main macro
	Critical user defined items
	GAMS run sequence

	Actions involved with executing GAMS
	Examining the macros

	GAMS part of implementation
	Developing Excel in charge – summary steps

	Excel Spawning Alternative
	Compiled program in charge – Delphi
	A Delphi example
	Steps in application development
	Passing data to GAMS
	Calling GAMS
	Challenges in running GAMS

	Reading the GAMS solution

	Web servers or programs in other languages in charge

	Transferring models to other systems

	Utilities included in GAMS
	Posix utilities
	Matrix Utilities
	Invert
	Cholesky
	Eigenvalue
	Eigenvector

	GDX Utilities
	CSV2GDX
	Gdx2sqlite
	Gdxcopy
	Gdxdiff
	Gdxdump
	Gdxmerge
	Gdxrank
	Gdxrename
	Gdxrrw
	Gdxviewer
	Gdxxrw
	Gdx2access
	Gdx2xls
	MCFilter
	MDB2GMS
	SQL2GMS
	Xls2gms

	Interface utilities
	Ask
	Msappavail
	Shellexecute
	Xlstalk

	Zip Utilities

	Solver Option Files
	Basics
	Telling a solver to look for an options file: .Optfile
	Option file name
	Alternative option file extention names: .Opt, .Op?, .O??, .???

	Option file contents
	Comments: *
	Option specifications

	Option file editor
	Writing options during a model run
	Learning about options: Solver manuals
	Default settings for Optfile
	Defining a central location for the option files: Optdir
	Transitory nature of options

	Advanced Basis Usage
	Basics
	Advanced basis formation in GAMS
	Effect of advanced basis on solution performance
	Bratio
	Providing a basis
	Getting a basis through repeated solution
	Save files

	An alternative – use a GDX point file
	GAMSBAS

	Guessing at a basis
	Problems with a basis
	Symptoms and causes of a poor advanced basis
	MIP
	NLP

	Mixed Integer, Semi, and SOS Programming
	Specifying types of variables
	Binary variables
	Integer variables
	Specially ordered set variables of type 1 (SOS1)
	Specially ordered set variables of type 2 (SOS2)
	Semi-continuous variables
	Semi-integer variables

	Imposing priorities
	Branch-and-Cut-and-Heuristic Facility
	GAMS options and model attributes
	Modelname.Cheat = x
	Modelname.Cutoff = x
	Modelname.Nodlim = x
	x = Modelname.objest
	Modelname.Optca=X Option Optca=X
	Modelname.Optcr=X Option Optcr=X
	Modelname.Optfile = 1
	Modelname.Prioropt = 1
	Modelname.Tryint = x

	Branch and bound output
	Nonlinear MIPs
	Identifying the solver
	MINLP
	MIP
	RMIP
	RMINLP

	Model termination conditions and actions
	Things to watch out for
	Default bounds
	Ending with a gap – big default for Optcr (10%)
	The nonending quest

	NLP and MCP Model Types
	Terminology
	Superbasic
	Complementarity

	Problem setup
	Starting points -- initial values
	Computing Derivatives
	Upper and lower bounds
	Scaling
	Degenerate cycling blocking
	Advanced bases
	MCP complementarity specification

	Output
	Problem displays - limrow/limcol marking
	Model setup output
	Solver results
	Iteration log
	Termination messages
	Function evaluation errors
	MCP difference in Equation and Variable Solution Output

	NLP and MCP variants
	Solvers

	Model Attributes
	Attribute addressing
	Model Attributes mainly used before solve
	Model Attributes mainly used after solve
	Marginals
	Modelstat: Tmodstat
	Solvestat: Tsolstat

	Application Help: Model Library, Web Sites, Documentation
	Libraries
	GAMS model library
	GAMS Test Library
	GAMS Data Utilities Library
	GAMS EMP Library
	GAMS Financial Library
	Using another model library

	Other general documentation sources
	Installation
	Latest GAMS version
	Solver manuals
	GAMS FAQ
	GAMS Wiki
	GAMS World
	GAMSWorld Google Group
	Gams-List
	Newsletter
	Supplemental GAMS Corporation materials
	User generated materials
	Courses and workshops

	Compressed and encrypted files
	Grid and Distributed Computing
	Distributed Processing
	Introduction to Grid Computing
	Grid Computing language features
	Grid_example

	Interfacing from other languages with API
	Licensing

