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The Solver: SCIP

> a branch-cut-and-price framework
> a full-scale MIP and MINLP solver

> free for academic purposes, source code available, http://scip.zib.de
MIP

> LP relaxation MIP, GO, CP, and SAT
> cutting planes > branch-and-bound
> column generation

GO NS ¥ NG
> spatial branching (Ao d IV 4

CP
SCIP

SAT

> conflict analysis
> periodic restarts

> domain propagation / -



http://scip.zib.de

The Instances: MINLPLib 1 — 2

MINLPLib

> a collection of MINLP instances (trivial ... challenging)
> GAMS scalar format, part of GAMS World / MINLP World

Next version (in development)

> more instances, more file formats, more statistics, . ..

> currently 822 publicly available MINLP instances

> collected from MINLPLib 1, minlp.org, POLIP, ...

> see http://www.gamsworld.org/minlp/minlplib2/html/

Frsfocs [ MILAL Mol Satietcs [l MINLPLib - Number of Instances

[ MINLP World Home | Board | Solvers | MINLPLIb | Links | 800
‘GamsWerld Group | Search | Contact 1

MINLPLib Model Statistics

— MINLPLIb 1
— new in MINLPLib 2
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If you have interesting instances, please consider contributing.



http://www.gamsworld.org/minlp/minlplib2/html/

789 choose 475

The Testset

> take MINLPLib2 o (as of April'14): 789 instances

> run SCIP with default settings

> 475 instances solved within 2 hours

> 455 instances solved within 1 hour

= subsequent experiments: the set of 475 instances, 1 hour time limit

Hardware
> Dell PowerEdge M1000e, 48 GB RAM, Intel Xeon X5672@3.2 GHz

Software

> SCIP 3.1.0.1

> SoPlex 2.0

> lpopt 3.11.8

> CppAD 20140000.1




Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...,

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally
> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally

> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, ...,

> arithmetic average: dominated by large times
> geometric average: weights trivial and hard instances equally
> shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:
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The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

p({ta;: max{ta;, tg;} > t})

t—
p({ts,i: max{ta; tg,i} > t})




The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

p({ta;: max{ta;, tg;} > t})

t—
p({ts,i: max{ta;, tg;} > t})
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In the following: p = geometric mean  [See also Achterberg and Wunderling 2013]
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The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

R p({Na; : max{ta;, tg;} > t})

w({Ng, : max{ta, tg,i} > t})

In the following: p = geometric mean  [See also Achterberg and Wunderling 2013]
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Number of unsolved instances by time (default settings)
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Separation: MIP cutting planes

> General: Gomory, cMIR, {0, 1/2}-cuts, ...

> Problem-specific: knapsack, clique, multi commodity
flow, . ..

Default Settings

> run certain separators during root node
> no separation during tree search
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Separation: MIP cutting planes

> General: Gomory, cMIR, {0, 1/2}-cuts, ...
> Problem-specific: knapsack, clique, multi commodity
flow, . ..

Default Settings
> run certain separators during root node

> no separation during tree search

Alternative Setting I: off

Alternative Setting Il: aggressive

> run separators also during tree search
> run previously disabled separators during root node
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Separation: MIP cutting planes

all maxtime > 100
setting solved time nodes time nodes
MIP cuts off -39  +465% +107% +333% +395%
MIP cuts aggr -1 7% —-10% —18% —23%

D MIP cuts off () MIP cuts aggr
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2,400 3,000 3,600
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Separation: MIP cutting planes

Distribution of Speedups

MIP cuts off MIP cuts aggressive

# instances

&> OO T OO OIS
S ™M P M WY W}Q S M P Y ,L}Q KOS
Q@ﬂ °§~ ()(‘T ng \\ \9\ 1 L QN" ()-NN Q‘?\ 09“ Q’ N @“ T,
RN N NN N

time(deﬁ’“|'5)/time(M|F’ cuts off) time(defau|'5)/time(MIP cuts aggr)
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Separation: Approximation of Nonlinearities

Gradient cuts for convex terms

> feasibility enforced without branching
> exploit integer information for univariate .
convex terms

Linear underestimators for nonconvex terms
concave functions x|x|", n>0 X-y

Alternative setting:

> off during fractional branching
> thus, weak relaxation of nonlinearities while branching on fractionalities

14



Separation: Approximation of Nonlinearities

all maxtime > 100

setting solved time nodes time nodes

nonlin sepa off  —102 +302% +695% +1964% +5569%

(D nonlin sepa off
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Separation: Approximation of Nonlinearities

Distribution of Speedups
nonlin sepa off

# instances

N R N PN ) SR N P
S M P AN S P

S OO Y U e T
o © @7 e N S

time(defau|t)/time(non|in sepa off)
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Reformulation

Expression graph reformulation

> merge expressions, e.g., polynomials

> replace subexpressions with new variables

> when switched off, only a very simple relaxation
based on interval gradients is generated

18



Reformulation

Expression graph reformulation

> merge expressions, e.g., polynomials

> replace subexpressions with new variables

> when switched off, only a very simple relaxation
based on interval gradients is generated

Products with binary variables

> linearize using big-M

x> cakyk with xe{0,1}
!
Mbix <w < MYx,
Seakyk — MY(1—x) <w <Y, akyk — MEH(1 = x)

18



Reformulation

all maxtime > 100
setting solved time nodes time nodes
expr reform off —69  +160% +322% +1386% +3631%
bin reform off -9 +8% —11% +20% —21%

(D expr reform off () bin reform off
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Reformulation

Distribution of Speedups

expr reform off binary reform off

# instances

> SERA RS BEATR) QIR > SERAEO S BEA TR QIR
S S S Y T @}Q S R R Q’& S5
T O QY o I SN DI AN Sz
RO & SRR N
time(default) /time(expr reform off) time(default) /time(binary reform off)
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Primal Heuristics

Besides waiting for feasible LP solutions. . .

Standard MIP heuristics applied to MIP relaxation

> rounding, diving, feasibility pump, ...
> large neighborhood search (RENS, RINS, ...)

NLP local search

> for integer and LP feasible solutions
> fix integers and solve remaining NLP (Ipopt)

MINLP heuristics

> NLP diving
RENS [Berthold 2013]
Undercover [Berthold and Gleixner 2013]

v VvV V
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Primal Heuristics

all maxtime > 100
setting solved time nodes time nodes
all heur off -19  +7% +36% +84% +144%
only NLP 11 —4% +22% +33% +22%
LNS heur off —-10  +4% +20% +51% +71%

D all heur off () only NLP () LNS heur off
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Primal Heuristics

Distribution of Speedups

heuristics off only NLP
|

# instances

S D D D DS SO S D D N D DS SO
fo \Q'_» \Q‘.” @Qg Q\? »”? @}Q "@7@ LQ'Q »Q'N »Q(? @Qg q\'x x"? Q“@ \QQVNQ
TS P Y o SIS RNG o U
SRR & SRR N
time(default) /time(heur off) time(default) /time(only NLP)
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Primal Heuristics

all maxtime > 100
setting solved time nodes time nodes
heur aggressive -2 +2T% 4% +28% +86%

(D heur aggressive

0 600 1,200 1,800 2,400 3,000 3,600
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Primal Heuristics

Distribution of Speedups
heuristics aggressive

# instances

> N NN LD S
QSOOI AP S

L > D O 4 Q
RSN &

time(defau|'¢)/time(heur aggr)
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Branching

[Reliability (MIP)] |Inference! (CP)| |VSIDS? (SAT)]

| 1. on “fractional” integer vars |

| 2. on vars in violated nonlinear terms |

pseudo-cost (GO)

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, ...]

1 Inference branching: prefer variables where branching resulted in high number of domain propagation before

2 vsIDS: prefer variables used to produce recent conflict constraints

28



Branching

[Reliability (MIP)] |Inference! (CP)| |VSIDS? (SAT)]

| 1. on “fractional” integer vars |

| 2. on vars in violated nonlinear terms |

pseudo-cost (GO)

Alternative settings for spatial branching

1

» inference!, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, ...]

1 Inference branching: prefer variables where branching resulted in high number of domain propagation before

2 vsIDS: prefer variables used to produce recent conflict constraints
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Spatial Branching

all maxtime > 100
setting solved time nodes time nodes
inference -27 +31% +34% +167% +176%
most inf —24 +30% +38% +165% +209%
random —24 +30% +28% +145% +130%

(D inference () most inf () random
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Spatial Branching

Distribution of Speedups

# instances

Most-Infeasible Branching

Random Branching
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Node selection

Tasks
» improve primal bound
» keep computational effort small

» improve global dual bound

Best estimate with plunging

» select node Q with best/minimal
(pseudo cost) estimate value for
feasible solution objective value

Zo+ > min{uTf wtFTy

k:xyfractional
» plunge (diving with single backtrack)

Alternative setting: breadth first search

31



Node selection

all maxtime > 100
setting solved time  nodes time nodes
breadth first —22  +42%  +29%  +136% +81%

D breadth first

0.8




Node Selection

Distribution of Speedups

# instances

Breadth First Node Selection

> A D D DS LS
© \/07’ \/0{" %Qg Q\,-” \/»Q’\:@ X O
RSN &

time(default) /time(breadth first)
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Conflict analysis / “nogood" learning

Analyse reason for pruning a node

» branchings and propagations

v

infeasible and bound exceeding
LP relaxation: dual ray heuristic

v

derive short nogoods/conflict
constraints

» most nonlinear constraints do not
participate in conflict analysis yet

Use subsequently
» to cut off other nodes
» to enable further propagations
» for VSIDS in branching

X1—X3§0
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Conflict analysis / “nogood" learning

all maxtime > 100
setting solved time nodes time nodes
conflict off -2 +2% +9% +11% +27%

D conflict off

0.4
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Conflict Analysis / “nogood” learning

Distribution of Speedups
Conflict Analysis Off

# instances

> D DN N AN DN NP
A AN AR «,:7’ W}Q \95 >
) o

5D L 9 B ez
RIS

time(defa“|t)/time(t::onf|ict off)
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Bound tightening/propagation

Particularly important for nonconvex MINLP
> branching on continuous variables/infinite domains
> tight domains ~~ tight relaxation

min x
Primal and dual reductions
> reduced cost ‘\\
> probing on binaries -
> FBBT: feasibility-based bound tightening K
> OBBT: optimization-based bound tightening /!

and Lagrangian variable bounds:

/)\1

X = Z ri X + Z nxi+pc X+ AT b

i:ri>0 iir;<0

[Ryoo and Sahinidis 1996, Belotti et al. 2009, Gleixner and Weltge 2013, ...]

38



Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

[Gleixner and Weltge 2013]
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Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

Learn LVBs during root OBBT and propagate again
» locally at nodes of the branch-and-bound tree
» globally if a better primal solution is found
» compare “duality-based reduction” [Tawarmalani and Sahinidis 2004]

[Gleixner and Weltge 2013]
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Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of x, > r"x + 7 x4+ uc'x* + AT b is tightened
» if some variable lower bound x; increases for r; > 0
» if some variable upper bound X; decreases for 7; < 0
» if a better primal solution x* is found and < 0

Learn LVBs during root OBBT and propagate again
» locally at nodes of the branch-and-bound tree
» globally if a better primal solution is found
» compare “duality-based reduction” [Tawarmalani and Sahinidis 2004]

Computational Experience
» on every other MINLP, at least one nontrivial LVB from every 2nd
OBBT LP
» LVB propagation typically < 2% of total running time, when
implemented efficiently

This promises a computationally cheap approximation of OBBT in the tree.
[Gleixner and Weltge 2013]
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Bound tightening/propagation

all maxtime > 100
setting solved time nodes time nodes
propagation off —48  +90% +129% +332% +378%
OBBT off =25 +47%  +93% +198% +396%
LVB off -4 4+6% +9%  +18% +17%

(D propagation off (D OBBT off () LVB off
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Bound tightening/propagation

Distribution of Speedups

# instances

Propagation off

N S RS SO
S NS ST
L NG .

N .
N or 9 N \*\’ Q».\’Q 7/\
RSN &

U

time(default) /time(prop off)
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Bound tightening/propagation

Distribution of Speedups

OBBT off LVB off

# instances

R A A AR ) & & NS D DD NN
e Q'\w b{,y ng o NG \9;\’ e/ L > Q.\/a Q‘f’\ an NS NG \9} T
R\ N & 9T @ @ N
time(default) /time(OBBT off) time(default) /time(LVB off)
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Summary

all

maxtime > 100

setting solved time nodes time nodes
nonlin sepa off —102  +302%  +695%  +1964%  +5569%
expr reform off —69  +160%  +322%  +1386%  +3631%
propagation off —48 +90%  +129% +397% +461%
MIP cuts off -39 +65% +107% +333% +395%
inference branching -27 +31% +34% +167% +176%
OBBT off —25 +47% +93% +303% +607%
most inf branching —24 +30% +38% +165% +209%
random branching —24 +30% +28% +145% +130%
breadth first search —22 +42% +29% +136% +81%
all heur off —19 +7% +36% +84% +144%
MIP cuts aggr —11 —7% —10% —18% —23%
only NLP heur —11 —4% +22% +33% +22%
LNS heur off —10 +4% +20% +51% +71%
bin reform off -9 +8% —11% +20% —21%
LVB off —4 +6% +9% +20% +19%
heur aggressive -2 +27% —4% +28% +86%
conflict off -2 +2% +9% +11% +27%
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