Analyzing the computational impact of
individual MINLP solver components

Stefan Vigerske

joint work with Ambros M. Gleixner

Zuse Institute Berlin - GAMS

B ..

MIP 2014, July 21, The Ohio State University

Outline

Analyzing MINLP solver components

Software, Hardware, Methodology
Separation

Reformulation

Primal Heuristics

Tree search

Propagation

Outline

Analyzing MINLP solver components

Software, Hardware, Methodology

The Solver: SCIP

> a branch-cut-and-price framework
> a full-scale MIP and MINLP solver

> free for academic purposes, source code available, http://scip.zib.de
MIP

> LP relaxation MIP, GO, CP, and SAT
> cutting planes > branch-and-bound
> column generation

GO NS ¥ NG
> spatial branching (Ao d IV 4

CP
SCIP

SAT

> conflict analysis
> periodic restarts

> domain propagation / -

http://scip.zib.de

The Instances: MINLPLib 1 — 2

MINLPLib

> a collection of MINLP instances (trivial ... challenging)
> GAMS scalar format, part of GAMS World / MINLP World

Next version (in development)

> more instances, more file formats, more statistics, . ..

> currently 822 publicly available MINLP instances

> collected from MINLPLib 1, minlp.org, POLIP, ...

> see http://www.gamsworld.org/minlp/minlplib2/html/

Frsfocs [MILAL Mol Satietcs [l MINLPLib - Number of Instances

[MINLP World Home | Board | Solvers | MINLPLIb | Links | 800
‘GamsWerld Group | Search | Contact 1

MINLPLib Model Statistics

— MINLPLIb 1
— new in MINLPLib 2

2002 2004 2006 2008 2010 2012 2014

REERERREEEEREH

If you have interesting instances, please consider contributing.

http://www.gamsworld.org/minlp/minlplib2/html/

789 choose 475

The Testset

> take MINLPLib2 o (as of April'14): 789 instances

> run SCIP with default settings

> 475 instances solved within 2 hours

> 455 instances solved within 1 hour

= subsequent experiments: the set of 475 instances, 1 hour time limit

Hardware
> Dell PowerEdge M1000e, 48 GB RAM, Intel Xeon X5672@3.2 GHz

Software

> SCIP 3.1.0.1

> SoPlex 2.0

> lpopt 3.11.8

> CppAD 20140000.1

Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...

Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ..

> arithmetic average: dominated by large times

> geometric average: weights trivial and hard instances equally
> shifted geometric average: which shift?

Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...,

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally
> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

w0 Relative performance profile (SolverTime)

o A
oo B
e—e virt. best
e virt. worst

w
n

w
°

inst A B

N
n

1 10s 2s |
2 10s 2s S |
3 10s 50s S0

4 10s 50s |

|

0.0
10° 10"
SolverTime at most this factor of best

Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally

> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst A
1 bx
2 bx
3 1x
4 1x

1x
1x
5x
5x

4.0

Relative performance profile (SolverTime)

3.5

w
°

N
n

o A
oo B
e—e virt. best
e virt. worst

N
°

-
«

Number of instances with no fail

-
°

I
n

\
I

0.0
10°

SolverTime at most this factor of best

Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...,

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally
> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

w0 Relative performance profile (SolverTime)

o A
oo B
e—e virt. best
e virt. worst

w
n

w
°

inst A B

N
n

1 10s 2s |
2 20s 100s Sis |
3 50s 10s S0

4 100s 500s |

|

0.0
10° 10"
SolverTime at most this factor of best

The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

p({ta;: max{ta;, tg;} > t})

t—
p({ts,i: max{ta; tg,i} > t})

The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

p({ta;: max{ta;, tg;} > t})

t—
p({ts,i: max{ta;, tg;} > t})

0.8
0.6
0.4
D time
0.2
0 —mm —_— —_— —_— —_— —_— -
0 600 1,200 1,800 2,400 3,000 3,600

In the following: p = geometric mean [See also Achterberg and Wunderling 2013]

8

The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

R p({Na; : max{ta;, tg;} > t})

w({Ng, : max{ta, tg,i} > t})

In the following: p = geometric mean [See also Achterberg and Wunderling 2013]

8

Number of unsolved instances by time (default settings)

t— |{i:t; >t}

400
300
200

100

0 600 1,200 1,800 2,400 3,000 3,600

Outline

Separation

Analyzing MINLP solver components

10

Separation: MIP cutting planes

> General: Gomory, cMIR, {0, 1/2}-cuts, ...

> Problem-specific: knapsack, clique, multi commodity
flow, . ..

Default Settings

> run certain separators during root node
> no separation during tree search

11

Separation: MIP cutting planes

> General: Gomory, cMIR, {0, 1/2}-cuts, ...
> Problem-specific: knapsack, clique, multi commodity
flow, . ..

Default Settings
> run certain separators during root node

> no separation during tree search

Alternative Setting I: off

Alternative Setting Il: aggressive

> run separators also during tree search
> run previously disabled separators during root node

11

Separation: MIP cutting planes

all maxtime > 100
setting solved time nodes time nodes
MIP cuts off -39 +465% +107% +333% +395%
MIP cuts aggr -1 7% —-10% —18% —23%

D MIP cuts off () MIP cuts aggr

0 600 1,200 1,800

2,400 3,000 3,600

12

Separation: MIP cutting planes

Distribution of Speedups

MIP cuts off MIP cuts aggressive

instances

&> OO T OO OIS
S ™M P M WY W}Q S M P Y ,L}Q KOS
Q@ﬂ °§~ ()(‘T ng \\ \9\ 1 L QN" ()-NN Q‘?\ 09“ Q’ N @“ T,
RN N NN N

time(deﬁ’“|'5)/time(M|F’ cuts off) time(defau|'5)/time(MIP cuts aggr)

13

Separation: Approximation of Nonlinearities

Gradient cuts for convex terms

> feasibility enforced without branching
> exploit integer information for univariate .
convex terms

Linear underestimators for nonconvex terms
concave functions x|x|", n>0 X-y

Alternative setting:

> off during fractional branching
> thus, weak relaxation of nonlinearities while branching on fractionalities

14

Separation: Approximation of Nonlinearities

all maxtime > 100

setting solved time nodes time nodes

nonlin sepa off —102 +302% +695% +1964% +5569%

(D nonlin sepa off

15

Separation: Approximation of Nonlinearities

Distribution of Speedups
nonlin sepa off

instances

N R N PN) SR N P
S M P AN S P

S OO Y U e T
o © @7 e N S

time(defau|t)/time(non|in sepa off)

16

Outline

Reformulation

Analyzing MINLP solver components

17

Reformulation

Expression graph reformulation

> merge expressions, e.g., polynomials

> replace subexpressions with new variables

> when switched off, only a very simple relaxation
based on interval gradients is generated

18

Reformulation

Expression graph reformulation

> merge expressions, e.g., polynomials

> replace subexpressions with new variables

> when switched off, only a very simple relaxation
based on interval gradients is generated

Products with binary variables

> linearize using big-M

x> cakyk with xe{0,1}
!
Mbix <w < MYx,
Seakyk — MY(1—x) <w <Y, akyk — MEH(1 = x)

18

Reformulation

all maxtime > 100
setting solved time nodes time nodes
expr reform off —69 +160% +322% +1386% +3631%
bin reform off -9 +8% —11% +20% —21%

(D expr reform off () bin reform off

19

Reformulation

Distribution of Speedups

expr reform off binary reform off

instances

> SERA RS BEATR) QIR > SERAEO S BEA TR QIR
S S S Y T @}Q S R R Q’& S5
T O QY o I SN DI AN Sz
RO & SRR N
time(default) /time(expr reform off) time(default) /time(binary reform off)

20

Outline

Analyzing MINLP solver components

Primal Heuristics

21

Primal Heuristics

Besides waiting for feasible LP solutions. . .

Standard MIP heuristics applied to MIP relaxation

> rounding, diving, feasibility pump, ...
> large neighborhood search (RENS, RINS, ...)

NLP local search

> for integer and LP feasible solutions
> fix integers and solve remaining NLP (Ipopt)

MINLP heuristics

> NLP diving
RENS [Berthold 2013]
Undercover [Berthold and Gleixner 2013]

v VvV V

22

Primal Heuristics

all maxtime > 100
setting solved time nodes time nodes
all heur off -19 +7% +36% +84% +144%
only NLP 11 —4% +22% +33% +22%
LNS heur off —-10 +4% +20% +51% +71%

D all heur off () only NLP () LNS heur off

23

Primal Heuristics

Distribution of Speedups

heuristics off only NLP
|

instances

S D D D DS SO S D D N D DS SO
fo \Q'_» \Q‘.” @Qg Q\? »”? @}Q "@7@ LQ'Q »Q'N »Q(? @Qg q\'x x"? Q“@ \QQVNQ
TS P Y o SIS RNG o U
SRR & SRR N
time(default) /time(heur off) time(default) /time(only NLP)

24

Primal Heuristics

all maxtime > 100
setting solved time nodes time nodes
heur aggressive -2 +2T% 4% +28% +86%

(D heur aggressive

0 600 1,200 1,800 2,400 3,000 3,600

25

Primal Heuristics

Distribution of Speedups
heuristics aggressive

instances

> N NN LD S
QSOOI AP S

L > D O 4 Q
RSN &

time(defau|'¢)/time(heur aggr)

26

Outline

Tree search

Analyzing MINLP solver components

27

Branching

[Reliability (MIP)] |Inference! (CP)| |VSIDS? (SAT)]

| 1. on “fractional” integer vars |

| 2. on vars in violated nonlinear terms |

pseudo-cost (GO)

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, ...]

1 Inference branching: prefer variables where branching resulted in high number of domain propagation before

2 vsIDS: prefer variables used to produce recent conflict constraints

28

Branching

[Reliability (MIP)] |Inference! (CP)| |VSIDS? (SAT)]

| 1. on “fractional” integer vars |

| 2. on vars in violated nonlinear terms |

pseudo-cost (GO)

Alternative settings for spatial branching

1

» inference!, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, ...]

1 Inference branching: prefer variables where branching resulted in high number of domain propagation before

2 vsIDS: prefer variables used to produce recent conflict constraints

28

Spatial Branching

all maxtime > 100
setting solved time nodes time nodes
inference -27 +31% +34% +167% +176%
most inf —24 +30% +38% +165% +209%
random —24 +30% +28% +145% +130%

(D inference () most inf () random

29

Spatial Branching

Distribution of Speedups

instances

Most-Infeasible Branching

Random Branching

SO OO T IO IO IR
LQ,Q \q’-" \q‘-’ (9@9 q.\}\,\,’} @}Q @64\9
N N o° oM - N 2
RN

time(default) /time(most infeas)

> A S O
SIS

LD e O
O

N
AP S S
&g YN

T

time(default) /time(random)

30

Node selection

Tasks
» improve primal bound
» keep computational effort small

» improve global dual bound

Best estimate with plunging

» select node Q with best/minimal
(pseudo cost) estimate value for
feasible solution objective value

Zo+ > min{uTf wtFTy

k:xyfractional
» plunge (diving with single backtrack)

Alternative setting: breadth first search

31

Node selection

all maxtime > 100
setting solved time nodes time nodes
breadth first —22 +42% +29% +136% +81%

D breadth first

0.8

Node Selection

Distribution of Speedups

instances

Breadth First Node Selection

> A D D DS LS
© \/07’ \/0{" %Qg Q\,-” \/»Q’\:@ X O
RSN &

time(default) /time(breadth first)

33

Conflict analysis / “nogood" learning

Analyse reason for pruning a node

» branchings and propagations

v

infeasible and bound exceeding
LP relaxation: dual ray heuristic

v

derive short nogoods/conflict
constraints

» most nonlinear constraints do not
participate in conflict analysis yet

Use subsequently
» to cut off other nodes
» to enable further propagations
» for VSIDS in branching

X1—X3§0

34

Conflict analysis / “nogood" learning

all maxtime > 100
setting solved time nodes time nodes
conflict off -2 +2% +9% +11% +27%

D conflict off

0.4

35

Conflict Analysis / “nogood” learning

Distribution of Speedups
Conflict Analysis Off

instances

> D DN N AN DN NP
A AN AR «,:7’ W}Q \95 >
) o

5D L 9 B ez
RIS

time(defa“|t)/time(t::onf|ict off)

36

Outline

Propagation

Analyzing MINLP solver components

37

Bound tightening/propagation

Particularly important for nonconvex MINLP
> branching on continuous variables/infinite domains
> tight domains ~~ tight relaxation

min x
Primal and dual reductions
> reduced cost ‘\\
> probing on binaries -
> FBBT: feasibility-based bound tightening K
> OBBT: optimization-based bound tightening /!

and Lagrangian variable bounds:

/)\1

X = Z ri X + Z nxi+pc X+ AT b

i:ri>0 iir;<0

[Ryoo and Sahinidis 1996, Belotti et al. 2009, Gleixner and Weltge 2013, ...]

38

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

[Gleixner and Weltge 2013]

39

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

Learn LVBs during root OBBT and propagate again
» locally at nodes of the branch-and-bound tree
» globally if a better primal solution is found
» compare “duality-based reduction” [Tawarmalani and Sahinidis 2004]

[Gleixner and Weltge 2013]

39

Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

Learn LVBs during root OBBT and propagate again
» locally at nodes of the branch-and-bound tree
» globally if a better primal solution is found
» compare “duality-based reduction” [Tawarmalani and Sahinidis 2004]

Computational Experience
» on every other MINLP, at least one nontrivial LVB from every 2nd
OBBT LP
» LVB propagation typically < 2% of total running time, when
implemented efficiently

This promises a computationally cheap approximation of OBBT in the tree.
[Gleixner and Weltge 2013]

39

Bound tightening/propagation

all maxtime > 100
setting solved time nodes time nodes
propagation off —48 +90% +129% +332% +378%
OBBT off =25 +47% +93% +198% +396%
LVB off -4 4+6% +9% +18% +17%

(D propagation off (D OBBT off () LVB off

40

Bound tightening/propagation

Distribution of Speedups

instances

Propagation off

N S RS SO
S NS ST
L NG .

N .
N or 9 N *\’ Q».\’Q 7/\
RSN &

U

time(default) /time(prop off)

41

Bound tightening/propagation

Distribution of Speedups

OBBT off LVB off

instances

R A A AR) & & NS D DD NN
e Q'\w b{,y ng o NG \9;\’ e/ L > Q.\/a Q‘f’\ an NS NG \9} T
R\ N & 9T @ @ N
time(default) /time(OBBT off) time(default) /time(LVB off)

42

Summary

all

maxtime > 100

setting solved time nodes time nodes
nonlin sepa off —102 +302% +695% +1964% +5569%
expr reform off —69 +160% +322% +1386% +3631%
propagation off —48 +90% +129% +397% +461%
MIP cuts off -39 +65% +107% +333% +395%
inference branching -27 +31% +34% +167% +176%
OBBT off —25 +47% +93% +303% +607%
most inf branching —24 +30% +38% +165% +209%
random branching —24 +30% +28% +145% +130%
breadth first search —22 +42% +29% +136% +81%
all heur off —19 +7% +36% +84% +144%
MIP cuts aggr —11 —7% —10% —18% —23%
only NLP heur —11 —4% +22% +33% +22%
LNS heur off —10 +4% +20% +51% +71%
bin reform off -9 +8% —11% +20% —21%
LVB off —4 +6% +9% +20% +19%
heur aggressive -2 +27% —4% +28% +86%
conflict off -2 +2% +9% +11% +27%

43

	Software, Hardware, Methodology
	Separation
	Reformulation
	Primal Heuristics
	Tree search
	Propagation

