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The Solver: SCIP

. a branch-cut-and-price framework

. a full-scale MIP and MINLP solver

. free for academic purposes, source code available, http://scip.zib.de
MIP

. LP relaxation

. cutting planes

. column generation

MIP, GO, CP, and SAT

. branch-and-bound

GO

. spatial branching

CP

. domain propagation

SAT

. conflict analysis

. periodic restarts
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The Instances: MINLPLib 1 → 2

MINLPLib
. a collection of MINLP instances (trivial . . . challenging)
. GAMS scalar format, part of GAMS World / MINLP World
Next version (in development)
. more instances, more file formats, more statistics, . . .
. currently 822 publicly available MINLP instances
. collected from MINLPLib 1, minlp.org, POLIP, . . .
. see http://www.gamsworld.org/minlp/minlplib2/html/
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MINLPLib - Number of Instances

MINLPLib 1
new in MINLPLib 2

If you have interesting instances, please consider contributing.
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789 choose 475

The Testset
. take MINLPLib2α (as of April’14): 789 instances
. run SCIP with default settings
. 475 instances solved within 2 hours
. 455 instances solved within 1 hour
⇒ subsequent experiments: the set of 475 instances, 1 hour time limit

Hardware
. Dell PowerEdge M1000e, 48GB RAM, Intel Xeon X5672@3.2GHz

Software
. SCIP 3.1.0.1
. SoPlex 2.0
. Ipopt 3.11.8
. CppAD 20140000.1

6



Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, . . .

, time to optimality
. arithmetic average: dominated by large times
. geometric average: weights trivial and hard instances equally
. shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst A B

1 10s 2s
2 10s 2s
3 10s 50s
4 10s 50s
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Averaging over heterogeneous test sets

Instances vary widely in size, nonlinearity, . . . , time to optimality
. arithmetic average: dominated by large times
. geometric average: weights trivial and hard instances equally
. shifted geometric average: which shift?

Some results are not distinguished by performance profiles alone:

inst A B

1 10s 2s
2 20s 100s
3 50s 10s
4 100s 500s
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The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

t 7→
µ({tA,i : max{tA,i , tB,i} ≥ t})
µ({tB,i : max{tA,i , tB,i} ≥ t})

0 600 1,200 1,800 2,400 3,000 3,600
0
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0.4
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0.8

1

time

In the following: µ = geometric mean [See also Achterberg and Wunderling 2013]
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The Method: Filtered Performance Diagrams

Gradually exclude instances solved by A and B and compute speedup:

t 7→
µ({NA,i : max{tA,i , tB,i} ≥ t})
µ({NB,i : max{tA,i , tB,i} ≥ t})
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Number of unsolved instances by time (default settings)

t 7→ |{i : ti ≥ t}|
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Separation: MIP cutting planes

. General: Gomory, cMIR, {0, 1/2}-cuts, . . .

. Problem-specific: knapsack, clique, multi commodity
flow, . . .

Default Settings
. run certain separators during root node
. no separation during tree search

Alternative Setting I: off

Alternative Setting II: aggressive
. run separators also during tree search
. run previously disabled separators during root node
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Separation: MIP cutting planes

all maxtime ≥ 100

setting solved time nodes time nodes

MIP cuts off −39 +65% +107% +333% +395%
MIP cuts aggr −11 −7% −10% −18% −23%

0 600 1,200 1,800 2,400 3,000 3,600
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1.5
MIP cuts off MIP cuts aggr
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Separation: MIP cutting planes

Distribution of Speedups
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Separation: Approximation of Nonlinearities

Gradient cuts for convex terms
. feasibility enforced without branching
. exploit integer information for univariate

convex terms
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Linear underestimators for nonconvex terms
concave functions
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Alternative setting:
. off during fractional branching
. thus, weak relaxation of nonlinearities while branching on fractionalities

14



Separation: Approximation of Nonlinearities

all maxtime ≥ 100

setting solved time nodes time nodes

nonlin sepa off −102 +302% +695% +1964% +5569%
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0
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Separation: Approximation of Nonlinearities

Distribution of Speedups
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Reformulation

Expression graph reformulation
. merge expressions, e.g., polynomials
. replace subexpressions with new variables
. when switched off, only a very simple relaxation

based on interval gradients is generated
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. linearize using big-M

x ·
∑

k akyk with x ∈ {0, 1}
↓

MLx ≤ w ≤ MUx ,∑
k akyk −MU(1− x) ≤ w ≤

∑
k akyk −ML(1− x)
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Reformulation

all maxtime ≥ 100

setting solved time nodes time nodes

expr reform off −69 +160% +322% +1386% +3631%
bin reform off −9 +8% −11% +20% −21%
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Reformulation

Distribution of Speedups
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Primal Heuristics

Besides waiting for feasible LP solutions . . .

Standard MIP heuristics applied to MIP relaxation
. rounding, diving, feasibility pump, . . .
. large neighborhood search (RENS, RINS, ...)

NLP local search
. for integer and LP feasible solutions
. fix integers and solve remaining NLP (Ipopt)

MINLP heuristics
. NLP diving
. RENS [Berthold 2013]
. Undercover [Berthold and Gleixner 2013]
. . . .

min
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Primal Heuristics

all maxtime ≥ 100

setting solved time nodes time nodes

all heur off −19 +7% +36% +84% +144%
only NLP −11 −4% +22% +33% +22%
LNS heur off −10 +4% +20% +51% +71%
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Primal Heuristics

Distribution of Speedups
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Primal Heuristics

all maxtime ≥ 100

setting solved time nodes time nodes

heur aggressive −2 +27% −4% +28% +86%
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Primal Heuristics

Distribution of Speedups
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Branching

Reliability (MIP) Inference1 (CP) VSIDS2 (SAT)

1. on “fractional” integer vars

2. on vars in violated nonlinear terms

pseudo-cost (GO)
-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Alternative settings for spatial branching
I inference1, most infeasible, random

[See Tawarmalani and Sahinidis 2002, Achterberg and Berthold 2009, Belotti et al. 2009, . . . ]

1 Inference branching: prefer variables where branching resulted in high number of domain propagation before

2 VSIDS: prefer variables used to produce recent conflict constraints
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Spatial Branching

all maxtime ≥ 100

setting solved time nodes time nodes

inference −27 +31% +34% +167% +176%
most inf −24 +30% +38% +165% +209%
random −24 +30% +28% +145% +130%
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0
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1 inference most inf random
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Spatial Branching

Distribution of Speedups
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Node selection

Tasks
I improve primal bound
I keep computational effort small
I improve global dual bound

Best estimate with plunging
I select node Q with best/minimal

(pseudo cost) estimate value for
feasible solution objective value

z̄Q +
∑

k:x̄k fractional

min{Ψ−f −,Ψ+f +}

I plunge (diving with single backtrack)

Alternative setting: breadth first search
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Node selection

all maxtime ≥ 100

setting solved time nodes time nodes

breadth first −22 +42% +29% +136% +81%
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Node Selection

Distribution of Speedups
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Conflict analysis / “nogood” learning

Analyse reason for pruning a node
I branchings and propagations
I infeasible and bound exceeding

LP relaxation: dual ray heuristic
I derive short nogoods/conflict

constraints
I most nonlinear constraints do not

participate in conflict analysis yet

Use subsequently
I to cut off other nodes
I to enable further propagations
I for VSIDS in branching

x1 − x3 ≤ 0
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Conflict analysis / “nogood” learning

all maxtime ≥ 100

setting solved time nodes time nodes

conflict off −2 +2% +9% +11% +27%
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Conflict Analysis / “nogood” learning

Distribution of Speedups
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Bound tightening/propagation

Particularly important for nonconvex MINLP
. branching on continuous variables/infinite domains
. tight domains  tight relaxation

Primal and dual reductions
. reduced cost
. probing on binaries
. FBBT: feasibility-based bound tightening
. OBBT: optimization-based bound tightening

and Lagrangian variable bounds:

min xk

λ2

λ1

xk ≥
∑

i :ri>0

ri x i +
∑

i :ri<0

ri x i + µ cT x∗ + λT b

[Ryoo and Sahinidis 1996, Belotti et al. 2009, Gleixner and Weltge 2013, . . . ]
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Propagating Lagrangian Variable Bounds (LVBs)

The right-hand side of xk ≥ rT x + rT x + µcT x∗ + λTb is tightened
I if some variable lower bound x i increases for r i > 0
I if some variable upper bound x i decreases for r i < 0
I if a better primal solution x∗ is found and µ < 0

Learn LVBs during root OBBT and propagate again
I locally at nodes of the branch-and-bound tree
I globally if a better primal solution is found
I compare “duality-based reduction” [Tawarmalani and Sahinidis 2004]

Computational Experience
I on every other MINLP, at least one nontrivial LVB from every 2nd

OBBT LP
I LVB propagation typically ≤ 2% of total running time, when

implemented efficiently

This promises a computationally cheap approximation of OBBT in the tree.

[Gleixner and Weltge 2013]
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I on every other MINLP, at least one nontrivial LVB from every 2nd

OBBT LP
I LVB propagation typically ≤ 2% of total running time, when

implemented efficiently

This promises a computationally cheap approximation of OBBT in the tree.
[Gleixner and Weltge 2013]
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Bound tightening/propagation

all maxtime ≥ 100

setting solved time nodes time nodes

propagation off −48 +90% +129% +332% +378%
OBBT off −25 +47% +93% +198% +396%
LVB off −4 +6% +9% +18% +17%
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Bound tightening/propagation

Distribution of Speedups
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Bound tightening/propagation

Distribution of Speedups
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Summary
all maxtime ≥ 100

setting solved time nodes time nodes

nonlin sepa off −102 +302% +695% +1964% +5569%
expr reform off −69 +160% +322% +1386% +3631%
propagation off −48 +90% +129% +397% +461%
MIP cuts off −39 +65% +107% +333% +395%
inference branching −27 +31% +34% +167% +176%
OBBT off −25 +47% +93% +303% +607%
most inf branching −24 +30% +38% +165% +209%
random branching −24 +30% +28% +145% +130%
breadth first search −22 +42% +29% +136% +81%
all heur off −19 +7% +36% +84% +144%
MIP cuts aggr −11 −7% −10% −18% −23%
only NLP heur −11 −4% +22% +33% +22%
LNS heur off −10 +4% +20% +51% +71%
bin reform off −9 +8% −11% +20% −21%
LVB off −4 +6% +9% +20% +19%
heur aggressive −2 +27% −4% +28% +86%
conflict off −2 +2% +9% +11% +27%
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