
Chapter 1

GUSS:
Solving Collections of Data Related
Models within GAMS

Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

Abstract In many applications, optimization of a collection of problems is
required where each problem is structurally the same, but in which some or all
of the data defining the instance is updated. Such models are easily specified
within modern modeling systems, but have often been slow to solve due to
the time needed to regenerate the instance, and the inability to use advance
solution information (such as basis factorizations) from previous solves as the
collection is processed. We describe a new language extension, GUSS, that
gathers data from different sources/symbols to define the collection of models
(called scenarios), updates a base model instance with this scenario data
and solves the updated model instance and scatters the scenario results to
symbols in the GAMS database. We demonstrate the utility of this approach
in three applications, namely data envelopment analysis, cross validation and
stochastic dual dynamic programming. The language extensions are available
for general use in all versions of GAMS starting with release 23.7.

1.1 Introduction

Algebraic modeling systems (such as GAMS, AMPL, AIMMS, etc) are a well
established methodology for solving broad classes of optimization problems
arising in a wide variety of application domains. These modeling systems take
data from a rich collection of sources including databases, spreadsheets, web

Michael R. Bussieck
GAMS Software GmbH, Cologne, e-mail: mbussieck@gams.com

Michael C. Ferris

University of Wisconsin, Madison, Wisconsin e-mail: ferris@cs.wisc.edu

Timo Lohmann
GAMS Development Corp., Washington D.C., e-mail: tlohmann@gams.com

1

2 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

interfaces and simple text files and are able to process specific instantiations
of the often large and complex models using state of the art solution engines.

The purpose of this paper is to detail an extension of the GAMS modeling
system that allows collections of models (parameterized exogenously by a set
of samples or indices) to be described, instantiated and solved efficiently.

As a specific example, we consider the parametric optimization problem
P(s) defined by:

min
x∈X(s)

f(x; s) s.t. g(x; s) ≤ 0 (1.1)

where s ∈ S = {1, . . . ,K}. Note that each scenario s represents a different
problem for which the optimization variable is x. The form of the constraint
set as given above is simply for concreteness; equality constraints, range and
bound constraints are trivial extensions of the above framework. Clearly the
problems P(s) are interlinked and we intend to show how such problems can
be easily specified within GAMS and detail one type of algorithmic extension
that can exploit the nature of the linkage. Other extensions of GAMS allow
solves to be executed in parallel or using grid computing resources [6].

The paper is organized as follows. In Section 1.2 we outline the motiva-
tion and design of the system for describing and solving P(s) and give some
overview of the available options. Section 1.3 gives three examples of the use
of this methodology to the problems of data envelopment analysis (DEA - Sec-
tion 1.3.1), cross validation for problems in machine learning (Section 1.3.2)
and finally to stochastic dual dynamic programming (SDDP - Section 1.3.3).
Note that in our description we will use the terms indexed, parameterized and
scenario somewhat interchangeably. Furthermore we assume that the reader
has basic knowledge about the modeling language GAMS.

1.2 Design Methodology

One of the most important functions of GAMS is to build a model instance
from the collection of equations (i.e. an optimization model defined by the
GAMS keyword MODEL) and corresponding data (consisting of the content of
GAMS (sub)sets and parameters). Such a model instance is constructed or
generated when the GAMS execution system executes a SOLVE statement.
The generated model instance is passed to a solver which searches for a solu-
tion of this model instance and returns status information, statistics, and a
(primal and dual) solution of the model instance. After the solver terminates,
GAMS brings back the solution into the GAMS database, i.e. it updates the
level (.L) and marginal (.M) fields of variable and equation symbols used in
the model instance. Hence, the SOLVE statement can be interpreted as a com-
plex operator against the GAMS database. The model instance generated by
a SOLVE statement only lives during the execution of this one statement, and
hence has no representation within the GAMS language. Moreover, its struc-

1 GUSS: Solving Collections of Data Related Models within GAMS 3

ture does fit the relational data model of GAMS. A model instance consists
of vectors of bounds and right hand sides, a sparse matrix representation of
the Jacobian, a representation of the non-linear expressions that allow the
efficient calculation of gradient vectors and Hessian matrices and so on.

This paper is concerned with solving collections of models that have similar
structure but modified data. As an example, consider a linear program of the
form:

min cTx s.t. Ax ≥ b, ` ≤ x ≤ u.

The data in this problem is (A, b, c, `, u). Omitting some details, the following
code could be used within GAMS to solve a collection of such linear programs
in which each member of the collection has a different A matrix and lower
bound `:

1 Set i / ... /, j / ... /;

2 Parameter

3 A(i,j), b(i);

4 Variable

5 x(j), z, ...;

6 Equation

7 e(i), ...;

8 e(i).. sum(j, A(i,j)*x(j)) =g= b(i);

9 ...

10 model mymodel /all/;

11

12 Set s / s1*s10 /

13 Parameter

14 A_s(s,i,j) Scenario data

15 xlo_s(s,j) Scenario lower bound for variable x

16 xl_s(s,j) Scenario solution for x.l

17 em_s(s,i) Scenario solution for e.m;

18 Loop(s,

19 A(i,j) = A_s(s,i,j);

20 x.lo(j)= xlo_s(s,j);

21 solve mymodel min z using lp;

22 xl_s(s,j) = x.l(j);

23 em_s(s,i) = e.m(i);

24);

Summarizing, we solve one particular model (mymodel) in a loop over s

with an unchanged model rim (i.e. the same individual variables and equa-
tions) but with different model data and different bounds for the variables.
The change in model data for a subsequent solve statement does not depend
on the previous model solutions in the loop.

The purpose of this new Gather-Update-Solve-Scatter manager or short
GUSS is to provide syntax at the GAMS modeling level that makes an in-
stance of a problem and allows the modeler limited access to treat that in-
stance as an object, and to update portions of it iteratively. Specifically, we
provide syntax that gives a list of data changes to an instance, and allows
these changes to be applied sequentially to the instance (which is then solved

4 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

without returning to GAMS). Thus, we can simulate a limited set of ac-
tions to be applied to the model instance object and retrieve portions of the
solution of these changed instances back in the modeling environment.

Such changes can be done to any model type in GAMS, including nonlinear
problems and mixed integer models. However, the only changes we allow are
to named parameters appearing in the equations and lower and upper bounds
used in the model definition.

Thus, in the above example GUSS allows us to replace lines 18-24 by

Set dict / s. scenario. ’’

A. param. A_s

x. lower. xlo_s

x. level. xl_s

e. marginal. em_s /;

solve mymodel min z using lp scenario dict;

The three dimensional set dict (you can freely choose the name of this
symbol) contains mapping information between symbols in the model (in
the first position) and symbols that supply required update data or store
solution information (in the third position), and the type of update/storing
(in the second position). An exception to this rule is the tuple with label
scenario in the second position. This tuple determines the symbol (in the
first position) that is used as the scenario index. This scenario symbol can
be a multidimensional set. A tuple in this set represents a single scenario.
The remaining tuples in the set dict can be grouped into input and output
tuples. Input tuples determine the modifications of the model instance prior
to solving, while output tuples determine which part of the solution gets
saved away. The following keywords can be used in the second position of the
set dict:

Input:

param: Supplies scenario data for a parameter used in the model
lower: Supplies scenario lower bounds for a variable
upper: Supplies scenario upper bounds for a variable
fixed: Supplies scenario fixed bounds for a variable

Output:

level: Stores the levels of a scenario solution of variable or equation
marginal: Stores the marginals of a scenario solution of variable

or equation

Sets in the model cannot be updated. GUSS works as follows: GAMS
generates the model instance for the original data. As with regular SOLVE

statements, all the model data (e.g. parameter A) needs to be defined at this
time. The model instance with the original data is also called the base case.
The solution of the base case is reported back to GAMS in the regular way
and is accessible via the regular .L and .M fields after the SOLVE statement.

1 GUSS: Solving Collections of Data Related Models within GAMS 5

After solving the base case, the update data for the first scenario is applied
to the model. The tuples with lower, upper, fixed update the bounds of the
variables, whereas the tuples with param update the parameters in the model.
The scenario index k needs to be the first index in the parameters mapped in
the set dict. The update of the model parameters goes far beyond updating
the coefficients of the constraint matrix/objective function or the right hand
side of an equation as one can do with some other systems. GAMS stores
with the model instance all the necessary expressions of the constraints, so
the change in the constraint matrix coefficient is the result of an expression
evaluation. For example, consider a term in the calculation of the cost for
shipping a variable amount of goods x(i,j) between cities i and j. The
expression for shipping cost is d(i,j)*f*x(i,j), i.e. the distance between
the cities times a freight rate f times the variable amount of goods. In order
to find out the sensitivity of the solution with respect to the freight rate
f, one can solve the same model with different values for f. In a matrix
representation of the model one would need to calculate the coefficient of
x(i,j) which is d(i,j)*f, but with GUSS it is sufficient to supply different
values for f that potentially result in many modified coefficient on the matrix
level. The evaluation of the shipping cost term and the communication of the
resulting matrix coefficient to the solver are done reliably behind the scenes
by GUSS.

After the variable bound and the model parameter updates have been
applied and the resulting updates to the model instance data structures
(e.g. constraint matrix) has been determined, the modified model instance
is passed to the solver. Some solvers (e.g. Cplex, Gurobi, and Xpress) allow
modifying a model instance. So in such a case, GUSS only communicates
the changes from the previous model instance to the solver. This not only
reduces the amount of data communicated to the solver, but also, in the case
of an LP model, allows the solver to restart from an advanced basis and its
factorization. In the case of an NLP model, this provides initial values. Af-
ter the solver determines the solution of a model instance, GUSS stores the
part of the solution requested by the output tuples of dict to some GAMS
parameters and continues with the next scenario.

1.2.1 GUSS Options

The execution of GUSS can be parameterized using some options. Options are
not passed through a solver option file but via another tuple in the dict set.
The keyword in the second position of this tuple is opt. A one dimensional
parameter is expected in the first position (or the label ’’). This parameter
may contain some of the following labels with values:

6 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

OptfileInit: Option file number for the first solve
Optfile: Option file number for subsequent solves
LogOption: Determines amount of log output:

0 - Moderate log (default)
1 - Minimal log
2 - Detailed log

SkipBaseCase: Switch for solving the base case (0 solves the base case)
UpdateType: Scenario update mechanism:

0 - Set everything to zero and apply changes (default)
1 - Reestablish base case and apply changes
2 - Build on top of last scenario and apply changes

RestartType: Determines restart point for the scenarios
0 - Restart from last solution (default)
1 - Restart from solution of base case
2 - Restart from input point

For the example model above the UpdateType setting would mean:

UpdateType=0: loop(s, A(i,j) = A_s(s,i,j))

UpdateType=1: loop(s, A(i,j) = A_base(i,j);

A(i,j) $= A_s(s,i,j))

UpdateType=2: loop(s, A(i,j) $= A_s(s,i,j))

The option SkipBaseCase=1 allows to skip the base case. This means only
the scenarios are solved and there is no solution reported back to GAMS
in the traditional way. The third position in the opt-tuple can contain a
parameter for storing the scenario solution status information, e.g. model
and solve status, or needs to have the label ’’. The labels to store solution
status information must be known to GAMS, so one needs to declare a set
with such labels. The following solution status labels can be reported:

domusd iterusd objest nodusd modelstat numnopt

numinfes objval rescalc resderiv resin resout

resusd robj solvestat suminfes

The following example shows how to use some of the GUSS options and
the use of a parameter to store some solution status information:

Set h solution headers / modelstat, solvestat, objval /;

Parameter

o / SkipBaseCase 1, UpdateType 1, Optfile 1 /

r_s(s,h) Solution status report;

Set dict / s. scenario. ’’

o. opt. r_s

a. param. a_s

x. lower. xlo_s

x. level. xl_s

e. marginal. em_s /;

solve mymodel min z using lp scenario dict;

1 GUSS: Solving Collections of Data Related Models within GAMS 7

1.2.2 Implementation Details

This section describes some technical details that may provide useful insight
in case of unexpected behavior.

GUSS changes all model parameters mentioned in the dict set to vari-
ables. So a linear model can produce some non-linear instructions (e.g.
d(i,j)*f*x(i,j) becomes a non-linear expression since f becomes a vari-
able in the model instance given to GUSS). This also explains why some
models compile without complaint, but if the model is used in the context
of GUSS, the compile time check of the model will fail because a parameter
that is turned into a variable cannot be used that way any more. For exam-
ple, suppose the model contains a constraint e(i).. sum(j$A(i,j), ...).
If A(i,j) is a parameter in the regular model, the compiler will not complain,
but if A becomes a parameter that shows up in the first position of a param

tuple in the dict set, the GAMS compiler will turn A into a variable and
complain that an endogenous variable cannot be used in a $-condition.

The sparsity pattern of a model can be greatly effected by GUSS. In a reg-
ular model instance GAMS will only generate and pass on non-zero matrix
elements of a constraint e(i).. sum(j, A(i,j)*x(j)) ..., so the spar-
sity of A determines the sparsity of the generated model instance. GUSS
allows to use this constraint with different values for A hence GUSS can-
not exclude any of the pairs (i,j) and generate a dense matrix. The
user can enforce some sparsity by explicitly restricting the (i,j) pairs:
e(i).. sum(ij(i,j), A(i,j)*x(j)) ...

The actual change of the GAMS language required for the implemen-
tation of GUSS is minimal. The only true change is the extension of the
SOLVE statement with the term SCENARIO dict. Existing language elements
have been used to store symbol mapping information, options, and model
result statistics. Some parts of the GUSS presentation look somewhat unnat-
ural, e.g. since dict is a three dimensional set the specification the scenario
set using keyword scenario requires a third dummy label ’’. However,
this approach gives maximum flexibility for future extension, allows reliable
consistency checks at compile and execution time, and allows to delay the
commitment for significant and permanent syntax changes of a developing
method to handle model instances at a GAMS language level.

1.3 Examples

In this section we discuss three examples that benefit from GUSS. Data envel-
opment analysis models are discussed in section 1.3.1 and a discussion about
cross validation models can be found in section 1.3.2. These example describe
in detail the steps from a traditional GAMS implementation to a GUSS based
model. In section 1.3.3 we present the use of GUSS in an implementation

8 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

of the stochastic dual dynamic program. As many other decomposition al-
gorithms SDDP requires the solution of many closely related mathematical
optimization problems. We discuss in detail the savings in running time when
using GUSS compared to a traditional GAMS implementation and even an
implementation based on a native solver interface.

1.3.1 Data Envelopment Analysis

Data Envelopment Analysis (DEA) models have been used extensively in the
literature to study a wide variety of applications [9, 10, 13, 15, 18, 22, 24].
The basic (CCR) DEA model is a collection of models indexed by k and
defined by

maxu,v u
TY·k (indexed objective)

s.t. vTX·k = 1 (indexed normalizing constraint)
uTY ≤ vTX
u, v ≥ 0

where X, Y are data matrices. The complete GAMS models discussed in the
section including the data is available from the GAMS/DEA web page at
http://www.gams.com/contrib/gamsdea/dea.htm.

Without GUSS, a model would be defined and solved in a loop over k,
requiring the model to be generated multiple times with different instances
for each value of k as shown below.

1.3.1.1 Standard loop version of primal DEA model

1 $include dea-data.gms

2 $include dea-primal.gms

3

4 set headers / modelstat, solvestat, objval /;

5 parameter rep(k,headers) solution report summary;

6 option limrow=0, limcol=0, solprint=silent, lp=gurobi,

7 solvelink=%Solvelink.LoadLibrary%;

8 loop(k,

9 slice(j) = data(k,j);

10 solve dea using lp max eff;

11 rep(k,’modelstat’) = dea.modelstat;

12 rep(k,’solvestat’) = dea.solvestat;

13 rep(k,’objval’) = dea.objval;

14);

15 display rep;

1 GUSS: Solving Collections of Data Related Models within GAMS 9

In this setting we loop over the set k and change the data in the objective
function and the first constraint of the model explicitly before each solve. We
only output a minimal summary of the solution.

GUSS is an alternative (and more efficient) way to define the individual
programs and pass them to any underlying GAMS solver. In this way, indi-
vidual programs are not regenerated, but are instead defined as data modi-
fications of each other. This reduces overall model generation time. Further,
previous solutions can be used as starting points in later solves to speed up
overall processing time. The specific GAMS code to achieve this is shown
below.

1.3.1.2 GUSS version of primal DEA model

1 $include dea-data.gms

2 $include dea-primal.gms

3

4 parameter eff_k(k) ’efficiency report parameter’;

5

6 set headers report / modelstat, solvestat, objval /;

7 parameter scenrep(k,headers) solution report summary,

8

9

10 set dict / k .scenario.’’

11 slice .param. data

12 eff .level. eff_k

13 scopt .opt. scenrep /;

14

15 slice(j) = 0; option lp=gurobi;

16 solve dea using lp max eff scenario dict;

17 display scenrep, eff_k;

In the GUSS version we indicate the collection of models to be solved using
the set dict defined on lines 10-13. The solve statement on line 16 includes
an extra keyword scenario that points to this set. The contents of dict are
directives to GUSS. The first tuple of dict determines the set to be used for
the scenario (collection) index, in this case k. The second tuple of dict states
that in each scenario k, the parameter slice is instantiated using a slice of
the parameter data. Essentially, this corresponds to the GAMS statement:

slice(j) = data(k,j)

Note the scenario index k must appear as the first index of the parameter
data. The third tuple of dict allows the modeler to collect information from
each solve and store it into a GAMS parameter. Essentially, the third element
of dict corresponds to the GAMS statement:

eff_k(k) = eff.l

10 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

that gets executed immediately after the solve of scenario k. GUSS options
(scopt) and a parameter to store model statistics (scenrep) are given in the
last tuple of dict indicated by the keyword opt.

More complex scenario models can also be formulated using GUSS, in-
cluding multiple equations being updated. This is shown by the dual of the
basic DEA model, given by

minz,λ z (objective)
s.t. Xλ ≤ zX·k (indexed constraint)

Y λ ≥ Y·k (indexed constraint)
λ ≥ 0

The original GAMS formulation using standard loops is explicitly given be-
low:

1.3.1.3 Standard loop version of dual DEA model

1 $include dea-data.gms

2 $include dea-dual.gms

3

4 parameter rep summary report;

5 option limrow=0, limcol=0, solprint=silent, lp=gurobi

6 solvelink=%Solvelink.LoadLibrary%;

7

8 loop(k,

9 slice(j) = data(k,j);

10 solve deadc using lp minimizing z ;

11 rep(k,’modelstat’) = deadc.modelstat;

12 rep(k,’solvestat’) = deadc.modelstat;

13 rep(k,’objval’) = deadc.objval;

14);

15

16 display rep;

The dual (CRS) DEA model formulated using GUSS is a simple modifi-
cation, namely:

1.3.1.4 GUSS version of dual DEA model

1 $include dea-data.gms

2 $include dea-dual.gms

3

4 parameter eff_k(k) ’efficiency report parameter’;

5

6 set headers report / modelstat, solvestat, objval /;

7 parameter scenrep(k,headers) solution report summary

8 scopt / SkipBaseCase 1 /;

9

10 set dict / k. scenario.’’

1 GUSS: Solving Collections of Data Related Models within GAMS 11

11 scopt. opt. scenrep

12 slice. param. data

13 z. level. eff_k /;

14

15 slice(j) = 0; option lp=gurobi;

16 solve deadc using lp min z scenario dict;

17 display scenrep, eff_k;

Because the base model is not solved (due to option SkipBaseCase 1), no
solution is reported back to GAMS in the traditional way. Solutions for all
of the programs can be collected into GAMS parameters as shown above for
the eff_k parameter.

The aforementioned model is not the only DEA model that exists. Other
DEA models that address application issues have been developed and used in
practice. Some of these models are simple modifications of the CCR model;
other vary more. With the variety of models available, each addressing differ-
ent needs, GAMS is an important tool to facilitate the definition of general
DEA models; GUSS enables fast solution.

Further extensions of these models [1, 2, 3, 8, 23] to formulations with
weighted outputs or variable returns to scale are easy to formulate with
GUSS. One such extended model is also given on the GAMS/DEA web page.
It implements the following primal dual pair that incorporates variable re-
turns to scale (VRS) and additive modeling:

maxu,v u
TY·k − µ

s.t. vTX·k = 100
uTY ≤ vTX + µe
u ≥ ulo, v ≥ vlo

and
minz,λ,s,t 100z − uTlos− vTlot
s.t. Xλ+ s = zX·k

Y λ− t = Y·k
eTλ = 1
λ, s, t ≥ 0

1.3.2 Cross Validation for Support Vector Machines

Cross validation [16, 17, 21, 12] is a statistical/machine learning technique
that aims to evaluate the generalizability of a classifier (or other decision)
process. It does this by setting aside a portion of the data for testing, and
uses the remaining data entries to produce the classifier. The testing data is
subsequently used to evaluate how well the classifier works. Cross validation
performs this whole process a number of times in order to estimate the true
power of the classifier.

12 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

Ten-fold cross validation is a special case, where the original data is split
into ten pieces, and cross validation is performed using each of these ten
pieces as the testing set. Thus, the training process is performed ten times,
each of which uses the data obtained by deleting the testing set from the
whole dataset. We show below how to carry this out using GUSS.

The following example compares the two formulations for a feature-
selection model under cross-validation. The complete model and data files
are available from the GAMS/Cross Validation web page at http://www.

gams.com/contrib/gamsdea/dea-cv.htm.
Original GAMS formulation:

1.3.2.1 Cross validation model

1 $include cv-data.gms

2 $eolcom !

3

4 set headers report / modelstat, solvestat, objval /;

5 parameter rep(p,headers);

6 option limrow=0, limcol=0, solprint=silent, mip=xpress,

7 solvelink=%Solvelink.LoadLibrary%, optcr=0, optca=0;

8

9 $echo loadmipsol=1 > xpress.opt

10

11 loop(p,

12 a_err.up(a) = inf; a_err.up(a)$a_test(p,a) = 0;

13 b_err.up(b) = inf; b_err.fx(b)$b_test(p,b) = 0;

14 sla.fx(a) = 0; sla.up(a)$a_test(p,a) = inf;

15 slb.fx(b) = 0; slb.up(b)$b_test(p,b) = inf;

16 solve train using mip minimizing c;

17 train.optfile = 1; ! use mipstart for the second run

18 rep(p,’modelstat’) = train.modelstat;

19 rep(p,’solvestat’) = train.solvestat;

20 rep(p,’objval’) = train.objval;

21);

22 display rep;

The batinclude file gentestset.inc gives instructions for generating the
testing sets. It produces a_test and b_test that detail which equations are
left out on solve p.

The actual model is set up to include all the data points in the equations
a_def and b_def. To delete the equations that correspond to the test set, we
introduce nonnegative slack variables into all the equations. We then set the
upper bounds of the slack variables to zero in equations corresponding to the
training set, and to infinity in equations corresponding to the testing set. At
the same time we fix the error measures a_err and b_err belonging to the
testing set by setting their upper bounds to zero. Thus the testing set equa-
tions are always satisfiable by choice of the slack variables alone - essentially
they are discarded from the model as required. An alternative formulation

1 GUSS: Solving Collections of Data Related Models within GAMS 13

could ”include” the data equations that you need in each scenario, but the
update from one scenario to the next in the defining data is much larger.

Cross validation formulated with GUSS: This model essentially mimics
what the standard model does, but the implementation of the solver loop
behind the scenes is much more efficient.

1.3.2.2 Cross validation using GUSS

1 $include cv-data.gms

2

3 parameter wval(p,o), gval(p);

4

5 set headers report / modelstat, solvestat, objval /;

6 parameter

7 scenrep(p,headers)

8 scopt(*) / SkipBaseCase 1, Optfile 1, LogOption 2 /;

9

10 set dict / p. scenario.’’

11 scopt. opt. scenrep

12 a_err. upper. aupper

13 b_err. upper. bupper

14 sla. upper. afree

15 slb. upper. bfree

16 weight.level. wval

17 gamma. level. gval /

18

19 $echo loadmipsol=1 > xpress.opt

20

21 Parameter aupper(p,a), bupper(p,b), afree(p,a), bfree(p,b);

22

23 aupper(p,a)$(not a_test(p,a)) = inf;

24 bupper(p,b)$(not b_test(p,b)) = inf;

25

26 afree(p,a)$a_test(p,a) = inf;

27 bfree(p,b)$b_test(p,b) = inf;

28

29 option mip=xpress, optcr=0, optca=0;

30 solve train using mip minimizing c scenario dict;

31 display scenrep, gval;

The key observations on this implementation are as follows. Firstly, pa-
rameters aupper, bupper, afree and bfree are used to set the bounds on
the error and slack variables in the testing set equations respectively. The
setting of the upper bounds are governed by the syntax shown in the con-
trolling set dict. Furthermore, the output of the classifier (weight, gamma)
for each fold of the cross validation uses the dict’ set to place results into
the parameters wval and gval respectively. Finally, the GUSS options are
used to guarantee that the subsequent solves are instructed to process solver
options (Optfile 1) which instruct the solver to use the previous solution
to start the branch-and-cut process (loadmipsol=1).

14 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

Quadratic Programs

GUSS is not limited to linear programs, but can be used more generally. The
following example illustrates the use of GUSS for quadratic programs. In this
example, a support vector machine is used to determine a linear classifier
that separates data into two categories. We use the following model:

minw,g,z
1
2 ‖w‖

2
2 + C

∑
i zi

s.t. D(Aw − g) + z ≥ 1
z ≥ 0

Here, A is a matrix containing the training data (patients by features) and
D is a diagonal matrix with values +1 or -1 (each denoting one of the two
classes). C is a parameter weighting the importance of maximizing the margin
between the classes (2

‖w‖2
) versus minimizing the misclassification error (z).

The solution w and g are used to define a separating hyperplane {x|wTx = g}
to classify (unseen) data points.

As given, the standard linear support vector machine is not a slice model
per se. It becomes a slice model under cross validation training, where it is
solved multiple times on different pieces of data. In this case, only the data
A and D vary between solves, appropriately fitting the definition of a slice
model.

The data for this example comes from the Wisconsin Diagnosis Breast Can-
cer Database, and is available at http://www.cs.wisc.edu/~olvi/uwmp/

cancer.html. The data was converted to the GAMS file wdbc.gms, which
defines A and D and is also available from the GAMS/Cross Validation web
page.

1.3.2.3 The GUSS formulation for quadratic SVM

1 $title Ten-fold cross validation example using the scenario solver

2 $eolcom !

3

4 $setglobal num_folds 10

5

6 set p folds to perform /1*%num_folds%/;

7

8 * Read in data

9 $include "wdbc.gms"

10

11 set test(p,i) ’testing set’;

12

13 * Define problem

14 parameter C /1/;

15 positive variables z(i);

16 variables obj, w(k), gamma, slack(i);

17

1 GUSS: Solving Collections of Data Related Models within GAMS 15

18 equations obj_def, sep_def(i);

19

20 obj_def.. obj =e= 1/2*sum(k, sqr(w(k))) + C*sum(i, z(i));

21 sep_def(i).. D(i)*(sum(k, A(i,k)*w(k)) - gamma) + z(i) + slack(i) =g= 1;

22

23 model train /all/;

24

25 * Generate testing sets (to be deleted in each problem)

26 loop(p,

27 $batinclude gentestset2.inc "p,i"

28);

29

30 set h headers / modelstat, solvestat, objval /;

31 parameter scenrep(p,h), scopt / SkipBaseCase 1 /;

32 set dict / p. scenario.’’

33 scopt.opt. scenrep

34 z. upper. iupper

35 slack.upper. ifree /;

36

37 Parameter iupper(p,i), ifree(p,i);

38 iupper(p,i)$(not test(p,i)) = inf;

39 ifree(p,i)$test(p,i) = inf;

40

41 option qcp=conopt, optcr=0, optca=0;

42 solve train using qcp minimizing obj scenario dict;

43 display scenrep;

44

45 $if not set runtraditional $exit

46

47 * Traditional Solve

48 parameter rep(p,h);

49 option limrow=0, limcol=0, solprint=silent,

50 solvelink=%Solvelink.LoadLibrary%;

51 loop(p,

52 z.up(i) = inf; z.up(i)$test(p,i) = 0;

53 slack.up(i) = 0; slack.up(i)$test(p,i) = inf;

54 solve train using qcp minimizing obj;

55 rep(p,’modelstat’) = train.modelstat;

56 rep(p,’solvestat’) = train.solvestat;

57 rep(p,’objval’) = train.objval;

58);

59 display rep;

The variable values for weight and gamma could be saved for later testing
using the same method as detailed above for the linear case.

The batinclude file gentestset2.inc is very similar to gentestset.inc

from the earlier cross-validation examples. In gentestset2.inc, though, only
one set is being dealt with rather than two.

16 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

1.3.3 SDDP

In the last two sections we did not quantify the performance improvements
achieved by GUSS. In this section we explore the use of GUSS in a decom-
position algorithm applied to a large scale model. We discuss in detail the
running times of a traditional GAMS implementation and a GUSS version of
the implementation. We also compare the running time of an implementation
of the algorithm using the ILOG Concert Technology interface to the Cplex
solver.

The Stochastic Dual Dynamic Programming (SDDP) algorithm [19, 20, 25]
for solving multi-stochastic linear programs uses, similar to the well known
Benders decomposition [4], the concept of a future cost function (FCF). The
algorithm works with an underestimating approximation of this FCF by itera-
tively adding supporting hyperplanes (Benders cuts) and therefore improving
the approximation. Let us consider the following multi-stage stochastic linear
program [5]

min c1x1 + E[min c2(ξ2)x2(ξ2) + · · ·+ E[min cH(ξH)xH(ξH)] · · ·]
s.t. W1x1 = h1

T1(ξ2)x1 +W2(ξ2)x2(ξ2) = h2(ξ2)
...

TH−1(ξH)xH−1(ξH−1) +WH(ξH)xH(ξH) = hH(ξH)
x1 ≥ 0, xt(ξt) ≥ 0, t = 2, ...,H,

where ξt are random variables. The SDDP algorithm requires a Markovian
structure of the coefficient matrix, meaning that a stage only depends on
the previous stage. Furthermore the random variables must be stage-wise
independent and must follow a discrete distribution. This means ξt can be
described as ξt = (ξ1t, ..., ξIt) for a discrete distribution of I realizations with
respective probability pi.
The SDDP algorithm decomposes the stochastic linear problem into H sub-
problems of the form

min ctxt + α̂t+1

s.t. Wtxt ≥ ht − Tt−1x∗t−1,
α̂t+1 + πjt+1Ttxt ≥ δ

j
t , j = 1, ..., J,

xt ≥ 0,

(SUB(t, ξit, x
∗
t−1))

where α̂t+1 is represented by free scalar variables. For reason of convenience
we omit the random variables in the description. In order to be able to solve
a subproblem the previous stage decision variable x∗t−1 must be fixed and
therefore goes to the right hand side. The set j = 1, ..., J denotes the added
hyperplanes to the subproblem, serving as an approximation of the FCF.
Throughout the algorithm these kind of subproblems, with different param-
eters and variable fixings, are the only problems solved. In order to avoid

1 GUSS: Solving Collections of Data Related Models within GAMS 17

generating and solving them one at a time GUSS allows solving them in cer-
tain batches, generating the submodel once for each batch. The details of this
process will be shown later in this section.

1.3.3.1 Building of cuts

Each iteration of the SDDP algorithm consists of two phases: a backward
recursion and a forward simulation. In the backward recursion supporting
hyperplanes of the form

α̂t+1 + πjt+1Ttxt ≥ δ
j
t , (CUTjt)

are added to the subproblems in order to improve the approximate FCF.
Suppose we are in iteration j and stage t + 1 of the backward recursion of
the algorithm and have solved the subproblem SUB(t+ 1, ξi,t+1, x

∗
t−1) for all

i = 1, ..., I and dual multipliers πi,t+1 on all constraints with variables of stage

t are stored. In particular this means we may have dual multipliers λji,k,t+1

belonging to cuts that have been added in earlier iterations. We are now
moving to the previous stage t and want to build CUTjt . For the coefficient

of the cut the sum πjt+1 =
∑I
i=1 piπi,t+1 is calculated. Calculating λjk,t+1 is

done in the same way. The cut right hand side δjt is then calculated as follows

δjt =

{∑I
i=1 piπ

j
i,t+1hi,t+1, t = H − 1∑I

i=1 piπ
j
i,t+1hi,t+1 +

∑j
k=1 λ

j
k,t+1δ

k
t+1, t = 1, ...,H − 2.

A lower bound is computed by solving the first-stage subproblem with cuts.
In the forward simulation the approximate FCF is used to construct a fea-
sible solution of the problem, resulting in an upper bound to the optimal
solution value. While going forward we sample one realization out of the set
{ξ1t, ..., ξIt} and solve the respective subproblem. Note that the only cuts
described in this section are optimality cuts. Usually a second type of cut,
feasibility cuts, are used for a Benders decomposition. By adding slack vari-
ables we made sure that these are not needed for our model.

1.3.3.2 Algorithm in pseudo-code

In the actual algorithm both the backward and forward part is passed through
with multiple solutions in one iteration. These solutions are called trial solu-
tions and they are important for several reasons. In the backward recursion
this leads to one additional cut per trial solution, which results in a better
approximation of the FCF. In the forward simulation the trial solutions help

18 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

to get a more reasonable estimate of the upper bound. The algorithm in
pseudo-code reads as follows

1: while convergence is not reached do
2: for t = H, ..., 2 (Backward recursion) do
3: for each trial solution x∗t−1 do
4: for each realization ξit of the random variable do
5: Solve SUB(t, ξit, x

∗
t−1) and calculate dual multipliers of the

constraints.
6: end for
7: end for

8: Use dual multipliers to construct the cuts CUTjt−1 and add them to
SUB(t− 1, ξi,t−1, x

∗
t−2).

9: end for
10: for t = 1, ...,H (Forward simulation) do
11: for each trial solution x∗t−1 do
12: Solve SUB(t, ξit, x

∗
t−1) for a sampled realization ξit and store

the solution as x∗t . Fix x∗t for SUB(t+ 1, ξi,t+1, x
∗
t).

13: if t = 1 then
14: store the objective as LOWER BOUND
15: end if
16: end for
17: end for
18: Calculate the UPPER BOUND using the stored solutions.
19: Check for convergence.
20: end while

GUSS allows us to rewrite the various SOLVE statements in GAMS in the
inner loop of the backward recursion (lines 3-7) into one SOLVE statement. In
specific, we write all possible combinations of trial solutions and realizations
into the scenario dict. This results in one SOLVE statement per stage and
each of these SOLVE statements will solve (#trials × #realizations) many
models without regenerating them. In the forward simulation we can rewrite
the SOLVE statements in GAMS in the inner loop (lines 11-12). This again
results in one SOLVE statement per stage instead of having #trials many
SOLVE statements.

1.3.3.3 Results

The SDDP algorithm has been implemented for a stochastic linear program
motivated by Vattenfall Energy Trading, a branch of the Swedish power com-
pany Vattenfall. The objective of the model is to minimize the power gener-
ation costs and ultimately to forecast power prices of the market. Power can
be generated by an aggregated hydro power plant, a coal plant, or a nuclear

1 GUSS: Solving Collections of Data Related Models within GAMS 19

plant. Using hydro power has no costs, but there is a limited amount of wa-
ter in the reservoir and limited inflows of water into the reservoir over time.
In each time period, water can be either used for power generation, saved,
or spilled. The model has a granularity of hours and is set up for one year,
which results in 8736 time periods. Stochastic information is revealed every
week, resulting in 52 stages. A one-stage sub-model therefore consists of 168
hours. In order to compare different implementations of the algorithm, we
recorded the time for the first 20 iterations. We used five trial solutions and
a discrete distribution made of twelve realizations. During the course of the
20 iterations 66,320 linear programs have been solved. To make runs compa-
rable we worked with a random but fixed sampling (line 12 of the algorithm)
in all implementations. All experiments were carried out on a PC with an
Intel i7-680 chip running Windows 7 (64bit) with GAMS version 23.7.0 and
Cplex 12.2.0.2. We implemented three versions of the algorithm:

Traditional: This is a GAMS model implementing the SDDP algorithm
with traditional GAMS programming flow control structures like loop.
This traditional version has been tested with three different ways of calling
the LP solver which is parameterized by the GAMS option solvelink.
ChainScript, which is the default in GAMS, produces for each SOLVE

statement some scratch files on disk containing the model instance, it
also dumps the entire GAMS database into a scratch file and stops the
GAMS runtime system leaving all computer resources to the solver job.
After the solver job terminates, the GAMS runtime system reinitializes
itself from the GAMS database scratch file and continues with execution
of the GAMS program. CallModule also creates creates files for a model
instance but the GAMS runtime system stays in memory while the solver
job runs. LoadLibrary communicates the model instance through memory
and initiates the solver through a shared library. This implementation is
available at http://www.gams.com/modlib/adddocs/sddp_trad.gms.

GUSS: This implementation replaces parts of the traditional loop con-
structs in the traditional GAMS model by scenario based SOLVE state-
ments using GUSS as discussed above. This model is part of the GAMS
Model Library (http://www.gams.com/modlib/libhtml/sddp.htm)

Concert: This implementation is based on ILOG Concert Technology, a
programming interface to generate and solve linear, quadratic and con-
straint programming based models with solvers available from the IBM
Cplex Optimization Studio. This particular C++ implementation used
Concert to generate linear programming model and solve them with
Cplex. The C++ program is available at http://www.gams.com/modlib/
adddocs/sddp.cpp. The model data (and the random data for sampling)
comes from GAMS through the Gams Data eXchange (GDX).

All three implementations build on the same core LP technology, the Cplex
dual simplex engine. The accumulated time spent in the core Cplex optimizer
(CPXlpopt) for the 66,320 linear programs amounts to approximately 110 sec-

20 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

onds and differs by less than 1.5% between the different implementations. The
following table gives the total running times of the different implementations:

Traditional with %Solvelink.ChainScript% 7204 sec
Traditional with %Solvelink.CallModule% 2481 sec
Traditional with %Solvelink.LoadLibrary% 1221 sec
GUSS 392 sec

ILOG Concert Technology 210 sec

As expected the traditional model becomes faster with a tighter solver com-
munication. The GUSS implementation improves the running time by a factor
of more than three compared to the fastest traditional run. The table also
shows that the GUSS implementation is slower by a factor of less than two
compared to the Concert implementation.

GAMS and other algebraic modeling system are widely accepted as rapid
prototyping environments for models and algorithms that require the solution
of mathematical optimization problems. Opinions diverge when it comes to
selecting the software for deployment of such models and algorithms. One
of the most frequent arguments for reimplementing a model in a compiled
language with a native solver interface has been the running time overhead of
an interpreted language like GAMS. The experiments of this section quantify
this overhead (at least for this particular algorithm) and improve the basis
for a cost-benefit analysis for the different deployment options.

1.4 Conclusion

While modeling systems such as GAMS, AMPL and AIMMS are often used to
prototype and solve optimization problems from large classes of application
domains, they have typically been slow at solving collections of models that
have simple data changes of a core model. Specific instances that exhibit
these difficulties have been described above, ranging from data envelopment
analysis, classifier validation, and decomposition approaches such as SDDP,
Lagrangian relaxation and Benders approach [4, 7, 11, 14].

We have demonstrated a simple language extension, termed GUSS, that
facilitates the gathering of data from different sources/symbols that define
the collection of models (that we term scenarios), the procedure that updates
a base model instance with this scenario data and then solves this updated
model instance, and the mechanism to scatter the scenario results to symbols
in the GAMS database. This extension is very easy to incorporate into exist-
ing models, and the methodology we use to communicate the information to
the solver engine is generalizable to more complex data updating schemes.

The extension can be used with any existing model type within the GAMS
environment, and allows data parameters that are present in an existing

1 GUSS: Solving Collections of Data Related Models within GAMS 21

model to be identified (and updated) using a scenario index. We have demon-
strated its utility on a number of example applications and have shown dis-
tinct improvements in speed of processing these collections of models. We
believe that models updated to use GUSS will be competitive with native
implementations of decomposition algorithms, but will have the distinct ad-
vantage that they will be much easier to code, available to a modeler to tailor
to a specific idea, and enable new suites of problems to be solved directly
within the modeling system.

References

1. Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and
scale inefficiencies in Data Envelopment Analysis. Management Science 30(9), 1078–

1092 (1984)

2. Banker, R.D., Morey, R.C.: Efficiency analysis for exogenously fixed inputs and out-
puts. Operations Research 34(4), 513–521 (1986)

3. Banker, R.D., Morey, R.C.: The use of categorical variables in Data Envelopment

Analysis. Management Science 32(12), 1613–1627 (1986)
4. Benders, J.F.: Partitioning procedures for solving mixed-variables programming prob-

lems. Numerische Mathematik 4(1), 238–252 (1962)
5. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer Verlag

(1997)

6. Bussieck, M.R., Ferris, M.C., Meeraus, A.: Grid enabled optimization with GAMS.
INFORMS Journal on Computing 21(3), 349–362 (2009)

7. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Op-

erations Research Letters 24, 37–45 (1999)
8. Charnes, A., Cooper, W., Lewin, A.Y., Seiford, L.M.: Data Envelopment Analysis:

Theory, Methodology and Applications. Kluwer Academic Publishers, Boston, MA

(1994)
9. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making

units. European Journal of Operational Research 2, 429–444 (1978)

10. Cooper, W.W., Seiford, L.M., Tone, K.: Data Envelopment Analysis: A Comprehen-
sive Text with Models, Applications, References and DEA-Solver Software. Kluwer

Academic Publishers, Boston, MA (2000)

11. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Operations
Research 8, 101–111 (1960)

12. Efron, B., Tibshirani, R.: Improvements on cross-validation: The .632 + bootstrap
method. Journal of the American Statistical Association 92, 548–560 (1997)

13. Farrell, M.J.: The measurement of productive efficiency. Journal of the Royal Statis-
tical Society, Series A (General) 120(3), 253–290 (1957)

14. Ferris, M.C., Maravelias, C.T., Sundaramoorthy, A.: Simultaneous batching and
scheduling using dynamic decomposition on a grid. INFORMS Journal on Computing

21(3), 398–410 (2009)
15. Ferris, M.C., Voelker, M.M.: Slice models in general purpose modeling systems: An

application to DEA. Optimization Methods and Software 17, 1009–1032 (2002)
16. Geisser, S.: Predictive Inference. Chapman and Hall, New York (1993)
17. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and

model selection. In: Proceedings of the Fourteenth International Joint Conference on

Artificial Intelligence 2, p. 11371143. Morgan Kaufmann, San Mateo (1995)

22 Michael R. Bussieck, Michael C. Ferris, and Timo Lohmann

18. Olesen, O.B., Petersen, N.C.: A presentation of GAMS for DEA. Computers and

Operations Research 23(4), 323–339 (1996)
19. Pereira, M.V.F., Pinto, L.M.V.G.: Stochastic optimization of a multireservoir hydro-

electric system: A decomposition approach. Water Resources Research 21(6), 779–792

(1985)
20. Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to en-

ergy planning. Mathematical Programming 52, 359–375 (1991)

21. Picard, R., Cook, D.: Cross-validation of regression models. Journal of the American
Statistical Association 79, 575–583 (1984)

22. Seiford, L.M., Zhu, J.: Sensitivity analysis of DEA models for simultaneous changes
in all the data. Journal of the Operational Research Society 49, 1060–1071 (1998)

23. Simar, L., Wilson, P.W.: Sensitivity analysis of efficiency scores: How to bootstrap in

nonparametric frontier models. Management Science 44(1), 49–61 (1998)
24. Thanassoulis, E., Boussofiane, A., Dyson, R.G.: Exploring output quality targets in

the provision of perinatal care in England using DEA. European Journal of Operations

Research 60, 588–608 (1995)
25. Velaśquez, J., Restrepo, P., Campo, R.: Dual dynamic programming: A note on im-

plementation. Water Resources Research 35(7) (1999)

